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Susceptible genes and disease 
mechanisms identified in 
frontotemporal dementia and 
frontotemporal dementia with 
Amyotrophic Lateral Sclerosis by 
DNA-methylation and GWAS
E. Taskesen1,2, A. Mishra1, S. van der Sluis1, R. Ferrari3, J. H. Veldink4, M. A. van Es4,  
A. B. Smit5, D. Posthuma1,2 & Y. Pijnenburg2

Frontotemporal dementia (FTD) is a neurodegenerative disorder predominantly affecting the frontal 
and temporal lobes. Genome-wide association studies (GWAS) on FTD identified only a few risk loci. 
One of the possible explanations is that FTD is clinically, pathologically, and genetically heterogeneous. 
An important open question is to what extent epigenetic factors contribute to FTD and whether these 
factors vary between FTD clinical subgroup. We compared the DNA-methylation levels of FTD cases 
(n = 128), and of FTD cases with Amyotrophic Lateral Sclerosis (FTD-ALS; n = 7) to those of unaffected 
controls (n = 193), which resulted in 14 and 224 candidate genes, respectively. Cluster analysis revealed 
significant class separation of FTD-ALS from controls. We could further specify genes with increased 
susceptibility for abnormal gene-transcript behavior by jointly analyzing DNA-methylation levels 
with the presence of mutations in a GWAS FTD-cohort. For FTD-ALS, this resulted in 9 potential 
candidate genes, whereas for FTD we detected 1 candidate gene (ELP2). Independent validation-sets 
confirmed the genes DLG1, METTL7A, KIAA1147, IGHMBP2, PCNX, UBTD2, WDR35, and ELP2/SLC39A6 
among others. We could furthermore demonstrate that genes harboring mutations and/or displaying 
differential DNA-methylation, are involved in common pathways, and may therefore be critical for 
neurodegeneration in both FTD and FTD-ALS.

Frontotemporal dementia (FTD) is a rare neurodegenerative disorder with estimated point prevalence of approx-
imately 15–30 per 100,000 individuals in the age group 49–69 years1, 2. FTD shows progressive deterioration 
of behavior and cognition, and gives raise to various clinical subtypes, such as the behavioral variant (bvFTD), 
characterized by e.g. changes in personality, and semantic dementia and progressive non-fluent aphasia sub-
types, characterized by language-associated variants. FTD also co-occurs with Amyotrophic Lateral Sclerosis 
(FTD-ALS), approximately seen in 15% of all FTD cases3, which forms a reason why FTD and ALS may be con-
sidered as a disease continuum. The clinical symptoms of FTD are related to selective neurodegeneration of the 
frontal brain regions, anterior temporal brain regions, often in conjunction with the degeneration of subcortical 
brain regions. The two most prevalent pathologies within the clinical spectrum of FTD are frontotemporal lobar 
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degeneration (FTLD) with TAR DNA- binding protein 43 inclusions (FTLD-TDP), and FTLD with tau positive 
inclusions (FTLD-Tau).

Variation in microtubule-associated protein tau (MAPT), progranulin (GRN) and Chromosome 9 open read-
ing frame 72 (C9orf72) is the most frequent genetic cause of familial FTD, together representing 10–27% of all 
FTD cases4, 5. It is yet to be elucidated to what extent genetic variation accounts for sporadic FTD6. Genome-wide 
association studies (GWAS) have become a standard approach to identify common genetic risk variants for com-
plex diseases. In the case of FTD, the largest GWAS to date engaged data of 3,526 patients4, and revealed 2 loci 
that included genes involved in immune system processes, and genes involved with lysosomal and autophagy 
pathways. However, the two detected loci can only partly explain the causation of FTD, which raises the question 
to what extent other molecular factors contribute to the pathogenesis in FTD. The clinical, pathological, and 
genetic heterogeneity of FTD might hamper identification of genes for FTD. Moreover, it has been shown that 
toxicity by specific mutations (i.e., C9orf72) might depend on the expression level of a gene7. Because cytosine 
DNA-methylation can also regulate the expression of genes, various studies performed single promoter analysis 
for C9orf728–10, and GRN11, 12, and showed the importance of DNA promoter hypermethylation in less severe 
clinical outcome. However, whole genome epigenetic involvement in FTD, to identify potential associations with 
pathogenesis, such as degeneration of the frontal and temporal lobes, has as yet to be elucidated13. The role of 
DNA-methylation is well established in the field of cancer14, where it showed promising clinical and preclinical 
results with the development of drugs targeting chromatin regulators15. For neurological diseases and demen-
tia, the role of epigenetics is increasingly recognized16–18. Nevertheless, studying the role of epigenetics in brain 
disorders remains a challenging task as DNA-methylation is usually measured in blood instead of brain tissue. 
For FTD and PSP (Progressive Supranuclear Palsy), a large genome-wide epigenetic study (DNA-methylation 
profiles) has been conducted, demonstrating a mediating role for methylation in PSP19. However, the exact role 
of genome-wide DNA-methylation for patients with FTD with or without concomitant Amyotrophic Lateral 
Sclerosis (FTD-ALS) has not been established.

