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Abstract. Private Set Intersection (PSI) is a popular cryptographic primitive that
allows two parties, a client and a server, to compute the intersection of their pri-
vate sets, so that the client only receives the output of the computation, while the
server learns nothing besides the size of the client’s set. A common limitation of
PSI is that a dishonest client can progressively learn the server’s set by enumerat-
ing it over different executions. Although these “oracle attacks” do not formally
violate security according to traditional secure computation definitions, in prac-
tice, they often hamper real-life deployment of PSI instantiations, especially if
the server’s set does not change much over multiple interactions.
In a first step to address this problem, this paper presents and studies the con-
cept of Reactive PSI (RePSI). We model PSI as a reactive functionality, whereby
the output depends on previous instances, and use it to limit the effectiveness
of oracle attacks. We introduce a general security model for RePSI in the (aug-
mented) semi-honest model and a construction which enables the server to con-
trol how many inputs have been used by the client across several executions. In
the process, we also present the first construction of a Size-Hiding PSI (SHI-PSI)
protocol in the standard model, which may be of independent interest.

1 Introduction
Private Set Intersection (PSI) lets two parties compute the intersection of their private
sets, drawn from a common universe, without disclosing items outside the intersection.
In its most common formulation, only one party, usually referred to as the client, obtains
the intersection, while the other, aka server, only learns the size of the client’s set. Over
the past few years, PSI has been used in numerous privacy-friendly applications, in-
cluding ridesharing [HOS17], collaborative threat mitigation [FDCB15], genomic test-
ing [BBD+11], and online advertising [IKN+17].

Nonetheless, there are some challenging issues limiting the adoption of PSI in prac-
tice. In particular, if two parties run the protocol several times, the server is vulnerable
to oracle attacks. In such an attack, a dishonest client progressively learns the server’s
set by enumerating it over different executions. Although this does not formally violate
security definitions of two-party computation [Gol04], it may hamper real-life deploy-
ment of PSI, especially if the server’s set is mostly static. Moreover, in the Size-Hiding
variant of PSI [ADT11], where the server does not learn the size of client’s set, the
problem is further compounded as the server cannot limit the size of client’s input.

∗A preliminary version of this paper appears in the Proceedings of th 16th International Conference on Applied Cryp-
tography and Network Security (ACNS 2018). This is the full version.



Aiming to mitigate oracle attacks in PSI protocols, we start reasoning about the se-
curity of this cryptographic primitive across multiple runs. To this end, we introduce the
notion of Reactive PSI (RePSI), along with a general security model in the augmented
semi-honest model [Gol04], and set to propose provably secure instantiations.

Let us first consider a naı̈ve solution. In the non size-hiding setting, using certain
PSI protocols, e.g., [DT10], one could in theory let the client re-use the randomness for
the elements in its input set that do not change across runs. This way, the server learns
how many of the client’s elements are “fresh” in the current run and imposes an upper-
bound. However, this approach at the very least makes two protocol executions linkable
as it reveals the patterns of the client’s inputs. Moreover, if the distribution of client’s
elements is somewhat predictable, this might actually reveal too much information. By
contrast, our goal is to provide stronger definitions whereby the client does not reveal
its input patterns, but only proves that number of unique elements input from the first
run up to the current one is below a given threshold.

1.1 Roadmap

In this paper, we tackle the issue of oracle attacks in Private Set Intersection (PSI) by
extending security definitions to account for reactive functionalities, whereby the output
of the current execution can depend on previous executions.

First, we introduce the notion of Reactive PSI (RePSI), along with a general secu-
rity model in the augmented semi-honest model [Gol04]. In this model, the adversary
is assumed to follow the specifications of the protocol (as in the standard semi-honest
model) but it is allowed to adaptively modify the inputs used by the controlled party
at each protocol run. We argue that the augmented semi-honest model can effectively
model oracle attacks in PSI, whereas, the standard semi-honest model cannot, since
it prevents the adversary to change the input of the corrupted party between proto-
col executions. That is, the adversary can only leverage honestly generated transcripts.
Also, although we do not yet provide security in the fully malicious setting, we believe
that ours is an important first step towards the development of efficient protocols. In
fact, there exist general transformations [GMW87, Gol04] allowing to compile a semi-
honest secure protocol into one secure against malicious adversaries, and efficient PSI-
like protocols are also traditionally in semi-honest settings (see Section 1.2). Moreover,
our definitions are general enough to capture various types of reactive functionalities
and they cover the sequential composition of standard (i.e., stateless) PSI protocols.

Then, we provide two constructions, one static and one reactive. We focus on the
size-hiding setting since, as mentioned above, the fact that the server cannot even check
and limit the number of client’s inputs in a single execution, makes oracle attacks sig-
nificantly worse. Our static construction, named Bounded-Input PSI limits the size of
the client’s input set at every protocol run. We achieve this by adapting the Bounded
Size-Hiding PSI recently presented by Bradley, Faber, and Tsudik [BFT16], which pro-
vided security in the Random Oracle Model (ROM). As an additional contribution, we
instantiate Bounded Size-Hiding PSI in the standard model, thus also presenting the first
Size-Hiding PSI protocol not in ROM. Our reactive construction, called Input Control-
ling RePSI, enables the server to control how many inputs have been used by the other
party across several executions. Specifically, it limits the size of the unions set stem-
ming from the union of client’s input sets across all protocol runs. Input Controlling
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RePSI, therefore, addresses oracle attacks in practical scenarios where a client and a
server engage in multiple PSI executions.

By modeling PSI as a reactive functionality, we require that client and server keep
state across protocol executions. Nevertheless, the amount of state information kept by
the two parties in our constructions is small and independent of the number of runs.

1.2 Related Work

To the best of our knowledge, the problem of Reactive PSI has not been studied in
literature. Standard security definitions for semi-honest and malicious two-party and
multiparty computation can be extended to model security of generic protocols com-
puting reactive functionalities. The augmented semi-honest model was introduced by
Goldreich [Gol04] to bridge the semi-honest model and the malicious model and used
it as an intermediate step in the compilation of secure protocols from the semi-honest
to the malicious settings. Hazay and Lindell [HL10a] observed that security in the ma-
licious settings sometime does not imply security in the semi-honest settings, while this
anomaly does not happen in the augmented semi-honest model.

Overall, prior work on PSI can be grouped in protocols using special-purpose con-
structions [FNP04, DT10], oblivious transfer and its extensions [PSZ14, PSSZ15],
and/or generic garbled circuits [PSSZ15]. Most protocols are secure against semi-
honest adversaries [FNP04, DT10, PSZ14, PSSZ15], with fewer, less efficient ones,
against malicious ones [DKT10, JL10, RR17]. Also, protocols by Hazay et al. [HL08]
operate in the covert model (i.e., a malicious adversary may be able to cheat but it can
get caught with at least a certain probability).

There are also a few variants to the standard PSI functionality. Besides the size-
hiding one discussed above [ADT11, BFT16], Authorized PSI [CZ09, DT10] partially
mitigates malicious behavior by introducing a trusted party that authorizes (i.e., signs)
the elements that a client can use as input. However, finding a common trusted party
may be hard in most practical use cases.

