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Abstract: Bike sharing is a new form of transport and is becoming increasingly popular 

in cities around the world. This study aims to quantitatively estimate the environmental 

benefits of bike sharing. Using big data techniques, we estimate the impacts of bike 

sharing on energy use and carbon dioxide (CO2) and nitrogen oxide (NOX) emissions 

in Shanghai from a spatiotemporal perspective. In 2016, bike sharing in Shanghai saved 

8,358 tonnes of petrol and decreased CO2 and NOX emissions by 25,240 and 64 tonnes, 

respectively. From a spatial perspective, environmental benefits are much higher in 

more developed districts in Shanghai where population density is usually higher. From 

a temporal perspective, there are obvious morning and evening peaks of the 

environmental benefits of bike sharing, and evening peaks are higher than morning 

peaks. Bike sharing has great potential to reduce energy consumption and emissions 

based on its rapid development. 
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1. Introduction  

 

Although bike sharing is a relatively new form of transport in urban areas, it has become 

increasingly popular in towns and cities around the world in recent years (O’Brien et 

al., 2014). Bike sharing is an oriented production service system (PSS) where 

ownership of the bike is retained by the provider, who sells the functions of the bike, 

via modified distribution and payment systems (Annarelli et al., 2016; Mont, 2002; 

Piscicelli et al., 2015). This popularity can be mainly explained by the fact that bike-

sharing programmes are associated with various social, environmental, and economic 

benefits, such as a decrease in carbon dioxide (CO2) emissions, a reduction in various 

diseases (e.g., diabetes and obesity), and a decline in traffic congestion and noise 

pollution through the provision of alternatives to auto-commuting and an increase in 

public transit use (Caulfield et al., 2017; Martens, 2007; Mont, 2004). 

 

The existing bike-sharing literature can be mainly grouped into two domains (Médard 

de Chardon and Caruso, 2015). The first domain includes mathematical models that 

focus on rebalancing. For example, taking London's Barclays Cycle Hire programme 

as a study case, Pfrommer et al. (2014) considered the efficient operation of shared 

mobility systems via the combination of intelligent routing decisions for staff-based 

vehicle redistribution and real-time price incentives for customers. Forma et al. (2015) 

proposed a 3-step mathematical programming-based heuristic method for the static 

repositioning problem. In addition, Pal and Zhang (2017) presented a novel mixed 

integer linear programme for solving real-life large-scale static rebalancing problems. 

The studies in the second domain include those that characterise bike sharing through 

various analyses. For example, Wood et al. (2011) visualised the dynamics of London’s 

bike-sharing scheme using flow maps, and Zaltz Austwick et al. (2013) employed 
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visualisation, descriptive statistics and spatial and network analysis tools to explore 

usage in five cities around the world. Beecham et al. (2014) proposed a new technique 

for classifying commuting behaviours that involves various spatial analysis algorithms 

and visual analytics techniques. In addition, Caulfield et al. (2017) examined usage 

patterns of a bike-sharing programme in Cork, a medium-sized city in Ireland. This 

research provides insights into the dynamics of a relatively small bike-sharing scheme 

and presents results on how bike sharing has offered citizens a new transport alternative. 

Some researchers have a particular interest in understanding the factors that affect bike 

sharing (such as the built environment, weather, and socio-economic demographics) 

(Bachand-Marleau et al., 2012; El-Assi et al., 2017; Faghih-Imani et al., 2014). Most 

of the existing studies focus on the analysis of an individual city, such as London (the 

UK) (Ogilvie and Goodman, 2012; Pfrommer et al., 2014; Wood et al., 2011), 

Washington DC (the United States) (Buck et al., 2013; Buehler, 2012), Toronto and 

Montreal (Canada) (Fuller et al., 2011; Habib et al., 2014), and Hangzhou and 

Zhongshan (China) (Chen et al., 2017; Shaheen et al., 2011; Zhang et al., 2017). 