Here, we study genome-wide DNA-methylation profiles of the FTD cases in the previous cohort (total n = 128, 
of which 7 cases are FTD-ALS), and separately for the clinical subtype FTD-ALS. We aimed to: (1) Explore sepa-
ration of FTD clinical subtypes using the DNA-methylation profiles. (2) detect genetic variants and/or epigenetic 
changes that show associations with FTD and/or FTD-ALS, and (3) examine whether genetic and epigenetic risk 
factors for FTD and/or FTD-ALS converge into specific biological processes as these may indicate evidence for a 
role of epigenetics in neurodegeneration in FTD.

Results
The clinical subtype FTD-ALS showed significant class separation from controls using DNA-
methylation profiles. The comparison of all FTD cases (n = 128) versus controls (n = 193) revealed 10 
significantly differential cytosine DNA-methylated probes (annotated with 14 unique genes) after multiple 
test correction for the 214,170 genes using Benjamin and Hochberg (PBH < 0.05, Fig. 1A, Table S1, and Fig. S1 
panel A,B). These include genes with brain and/or neurological function, such as Thiamin Pyrophosphokinase 
1 (TPK1), which has been associated with psychomotor retardation20 and for which a missense/splice-site/
frameshift mutation results in progressive neurological dysfunction. We also detected Serine Threonine Kinase 
39 (STK39), which is involved in Parkinson Disease21, 22, Retinoic Acid Induced 1 (RAI1), which is involved in the 
control of early neural differentiation), and Solute Carrier Family 39 (SLC39A6), which belongs to a subfamily 
of proteins that show structural characteristics of zinc transporters23 and which is associated with length of sur-
vival in esophageal squamous-cell carcinoma24, and overexpressed in Frontal cortex. Note that we will use PBH 
in the manuscript as Benjamin and Hochberg corrected P-value. We next assessed whether the entire cohort of 
FTD cases had a unique methylation profile and grouped separately from controls by means of an unsupervised 
analysis. We performed hierarchical clustering for which the optimal tree cut-off was determined by the Davies-
Bouldin index. No class separation between cases and controls was detected (Fig. S1C).

Figure 1. Differential methylated genes for FTD and FTD-ALS. Violin plot depicting the significant differential 
cytosine DNA-methylated genes are depicted for (A) all the 128 FTD cases, and (B) the FTD-ALS cases by 
comparison to control cases. Genes are sorted based on T-statistics. Genes with relative value lower than 0 are 
DNA hypomethylated and relative value higher than 0 are DNA hypermethylated. The green, purple and yellow 
lines depict the average value for respectively FTD-ALS, FTD and control cases. (C) Principal Component 
analysis on the differential DNA-methylated probes from FTD-ALS.
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Comparison of the FTD-ALS cases (n = 7) to the controls resulted in 200 significant differential cytosine 
DNA-methylation probes (PBH < 0.05, Fig. S1 panel A-B), annotated for 224 unique genes (Fig. 1B). Note that 
none of the 14 genes identified for FTD were found among the 224 genes for FTD-ALS. Moreover, 140 probes 
(mapped to 163 genes) showed relatively lower methylation levels compared to controls with average value below 
0, indicating a DNA hypomethylation state. The remaining 60 probes (mapped to 63 genes) showed, with an 
average value above 0, relatively higher methylation levels then controls indicating a DNA hypermethylation 
state (Figs 1B, S2B). The unique DNA-methylation profiles were even more stressed by the Principal Component 
Analysis, and Davies-Bouldin index to determine the number of clusters, which resulted in an exclusive and sig-
nificant grouping of the FTD-ALS cases (P = 5.23 × 10−11, Fig. 1C).

Genes that are specific for brain tissue show significant overlap with the associated FTD-ALS 
DNA-methylated genes. To test whether the detected differential DNA-methylation genes for FTD (n = 14 
genes) and, FTD-ALS (n = 224 genes) are associated with expression in brain, we utilized RNA sequencing data, 
containing 16,115 expression levels of genes, from the GTEx consortium on 1,641 samples and over 25 unique tis-
sue types25–27 (more details can be found in method section: Tissue-type association). To determine tissue enrich-
ment, we marked the genes that are specific for each tissue-type by comparing tissue-specific versus remaining 
samples, under the restriction that expression levels were significantly different with PBH < 0.05 (corrected for 
16,115 tests) using the Students T-test and with absolute Fold-difference of >1.5 (Fig. 2A). Genes associated with 
FTD and FTD-ALS were subsequently tested for significant enrichment for any of the tissue-specific-gene sets 
using the hypergeometric test.