More closely related to our work are the protocols proposed in [BFT16]
and [DMV13]. Bradley, Faber, and Tsudik [BFT16] introduce the concept of Bounded
Size-Hiding PSI, which allows the client to hide the size of its input, and the server
to impose an upper-bound on the size of the client’s set for the current run. We start
from the protocol of [BFT16] and cast it within the framework of RePSI to counter
oracle attacks across multiple runs. Furthermore, while [BFT16] works in the random
oracle model, we instantiate it in the standard model. Dagdelen, Mohassel, and Ven-
turi [DMV13] introduce the concept of rate-limited Secure Function Evaluation (SFE),
whereby protocol participants can monitor and limit the number of distinct inputs (i.e.,
rate) used by their counterparts in multiple executions of an SFE. They present compil-
ers by which any SFE scheme can be turned into a rate-limited one. In particular, the
“rate-hiding” compiler [DMV13] may be applied to a PSI protocol to achieve the same
provisions of our Input Controlling RePSI. We take a less general approach and focus
on PSI, by incorporating reactiveness in the functionality and achieving a more efficient
construction (see Section 5.3).
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1.3 Paper Organization

Next section introduces some preliminaries, then, Section 3 provides security defini-
tions for the Reactive PSI primitive in the augmented semi-honest model. Next, in Sec-
tions 4 and 5, we present our constructions of Bounded Input RePSI and Input Control-
ling RePSI, respectively. Finally, the paper concludes in Section 6.

2 Preliminaries
In this section, we introduce notation, cryptographic assumptions and building blocks
used later on in the paper.

We write y ← A(x) for a probabilistic algorithm returning output y given as input x.
In case we want to specify the randomness r used, we write y = A(x; r). We implicitly
assume all the algorithms considered in this paper to receive as input the security param-
eter λ. For functions f, g : N→ [0, 1] we write f(λ) ≈ g(λ) if |f(λ)− g(λ)| = λω(1).
We say a function f is overwhelming if f(λ) ≈ 1 and negligible if f(λ) ≈ 0.

2.1 Bilinear Groups

A bilinear group is a tuple (p,G,GT , e, g) s.t. G and GT are groups of prime order p
and g ∈ G generates the group G. The function e is an efficiently computable bilin-
ear map e : G × G → GT such that e(g, g) is a generator of GT . We assume there
are probabilistic polynomial time generators G and BG that, given as input the secu-
rity parameter, return the description of a group (p,G, g) ← G(λ) and bilinear group
(p,G,GT , e, g) ← BG(λ), respectively. In the constructions of Sections 4 and 5, we
rely on the exponent Strong Diffie-Hellman (Exponent q-SDH) and the Decisional Bi-
linear Diffie-Hellmann Inversion problem (q-DBDHI) recalled in Appendix A.

2.2 Bilinear Accumulators

A cryptographic accumulator is a primitive that allows to give a compact representation
of a set and that enables to efficiently prove membership of an element into the accu-
mulated set. Accumulators were firstly introduced by Benaloh and de Mare [BDM94]
and were later extended and provided with additional properties [BP97, CL02, Ngu05,
DHS15, GOP+16, CKS09].

A (static) accumulator consists of four algorithms (KeyGen,Eval,WitGen,Verify).
The key generation algorithm KeyGen takes as input the security parameter and gen-
erates a secret and an evaluation key pair (sk, ek) for the accumulator. The evaluation
algorithm Eval gets as input the evaluation key ek and a set A of values and returns
an accumulator accA. The WitGen and Verify are deterministic algorithms for, respec-
tively, producing and verifying a witness wit for the membership of an element a ∈ A
in a given accumulator accA. We follow [DHS15] on modelling Eval and WitGen to
optionally get as input the secret key sk, since this makes the algorithms more efficient.
We denote the optional input by writing sk .

The main security properties required from accumulators are: correctness, i.e. hon-
estly generated witnesses should verify; collision-freeness, i.e. that it is unfeasible to
compute a witness for elements not included in the accumulated set; and indistinguisha-
bility, i.e. the accumulator does not reveal any information on the accumulated set.
We recall security definitions for cryptographic accumulator in Appendix B which we
adapted from [DHS15] to our settings.
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In our constructions of PSI we will later use the accumulator introduced by Nguyen
in [Ngu05] based on bilinear pairings. Since we will not require the possibility of re-
moving elements from an accumulator, we restrict Nguyen’s construction[Ngu05] to a
static accumulator, description of which can be found in Figure 1.

KeyGen(λ)→ (sk, ek):
� (p,G,GT , e, g)← BG(λ)
� x← Z∗p
� sk := x

� ek := (g, gx, gx
2

, . . . , gx
q

)

WitGen( sk , ek, accA, r, A, a)→ wit:
� Parse A = (a1, . . . , an) for ai ∈ Zp
� ChA\{a}(X) =

∑n
i=0 diX

i

� wit := acc
1

a+x

A = grChA\{a}(x) =
(∏n

i=0(g
xi)di

)r

Eval( sk , ek,A)→ accA:
� Parse A = (a1, . . . , an) for ai ∈ Zp
� ChA(X) =

∑n
i=0 ciX

i

� r ← Z∗p
� accA := grChA(x) =

(∏n
i=0(g

xi)ci
)r

Verify(ek, accA, a,wit)→ 0/1:
� If e(accA, g) = e(wit, gx · ga) : Return 1
� Else: Return 0

Fig. 1: Bilinear Accumulators.

Let A = {a1, . . . an} be a set of elements ai ∈ Zp that we wish to include into
an accumulator. We first start by computing the characteristic polynomial representa-
tion of set A. This is the monic polynomial ChA(X) ∈ Zp[X] which has roots in the
elements contained in the set A, namely ChA(X) =

∏n
i=1(X + ai). In order to effi-

ciently evaluate the accumulator, it will be convenient to express such polynomial using
its coefficient representation, i.e. computing cj such that ChA(X) =

∏n
i=1(X + ai) =∑n

j=0 cjX
j . We stress that given A it is always possible to efficiently compute the

coefficient cj of ChA(X).
The evaluation key of [Ngu05] bilinear accumulator consists of ek =

(g, gx, gx
2

, . . . , gx
q

) ∈ Gq+1, where g is a generator of the group G and x ∈ Zp is
a secret value.

Given the evaluation key and polynomial ChA(X) of degree at most q, it is possible
to compute gChA(x). This is done by first expanding ChA(X) into its coefficient rep-
resentation, i.e ChA(X) =

∑q
i=0 ciX

i, and then computing gChA(x) =
∏q
i=0(g

xi)ci .
An accumulator accA to a set A is computed by picking a random r ← Zp and setting
accA = (gChA(x))r.

We recall the following result from [Ngu05, DHS15].

Lemma 1. Under the q-SDH assumption, the accumulator described in Figure 1 is
collision-free and indistinguishable.

