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Abstract 

 

Among the various interventions proposed to remediate the health and security effects of climate 

change by solar radiation protection is the proposal to enhance natural ocean whitecap formation. 

Compared to other solar protection interventions, this is technically simple and quickly terminated. 

However it has a drawback: even if the energy be obtained from wind or wave, the power demand 

to maintain a foam raft determines the capitalization of equipment. The average power demand is 

inversely related to foam lifetime which can be prolonged by surfactants preferably derived from 

ingenerate resources. Here we estimate the associated energy and power demands by identifying the 

parameters that can be adjusted to moderate the capital cost of implementation. Before dividing by 

efficiency factors, the range of power demand for an intermediate areal energy requirement of 5 

MJ/km2  of ocean varies from 6 to 30 W/km2 for foam lifetime of 10 to 2 days. The most likely 

route to deployment is through merchant ship lubrication using bubbly liquids which both reduces 

fuel consumption and creates an extended wake and is perhaps an example of technical symbiosis.     
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1. Introduction 

 

The health management challenges of climate change have been clearly identified as arising 

from water stress, food shortage, large scale population migration, shelter and human settlement, 

extreme weather events and changes to morbidity caused, for example, by disease vector migration 

[1,2]. There are identifiable security threats [3], US Homeland Security concerns [4] and historical 

evidence that climate change is associated with political instability [5]. Attempts to mitigate 

anthropogenic climate change by the three principal interventions of (i) reduction in fossil fuel 

consumption, (ii) switching to non-fossil fuel energy sources and (iii) capture of CO2  and storage in 

geological cavities suffer from long implementation timescales often linked to replacement rates. 

Moreno-Cruz and Keith [6] propose, in a decision-making model, that the reduction of solar 

radiation is viable largely because of its comparative speed of implementation.  It does not address 

the cause of climate change: indeed it remediates global warming whatever the cause. 

This fourth class of intervention, to increase the earth’s albedo has appeared somewhat 

uncomfortably under the designation ‘geoengineering’ or better ‘climate remediation’ or ‘global 

protection’.  Public perception of ‘geoengineering’ is, on the one hand, not well informed [7] and on 

the other, surprisingly accepting of a need for some way to manage climate change [8]. The 

designation ‘geoengineering’ can be defined as “intentional large-scale manipulation of the 

environment” [9]. The combustion of fossil fuels which has been known, since the beginning of the 

20th century, from a series of papers by Arrhenius 1896 to 1906 [10], to modify the climate on a 

large scale is not generally described as geoengineering although it is of course, now conducted in 

scientia.  

Budyko [11] made one of the first suggestions to reflect solar radiation by injecting particles 

into the stratosphere. This idea was reinforced by Nobel laureate Paul Crutzen [12]. Concern over 

the reintroduction of a ‘pollutant’ and the uncertain atmospheric chemistry has prompted the quest 

for ‘softer’ climate remediation measures. The particulate residence time of 2-3 years which could 

envelope a major volcanic event and in combination, introduce catastrophic cooling prompts a 

search for interventions that can be attenuated within a few Ms. 

A focus for these is the ocean which occupies 71% of the earth’s surface and has a low 

reflectance of ~0.04. British and American scientists have suggested the use of ocean bubbles to 

increase albedo [13,14]. Ocean whitecaps provide reflectance of 40-60% [15] depending on the 

number of bubble rafts [16,17] and finer surfactant foams can produce slightly higher reflectance 

[17]. Whitecap coverage is related to the 10 m wind speed [18] but to reach an area fraction of 1% 

requires Beaufort 9-10 (severe gale to storm) conditions. It is already known that the ocean bubbles 

produced by ship wakes increase ocean albedo and influence the radiation balance [19,20]. Recent 
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attempts have been made to secure longer seawater foam lifetime by combining additives at the 1% 

level which cause gelation [21] and in this way blends of protein and pectin or methyl cellulose and 

carrageenan provide exceptionally long lifetimes in the laboratory without wave action. Seasalt 

crystallisation at the upper surfaces of the foam as it dries tends to increase reflectance [22]. 