No tissue-specific significant enrichment was seen for the 14 FTD associated differentially DNA-methylated 
genes after multiple test correction. For FTD-ALS cases, we did detect three significantly associated tissue types 
out of 25 tissues tested, namely Blood (PBH = 0.01), Brain (PBH = 0.02), and Liver (PBH = 0.04) (Fig. S1A), based 
on the 224 differential DNA-methylated genes. More specific, across the brain regions we detected significant 
overrepresentation for Parietal Neocortex (PBH = 9.41 × 10−4) and Primary Motor-Sensory Cortex (PBH = 0.031). 
This indicates that methylation changes detected in peripheral blood of FTD-ALS cases could also be reflective of 
changes in other tissues, including the brain.

DNA-methylation profiles of FTD-ALS patients reflect biological processes essential in 
Prefrontal, Primary Motor-Sensory Cortex, and Parietal Neocortex. Next, we addressed the ques-
tion whether the hyper/hypo DNA-methylated genes in FTD, and separately in FTD-ALS, are significantly over-
represented among genes that are specific for any of the brain regions (instead of tissue types as demonstrated in 
the previous section). We tested for significant overrepresentation based on RNA-sequencing (525 samples across 
26 brain regions), DNA-methylation (177 samples over 17 brain regions), and pre-defined gene sets (n = 22) from 
BrainSpan28 by using the procedure as outlined in Fig. 2A.

For the 224 associated genes in FTD-ALS, we detected significant overrepresentation with Parietal Neocortex 
(PBH = 9.41 × 10−4) and Primary Motor-Sensory Cortex (PBH = 0.031, Fig. S3B) using the RNA-sequencing data, 
after correcting for the 26 performed tests. Based on the DNA-methylation profiles, we detected significant over-
representation in 14 specific brain regions (Fig. 2B), among which Primary Visual Cortex (PBH = 2.05 × 10−7), 
Primary Motor Cortex (PBH = 0.0441), Dorsolateral Prefrontal Cortex (PBH = 0.0351), and Inferolateral Temporal 
Cortex (PBH = 0.0051), after correcting for the 17 performed tests. Finally, for the pre-defined gene sets we 
detected borderline significance for the Medial Prefrontal Cortex tissue (PBH = 0.05). In general, we observed that 
the majority of DNA-methylated genes in FTD-ALS (176/224, Fig. 2C) overlaps with the genes that are signifi-
cantly differentially expressed in any of the 14 brain regions. For FTD we detected no significant overrepresenta-
tion of the 14 genes among any of the brain specific regions (PBH < 0.05).

Figure 2. Tissue enrichment for FTD-ALS based on the brain tissue specific DNA-methylation profiles of 
BrainSpan. (A) The hypergeometric test is used to compute P-value for each tissue based on the following 
parameters; total number of genes (M), number of tissue specific genes (K), number of significant differential 
methylated genes (N), and the overlap of significant differential methylated genes and the genes in the tissue 
specific gene set (x). The final P-value (P*) is corrected for multiple testing using Benjamini and Hochberg, and 
used for tissue selection with PBH < 0.05. (B) Enriched tissues in FTD-ALS sorted in -log10(PBH). (C) Genes 
are colored with the brain tissue specific color if overlap is seen with any of the significantly differential DNA-
methylated genes in FTD-ALS.
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Candidate genes from GWAS revealed by joint analysis with the DNA-methylation profiles.  
We hypothesized that genes that contain potential risk SNPs and have a differential DNA-methylation profile, 
may have increased susceptibility for differences in gene-transcript levels, and may therefore be implicated in the 
disease development. To test this hypothesis, we utilized GWAS summary statistics for FTD, and separately for 
FTD-ALS4, and extracted all SNPs with unadjusted P < 0.05. Note that the corrected P-value threshold for GWAS 
does only yield in few genes but we hypothesized that multiple but relatively smaller effects can have impact on 
the functional level.

For FTD-ALS this yielded 5,535 SNPs, annotated to 4,147 unique genes using ANNOVAR29. First, we overlaid 
the 4,147 genes with the 224 genes as per the FTD-ALS DNA-methylation markers and detected a significant 
overlap based on the hypergeometric test (53 genes, P = 0.0005, Table S2, using as background the total num-
ber of unique HG19 genes). This indicates that in FTD-ALS, non-random genes were detected with both risk 
SNPs and differences in DNA-methylation levels. To further refine the potential candidate genes, we removed 
intronic, intergenic and synonymous SNPs and incorporated the CADD score to determine the deleteriousness. 