However, some studies have performed a comparative analysis of the bike-sharing 

systems in different cities. These comparisons are based on numerous aspects, such as 

the number of subscribers/stations/bikes, modal share changes, connectivity, and flows 

(O’Brien et al., 2014; Zaltz Austwick et al., 2013; Zhang et al., 2015).  

 

However, despite acknowledgement that bike sharing results in various environmental 

benefits, no studies have directly estimated the environmental benefits of bike sharing. 

A key contribution of this paper, therefore, is to fill this research gap using a big data 

technique to quantitatively estimate the impacts of bike sharing on energy savings and 

emission reductions.  

 

Since the introduction of the first bike-sharing programme in the 1960s, bike-sharing 
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service has evolved quickly over a half century (DeMaio, 2009; El-Assi et al., 2017; 

Shaheen et al., 2013). We are now facing a new generation of bike sharing, referred to 

as the dockless (or station-less) bike-sharing service, which is currently emerging in 

China and expanding around the world. Before the existence of the dockless bike-

sharing service, bikes needed to be docked at stations, whereas in this emerging service, 

bikes can be unlocked and paid for using a smartphone and can be picked up and left 

any authorised parking area at users’ convenience. The first such service was launched 

in June 2015 by the start-up company ofo. According to the Research Report on Bike-

sharing Employment (The Centre for Sharing Economy, 2017), released in September 

2017 by China’s National Information Centre, the company now has approximately 8 

million yellow-framed bikes in more than 170 cities in 9 countries. It has approximately 

25 million orders per day and now has 3 billion cumulative orders. The Research Report 

also shows that at present, there are approximately 16 million dockless bikes in China 

and 50 million orders per day. In addition, the rapid development of this dockless bike-

sharing service has created 100,000 new jobs in China. In particular, 70,000 new jobs 

were created in the first half of 2017. Because this bike-sharing service is very new, we 

could only find one existing study: Bao et al. (2017) proposed a data-driven approach 

to develop bike lane construction plans based on bike trip data, provided by Mobike, 

ofo’s main competitor and the world’s largest dockless bike-sharing company. 

 

In this paper, we quantitatively evaluate environmental benefits of bike sharing using a 

large-scale bike-sharing dataset provided by the company Mobike. We estimate the 

impacts of bike sharing on energy use and CO2 and NOX emissions in Shanghai in 2016. 

Using a big data technique, we discuss the environmental benefits from a 

spatiotemporal perspective.  

 

2. Data and methods 
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2.1 Study area and data 

With an area of 6,341 km2 and a population of 24.26 million, Shanghai is one of the 

largest cities in the world and China’s economic centre (Fig. 1a). Shanghai’s GDP in 

2016 was 2.8 trillion Yuan, accounting for 3.6% of China’s total GDP (National Bureau 

of Statistics, 2017). Huangpu, Putuo, Hongkou, Jingan, Changning, Yangpu, and Xuhui 

districts are regarded as old central area among Shanghai’s sixteen districts. Lujiazui, 

Shanghai’s CBD (central business district), is located in Pudong New District and 

adjacent to old central area. Shanghai’s Circle Road is a high-speed road surrounding 

the most part of Shanghai City (excluding Chongming district). As of July 2017, 

Shanghai had 1.5 million dockless bikes, making it the largest bike-sharing market in 

the world (Xinmin Evening News, 2017).  

 

The data used here were obtained from Mobike, which provides ‘a bike-sharing service 

to fulfil urban short trips - anytime, to any authorised parking destination - by 

combining innovation and today’s IoT (Internet of Things) technology’ (Mobike, 2017). 

As of March 2017, Mobike had more than 4 million red-framed bikes in nearly 80 cities 

worldwide. The company receives approximately 20 million orders per day, accounting 

for 56.56% of the total market, making it the largest dockless bike-sharing company in 

the world (Sohu Financial, 2017). The dataset, provided by Mobike, contains 

approximately 56.62% of total trip orders in August 2016. In it, there were 1,023,603 

orders made by 306,936 users for 17,688 bikes. Each order contains the basic trip 

information, namely, the order identification (ID), user ID, bike ID, start time, the 

longitude and latitude of the origin, end time, the longitude and latitude of the 

destination(s), and track. Each attribute is a column in the dataset. The attribute track 

contains the longitudes and latitudes of locations between the start and end locations. 