Computer modelling suggests that ‘ocean brightening’ has fewer side effects than other 

remediations when the coverage is reasonably uniform [23]. Simulation also suggests that ocean 

foams placed in arctic waters (where solar zenith angle is unfavourably high) would cease to be 

effective in restoring ice cover once Arctic annual mean temperature has risen by 10 °C above 

preindustrial conditions even though the foam provides similar albedo to ice itself [24]. Clearly 

deployment of foam rafts in lower latitudes with lower solar zenith angle would continue to provide 

global cooling as indicated by Gordon and Jacobs [25] in their 1977 study of the effects of sea foam 

on albedo. Time is therefore of the essence and possibly one of the greatest dangers is the 

precipitate implementation of global protection climate engineering measures under political 

pressure in a humanitarian effort to prevent suffering but long before the prerequisite research has 

been completed; a politico-scientific scenario that could have serious consequences.   

 

2. Overview of the problem  

The overall aim is to evaluate the viability of using large areas of foam in the ocean to reflect 

sunlight in terms of criteria proposed in the Royal Society report [26] and our analysis approaches 

this goal in part by addressing the energy demand.  A comparable but more recent survey published 

by the National Academy of Sciences [27] dismisses the use of ocean foams as “judged to be of low 

potential use on the global scale because of generally low effectiveness and high costs” but adds the 

contrary statement; “There is very little published research on this idea”. Thus “effectiveness” is 

judged by the impact on the Earth’s energy budget: an ocean foam requires high reflectance (0.5-

0.6) and persistence. For comparison, sea ice has a reflectance of 0.5-0.8 and in the laboratory, 

foams can have reflectance approaching 0.8. “ Affordability” is judged by the capitalization and 

running costs of foam engineering equipment. The energy to produce and sustain a large area of 

foam in the ocean will ideally be harvested from renewable sources so the main issue is 

capitalization but a potential solution has been found (vide infra). “Timeliness” is assessed by the 

timescales for implementation and termination. Since conventional engineering equipment is likely 

to be deployed, implementation should be short in comparison to other climate remediation 

strategies. Termination is fixed by foam lifetime. In terms of assessment of “safety” the wider issue 

of regional climate effects is beyond the scope of this work but is being pioneered by the Leeds 

team [23]. There are questions about the restriction of sunlight to the ocean biosphere and to gas 
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transfer in the boundary region which are likely to be similar to the restrictions imposed by ice and 

will depend partly on the uniformity of cover. It is noteworthy that surfactant additions can suppress 

air-sea gas exchange [28]. Regions known as “ocean deserts” or the high-nutrient, low-chlorophyll 

regions which support reduced marine life and are growing in extent [29] occupy some 50 x 106 km2  

of ocean and may become locations for initial deployment of an ocean mirror. The local issue of 

safety of foam agents will depend on the materials selected; the idea of using ingenerate resources 

such as phytoplankton mucilage and derivatives of seaweed go some way to ameliorate these 

concerns and biodegradability will be required. Nevertheless, the desire for global protection from 

the predicted consequences of climate change at zero monetary or environmental cost is likely to 

result in disappointment and a difficult balance will need to be found.  

Although the energy to create and sustain an ocean mirror using foam could be drawn from 

the renewable sources of wave, wind or solar, the amount of energy so required determines the 

capitalisation of ocean going vessels and their energy harvesting equipment. Since the area of ocean 

that is likely to be treated is several percent (1% represents 3.6 x 106 km2), this is a substantial 

amount of equipment. The power required to maintain a given area of foam is inversely related to 

foam lifetime. It is for this reason that our current efforts are directed to enhancing the longevity of 

foam [21,22].  

Methods of generating foam in sea water include (i) the direct injection of air, (ii) the 

mechanical stirring of the surface, such as may be obtained from a propeller, (iii) the pumping of 

sea water and (iv) the bubble lubrication of merchant shipping.  There is increasing interest in the 

Mitsubishi ship lubrication system [30] in which compressed air is discharged under the hull to 

deliver a low viscosity boundary layer of bubbly liquid  thus reducing the consumption of bunker 

fuel, potentially leaving an extended wake and perhaps providing an example of engineering 

symbiosis. Estimates suggest that 10-20% fuel savings are possible [30]. For fuel reduction, small 

bubbles are not necessary but modification of the system to incorporate turbulence and surfactant 

addition could provide a long-lasting wake comprised of finer bubbles.  