Subset Queries. The WitGen algorithm described in Figure 1 is used to compute wit-
nesses for the membership of single elements in accA. We now extend it to compute
witnesses for multiple elements, namely to show that a set B ⊆ A is included in
accA. We write WitGen∗( sk , ek,A, accA, r, B) for the computation of the witness

wit = acc
1

ChB(x)

A = grChA\B(x). Similarly, we let Verify∗(ek, accA, B,wit) to return 1
in case e(accA, g) = e(wit, gChB(x)) holds, and 0 otherwise.
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Furthermore, we can extend WitGen to compute witnesses for an accumulator accB
to accumulate a subset of the set accumulated into accA. Let r and r′ be the randomness
used to generate accA and accB , respectively. We define the following

– WitGen∗( sk , ek, (accA, r, A), (r
′, B)) : it computes the witness wit∗ =

acc
1

r′ChB(x)

A = g
r
r′ ChA\B(x)

– Verify∗(ek, accA, accB ,wit
∗) : it returns 1 if e(accA, g) = e(accB ,wit

∗) holds,
and 0 otherwise.

2.3 Hard Relations

Let p be a polynomial and Rpp ⊆ {0, 1}p(λ) × {0, 1}p(λ) be a binary relation indexed
by some public parameters pp. We call (u,w) ∈ R instance and witness, respectively.
We assume the public parameters pp ← G(λ) to be efficiently computable given as
input the security parameter. Also, let Lpp := {u : ∃w s.t. (u,w) ∈ R} to be the NP
language corresponding toRpp. We require the language L to be efficiently sampleable
and denote with u← D(L) the process of picking a random element from L. A relation
(G,R,D) is said to be hard if for any probabilistic polynomial time adversary A the
following probability is negligible

Pr
[
pp← G(λ);u← D(Lpp);w ← A(pp, u) : (u,w) ∈ Rpp

]
≈ 0

More concretely, we are interested in relations corresponding to hard search prob-
lems associated with cryptographic accumulators. For example the relation correspond-
ing to the following language

Lek(a) := {(accA, a) ∈ G× Zp : ∃ wit ∈ G s.t. Verify(ek, accA, a,wit) = 1}

The above language consists of all accumulators accA for which there exists a witness
for the accumulation of a ∈ Zp. We note that the above language is efficiently sam-
pleable by letting accA ← Eval(ek, a). We now state the following straightforward
Lemma and refer to Appendix B for the proof.

Lemma 2. Assuming the accumulator is collision-free and indistinguishable, then the
above the binary relation corresponding to Lek(a) is hard for any a ∈ Zp.

2.4 Smooth Projective Hash Function

Smooth Projective Hash Functions (SPHF) were introduced by Cramer and
Shoup [CS02] (with the name of hash proof system) as a kind of designated-verifier
proof systems for certain classes of algebraic languages. These found great applica-
tions towards the development of several primitives such as CCA2 secure public key
encryption [CS02] and password authenticated key exchange[GL03, KV09]. Here we
define a simpler hash proof system for the language of elements accumulated using the
above bilinear accumulator.

An SPHF consists of three algorithms (HGen,Hash,PHash). The key generation
algorithm HGen takes as input the security parameter and returns a relation1, and a

1The original definition of SPHF was introduced for languages related with hard subset membership problems, while
here we define SPHF for languages related with a hard search problem.
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pair of secret and public keys (hsk, hpk); we sometimes refer to hpk as the projection
key. The keys specify an hash function from the relation R to an abelian group G.
The hash function can be privately evaluated using hsk on any instance in LR, namely
Hashhsk : LR → G. The hash function allows also for public evaluation given hpk but
only on instances for which a witness is known, namely PHashhpk : R → G. An SPHF
satisfies two main properties: correctness and smoothness.

– Correctness: for any (u,w) ∈ R, the private and public evaluation algorithms
Hash,PHash of the SPHF return the same result, i.e.

Hashhsk(u) = PHashhpk(u,w)

– (Computational) Smoothness: for any instance for which a witness is not known,
the evaluation of the hash function is (computationally) indistinguishable from ran-
dom. Namely, we say that an SPHF on a relation (G,R,D) is smooth if for any
probabilistic polynomial time adversary A, the following advantage is negligible

∣∣∣∣∣∣∣∣Pr
 (Lpp, hsk, hpk)← HGen(λ);

u← D(Lpp);
H ← Hashhsk(u);

: A(hpk, u,H) = 1

− Pr

 (Lpp, hsk, hpk)← HGen(Lpp);
u← D(Lpp);
H ← G;

: A(hpk, u,H) = 1


∣∣∣∣∣∣∣∣ ≈ 0

We now show the construction for an SPHF defined on the relation specified by
Lek(a), for any a ∈ Zp, to the target group GT of a bilinear group. The construction
of the SPHF is described in Figure 2 and is a simple combination of the bilinear accu-
mulators of [Ngu05] and the verifiable random function (VRF) constructed by Dodis
and Yampolskiy [DY05]. A VRF is a pseudorandom function which admits proofs of
correct evaluation that can be publicly verified. In our SPHF we apply the VRF to an
accumulator and an element accumulated in it. The proof of evaluation for the func-
tion corresponds to the accumulation witness, and the secret key of the SPHF is the
secret key of the accumulator. Since the secret key of the accumulator allows to com-
pute witnesses for every element in Zp it also allows to evaluate the SPHF in every pair
(acc, a) ∈ G× Zp.

HGen(λ)→ (Lek, hsk, hpk):
� (sk, ek)← KeyGen(λ)
� Lek := ∪a∈ZpLek(a)
� z ← Z∗p
� hsk := (sk, z)
� hpk := (ek, gz)

Hashhsk(acc, a)→ H:

�H := e(acc, gz)
1

sk+a

PHashhpk((acc, a),wit)→ H:
� If ((acc, a),wit) ∈ RLek :

�H := e(wit, gz)
� Else: Return H := ⊥.

Fig. 2: SPHF for accumulators.

The security of the SPHF constructed in Figure 2 follows from the security of the
verifiable random function of [DY05], based on the q-DHDBI assumption. We refer to
Appendix B for a proof of the following Lemma.

Lemma 3. Under the q-DBDHI assumption over a bilinear group (p,G,GT , e, g), the
construction in Figure 2 is a smooth projective hash function.
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3 Reactive PSI in the Augmented Semi-Honest Model
Aiming to prevent oracle attacks in scenarios where two parties engage in several
PSI executions, we consider stateful PSI protocols computing reactive functionalities,
whereby their outputs can depend on previous instances of the protocol.

We set our security definitions in the augmented semi-honest model of [Gol04]. In
this model, the adversary is restricted to follow the specifications of the protocol as in
the standard semi-honest settings. In addition, the adversary is allowed to adaptively
modify the inputs used by the controlled party before each instance of the protocol.
Apart from being more natural [HL10b] to give semi-honest adversaries this capability,
we argue that the augmented model is more appropriate than the standard one to study
composition of protocols.