For an N-location track, the format of the column track is ‘longitude1, latitude1# 

longitude2, latitude2#.... longitudeN, latitudeN#’. It should be noted that all bikes are 

GPS tracked. Therefore, a bike trip can be regarded as a collection of chronologically 

ordered GPS points, for example, p1 → p2 → ··· → pn, where each point consists of a 

geospatial coordinate set and a time stamp such as p = (x, y, t) (Hornsby and Egenhofer, 



 6 

2002; Zheng et al., 2009). However, due to privacy issues, the tracks in the dataset were 

preprocessed by Mobike. Each track contains only a collection of chronologically 

unordered spatial locations with no temporal information, which means we do not know 

users’ real trip routes. In Section 2.2, we propose a method to solve this issue.   

 

The spatial distribution of the origins and destinations of all bike trips (shown in Fig. 

1b) was created using the point density method in ArcGIS, which is developed by ESRI 

(Environmental Systems Research Institute) and is the world’s most widely used 

commercial GIS (Geographic Information System) software. Most trips occurred in 

Shanghai’s old central area, especially in Yangpu, Hongkou, Jingan, and Huangpu 

districts. Almost all bikes were used inside Shanghai’s Circle Road.   

 

 

Fig. 1. Shanghai (a) and the distribution of origins and destinations of all bike trips (b). 

Note: CBD means central business district.  

 

2.2 Trip distance estimation 

To estimate environmental benefits, we first need to estimate the distances of the bike 

trips. The bike-sharing data from traditional dock-based services only contain the 
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longitudes and latitudes of the origin and destination stations. Consequently, the trips 

have to be represented as a straight line between the origins and destinations, and the 

trip distances are calculated using a Euclidean distance between the origins and 

destinations. Considering the bike-sharing data used here also contain the spatial 

information of the origin and destination locations, we can also calculate the trip 

distance using a Euclidean distance between the origin and destination. However, this 

calculation method will underestimate the trip distance. To estimate travel distance 

more accurately, we propose a method to estimate the trip distances by utilising the 

track information in our dataset.  

 

Assume a chronologically unordered trip 𝑇𝑢 can be represented using a collection of 

chronologically unordered 𝑛 locations {𝑙1, 𝑙2, … , 𝑙𝑛 }. 𝑙1 and 𝑙𝑛 are the trip’s origin 

and destination, respectively. 𝑙𝑖 (1<i<n) is the spatial location between 𝑙1 and 𝑙𝑛 for 

trip 𝑇𝑢. The following method is used to retrieve chronologically ordered trip 𝑇𝑂 from 

trip 𝑇𝑢. 𝑇𝑂 is initially set as {}. 

 

1. Append 𝑙1 to 𝑇𝑂, remove 𝑙1 from 𝑇𝑢, and set 𝑙 = 𝑙1; 

2. Find 𝑙′s closest location 𝑙𝑐 from 𝑇𝑢; 

3. Append 𝑙𝑐  to 𝑇𝑂 and remove 𝑙𝑐 from 𝑇𝑢; 

4. If 𝑙𝑐  =  𝑙𝑛, 𝑇𝑂 is the final chronologically ordered trip; however, if 𝑙𝑐  ≠  𝑙𝑛, set 

𝑙 = 𝑙𝑐, and repeat Steps 2-4. 

 

After retrieving the chronologically ordered trip, we can easily calculate its distance by 

summing all the distances between the various locations. 