Genesymbol Chr Strand

GWAS SNPs DNA-methylation probes Network Pathway
Validated 
by gene-
expressionId P Location

CADD 
score

min(P) 
for gene Id PBH Location Tstat

Gene-
degree Overlap

DLG1 chr3 − rs74674649 6.01E-04 exonic 28.2 6.01E-04 cg12594803 0.0288 . –7.04 6 Yes Yes

KIAA1147 chr7 − rs201876806 9.13E-04 exonic 23.4 9.13E-04 cg24662653 2.90E-03 Island –6.51 2 Yes

GGA1 chr22 + rs143909159 2.91E-03 exonic 34 2.91E-03 cg21268578 0.028 . –7.16 21

IGHMBP2 chr11 + rs201692151 4.00E-03 exonic 22.8 4.00E-03 cg26065952 0.0231 N_Shore –5.7 31 Yes

ASPM chr1 − rs150125249 5.78E-03 exonic 34 5.78E-03 cg11336294 0.0273 . –5.59 . Yes

PRSS36 chr16 − rs145749002 6.04E-03 exonic 33 6.04E-03 cg14301190 4.90E-03 Island –6.68 1

CNKSR1 chr1 + rs144396219 8.32E-03 exonic 27.7 8.32E-03 cg09890400 0.0196 . –8.83 11 Yes

UBTD2 chr5 − rs17074452 9.54E-03 exonic 18.33 9.54E-03 ch.5.3268483F 4.90E-03 . –5.84 12 Yes

GGA1 chr22 + rs138525343 9.76E-03 exonic 26.6 2.91E-03 cg21268578 0.028 . –7.16 21

IGHMBP2 chr11 + rs145226920 0.01001 exonic 35 4.00E-03 cg26065952 0.0231 N_Shore –5.7 31

FAH chr15 + rs144234072 0.01066 exonic 27.3 0.01066 cg06856840 0.0165 . –6.95 2 Yes

NEDD9 chr6 − rs34044517 0.01629 exonic 23.6 5.85E-03 cg05917225 9.20E-03 . –5.79 2

BPHL chr6 + rs2231365 0.01671 splicing 24.1 0.01671 cg22799902 6.20E-03 Island –6.43 2

ACTN3 chr11 + rs201576110 0.02133 exonic 32 0.02133 cg25117505 6.39E-06 Island –8.39 .

WDR66 chr12 + rs77422261 0.02336 exonic 29.7 0.02336 cg21016266 0.0133 Island –4.89 3

IQSEC. 1 chr3 − rs144790333 0.02763 exonic 23 0.02763 cg02559896 6.70E-03 Island –5.14 16 Yes

DLG1 chr3 − rs141544348 0.03024 exonic 35 6.01E-04 cg12594803 0.0288 . –7.04 6

DUOX1 chr15 + rs143304688 0.03047 exonic 44 0.03047 cg10496082 2.00E-04 Island –6.61 4 Yes

PCDHA3 chr5 + rs146951816 0.0354 exonic 15.16 0.0354 cg02357321 0.0335 N_Shore –6.43 .

C6orf70 chr6 + rs140632188 0.04056 exonic 23 0.04056 cg22807378 0.0121 Island –7.15 1

CLRN2 chr4 + rs201124485 0.04711 exonic 20.6 0.04711 cg16760587 1.10E-03 S_Shelf –6.06 .

COL15A1 chr9 + rs199906142 3.62E-03 exonic 23.1 3.62E-03 cg18115656 0.0366 Island 5.37 0 Yes

TNRC18 chr7 − rs112785272 6.27E-03 exonic 19.2 6.27E-03 cg10546562 0.0101 N_Shore 5.91 28 Yes

SLC26A7 chr8 + rs200788056 9.04E-03 exonic 23.3 9.04E-03 cg25481252 2.60E-03 . 7.38 .

PCNX chr14 + rs200261097 0.01309 exonic 32 0.01309 cg10066683 0.0422 . 5.34 31 Yes Yes

WDR35 chr2 − rs148436608 0.02293 exonic 16.34 0.02293 cg13734338 0.028 . 6 0 Yes

MEGF6 chr1 − rs61910697 0.03109 exonic 19.86 0.03109 cg04391135 3.50E-03 Island 6.21 0

PRR5-
ARHGAP8 chr22 + rs55849456 0.03933 exonic 24.6 0.03933 cg06647930 0.0442 S_Shelf 4.26 . Yes

PRR5-
ARHGAP8 chr22 + rs16992915 0.04662 exonic 19.38 0.03933 cg06647930 4.42E-02 S_Shelf 4.26 . Yes

ESYT2 chr7 − rs2305475 0.04728 exonic 23 0.04728 cg19584649 9.36E-05 . 6.66 15 Yes

Table 1. Candidate list of genes that display abnormal DNA-methylation levels, and harbor risk-SNPs. 
Detection of 26 candidate genes for 30 SNPs for FTD-ALS. Genes are grouped in DNA hypomethylated 
(DMP T-statistics < 0) and hypermethylated genes (DMP T-statistics > 0) followed by P-value significance of 
GWAS. Chr: Chromosome. GWAS P: P-value significance for the phenotype association. GWAS CADD score: 
quantifies the deleteriousness of the SNP in the gene (the higher the worse). GWAS min(P) for gene: Minimum 
P-value significance for the phenotype association without excluding intronic, and intergenic SNPs. DMP PBY: 
P-value for the DNA-methylation difference between FTD-ALS vs Control cases after multiple test correction 
using Benjamini and Hochberg. DMP T-stat: T-statistics. Network Gene-degree: the number of edges the gene 
contains in the co-expression network (Fig. 4). Pathway overlap: [Yes], if the gene overlaps with any of the 
pathways derived from DMP or GWAS (Fig. 3A and B). Validated by gene-expression: [Yes], if the gene showed 
significant differential expression in any of the validation data sets.
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This filtering step yielded in 26 candidate genes for 30 SNPs (with CADD-score > 15) that are nonsynonymous 
or stopgain in exonic or splicing regions (Table 1). The 26 genes could be categorized into genes with DNA 
hypermethylation (n = 8) and hypomethylation (n = 18) status. None of the 30 SNPs occurred exactly in a 
DNA-methylation probe-region.