Let t = t(λ) be a polynomial. We define the reactive functionality ReF =
(F1,F2, . . . ,Ft) as a sequence of stateful functionalities2 Fi each taking as input a client
set Ci and a server set Si and returning a pair ReFi(Ci,Si) = (Ii, bi). These correspond
to the outputs of the client and server should have at the at the end of each execution,
respectively.

Next, we state our security definitions in terms of a generic reactive functionality
and refer to the end of the section for specific instantiations of ReF for private set
intersection protocols.

Definition 1 (RePSI). A private set intersection protocol is a tuple (Setup,Π) s.t.

– Setup(λ) → (paramC ; paramS): it takes as input the security parameter and re-
turns a pair of initial parameters for the client and the server. These can include
public parameters and secret keys for the client and the server. If a specific proto-
col does not require a setup algorithm, this can be simply regarded as copying the
security parameter into the initial parameters.

– Π〈C(C;StC);S(S;StS)〉 → ((outC ;StC); (outS ;StS)): this is a stateful proba-
bilistic polynomial time interactive protocol between a client C and a server S.
Each party takes as input a set and a state information (initialised to StC :=
paramC , StS := paramS in the first instance of the protocol) and returns an output
and an updated the state.

We say that private set intersection protocol (Setup,Π) is a RePSI if it securely re-
alizes a reactive functionality ReF in the augmented semi-honest model, i.e. if it satisfies
correctness, server privacy and client privacy as defined below.

Correctness is defined by the security game ExpCorr
A (λ) described in Figure 3. In-

formally, a protocol is correct if at the end of each instance both parties return their
prescribed outputs.

Definition 2 (Correctness). Let t = t(λ) a polynomial in the security parameter λ,
and ReF defined as above. A protocol (Setup,Π) is correct if for any probabilistic
polynomial time adversary A

Pr
[
ExpCorr

A (λ) = 1
]
≈ 1
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ExpCorr
A (λ):

� (paramC ; paramS)← Setup(λ)
� (C1, S1, . . . ,Ct, St)← A(paramC ; paramS)
� StC := paramC, StS := paramS
� For i = 1 to t:
◦ ((outC,i;StC); (outS,i;StS))← Π〈C(Ci;StC);S(Si;StS)〉
◦ (Ii, bi) = ReFi(Ci, Si)

� If (outC,i, outS,i) = (Ii, bi) for all i ∈ [1, . . . , t]: Return 1
� Else: Return 0

Fig. 3: Correctness Game

OΠ(S∗, St∗S):
� If i = 0: StC := paramC

� i = i+ 1
� ((outC,i;StC); (outS,i;StS))← Π〈C(Ci;StC);S(S∗;St∗S)〉
� Return viewi,S((Ci;StC); (S

∗;St∗S))

OSim(S∗, St∗S):
� i = i+ 1
� (Ii; bi) = ReFi(Ci, S

∗)
� viewi,S,Sim ← Sim((S∗, St∗S), bi, paramS , |Ci|)
� Return viewi,S,Sim

Fig. 4: Oracles used in the Client Privacy game.

Client privacy is specified by two oracles OΠ , OSim described in Figure 4. The
oracle OΠ allows the adversary to run the next interaction between client and server
on server’s inputs of her choice. The oracle then returns the server’s view in the proto-
col viewi,S((Ci;StC); (S∗;St∗S)), which contains the server’s input, random coins and
messages received from the client in the execution of the protocol. Oracle OSim returns
instead a simulated view, based only on the input and output of the server. Informally,
we say that the protocol achieves client privacy if an adversary is not able to distinguish
which oracle she is interacting with.

Definition 3 (Client Privacy). Let t = t(λ) and ReF defined as above. A protocol
(Setup,Π) has client privacy if for any probabilistic polynomial time adversary A
there exists a probabilistic polynomial time simulator Sim , such that for every sequence
S1, . . . ,St the following advantage is negligible

AdvCPriv
A (λ) =

∣∣∣Pr [(paramC ; paramS)← Setup(λ) : AOΠ (paramS) = 1
]

− Pr
[
(paramC ; paramS)← Setup(λ) : AOSim (paramS) = 1

]∣∣∣
Server privacy is also specified in terms of two oracles OΠ , OSim described in

Figure 5. The oracle OΠ allows the adversary to run the next interaction between client
and server on client’s inputs of her choice. The oracle then returns the client’s view

2In this paper we restrict our attention to the case of deterministic functionalities.
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OΠ(C∗, St∗C):
� If i = 0: StS := paramS
� i = i+ 1
� ((outC,i;StC); (outS,i;StS))← Π〈C(C∗;St∗C);S(Si;StS)〉
� Return viewi,C((C

∗;St∗C); (Si;StS))

OSim(C∗, St∗C):
� i = i+ 1
� (Ii; bi) = ReFi(C

∗,Si)
� viewi,C,Sim ← Sim((C∗, St∗C), Ii, paramC , |Si|)
� Return viewi,C,Sim

Fig. 5: Details of the oracles used in the Server Privacy game.

view
i,C in the protocol. Oracle OSim returns instead a simulated view, based only on

the input and output of the client. Informally, we say that the protocol achieves server
privacy if an adversary is not able to distinguish which oracle she is interacting with.

Definition 4 (Server Privacy). Let t = t(λ) and ReF defined as above. A protocol
(Setup,Π) has server privacy if for any probabilistic polynomial time adversary A
there exists a probabilistic polynomial time simulator Sim , such that for every sequence
C1, . . . ,Ct the following advantage is negligible

AdvSPriv
A (λ) =

∣∣∣Pr [(paramC ; paramS)← Setup(λ) : AOΠ (paramC) = 1
]

− Pr
[
(paramC ; paramS)← Setup(λ) : AOSim (paramC) = 1

]∣∣∣
Size-Hiding. In the previous definitions of client and server privacy we gave the simu-
lator the size of the honest party’s input set. This captures the security of most protocols
in which participants learn information about the size of the other party’s input. How-
ever, in certain cases the size of the inputs represents confidential information which
should not be leaked in a protocol execution. Protocols achieving this stronger property
are usually referred as size-hiding [ADT11]. To formalise size-hiding variants of client
and server privacy it is sufficient to remove the size of the honest party’s input from
the input of the simulator. Looking ahead to the next sections, our protocols achieve
size-hiding only in the case of client privacy.

The above definitions are general enough to capture various types of reactive func-
tionalities ReF. Moreover, they can also be used to formalise security for the sequen-
tial composition of standard PSI stateless protocols. In this case it is sufficient to re-
place ReF with t copies of the same functionality F and replace protocol Π with a
stateless protocol that does not update the states (StC , StS), which are initialised as
(paramC , paramS).

Next, we specify two functionalities, one static (PSI) and one reactive (RePSI),
which we call Bounded Input PSI and Input Controlling RePSI, respectively.