 

2.3 Estimation of vehicle fuels and emissions 

We assess the overall energy consumption and environmental impacts associated with 

all stages of fuels (Mi et al., 2017b; Yu et al., 2017). The cycle of vehicle fuels can be 

divided into two stages: well-to-tank and tank-to-wheels. In this study, we consider 

exploitation and distribution for the former stage and combustion for the latter stage. 
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We set a threshold to calculate the number of vehicle kilometres travelled (VKT) and 

corresponding fuels saved by bike sharing. If the distance is larger than the threshold, 

people prefer to take a taxi; otherwise, people opt for the alternative, i.e., walking. The 

energy consumption of a vehicle is calculated as  
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where N  is the energy consumption of the vehicle, d  is the distance travelled (unit: 

km), p   is petrol consumption per unit of distance travelled (unit: L/km),    is 

density of petrol (unit: kg/L), and u  is the threshold. 
e  is the efficiency of petrol 

exploitation, and 
t   is the efficiency of petrol transport. The efficiencies of petrol 

exploitation and transportation are set as 87% and 95%, respectively (Yu et al., 2017). 

 

Emissions generated from vehicle fuels can be divided into exhaust emissions, such as 

CO2, CO, NOX, PM2.5, and PM10, and evaporative emissions, such as hydrocarbon (HC). 

In this study, we focus on CO2 and NOX. Emissions generated by vehicle fuel 

consumption are calculated as 
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where 
iE   represents emissions from vehicle fuel consumption, and 

if   represents 

emission factors associated with vehicle driving for different types of emissions 

(including CO2 and NOX). 

 

In this study, the threshold (u ) was set as 1 km, which means that travel orders with 

trip distances longer than 1 km were considered to estimate energy saving and 

corresponding emission reduction. The samples used in this study cover a one-month 

period in August 2016 for one bike-sharing company (i.e., Mobike). To calculate the 

total environmental benefits of bike sharing in Shanghai in 2016, the estimation results 

were divided by the sample ratio (i.e., 56.62%), divided by the market shares of the 
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company (i.e., 56.56%), and multiplied by the number of months (i.e., 12). Notably, 

Section 3.1 is based on the original sample, i.e., for one month and one company, while 

Section 3.2 is based on the processed result that represents environmental benefits for 

one year and for all bike-sharing companies.  

2.4 Carbon emission inventory construction 

We used the Intergovernmental Panel on Climate Change (IPCC) approach (Mi et al., 

2017b) to construct carbon emission inventory at sectoral level for Shanghai city. The 

CO2 emissions from fossil fuel use are calculated by  

 C Y N H O      (3) 

where C  are the CO2 emissions from fossil fuel, Y  is the fossil fuel consumption 

(in physical unit), N  is the net calorific value that represents heat released when unit 

fossil fuel is combusting, H  is the carbon content that represents CO2 emit when unit 

heat is released, and O  is the oxygenation that represents oxidization rate of fossil 

fuel combustion. The values of net calorific value, carbon content, and oxygenation can 

be obtained from Mi et al. (2016). 

3. Results and discussion 

3.1 Estimated bike trips  

After retrieving the chronologically ordered trips, we calculated the distances of all trips. 

We deleted those with a distance longer than 50 km or a time duration longer than 10 

hours. After this process of data cleaning, we obtained 1,023,529 trips. The estimated 

average trip distance was 2.4 km, with a standard deviation of 2.2 km. The total distance 

of all bike trips was 2.4 million km. The average travel time was 16.8 minutes, with a 

standard deviation of 18.5 minutes. The travel time for all bike trips was equivalent to 

32.7 years.  

 

The spatial distribution of all bike trips (shown in Fig. 2) was created using the line 

density method in ArcGIS. Some roads with higher densities of bike trips were clearly 

observed in the old central area, especially in Yangpu, Hongkou, and Jingan districts. 

Considering the high demand of bike usage on these roads, transport planners should 
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give a higher priority in designing them as planned bicycle routes. Fig. 3 shows the 

temporal distributions of bike trips using trip start time. The weekdays show a typical 

commuting pattern: a higher number of bike trips during peak commuting times 

(between 7 and 8 AM and between 17:00 and 18:00 PM). This result can be explained 

by the fact that many commuters prefer to use Mobike as a solution for the ‘last mile 

problem’. During weekdays, a small peak was observed at 12 noon, which might be 

caused by some workers who ride bikes to eating locations near their workplaces. The 

evening peak time varied more than the morning peak time, indicating that bike users 

have a more flexible time for the end of their daily work. In regard to the weekend 

temporal pattern, there is a lower probability distribution of bike trips during peak 

commuting times but a higher probability distribution in the evening. This result is 

related to more bike trips associated with leisure-related excursions on the weekends, 

such as physical exercise or going to parks and shopping malls.  