The most significant SNP association, detected in gene DLG1, is exonic located (rs74674649, P = 6.0 × 10−4), 
and the promoter region of the gene also harbors a significant hypomethylation status (P = 0.0288). This gene is 
described as being exclusively located in the postsynaptic density of neurons, and is crucially involved in anchor-
ing postsynaptic membrane proteins.

A similar approach was performed for all FTD cases but here we extracted SNPs with unadjusted P < 0.05 
using the summery statistics of the FTD-GWAS (instead of FTD-ALS). Positional mapping of SNPs using 
ANNOVAR revealed 3,662 genes. We detected 4 overlapping genes (P = 0.0553, Table S3) between the 14 DMP 
genes and 3,662 GWAS genes. One out of the four genes; ELP2, contained a SNP (rs16967474, P = 0.0322) that 
was exonic located, being nonsynonymous, and with CADD-score of 25.3. Interestingly the ELP2 gene was 
recently found implicated in neurodevelopmental disabilities30. To summarize, we here isolated potentially func-
tionally relevant genes for FTD, particularly for the FTD-ALS subtype, based on the combination of both genetic 
and epigenetic profiles.

Biological processes are affected by both genetic and epigenetic aberrations. To assess whether 
biological mechanisms are affected in FTD-ALS, either due to differences in DNA-methylation levels (n = 224 
genes) or due to genetic architecture (n = 4,147 genes), we performed a pathway analysis on the 224 genes, and 
separately 4,147 genes. We next analyzed the overlap of pathways. Note that we did not detect significant enrich-
ment of pathways for the 14 unique markers in FTD by means of the hypergeometric test.

Pathway analysis was performed by using gene sets with a described function in brain and/or neurological 
development, and were derived from the molecular signature database (MsigDB v5.131, see methods section 
for more details, such as the number of pathways that were tested). The 224 DMP genes for FTD-ALS revealed 
three significantly enriched pathways (PBH < 0.05, Fig. 3A), namely: Reactome Neuronal System (PBH = 0.005), 

Figure 3. Enriched pathways for FTD-ALS. (A) Significantly enriched pathways using the DMP and GWAS 
associated genes of FTD-ALS. (B) Blue colored squares depict overlap of genes between FTD-ALS markers 
and pathway associated genes, whereas a red colored square also depicts overlap with the GWAS associated 
genes. (C) Venn diagram depicts the overlap between FTD-ALS genes from DMP (n = 224), GWAS (n = 4147), 
and the genes in gene set Meissner Brain Hcp with H3k4me3 and H3k27me3 (n = 1070), and (D) Lastowska 
Neuroblastama Copy number DN (n = 801).

http://S3
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Lastowska Neuroblastoma Copy Number DN (PBH = 0.0256), and Meissner brain HCP with H3K4me3/
H3K27me3 (PBH = 0.0182). Separately, we performed a pathway analysis for the 4,147 unique genes derived from 
the FTD-ALS GWAS, which resulted in 44 enriched pathways (PBH < 0.05, Fig. 3A). Two of three pathways over-
lapped, i.e., Meissner brain HCP with H3K4me3/H3K27me3 (PBH = 6.82 × 10−11), and Lastowska Neuroblastoma 
Copy Number DN (PBH = 8.45 × 10−4). The histone modification H3K4me3/H3K27me3 gene set was previously 
implicated in various neurological phenotypes and psychiatric disorders32, whereas the neuroblastoma pathway 
points to genes with copy-number losses in primary neuroblastoma tumors for which neuroblastoma cell lines 
were also used as a model-system for FTD33, 34.