Bounded Input PSI. A Bounded Input PSI limits the maximum size of the set the
client can use in each instance of the protocol. More precisely, let R be a polynomial in
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the security parameter λ, a Bounded Input PSI = (PSI1,PSI2, . . . ,PSIt) is defined as

PSIi(Ci,Si) =

{
(Ci ∩ Si;⊥) If |Ci| ≤ R

(⊥;⊥) Otherwise

Input Controlling RePSI. An Input Controlling RePSI limits the number of maximum
distinct elements a client can includes in its sets across all the executions. In this case
the server’s outputs is a predicate on whether the client has exceeded the allowed bound.
More precisely, let R be a polynomial in the security parameter λ, an Input Controlling
RePSI = (RePSI1,RePSI2, . . . ,RePSIt) is defined as

RePSIi(Ci,Si) =

{
(Ci ∩ Si; 1) If | ∪j≤i Ci| ≤ R

(⊥; 0) Otherwise

4 Bounded Input PSI
In this section we introduce our construction for a Bounded Input PSI. Bounded Input
PSI allows client and server to compute the intersection of their private sets while im-
posing a boundR on the size of the client set at each execution of the protocol. Bounded
Input PSI is not a reactive RePSI but we will us it as a stepping stone for constructing
our Input Controlling RePSI in the next section.

We notice that in several PSI protocols the size of the client set is naturally revealed
during the interaction. Hence, a Bounded Input PSI variant can be easily achieved with
simple modifications. The server can check the number of inputs used by the client
and abort in case it exceeds the bound. This strategy is not viable in size-hiding PSI
protocols [ADT11] where the use of cryptographic accumulators hides the size of the
client set. We also leverage cryptographic accumulators, thus the server cannot directly
check the number of inputs used by the client as just explained. Moreover, we will
start from from the Bounded Input PSI introduced in this section to construct our Input
Controlling RePSI. In the latter, apart from hiding the size of the client set and reducing
the communication, the use of accumulators will enable to use compact states for the
server whose size does not depend on the number of protocol executions.

Our Bounded Input protocol is a modification of the bounded size-hiding protocol
of Bradley et al. [BFT16], whose security is based on the q-SDH assumption in the
random oracle model. The idea behind the protocol of Bradley et al. [BFT16] is to
have the client to accumulate its input set using a cryptographic accumulator and send
it to the server. The server would then use the accumulator secret key to remove her
elements from the accumulator. This amounts to compute witnesses for elements in
the server set. Then, the server hashes the witnesses using a random oracle and sends
back the hash values to the client. The client is able to compute witnesses for each
accumulated element and then hash them on the random oracle. The intersection can be
then retrieved by checking matches between the two sets of hash values.

The protocol of [BFT16], as well as ours, relies on the boundedness of the underly-
ing accumulator to limit the size of the sets that can be accumulated.

Informally, the protocol of [BFT16] fulfils server privacy because the random oracle
hides all the information about the witnesses computed by the server, apart from the
ones the client can compute on its own. We modify the protocol and remove the need of
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Setup(λ)→ (paramC ; paramS):
� (p,G,GT , e, g)← BG(λ)
� Set R := R(λ)
� x← Z∗p
� sk := x

� ek := (g, gx, gx
2

, . . . , gx
R

)
� paramC := ((p,G,GT , e, g), ek)
� paramS := ((p,G,GT , e, g), sk, ek)

Fig. 6: Setup algorithm for Bounded Input PSI.

random oracles. The idea is to replace it with a function that can be efficiently computed
by the client given a witness, but for which the evaluation looks random if a witness
is not known. This is exactly the smoothness property of the SPHF we introduced in
Section 2.4. Thus, we are able to remove the random oracle assumption and reduce the
security to the q-DBDHI assumption, on which the SPHF relies on. We note that our
Bounded Input PSI is, to the best of our knowledge, the first instantiation of size-hiding
PSI in the standard model.

4.1 Bounded Input PSI Without Random Oracles

The setup of the protocol of the bounded-size PSI consists of generating a pair of secret
key and evaluation key for a bilinear accumulator, as shown in Figure 1. The length
of the evaluation key ek of the accumulator matches the input bound R allowed to the
client input size. The setup algorithm then sets the initial parameters for the client to
be the evaluation key of the accumulator, and the initial parameters for the server to
include both the secret key and evaluation key. The complete description of the Setup
algorithm of our Bounded Input PSI is described in Figure 6. Note that since we are
in semi-honest settings, we can allow the server to run the setup and send the initial
parameters to the client in a preliminary interaction with the client.

In the first move of the protocol, the client starts by computing an accumulator accC
of its input set C and send it to the server. The evaluation of the accumulator can be done
efficiently by first computing the characteristic polynomial of the set C, expanding its
coefficients, and then performing a multi-exponentiation of the evaluation key ek, using
the coefficients of ChC(X) as exponents.

In the second move of the protocol, the server then picks a pair of keys (hsk, hpk)
for a SPHF associated with the witness relation of the accumulator. The secret key
for the SPHF consists of the secret key x of the accumulator and a random element
z ← Z∗p. The projective key of the hash function corresponds to the accumulator accS
of the server set, using randomness z. Then for every si contained in its input set S,
the server evaluates the SPHF on instances (accC, si) using the secret key x. The server
ends its move by forwarding the projective key accS to the client together with the set
of SPHF evaluations. Without loss of generality we assume the server to sort the set of
evaluations in lexicographic order before sending it to the client. Note that the server
is not strictly required to know the secret key of the accumulator. However this can be
used to speed up computation. For example, the server can avoid to accumulate its own
set and simply set accS = gz .
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In the last move of the protocol, the client computes a witnesses witi for the accumu-
lation of his input elements ci ∈ C in the accumulator accC. Then, the client evaluates
the SPHF using the projective key accS on each witness witi for (accC, ci). The clients
then compares the set of its evaluations of the SPHF with the evaluations received from
the server, looking for matches. Finally, the client outputs the subset of elements in C,
for which the evaluation of the SPHF gave a match.

The full description of our Bounded Input PSI protocol is given in Figure 7. We
discuss its security in the following Theorem and refer to Appendix C for the proof.

Client on input: λ Server on input: λ

(paramC ; paramS)← Setup(λ)
paramC�

Client on input: Server on input:
(C = {c1, . . . , cm}; paramC) (S = {s1, . . . , sn}; paramS)

Parse paramC as ((p,G,GT , e, g), ek) Parse paramS as ((p,G,GT , e, g), x, ek)
accC := Eval(ek,C; r) = grChC(x)

accC -
accS := Eval( sk , ek,S; z) = gzChS(x)

hsk := (z, x)
hpk := (ek, accS)
For j ∈ [n] :
Sj := Hashhsk(accC, sj)

= e(accC, accS)
1

x+sj

accC, {S1, . . . , Sn}
Set hpk := (ek, accS)

�

For i ∈ [m] :
witi := WitGen(ek,C, accC, r, ci)

= grChC\{a}(x)

Ci := PHashhpk((accC, ci),witi)
= e(witi, accS)

outC := {ci ∈ C : Ci ∈ {S1, . . . , Sn}}

Return (outC ; paramC) Return (⊥; paramS)
Fig. 7: Bounded Input PSI without random oracles.