 

 

Fig. 2. Spatial distribution of all bike trips. 

Note: CBD means central business district. 
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Fig. 3. Temporal distributions of bike trips using trip start time. 

 

3.2 Environmental benefits of bike sharing 

The transport sector contributes substantially to energy consumption and emissions, 

especially in developed districts (Mi et al., 2017a, 2017c). As a result of rapid economic 

growth and increased consumption, the contribution of the transport sector to total 

emissions in Shanghai increased rapidly during the past decades. In 2000, Shanghai’s 

transport sector emitted 12 million tonnes (Mt) of CO2 emissions, which accounted for 

11% of total emissions. In 2015, CO2 emissions from the transport sector increased to 

42 Mt, which accounted for 24% of total emissions (Fig. 4). In 2015, the transport sector 

in Shanghai consumed 20% of gasoline, 36% of diesel oil, 96% of fuel oil, and almost 

all kerosene.  
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Fig. 4. Carbon emissions from the transport sector in Shanghai from 2000 to 2015. 

 

Bike sharing has considerable potential to save energy and reduce emissions. In 2016, 

bike sharing in Shanghai saved 8,358 tonnes of petrol and decreased CO2 and NOX 

emissions by 25,240 and 64 tonnes, respectively. Fig. 5 demonstrates the spatial 

distribution of environmental benefits of bike sharing. It can be observed that the 

environmental benefits are much higher in more developed districts where population 

density is usually higher. In Shanghai, the density of environmental benefits is highest 

in Hongkou district. For each square kilometre (km2) in this district, bike sharing 

resulted in a reduction of 33 tonnes of petrol, 100 tonnes of CO2, and 254 kilograms 

(kg) of NOX in 2016 (Table 1). In fact, Hongkou is the district with the highest 

population density in Shanghai, i.e., 35,000 people per km2. Therefore, bike sharing in 

this district resulted in a decrease of 2.9 kg CO2 emissions per person. In addition, the 

environmental benefits were relatively high in Huangpu, Yangpu, and Jingan, where 

energy reduction per km2 exceeded 26 tonnes.
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Fig. 5. Spatial distribution of environmental benefits of bike sharing. Sub-figure a, b, and c demonstrate the spatial distribution of energy saving 

and CO2 and NOX emission reductions, respectively.  

Note: CBD means central business district. 
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Table 1 Environmental benefits of bike sharing in administrative districts in Shanghai.  

No. District 
Area 

(km2) 

Fuel 

(t) 

CO2 

(t) 

NOX 

(t) 

Fuel per unit area 

(kg/km2) 

CO2 per unit area 

(kg/km2) 

NOX per unit area 

(kg/km2) 

1 Baoshan 301 733 2214 5.6 2433 7348 19 

2 Changning 37 409 1236 3.1 10995 33205 84 

3 Chongming 1357 0 0 0 0 0 0 

4 Fengxian 721 1 3 0 1 4 0 

5 Hongkou 23 774 2339 5.9 33087 99921 254 

6 Huangpu 20 566 1709 4.3 27609 83379 212 

7 Jiading 463 296 893 2.3 638 1928 5 

8 Jingan 37 956 2888 7.3 26006 78539 200 

9 Jinshan 595 0 0 0 0 0 0 

10 Minhang 373 486 1469 3.7 1305 3942 10 

11 Pudong 1397 623 1882 4.8 446 1347 3 

12 Putuo 55 906 2737 7.0 16330 49317 125 

13 Qingpu 668 21 63 0.2 31 94 0 

14 Songjiang 605 42 128 0.3 70 212 1 

15 Xuhui 55 964 2912 7.4 17478 52784 134 

16 Yangpu 61 1579 4769 12.1 26078 78756 200 
 Shanghai city 6769 8358 25240 64 1235 3729 9 
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From a temporal perspective, there are obvious morning and evening peaks of the 

environmental benefits of bike sharing. Fig. 6 demonstrates the temporal distributions 

of the reductions in fuel, CO2, and NOX due to bike sharing over a 24-hour period in 