 

3. Energy demand in terms of reflectance  

While there are several methods to calculate the reflectance of foams exactly, Edward 

Monahan, whose career was devoted to the study of ocean whitecaps [16], suggested that the 

horizontal surfaces made the main contribution to overall reflectance. This considerably simplifies 

the relation between energy demand and reflectance. Summed to infinity, the method gives 

reflectance of thick foams consistent with whitecaps [16] and has been tested for lower numbers of 

https://en.wikipedia.org/wiki/Nutrient
https://en.wikipedia.org/wiki/Chlorophyll
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reflective layers [17]. This simplification may break down for very fine cell foams but it assists in 

the estimation considerably.      

The number of reflective membranes through which the light passes is simply the number of 

foam rafts N found from overall foam thickness, h,  and  diameter of cells, d:  

𝑁 = ℎ/𝑑  (1) 

The series for the first and third reflections (the second and fourth continue in the direction of 

incident light, and the higher orders contribute less) [17] provides RN, the sum of reflections from N 

membranes where r is the reflectivity of a membrane and includes reflection from both surfaces and 

m=n-1: 

 

𝑅𝑁 = 𝑟 ∑(1 − 𝑟)2(𝑛−1)

𝑛=𝑁

𝑛=1

+ 𝑟3 ∑
𝑚(𝑚 + 1)

2
(1 − 𝑟)2𝑚

𝑚=𝑁−1

𝑚=0

 

 

Selecting RN = 0.5 as the minimum reflectance specification, Table 1 provides the minimum 

number of membranes which is effectively the minimum number foam rafts to deliver the 

specification for a given value of r, the reflectivity of the membrane (which includes both surfaces) 

and the corresponding value of R∞, the reflectance for an infinitely thick foam. It also gives the 

number of rafts to deliver 90% of the reflectance of the infinitely thick foam.    

  

 

 

 

 

 

 

 

 

 

Table 1. Effect of reflectivity of membrane, r,  on reflectance of foam. R∞:  reflectance of infinitely 

thick foam,; N0.5 : number of rafts to give R=0.5; N (0.9 R∞) :number of rafts to give 90% of R∞ .  

 

The reflectivity for the membrane is ~0.1 as estimated in reference [17] but Table 1 shows 

that if this varies, which of course it can do as a result, for example, of surfactant addition or 

entrainment of biological residues, the value of   R∞  does not vary greatly although the number of 

Reflectivity 

of 

membrane 

R∞ 

(N         ∞) 

N0.5 N (0.9 R∞) 

0.08 

0.10 

0.12 

0.15 

0.63 

0.64 

0.65 

0.65 

13 

10 

8 

7 

19 

15 

13 

10 

(2) 
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rafts needed for 50% albedo increases as the reflectivity of the layer decreases. The specification of 

R=0.5 is arbitrary but reasonable in that it represents a factor of  x10 improvement on the ocean 

average albedo. Laboratory foams can be as high as R=0.77.   

Clearly the foam reflectance declines as the foam decays and for r = 0.1, the number of layers 

to obtain R=0.6 is 20 and for R=0.4 is 8. So to allow for decay, 20 layers is used for the calculations 

in subsequent sections. It is assumed that geometric optics can be applied if the wavelength of light 

is small compared to the object with which it interacts. For d<2000 nm, diffraction and scattering 

effects occur.  As bubble size decreases, Stokes’ law predicts longer ascent times and therefore 

longer residence time irrespective of surfactant effects.  In the work of Johnson and Cooke [31,32] 

such bubbles scavenge organic surfactants from the ocean which stabilizes them but a high number 

density of microbubbles may deplete such naturally occurring surfactants.  The approach in this 

work is to consider macro-bubble foams stabilised by deliberately added, but preferably ocean-

sourced surfactants.  

Figure 1 shows graphically how reflectance of the foam develops as the number of rafts 

increases using this simplified model [17]. As the number of bubble rafts increases, the overall 

reflectance becomes less sensitive to the membrane reflectivity and R∞  tends to be  in the 50-60% 

region for each in this region of membrane reflectivity of ~0.1.    

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

R
ef

le
ct

an
ce

Number of layers

r=0.15 r=0.12 r=0.10 r=0.08



7 

 

Figure 1. Reflectance contributed by first and third reflections from a foam as a function of the 

number of layers and the reflectivity, r of each layer from r=0.08-0.15.  

 

From a thermodynamic approach, the energy invested in the production of 1 m2 of ocean 

covered with foam must provide the new interfacial area and the increased gas pressure of air 

entrapped in the bubbles. The energy so calculated for the most efficient process that could be 

devised would require quasi-static, reversible steps with no inefficiencies or viscous losses. The 

actual energy required may then be found with the use of efficiency factors. 