Theorem 1. Under the R-SDH and n-DBDHI assumptions, the protocol (Setup,Π)
as described in Figures 6 and 7 is a secure instantiation of a Bounded Input PSI in the
augmented semi-honest model.

5 Input Controlling RePSI
We now introduce our Input Controlling RePSI protocol. The starting point is the
Bounded Input protocol introduced in the previous section. The idea is to turn the pre-
vious protocol into a stateful one where both parties keep track of previous executions.
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5.1 Description of the Protocol

The Setup phase of the protocol is the same as the one described in Figure 6 for the
Bounded Input protocol. We stress that in this case the bound R is not (only) the bound
on the size of the client input of a single execution, but also a bound on the maximum
number of elements the client can use across multiple executions. Again, since the client
initial parameters only include public information we can allow the (semi-honest) server
to run the Setup and forward the client the initial parameters paramC .

The first instance of Input Controlling RePSI is similar to an execution of a Bounded
Input RePSI described in Figure 7. The only difference here is that at the end of the
first instance the client and the server update their output state. The client returns state
StC = (paramC ,C, r), which includes the initial parameter paramC , its current input
set C and the randomness used to create the accumulator accC. The server returns state
StS = (paramS , accC), which includes the initial parameters paramS as well as the
accumulator accC received from the client. In the rest of the description we implicitly
assume that initial parameters paramC and paramS are always part of the states StC and
StS , respectively, and omit them from the notation to improve readability.

All the instances following the first one proceed as described in Figure 8. In the first
move of the protocol, the client retrieves the set C′ stored in state StC which contains
all the elements used in previous executions of the protocol and computes the union
with its current input set, i.e. U = C∪C′. Then, the client computes fresh accumulators
for both the current input set C and the union set U. The client computes also witnesses
for the accumulation in accU of subsets accumulated into accC and accC′ . Here accC′
corresponds to the accumulator of the union of all previous client input set, which was
generated in the last execution. The client ends its move by sending the accumulators
accC, accU and witnesses witC,witC′ to the server.

In the second move of the protocol, the server retrieves the accumulator accC′ from
its state, which contains the union of the sets of all previous client sets. Then, the server
verifies the witnesses witC,witC′ for the accumulation of C and C′ in U. If any of
these checks fails, then the server terminates the execution of the protocol with out-
put (0;StS). Note that in this case both client and server do not update their states
and might later enter a new instance of the protocol with different inputs. In case both
checks pass, the server continues the execution as in the Bounded Input protocol: he
sets a public and private key for the SPHF and evaluates it on instances (accC, si) for
elements si ∈ S. The server ends its move by sending the public key for the SPHF
and the set of evaluations to the client, updates its state with the accumulator accU and
terminates its execution by outputting (1, StS).

In the last move of the protocol the client continues the execution as in the case of
the Bounded Input RePSI. It computes witnesses for the accumulation of elements in
C into accC and computes evaluations of the SPHF on these. Then it looks for matches
between the sets of evaluations and includes the corresponding elements in C in the
intersection outC . The client updates its state with (U, s), where s is the randomness
used in the generation of the accumulator accU, and terminates the instance execution
with output (outC ;StC).
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Client on input: Server on input:
(C = {c1, . . . , cm};StC) (S = {s1, . . . , sn};StS)

Parse StC as (paramC ,C
′, r′) Parse StS as (paramS , accC′)

Pick r, s← Z∗p
Set U := C ∪ C′

accC := Eval(ek,C; r)
accU := Eval(ek,U; s)
witC := WitGen∗(ek, (accU, s,U), (r,C))
witC′ := WitGen∗(ek, (accU, s,U), (r

′,C′))

accC, accU,witC,witC′
- If

(
Verify∗(ek, accU, accC,witC) = 0 ∨

Verify∗(ek, accU, acc
′
C,witC′) = 0

)
:

� Return (0;StS)

Else: Set StS := (paramS , accU)

accS := Eval( sk , ek,S; z) = gzChS(x)

hsk := (z, x)
hpk := (ek, accS)
For j ∈ [n] :
Sj := Hashhsk(accC, sj)

accS, {S1, . . . , Sn} = e(accC, accS)
1

x+sj

Set hpk := (ek, accS)
�

For i ∈ [m] :
witi := WitGen(ek,C, accC, r, ci)

= grChC\{a}(x)

Ci := PHashhpk((accC, ci),witi)
= e(witi, accS)

outC := {ci ∈ C : Ci ∈ {S1, . . . , Sn}}
StC := (paramC,U, s)

Return (outC ;StC) Return (1;StS)

Fig. 8: Input Controlling RePSI.

5.2 Security of Input Controlling RePSI

Theorem 2. Under the R-SDH and n-DBDHI assumptions, the protocol (Setup,Π)
as described in Figures 6 and 8 is a secure instatiation of an Input Controlling RePSI
in the augmented semi-honest model.

Proof. Correctness as for the case of the Bounded Input RePSI follows from the cor-
rectness of accumulators and of SPHF.

Client privacy follows again from indistinguishability property of the accumulator.
In the first instance of the protocol the only message the server receives from the client is
the accumulator accC. In this case the simulator Sim picks r ← Zp and sets accC = gr.
As in the case of Bounded Input RePSI the simulated view is distributed identically to
the real view. In the following calls of OSim the simulator picks s, t ← Zp and sets
accU = gs and accC = gt and retrieves accC′ = gr from the previous instance. The
simulator then sets the witnesses to be witC = g

s
t and witC′ = g

s
r . The distribution

of the simulated accC, accU,witC,witC′ is uniformly random, conditioned on satisfying
the two witness verification equations, as in a real distribution. Again, the simulator
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Bounded Input Input Controlling

Client Computation mP+O( m2

logm
)E mP+O( m2

logm
+ M

logM
)E

Server Computation nP+ (n+ 1)E (n+ 4)P+ (n+ 1)E
Communication nGT + 2G nGT + 5G
Client’s State n.a. 1Zp
Server’s State n.a. 1G

Table 1: Efficiency. Computation is expressed in number of pairings P and group exponentiations
E, communication in terms of the number of group elements G, target group elements GT and
field elements Zp. The size of the client and server sets are m and n, respectively. While the total
size of the inputs used by the client up to the current iteration is denoted with M . The client’s
state does not include the total number of elements used by the client, i.e. M .

does not need the size of the client’ set and thus client privacy is achieved with respect
to the Size-Hiding variant.

The proof of server privacy unfolds as in the case of the Bounded Input RePSI (see
Appendix C) since the messages sent from the server to the client are the same.

5.3 Efficiency

We summarize the efficiency of both our Bounded Input PSI and Input Controlling
RePSI in Table 1. The dominant computational cost for the client in the Bounded Input
PSI is O(m) pairings and multi-exponentiations of length at most m, where m is the
size of the client’s set. With respect to the Bounded Input PSI, the overhead incurred
by the client in our Input Controlling RePSI is only of a single multi-exponentiation of
length M , the total number of elements used so far in the protocol.