Shanghai. It can be observed that the environmental benefits are highest at 

approximately 18:00 PM. At this time, bike sharing saved 956 tonnes of petrol and 

decreased CO2 and NOX emissions in Shanghai by 2,888 and 7,341 kg tonnes, 

respectively. The other peak of environmental benefits was observed at approximately 

8:00 AM. This temporal distribution is different from that of car sharing, where morning 

peaks are reported to be higher than evening peaks (Yu et al., 2017). 

 

 

Fig. 6. Temporal distributions of the environmental benefits of bike sharing. The unit 

for fuel and CO2 is tonne (t), while the unit for NOX is kilogram (kg). 

 

4. Conclusions and policy implications 

We used a big data technique to estimate the environmental benefits of bike sharing in 

Shanghai City from spatial and temporal perspectives. Bike sharing in Shanghai saved 

8,358 tonnes of petrol and decreased CO2 and NOX emissions by 25,240 and 64 tonnes, 

respectively, in 2016. From a spatial perspective, environmental benefits were much 

higher in more developed districts in Shanghai where population density is usually 
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higher. The density of environmental benefits was highest in Hongkou district, which 

has the highest population density in Shanghai City. From a temporal perspective, there 

were obvious morning and evening peaks of the environmental benefits of bike sharing. 

The greatest environmental benefits occurred at approximately 18:00 PM followed by 

8:00 AM. The findings of this study will be useful for urban transport management, 

especially for the transformation of low-carbon transport patterns.  

 

The transport sector contributes substantially to energy consumption and emissions. 

The contributions of the transport sector increase with economic development and 

lifestyle changes. A sharing economy, such as bike or car sharing, is a potential way to 

reduce energy use and emissions in the transport sector. Bike-sharing programmes can 

promote the use of bicycles in cities, which has been demonstrated in numerous studies. 

As a result, other modes of transport (e.g., private car, taxi, and bus) can be partially 

replaced by bicycles, especially for the ‘last mile problem’. Bike sharing is developing 

rapidly in many cities worldwide. In China, the use of shared dockless bikes in 2017 is 

expected to be approximately threefold higher than that in 2016. Accordingly, bike 

sharing will produce more environmental benefits by reducing energy use and 

emissions in the transport sector. Besides in China, Currently the dockless bike-sharing 

has also emerged in other countries, such as the United Kingdom, Singapore and Japan. 

Our study is able to provide a good reference to the implementation of the dockless 

bike-sharing service in these countries. 

 

Although this study provides innovative and quantitative estimations of the 

environmental benefits of bike sharing, there are several limitations. First, due to the 

privacy issue, the bike-sharing data we obtained were preprocessed by Mobike. Each 

trip only contained a collection of chronologically unordered spatial locations with no 

temporal information. Consequently, we could not accurately retrieve a user’s real 

travel route from his/her trip information. In the future, we will attempt to obtain the 

original GPS-tracked trip data. Based on this dataset, more accurate trips can be 

retrieved by referring to the work of Zheng et al. (2008). Second, there are uncertainties 
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in estimating the environmental benefits of a whole city using data from only one bike-

sharing company (i.e., Mobike in this study). We calculated the total environmental 

benefits under the assumption that the environmental benefits correspond to the number 

of bikes, i.e., the company, location, and weather were ignored. A more accurate 

estimation will be carried out when the related data become available. Third, it will be 

meaningful to discuss the relationships between environmental impacts and other socio-

economic factors, such as population, education and prices. These discussions may 

make the paper more comprehensive and get more useful policy implications.  
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