The initial state is defined as the aqueous solution and air at a reference temperature and at 

atmospheric pressure. The initial interfacial surface area is negligible compared to that of the foam. 

The transient state is defined as foam with a precise amount of interfacial surface and the pressure is 

above atmospheric pressure being dependant on the foam cell size and calculated via the Young-

Laplace equation. The final temperature is the same as the initial temperature but an adiabatic 

compression is considered to take place with subsequent heat dissipation.  

Figure 2 shows schematically the foam energy evolution over time. The initial and final states 

are the same because foam is an unstable system that will eventually degrade. The energy of the 

initial foam is exactly the same as the thermodynamic work applied to the system. The practical 

work is obtained, as discussed above, by dividing the thermodynamic work by an efficiency factor η 

(0 < η < 1).   With the consideration of adiabatic compression but isothermal foam, a heat 

dissipation step is included. The path taken from the initial foam which consists of spherical 

bubbles in water to polyhedral foam is distinguished schematically in Figure 2 by an exaggerated 

change in slope of the decay curve. The subsequent decay to the final point is dependent on the 

foam degradation processes. These irreversible, spontaneous processes such as coarsening and film 

rupture do not have to be considered in this evaluation since all the calculations are path-

independent. Throughout the analysis, the geometric area of ocean is considered (flat ocean) so that 

a roughness factor can be introduced subsequently. Complete entrainment of the pumped air is 

considered. These factors can be introduced into the model as it approaches the real case.    
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Figure 2. Schematic diagram of energy changes during manufacture and decay of the ocean foam. 

The initial work done W/η represents the total work input where η is the overall efficiency, W is the 

work done in creating spherical bubbles, which decay in two steps, (i) to a polyhedral foam and (ii) 

by coalescence and collapse to the minimum sea-water interface.     

 

The thermodynamic work to produce foam is the sum of work of compression, Wc and the 

interfacial surface energy WS:  

𝑊T  = 𝑊𝐶 + 𝑊𝑆    (3) 

Estimation of  WS requires the foam geometry for the total area of film contained in unit foam 

volume. For Monahan’s cubic foam [16] aligned with faces parallel to the ocean surface and with 

cell dimension d (d is side length), the surface area/volume of a cube is 6/d and the volume of the 

foam is h per m2 of ocean so the surface energy per unit area of ocean = 6σN. Thus for N = 20, σ = 

0.04 Jm-2 giving initial reflectance of 0.6, the surface energy per unit ocean area is 4.8 Jm-2.   
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For 3-D polyhedral foams, the average coordination number, z, was derived by Kelvin, 

subsequently revisited by Weaire and Phelan [33] and most recently Gabbrielli [34] to be 14, 13.5 

and 13.7 respectively. These coordination numbers approximate to a tetrakaidecahedron, the space–

filling structure for which z =14. In a study of similar structures in plants, the volume of a 

tetrakaidecahedron, vT = 2.34 c3 where c is the mean chord length as measured by an intercept method 

[35]. This is the distance between the intercepts made by any random straight line drawn through the 

structure and the cell boundaries and since the straight line is the path of a light ray, c is thus the 

average distance between successive membranes for the purpose of calculating reflectance. The 

average cell diameter d = c/0.616 [36] and for a tetrakaidecahedron, the average caliper diameter is 

3L where L is the side length [37]. The surface area per unit volume is 2.37/L [38] and since diameter 

=3L, surface area per unit volume is 7.11/d slightly higher than the corresponding surface to volume 

ratio for a sphere of 6/d (d is diameter in both cases).  Since we require N=20 membranes in the foam 

layer, it is h/c that is put at 20 rather than h/d because the chord length is derived from intercepts 

along the path of a ray.  Thus N =h/0.616d and h/d=12.32. The surface energy per unit ocean area is 

thus 4.38 σ N which for σ=0.04 Jm-2 gives 3.5 Jm-2 of ocean.  

The surface energy of distilled water is 0.072 J m-2  at 20 °C and of abiotic sea water typically 

0.073-0.075 J m-2  [39]. However it is lowered considerably by surfactants: ideally ocean-sourced or 

biosourced surfactants are preferred to achieve persistent foams. The stored surface energy depends 

linearly on the value of the specific surface energy and although this can be rendered low by 

surfactants, there is a practical lower limit and a range for surface energy of 0.02<σ < 0.06 J m-2 

was used.  