For both the Bounded Input PSI and the Input Controlling RePSI. the computational
cost for the server is O(n) pairings and exponentiations, where n is the size of the
server set in that run. The overall communication is linear in the size of the server set
in that particular instance for both protocols. The communication overhead of the Input
Controlling RePSI is of only 3 group elements more than the Bounded Input PSI.

The table also shows that both server and client keep constant state in case of Input
Controlling RePSI. When computing the state size for the client, we do not consider the
elements input thus far by the client. We argue that any instantiation of Input Controlling
RePSI requires the client to include in its state the inputs thus far. This is because the
client will have to tell whether the next input is “fresh” or not. This is also true for
the instantiation of the protocol via a trusted third party. In this case, the trusted party
will have to remember all inputs up to the current run, in order to tell whether the next
input violates the bound. If we do not consider the inputs thus far as part of the client’s
state, our instantiation of Input Controlling RePSI is optimal from the point of view of
storage overhead since it only requires constant state at both the client and the server.
In particular the state for each of them is independent of the number of runs.

Comparison with [DMV13]. To the best of our knowledge, the only possible alterna-
tive to instantiate an Input Controlling RePSI would be to use the “rate-hiding” compiler
of [DMV13] with a PSI protocol such as [HN10]. Since [DMV13] only hints at how
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to build a rate-hiding PSI,3 we cannot compare its communication/computation com-
plexity with the one of our Input Controlling RePSI. However, note that the rate-hiding
compiler of [DMV13] requires the client to commit to the inputs of the current run and
both parties to keep the commitments to the client’s inputs across all runs. (The client
must prove that the number of unique inputs hidden by the commitments does not ex-
ceed the rate.). As such, even if we exclude the client’s input from its state, both the
client and the server keep a state that is linear in the number of elements used by the
client across all executions. Whereas, our protocol features constant state at both parties
and communication complexity that is independent on the size of the client’s set.

6 Conclusions
Although a large number of Private Set Intersection (PSI) protocols have been pro-
posed in recent years, their adoption in real-life applications is still hindered by a few
challenges. In this paper, we focused on oracle attacks, whereby the client learns the
server’s private set by enumerating it across several executions. To address this prob-
lem, we set out to model PSI as a reactive functionality, namely, Reactive PSI (RePSI),
and provided a construction that allow the server to set an upper bound to the number
of elements the client has input up to the current protocol run. Essentially, we made
PSI a stateful protocol but provided a construction where the state kept by the two par-
ties is small and independent of the number of runs thus far and, for the server only,
independent on the number of elements in either input set.

To the best of our knowledge, our work is the first to formalize and instantiate
Reactive PSI. In the process, we also presented the first size-hiding PSI protocol in the
standard model, which may be of independent interest.
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Appendix

A Assumptions
The exponent Strong Diffie-Hellman (Exponent q-SDH) [?] problem consists in com-
puteing the power gx

q+1

given all the powers g, gx, . . . , gx
q

. A related problem is the
Diffie-Hellman Inversion problem (q-DHI) [?] which asks to compute g1/x given g,
gx, . . . , gx

q

. In [?], it is shown that the two problems are equivalent.

Definition 5 (Exponent q-SDH). We say that the Exponent q-SDH assumption holds in
a group G if for any probabilistic polynomial time algorithmA the following probability
is negligible

Pr
[
(p,G, g)← G(λ);x← Z∗p : A(g, gx, . . . , gx

q

) = gx
q+1
]
≈ 0

The Decisional Bilinear Diffie-Hellmann Inversion problem (q-DBDHI) [?, DY05]
asks to distinguish e(g, g)

1
x from a random group element Γ ∈ GT having access

to g, gx, . . . , gx
q

.

Definition 6 (q-DBDHI). We say that the q-DBDHI assumption holds in
(p,G,GT , e, g) if for any probabilistic polynomial time algorithm A the follow-
ing advantage is negligible

AdvA
q-DBDHI(λ) =∣∣∣Pr [(p,G,GT , e, g)← BG(λ);x← Z∗p : A(g, gx, . . . , gx

q

, e(g, g)
1
x ) = 1

]
−

Pr
[
(p,G,GT , e, g)← BG(λ);x← Z∗p;Γ ← GT : A(g, gx, . . . , gx

q

, Γ ) = 1
]∣∣∣

We stress that the q-DBDHI assumption is stronger than the previous ones.

B Accumulators and SPHF
In this Section we recall security definitions of cryptographic accumulators, Verifiable
Random Functions and prove Lemmas 2 and 3.

B.1 Security Definitions of Cryptographic Accumulators

The three main properties we require to a cryptographic accumulator are correctness,
collision-freeness and indistinguishably. The following definitions are an adaptation
of [DHS15] to our settings.

Definition 7 (Static Accumulators). An accumulator (KeyGen,Eval,WitGen,Verify)
is correct if for every probabilistic polynomial time adversary A the following proba-
bility holds

Pr

 (sk, ek)← KeyGen(λ); (A, a)← A(ek);
accA ← Eval(ek,A; r);

wit←WitGen(ek, accA, r, A, a);
:

a ∈ A,
Verify(ek, accA, a,wit) = 1

 = 1
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An accumulator (KeyGen,Eval,WitGen,Verify) is collision-free if for every prob-
abilistic polynomial time adversary A the following probability is negligible

Pr

(sk, ek)← KeyGen(λ); (accA, r, A, a,wit)← A(ek) :
accA = Eval(ek,A; r),

Verify(ek, accA, a,wit) = 1,
a /∈ A

 ≈ 0

An accumulator (KeyGen,Eval,WitGen,Verify) is said indistinguishable if for ev-
ery probabilistic polynomial time adversary A the following advantage is negligible

Advind
A (λ) =∣∣∣∣∣∣Pr
 (sk, ek)← KeyGen(λ);

(A0, A1)← A(ek);
acc← Eval(ek,A0)

: A(acc) = 1

− Pr

 (sk, ek)← KeyGen(λ);
(A0, A1)← A(ek);
acc← Eval(ek,A1)

: A(acc) = 1

∣∣∣∣∣∣ ≈ 0

B.2 Proofs of Lemmas 2 and 3

We start showing that the language Lek(a) is hard, i.e. that given an element a and an
accumulator acc is (computationally) hard to compute a witness for the accumulation
of a in acc.

Lemma 2. Assuming the accumulator is collision-free and indistinguishable, then the
above the binary relation corresponding to Lek(a) is hard for any a ∈ Zp.

Proof. We show that AdvHardA ≤ AdvCFA1
+ AdvindA2

. An adversary A for the hardness
of the relation gets as input an instance consisting of an element a ∈ Zp and an ac-
cumulator acca ← Eval(ek, a) and returns a witness for the accumulation of a in acc
with probability AdvHardA . If we replace the accumulator with acc∅ ← Eval(ek, ∅), the
probability of success ofA can only be negligibly affected, otherwise the adversary can
be used to break the indistinguishability of the accumulator. Since the adversary A can
be used to return a witness for an element that was not accumulated, we can construct
an adversary A1 that breaks collision freeness: A1 simply accumulates the empty set
using randomness r to obtain acc∅; then it queries A on producing a witness wit for
the accumulation of an element a in acc∅, and returns (acc, r, ∅, a,wit). Anytime the
adversary A returns a witness, the adversary A1 wins the collision-freeness game.