Interestingly, the two common pathways showed different overlapping genes (Fig. 3B), indicating that differ-
ent genes are implicated from the genetic and epigenetic perspective but are located in the same pathway. As an 
example, the histone modification H3K4me3 gene set contains 1070 genes with only a joint overlap of six genes 

Figure 4. Co-expression network for FTD-ALS group. Continuous gene expression data from GTEx (n = 313 
samples over 13 brain regions) was used to build a co-expression network using the genes that are marked 
being significantly differential DNA-methylated in FTD-ALS group, and with significant pairwise correlation 
(|r| > 0.6 and P < 0.001). Node color depicts DNA-methylation status of the gene; red color depicts DNA 
hypomethylation (T-statistics < 0), and blue color depicts DNA hypermethylation (T-statistics > 0). Node size 
and text label depicts CADD score for the associated SNP (larger node size depicts a relatively more deleterious 
variant, and genes without a SNP have equal small node size). Yellow colored text labels depict a SNP that 
associated with the gene from GWAS FTD-ALS, whereas a black color depicts no SNP. Edges with positive 
correlation are indicated in red, whereas negative correlations are indicated in blue. Thickness of edges is based 
on the absolute correlation measure, which varies between 0.6 and 1.
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between the genetic and epigenetic markers (Fig. 3C). Similarly, the Lastowska Neuroblastoma Copy Number DN 
gene set contains 801 genes with a joint overlap of two genes (Fig. 3D).

DNA-methylated genes involved in FTD-ALS are highly co-expressed in normal brain func-
tion. To analyze the mediating role of DNA-methylation on the signaling cascade in FTD-ALS, we con-
structed a co-expression network (pairwise Spearman correlations) between the continuous mRNA expression 
levels using data from the GTEx consortium (see methods section for more details). The co-expression network 
contained 150 genes (out of the 224 genes) with minimum correlation of |r| > 0.6 and significant pairwise inter-
actions P < 0.001 (Fig. 4).

In the co-expression network topology, we overlaid: (1) DNA-methylation status of FTD-ALS cases (node 
color); (2) The detected SNPs from GWAS FTD-ALS cases (marked with yellow colored gene label), and; (3) 
The associated CADD-score (node size). To get a notion of the functional importance of a gene, we used the 
gene-degree in the co-expression network (number of edges the gene contains) as higher regulators may have 
more co-expressed genes. We used gene-degree in the co-expression network to further prioritize the candi-
date gene-list (Table 1, Fig. 4). We detected that Immunoglobulin Mu Binding Protein 2 (IGHMBP2) was one 
of the genes with highest degree (31) that also contained a deleterious stop-gain mutation (CADD score: 22.8). 
Interestingly, this gene is associated with the disease distal hereditary motor neuropathy type 6, where motor neu-
rons degenerate selectively in the anterior horn of the spinal cord. The full list of gene-degrees is listed in Table S4.

DNA-methylation levels for GRN, MAPT, and C9orf72. Besides analyzing the methylation profiles 
from a genome-wide perspective, we also analyzed separately the probes associated with the three known genetic 
markers of FTD, i.e., GRN, MAPT, and C9orf72.

The promoter of GRN has previously been demonstrated to be hypermethylated11. In our data set, 12 GRN 
probes were available for which one probe (cg17101358, located at 5′UTR/1stExon) resulted in borderline signif-
icant differences in DNA-methylation levels (PBH = 0.059) in FTD, (compared to the control group with Student 
T-test). No significant difference in DNA-methylation levels were detected for the FTD-ALS group. The gene 
MAPT contained one probe but without significant differences in DNA-methylation levels for both FTD, and 
FTD-ALS cases, which is in line with current literature35, 36. Analysis of the four C9orf72 probes (5′UTR, TSS200, 
and two in TSS1500) did also not result in significant differences in DNA-methylation for FTD, nor FTD-ALS 
cases. Note that C9orf72 has previously been identified with DNA hypermethylation in the promoter region when 
performing a single-gene promoter analysis37.

Validation by meta-analysis of gene transcript levels. We sought replication to examine the validity 
of the detected genes that reached genome-wide significance in the primary analyses. Since there are no inde-
pendent DNA-methylation profiles for FTD or FTD-ALS, we used gene transcript levels of samples with FTD, and 
separately Amyotrophic Lateral Sclerosis cases (ALS), which is similar to ALS in FTD-ALS. The mediating role of 
DNA-methylation on the transcript level is well established, and therefore we hypothesized that similar affected 
genes should be evident from our study. We included four independent studies from Gene Expression Omnibus 
(GEO) that we considered the most suitable for validation. We analyzed these data sets in a meta-analysis (see 
materials and methods), where we ranked the DNA-methylated genes, implicated in FTD or FTD-ALS, based on 
the overlap with the significantly differential expressed genes across the seven validation data sets.

To determine the significantly differential expressed genes across the validation data sets, we performed an 
unbiased test by comparing the gene expression levels of cases versus controls using Limma. Note that we mul-
tiple test corrected for the number of probes that were present per study as described in Materials and methods 
section. All validation data sets, except one (#4), resulted in significantly differential expressed genes (PBH < 0.05, 
Tables S5 and S6).