 

 

𝑊𝑠 = 4.38 𝜎 𝑁  (4) 

 

Ws is here the energy (or work) required to produce the surface area per unit ocean area of foam. 

For an initial reflectance of 0.6 (N = 20), Ws = 87.6 σ  which, for the range of surface energy explored 

is between 1.8 and 5.3 Jm-2 of ocean surface. The bubble size is subsumed in N.   

To calculate the compression contribution Wc, the first step is to calculate the pressure inside 

the foam P2, The Young-Laplace equation for spherical bubbles in a liquid is:  

 

𝑃2 = 𝑃1 +
4𝜎

𝑑
    (5) 

 

where P1 is the atmospheric pressure. We are here concerned with the compression work to obtain 

the initial wet foam, that is, spherical bubbles in a liquid rather than the polyhedral foam that develops 

from it (Figure 1). By allowing for the widest range of diameters from 0.002 mm up to 1 mm, 
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(thereafter the pressure increase is very low) it is possible to show how the energy demand varies 

from high levels needed to produce microbubbles through to relatively low values for millimetre sized 

cells. The pressure demand is plotted in Figure 3 where the ratio P2/P1 is calculated as a function of 

the diameter, whose axis is logarithmic, for three surface energy values.  

 
 

Figure 3. Ratio of pressure inside a spherical bubble, P2 to atmospheric pressure, P1 as a function of 

diameter for three representative values of surface energy. 
 

 

 

There are several technical means to create a foam but here we consider the use of compressed 

air to inject bubbles. We require the work done by a compressor in an adiabatic, reversible process to 

compress a gas from atmospheric P1 to a higher pressure, in this case P2, which is given by Equation 

6. WC/V2 is the compression work divided by the volume of air at P2, that is, the volume of gas in the 

foam and γ is the specific heat ratio CP/CV. For air and diatomic gases at moderate temperatures, γ ~ 

1.4. Figure 4 is the log-log plot of Equation 6 with the same range of diameter and surface energy 

values as displayed in Figure 3. On log axes, the relationship produces a straight line for the values 

considered, levelling off at bubble diameters over 1 mm. Surface energy has an important influence 

but the bubble diameter is the parameter that determines the order of magnitude of the compression 

work required for unit foam volume. 

 

𝑊𝐶

𝑉2
=

1

𝛾−1
𝑃2 (1 − (

𝑃2

𝑃1
)

1−𝛾

𝛾
)    (6) 

 

 

 

0

0.5

1

1.5

2

2.5

0.001 0.01 0.1 1

P
2
/ 

P
1

d /mm

0.06 J/m2

0.04 J/m2

0.02 J/m2



11 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 4. Log-log plot of the compression work as a function of bubble diameter for three 

representative values of surface energy. 

 

 

To find the thermodynamic work to produce foam per unit ocean area, Equation 6 is multiplied 

by the volume fraction of air in the foam xair. Equation 7 defines xair in terms of the densities of the 

foam (ρfoam), the aqueous solution (ρsol) and air (ρair). The volume of foam (Vfoam) per unit area of 

ocean is simply h. The volumetric fraction of air in the fully developed polyhedral foam varies 

according to how dry is the foam, a typical value of this parameter is around 95% and is used in 

subsequent calculations. 
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𝑥𝑎𝑖𝑟 ≡
𝑉2

𝑉𝑓𝑜𝑎𝑚
=

𝜌𝑠𝑜𝑙 − 𝜌𝑓𝑜𝑎𝑚

𝜌𝑠𝑜𝑙 − 𝜌𝑎𝑖𝑟
 

 

The energy per unit area of ocean needed to create the foam is obtained from equations 1,6 and 7:  

 

𝑊𝐶

𝐴𝑜𝑐
= 𝑁 × 𝑑 × 𝑥𝑎𝑖𝑟 ×

1

𝛾−1
𝑃2 (1 − (

𝑃2

𝑃1
)

1−𝛾

𝛾
) 

 

For a foam capable of average reflectance of 0.5 over its life, putting values of N = 20 and xair = 0.95, 

the energy required for the adiabatic compression of air entrapped in the foam is between 1.2 and 4.2 

J m-2 depending on surface energy and bubble diameter as plotted in Figure 5.  