In the specific case of the accumulator of Figure 1, indistiguishability holds uncon-
ditionally and thus AdvindA2

= 0.

Next we show the construction of Figure 2 is an SPHF. The construction essentially
applies a VRF of [DY05] (based on q-DBDHI assumption) to instances (acc, a) ∈
Lek(a) and it security follows a similar argument. The security of the VRF imposes re-
strictions on the size of the domain of the function, which is required to be polynomially
bounded. This inherently limits our SPHF which has to restrict the size of the domain
of field elements we can evaluate our SPHF on. This is undesirable, however standard
transformations can be applied to increase the size of the domain. For example [DY05]
shows how to a VRF can be combined with a collision resistance hash function to re-
move the restriction about the input size. This can be also adopted in our construction
by requiring to first hash the values to be accumulated into a shorter domain and then to
apply the SPHF to it. For application such as PSI, this does not necessarily represent a
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problem as actual inputs of the parties may be hashed at the beginning of the protocol.
On the other hand, this requires to increase the size of the bilinear group beyond usual
sizes to make up for the looseness of the reduction. We refer to [DY05] for a full dis-
cussion of the transformation as well as concrete suggestions for concrete parameters.

Lemma 3. Under the q-DBDHI assumption over a bilinear group (p,G,GT , e, g), the
construction in Figure 2 is a smooth projective hash function.

Proof. Construction of Figure 2 is (perfectly) correct follows from the correctness
of the accumulator. For smoothness, consider an adversary A that for an element a
is able to distinguish (hpk, (acc, a),Hashhsk(acc, a)) from (hpk, acc, a,H∗), where
H∗ ← GT . We show how to use A to construct an adversary B against the q-DBDHI
assumption. The input of B consists of a q-DBDHI instance, i.e. (g, gx, . . . , gx

q

, Γ ),
where Γ is either a random element in GT or e(g, g)

1
x . The adversary starts setting

y = x − a (for an unknown x) and compute ek′ = (g, gy, gy
2

, . . . , gy
q

). Note that ek′

can be computed without knowing y given ek and a, and that is identically distributed
to a real evaluation key for an accumulator. The adversary then set hpk′ = (ek′, gz)
and sends A the tuple (hpk, gz

′
, a, Γ zz

′
) and returns the bit outputs by A. Note that

(hpk′, gz
′
, a) is identically distributed to (hpk′, acc ← Eval(ek′, a), a). Moreover, in

case Γ = e(g, g)
1
x then Γ zz

′
= e(gz

′
, gz)

1
y+a = Hashhsk(g

z′ , a), while in case Γ is a
random element of GT , then so it is Γ zz

′
.

C Proof of Theorem 1 (Sketch)
We now reason about the security of the construction of our Bounded Input PSI pre-
sented in Section 4.

Theorem 1. Under the R-SDH and n-DBDHI assumptions, the protocol (Setup,Π)
as described in Figures 6 and 7 is a secure instantiation of a Bounded Input PSI in the
augmented semi-honest model.

Proof. Correctness follows from the correctness of accumulators and of SPHF. For ev-
ery element the client accumulates in its set the client can compute a witness of its
accumulation. Since the two ways of evaluating the hash function return the same out-
put, the client is able to recover any element in the intersection.

Client privacy follows from the indistinguishability property of the accumulator.
The only message the server receives from the client is the accumulator accC. In each
call of OSim , the simulator Sim can simulate the server’s view by simply picking a
random element accC ← G and compute the rest of the view as an honest server would
do. This includes the case where the adversary provides malformed input to the server
which causes him to abort the execution. Perfect indistinguishability of the accumulator
guarantees accC to be distributed uniformly at random, therefore the simulated and real
views are identically distributed. Note that the simulator does not require the size of the
client’s set to compute the simulated view. Therefore client privacy holds with respect
to the Size-Hiding variant of the definition.

We now argue about the security of server privacy based on the the collision-free
property of the accumulators and the smoothness of the SPHF. We recall that, from the
security definition, in each call of OSim the simulator has access to the client’s set C∗
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and state St∗C as picked by the adversary A, as well as Ii, the output of the (honest)
computation. We distinguish the following cases for the simulator

Case 1. The client aborts on its first move: the simulator Sim runs the first move of
the client on input the set C∗ and state St∗S provided by the adversary. If the client
aborts, then the simulator terminates the execution with an abort message⊥. In this
case the real and ideal distributions are identical. The client might abort in case the
received inputs provided by the adversary are malformed. This includes for exam-
ple the case where the size of the set is bigger than the length of the accumulator
key, which is also provided by the adversary.

Case 2. The client does not abort on its first move: as in the previous case the simulator
Sim runs the first move of the client, which produces an output message for the
server. In this case we distinguish two sub-cases for the simulator.

– Case 2a. The output of the computation Ii 6= ⊥: in this case we have that
the size of |C∗| ≤ R. The simulator Sim computes an accumulator accIi =
Eval(ek, Ii; z) by using the evaluation key ek as included in the initial parame-
ters paramC . Then the simulator computes witnesses witj for the accumulation
of element cj ∈ Ii and the following target group elements Sk = e(accC,witj)
for k ∈ {1, . . . , |Ii|}. The simulator then sets hpk = (ek, accIi) and picks the
rest of the evaluations of the SPHF as random target group elements: Sk ← GT
for k ∈ {|Ii| + 1, . . . , n}. The simulator then executes the second move of
the client on input hpk, S1, . . . , Sn and returns the entire view of the client.
The simulated view is indistinguishable from the real view by the smoothness
property of the SPHF: the Sk are distributed uniformly at random, conditioned
on the ones for which the client holds a witness. Also the public key of the
SPHF has the same distribution as an honestly generated key. Given an ad-
versary which is able to distinguish between real and simulated view, one can
use a standard hybrid argument to reduce the security to the smoothness of the
SPHF. Which in turns gives a reduction to the n-DBDHI problem, where n is
a bound on the size of the server set.

– Case 2b. The output of the computation is Ii = ⊥: in this case |C∗| > R.
While the input set used is bigger than the allowed bound, the client did not
abort during the execution of the first move. This means that the evaluation
key provided by the adversary A in the state St∗C is long enough for the set
C∗. Using a different accumulator key would not allow the client to be able to
compute witnesses for the SPHF. Thus in the simulation Sim simply returns
random group elements from Sk ← GT and hpk = (ek, g′) for a uniform
g′ ← G. In this case the simulated view might differ from the real view, but the
only way the adversary can distinguish between the two views is if she has a
witness for evaluating the SPHF. However computing such a witness translates
into a breach of the collision-free property of the accumulator scheme, which
can then be used to construct an adversary against the R-SDH assumption.

22