For FTD-ALS, 60 out of 224 genes could be validated in total (Fig. 5, Table S5) from which 5 genes were seen 
across two validation sets; CCND2, PCNX, PTP4A2, METTL7A, and PALLD. To further specify potential can-
didate genes that are implicated in FTD-ALS, we only included genes with aberrant DNA-methylation and dele-
terious SNPs, and detected 9 genes (Table 1, and Fig. 5). For FTD we detected one gene, namely ELP2/SLC39A6 
(Table S1). Besides the validation of single genes, we also emphasized the relevance of our DNA-methylated gene 

Figure 5. Validated genes by independents gene expression data sets. Significantly differential expressed genes 
across six independent studies overlaid with the aberrant DNA-methylated genes in FTD-ALS. Grey squares 
depict overlap of genes between FTD-ALS markers and one or multiple validation data set. Genes that could 
not be validated were removed from the plot. The SNP row depicts genes that were also discovered with a 
deleterious SNP.
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set of FTD-ALS by the detection of significant overrepresentation of genes across two validation data sets (#1, and 
#2, Fisher exact test, P < 0.05, Table S6). No significant results were seen for FTD.

Discussion
In this study, we investigated the DNA-methylation profiles (DMPs) of cases with FTD to detect genes affected 
by epigenetic biological mechanisms that may play a role in neurodegeneration. The first aim in this study was to 
explore the separation of FTD clinical subtypes using the DNA-methylation profiles for which we could demon-
strate a clear separation of the FTD-ALS subtype. The second aim was to detect genetic variants and/or epigenetic 
changes that show associations with FTD and/or FTD-ALS. Ideally the candidate genes should be validated with 
bisulfite pyrosequencing or using an independent DNA-methylation cohort of FTD cases but such a data set does 
not exist in the public domain. We aimed to validate our results by using multiple independent gene expression 
data sets. The validates genes have thus increased susceptibility for abnormal gene-transcript behavior, harbor 
risk-SNPs, and display abnormal DNA-methylation levels, and many are annotated with function in brain and/
or neurodevelopment.

Depending on the follow-up steps, the gene-list can be further narrowed by specific ordering, e.g., based on 
SNP association, DNA-methylation status, degree of co-expression, or even by its role in specific pathways. As 
an example, synapse-associated gene DLG1 contains the most significant SNP association followed by KIAA1147 
which is suggested to have a role in neurogenesis and neuronal recovery and/or restructuring in the hippocam-
pus following transient cerebral ischemia38. For the validated genes with hypomethylation status, we identified 
gene KIAA1147, and gene IGHMBP2 among others. The latter gene is described with distal hereditary motor 
neuronopathy type 6, which selectively degenerates motor neurons in the anterior horn of the spinal cord, and 
reported with a role in development of adult human brain, and motor neurons39. Prioritization based on the 
co-expression networks placed gene IGHMBP2, and PCNX as the top genes. Notably, genes without a delete-
rious SNP can also be of interest and ordered based on degree of co-expression. An example is gene GPR176 
(degree = 32) which is involved in responses to hormones, growth factors, and neurotransmitters40, whereas gene 
ATXN7L1 (degree = 32) showed functional relation to brain based on the Human Integrated Protein Expression 
Database (HIPED). Another gene of interest with DNA hypermethylation status is COL15A1, which is previ-
ously reported with downregulated expression levels in iPSC-derived ALS motor neurons41, 42. Our results are 
in line with these findings as the hypermethylation in the promoter region of COL15A1 can be indicative for the 
down-regulation of transcript levels.

We showed the possibility of detecting novel SNPs (and genes) that do not reach genome-wide statistical 
significance using conventional GWAS approaches but may confer an increase in risk of disease development. 
A crucial step in our approach was to relax the traditional GWAS P-value threshold (which is P < 5 × 10−8), 
which we confidently could do because the P-value describes the association with the (SNP) genotype, and not 
the gene function. Thus, a relatively small phenotypic effect for a SNP can still have large effect on the gene level, 
particularly, through the presence of deleterious variant(s) in the coding region (as shown in the current work). 
The effect of such variant(s) might be exacerbated by the presence of aberrant overexpression due to DNA hypo-
methylation. Conversely, the expression of genes required for normal neurological function is lacking or may 
be silenced as the transcription is suppressed by DNA hypermethylation. Therefore, we hypothesized that by 
employing a double-hit model, potential novel targets for brain/neurological functions can be detected. A disad-
vantage of relaxing the P-value threshold is that we may have detected false positive associations with the pheno-
type. To overcome this, we took various steps to remove genes that are annotated as being spurious43, we focused 
only on the deleterious SNPs that are present in coding regions, and we incorporated the DNA-methylation 
profiles of the FTD cases. All together we could demonstrate a significant number of genes that harbor both risk 
SNPs and significant differences in DNA-methylation levels. This indicates non-random behavior of genes that 
are target in both FTD and FTD-ALS.