 

 

 

  

 

Figure 5. Compression work per unit area of ocean covered with foam as a function of bubble 

diameter. 
 

 

The total energy required to produce foam with this reflectance in the surface of the ocean is 

estimated with Equation 3 and is between 2.8 and 9.5 J m-2 of ocean for a foam layer in which the 

path length of a ray passes 20 membranes. Its main influence is surface energy: the work of 

compression tends to level out with bubble diameter because as diameter increases, thus lowering 

P2/P1, volume of compressed gas increases if the number of layers is held constant (Figure 6).  
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Figure 6. Total  thermodynamic work (WT)  to produce  a 20 reflective layer foam per unit area of 

ocean as a function of bubble diameter. 
 

4. Power requirements 

 

Energy demands of 2.8 - 9.5 MJ km-2 at first seem prohibitive but what matters, since the energy 

is to be derived from wave, wind, solar or ship lubrication compressor power, is the capitalization of 

equipment needed to maintain the foam layer. This in turn depends on the average power requirement 

which clearly depend on the foam lifetime. Simply put, if the foam lasts for one month (2.6 Ms) the 

average power per km2 is 1 – 4 W for the energy demands given above. This is quite a modest demand. 

In the steady state, foam would be produced at the same rate at which it is degraded. For a fixed 

power input, the ocean surface area covered in foam is proportional to the lifetime of the foam. This 

is shown schematically in Figure 7.  This forms the basis of current research on ocean foams which 

aims to prolong their persistence in seawater. For seawater unmodified by surfactant addition, 

Callaghan et al. [40] express the area of whitecap, A(t), at time, t, after formation by:  

𝐴(𝑡) = 𝐴0exp (−
𝑡

𝜏
)    (9) 

where A0 is the maximum area after formation and τ is the whitecap foam decay time. While area 

decay follows this curve well, τ varies by a factor of 50 up to 10s. In the laboratory, seawater foams 

with added surfactants and gelling agents can survive for long periods and, if the upper surface dries, 

for several Ms.  
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Figure 7. Power demand for the maintenance of 1 km2 ocean foam as a function of foam lifetime 

for three values of areal energy demand. 

 

However Figure 7 does not address the transient at the initiation of the ocean mirror. In fact the 

duration of the transient is equal to the lifetime of the foam as shown in Figure 8. The total area of 

the foam that can be established at steady state is the area deposited per day multiplied by lifetime as 

also shown in Figure 8.  The lifetime of the foam can instead be thought of as the time required 

regenerating the foam. The consumption of resources per unit time halves when the lifetime doubles. 
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5    D    D F F F   3 

6    D    D    D F F F 3 

        
  Ocean not yet foamed    
  F Foam       
  D Foam that has decayed    

        
 

Figure 8. Foam placement and decay: the maximum area of foam is the product of the placed 

area and the lifetime. 

 
 

Thus the amount of foam produced, and therefore the surface area it covers is proportional to 

the resources, E used to produce and maintain the foam  𝐸 ∝ 𝐴𝑜𝑐 . Given a fixed resource, the area 

covered by foam is directly proportional to the lifetime, T, of the foam 𝐴𝑜𝑐 ∝ 𝑇. For a given area 

covered in foam, the resources needed to produce and maintain it are inversely proportional to the 

lifetime of the foam , 𝐸 ∝
1

𝑇
 .      

The important characteristics of the foam, total size and lifetime are related to the rate of foam 

production (dA/dt) by: 

dA

dt
=

Aoc

T
     (10) 

 

In the steady state, the foam as a whole is sustained by producing the amount of foam that replaces 

that degraded with the passing of time. The power required to sustain the whole foam (Pfoam) is 

calculated from: 

 

𝑃𝑓𝑜𝑎𝑚 =
𝑑𝐸

𝑑𝑡
=

𝑑𝐸

𝑑𝐴
×

𝑑𝐴

𝑑𝑡
=

𝑊

𝐴𝑜𝑐
×

𝐴𝑜𝑐

𝑇
  (11) 

 

 

The power required to sustain the ocean mirror divided by the area of the ocean covered is a 

function of the variables shown in Table 2 in which the third column shows the way the power 

requirement depends on the parameter and the last column is the ratio of the highest and lowest typical 

values for the variables. Without efficiency factors, the power required per unit area of ocean covered 

varies from 4 to 120 W km-2 for the range of energy demands considered. It depends on the foam 

lifetime, surface energy and, at low diameters on bubble size but its values are relatively low 

indicating the viability of the intervention.  Efficiency factors are not included yet and will 

significantly increase these numbers. 
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Attention is centred on the energetic resources here but the materials requirements can be estimated 

quite easily based on surfactant addition levels of 1 wt. % [21,22]. For N=20, xair = 0.95 and 1 mm 

bubble diameter, the volume of liquid in the foam per unit ocean area is 0.001 m3 which requires 10 

g surfactant which could be metered into the compressed air stream as a masterbatch concentrate.  

 

Variable Symbol Relation with Pfoam/Aoc High-low ratio 

Bubble diameter d Constant above d=0.1 mm 10,000 

Surface energy σ Almost linear 6 

Layers for reflection N Linear ~8 

Foam-ocean reflectance 

difference 
ΔR Proportional 2 

Foam lifetime T Inversely proportional 100 

 

 

Table 2. Relevant variables of the model developed to calculate the power needed to produce and 

sustain the ocean mirror. 

 

5. Estimation of foam area fraction 

The energy demand needs to be assessed in terms of the total area of the ocean covered by foam 

which in turn is related to the energy of the light reflected by the ocean mirror and hence the radiative 

forcing. The schematic of Earth’s radiative budget that has become widely accepted is that in Figure 

1.1 of Shepherd [26]. The average value of solar energy flux at the surface is 342 W m-2  of which 

107 W m-2 or 31% leaves the Earth as short wavelength radiation without being incorporated into the 

climate system. Any increase in this outbound energy flux by climate protection efforts would 

counteract anthropogenic radiative forcing.  

To counteract the effect of doubling CO2 concentration it would be necessary to change the 

earth’s radiation balance by 4 Wm-2 [26]. It is extremely unlikely that when the time comes to 

intervene with such global protection measures, a single strategy will be deployed. It is almost certain 

that risk will be mitigated by developing a portfolio of interventions which will include, in some form, 

most of the procedures currently under discussion. Furthermore, it is likely that a gradient of 

implementation will be planned, for example by converting merchant shipping with bubble generators 

in stages. However it is interesting to find out what fraction of ocean would need to be mirrored in 

order to deliver the full 4 Wm-2 .          

This would be achieved by increasing planetary surface albedo from 0.15 to 0.17.  The albedo 

of the ocean is more homogeneous than land albedo and depends on solar zenith angle, wind speed, 

transmission by atmospheric cloud/aerosol and ocean chlorophyll concentration. The average ocean 

albedo is around 0.04 [41]. The ocean, 𝑓𝑜𝑐,  and land, 𝑓T, surface fractions are approximately 70% and 
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30% respectively. If a𝑜𝑐 and 𝑎T are ocean and land albedos respectively, the planetary surface albedo 

is made up of: 

𝑎 = 𝑓𝑜𝑐a𝑜𝑐+𝑓T𝑎T   (12) 
 

and the average land albedo, 𝑎T, is 0.41, being more than 10 times the albedo of the ocean 

If planetary surface albedo is to be raised to 0.17 as suggested [26], and land albedo does not 

change, ocean albedo will need to be increased to 0.067 to deliver the full 4 Wm -2 and the area 

fraction of ocean that is foam with a reflectance RN  is given by: 

 

𝑓𝑓 =
𝑎𝑐−0.04

𝑅𝑁  −0.04
   (13) 

 

where ac is the target composite foam-ocean albedo (0.067 in this case). With RN = 0.5, the area 

fraction needed to do this is 0.059.  If the foam reflectance is 0.7 this falls to 0.041. This estimate 

ignores many factors. It does not take into account regional variations in cloud cover and hence does 

not report top of atmosphere albedo. Crook et aI. [23] used an ocean-atmosphere coupled climate 

model to provide more precise estimates of ship-wake enhancement. They also reported regional 

climate consequences.  The overlap of ship wakes which increases as more ships are converted and 

as foam life extends is also not considered. It is likely that while air injection for ship lubrication is 

continuous, the addition of surfactant can be interrupted. Nevertheless, these values represent 

enormous areas: the ocean surface area is 360 x 106 km-2. The lower fraction of 0.041 corresponds to 

the area of Antarctica. However, these values are based on the extreme case in which climate 

remediation relies entirely on an ocean mirror. This will not be the case for several reasons. Firstly, 

anthropogenic radiative forcing should not reach 4 Wm-2 because global commitments have been 

made by the ratification of the Paris COP 21 agreement by most of the nations. Secondly, the risks 

associated with global protection by climate engineering are so great that it would be imprudent to 

rely on one type of intervention alone. The extent of the mirror should be as great as economically 

possible without compromising ecosystems, the environment or sustainable development. Thirdly, the 

input quantities are global averages; there is an average latitude at which these numbers are exact. 

The consequence of producing the foam closer to the equator from this average latitude would be 

more solar influx while the other parameters such as ocean albedo remain almost intact and so less 

area of foam is needed. It is not widely appreciated that the deployment of the ocean mirror should 

take place as close as possible to the equator in order to reduce the area of foam required. The effect 

on changes to precipitation, especially between northern and southern hemispheres, depends on the 

geographical distribution of foam. In this context, foam deployment from merchant ships alluded to 

above, would require adjustment of traffic routes which are presently northern-hemisphere 
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dominated.  Quite novel contractual arrangements between governments and shipping lines would be 

needed!      

 An idea of the area that could reasonably be administered can be gained from deployment of 

bubble generators fitted to merchant ships such as the Mitsubishi system [30] but modified to deliver 

a persistent foam. This is the technology modelled by Crook et al. [23] which shows that its effects 

on precipitation and ocean primary productivity are no worse than those incurred by climate change. 

Suppose that of the 50,000 merchant ships worldwide, 35,000 are at sea at any time and their average 

speed is 11 ms-1 (22 knots) and that the wake width is 75 m. (Reference 23 suggests 50-100 m). Then 

the ocean area foamed per 24 hours is 2.5 x 106 km2 before including efficiency factors, sea roughness 

factor, ship-wake overlap and variations in cloud cover (which affects the extent of climate forcing) 

and so the minimum persistence of foam is 8.5 days for the full 21.2 x 106 km2 (0.059 of ocean) 

needed to offset the 4 Wm-2 needed to compensate for doubling of CO2 . 

 

 

Table 3. The ocean mirror as assessed in the manner of the Royal Society report “Geoengineering the 

climate” [26]. 

 

Table 3 summarizes the feasibility of the ocean mirror using the four criteria of the Royal Society’s 

report [26] and the same style of presentation. That report preceded the appearance of formal 

suggestions in the literature that the reflectance of bubbles could be used as a climate intervention 

and so it does not include the option. Nevertheless, seven years later, there has still been insufficient 

research in global protection measures to warrant decisions to proceed or on which options with which 

to proceed. This neglect raises the spectre that precipitate decisions might be taken cum pavore in a 

context of widespread suffering without the necessary understanding of the consequences and the 

associated dangers.             

 

6. Summary and conclusions   

Ocean mirror

Effectiveness Strongly depends on the scale of implementation and 

geographical location.

Low  - High

Affordability Power requirements are low as estimated in this paper. 

Deployment through merchant ships offers reduced costs.

High

Timeliness Could be readily implemented in merchant ships or as an 

independent project. Albedo is increased immediately.

High

Safety Energy and materials should be sourced in-situ not 

interfering with marine ecosystems.

Climate implications are being studied (Crook et al. 2016)

Medium
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The energy demand to produce an ocean mirror using foam is assessed in terms of the work of 

compression and the liquid-vapour surface area created. Although the energy is high: 2.5 MJ km-2 for 

bubble diameters from 0.1-1 mm and intermediate surface energy of 0.04 J m-2, the power demand to 

maintain foam cover is inversely related to foam lifetime. Thus if the foam lasts 5 days, the minimum 

power demand is 12 W km-2. The conclusions indicate that attempts to obtain persistent foams in 

seawater preferably using ingenerate resources should be given priority.  It is shown that before 

including efficiency factors, the large areas of reflective ocean needed to compensate for a doubling 

of CO2 (6% of ocean) are attainable by fitting bubble lubrication to the existing world fleet of 

merchant ships with surfactant additions, provided a minimum persistence of 8.5 days can be 

achieved. However this is very unlikely to be needed: regulatory measures and risk mitigation by 

using a portfolio of global protection procedures will reduce this areal demand. Positioning of the 

ocean mirror at low latitudes will obviously reduce the ocean area needed but the more local is the 

deployment, the less uniform may be the effect on temperature and precipitation.     
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