For our third aim, we examined whether genetic and epigenetic changes for FTD and/or FTD-ALS may be 
both present in specific biological processes. One of the pathways that we detected in FTD-ALS with both genetic 
and epigenetic changes are histone modifications H3k4me3 and H3k27me3, which were previously described 
to be associated in neurological functions32, and involved in social exclusion44 by examining liver tissue in mice. 
Thus overall, evidence is pointing to histone modifications and the association with neurological function. In 
that perspective, we also demonstrate that this particular pathway is affected in cases with FTD-ALS for both the 
genetic (SNPs) and epigenetic profiles (DMP). The histone modifications changes are of interest because of their 
regulation by DNA methyltransferase, such as DNMT3A/B45, 46, and subsequently for usage of DNMT inhibitor 
(DNMTi) therapies. The DNMTi targets include azacitidine, and decitabine which are FDA approved for use in 
leukemia47. For neurodegenerative diseases, it may also provide a handle for therapy because cytosine methyla-
tion can be targets for DNMTi to reverse the methylation status. A potential candidate gene that we detected can 
for example be gene COL15A148 but this would first require independent replication/validation.

For FTD, single-gene DNA-methylation promoter analysis was performed previously for MAPT, GRN, and 
C9orf72. For MAPT, no significant differences in DNA-methylation levels were previously seen36, whereas both 
GRN and C9orf72 were shown to contain DNA hypermethylation in the promoter region11, 37. We expected to see 
similar results in our analysis but genome-wide DNA-methylation analysis revealed no significance for the probes 
associated with genes these three genes. A reason for such discrepancy could be that DNA-methylation occurs in 
specific promoter regions that do not overlap with the Infinium HumanMethylation450 BeadChip probes, which 
is true for MAPT and GRN (Table S7).

Our analyses are based on the assumption that the use of DMPs measured in blood is a proxy for DMPs in 
brain. We carefully examined the proxy, and demonstrate that differential expressed genes in blood, liver, and 
brain tissue significantly overlapped with the differential expressed genes that are also relevant to FTD-ALS. 
Although for neurodegenerative diseases, brain would be the preferential tissue to investigate DNA-methylation 
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profiles in, the use of peripheral blood might to some extent overcome this issue as we showed that a significant 
number of genes with differentially DMPs in the blood are also important for molecular processes in brain. 
Nonetheless, the use of peripheral blood to analyze DNA-methylation profiles as a model for brain tissue requires 
caution. Besides the use of blood, other tissues, such as liver, also showed to be representative to examine neuro-
logical function as shown in mice44, and is in line with our findings.

The DMP data used in this study originates from Li, Y. et al.19, but we focused specifically on the FTD cases 
(and not PSP), for which we integratively analyzed the epigenetic and genetic status of genes. In addition, we 
combined the two batches of samples after batch-correction normalization. This allowed unsupervised analysis 
using all samples together, and the increased number of samples provided increased statistical power to detect 
differential methylated genes. Overall, the differential methylated genes from our analysis are in line with those 
previously detected using the batches separately and in the meta-analysis19 (Poverlap gene set-1: 0.0298, Poverlap gene 
set-2: 0.0726, and Poverlap combined meta-analysis: 0.0073, Fig. S5). Interesting to note is that we detected for the 
FTD-ALS group in total 224 differential expressed genes, whereas the FTD cases showed only 14 genes, compared 
to the controls. To accommodate co-variates responsible for changes in methylation that are unrelated to FTD, 
we analyzed an additional control set of DNA-methylation profiles (GSE53045, Fig. S4A,B) as an alternative 
approach. We compared the DNA methylated profiles of the controls in the FTD cohort versus the independent 
control group (non-smokers), which did not yield significance of probes (Fig. S4C). In addition, we compared 
FTD vs. Controls together with the non-smoker group which resulted in 34 differential DNA methylated probes 
(Table S8, Fig. S4D). Using this extend control data set, we were able to rule out 2 genes that we initially found to 
be differential DNA methylated. Note that we already removed these two genes in our final results as the genes 
were not supported by our incorporated data sources.

The joint analysis and integration of multiple omic data sets is key to further analyze complex neurodegener-
ative diseases such as FTD. Although our results are based on unpaired samples, by combining genetic and epi-
genetic data we revealed novel candidate neurodegenerative genes and pathways. Further detailing the biological 
mechanisms involved in progressive degeneration of the temporal and frontal lobes of the brain requires a well 
characterized FTD cohort containing clinical, pathological and molecular information for which multi-omic data 
is obtained for the same samples. With the current work, we showed that both genetic and epigenetic data are 
useful to start unraveling neurodegenerative processes in FTD.

Materials and Methods
GWAS data set. In this study, we used the GWAS summary statistics of 2,154 patients with FTD and sepa-
rately 200 patients with FTD-ALS4. For further analyses, SNPs were retained with unadjusted P-value < 0.05 based 
on the complete FTD cohort and separately for the FTD-ALS cases. SNPs were annotated using ANNOVAR29, 
considered deleterious with CADD-score49 >15, and spurious genes were removed43.

DNA-methylation data set processing. The unprocessed beta values (DNA-methylation profiles) were 
utilized from Li, Y. et al. (GEO, accession number GSE53740)19. This cohort contains in total 128 FTD cases, 
of which 118 cases were described with C9orf72 negative status, and 10 cases with a repeat expansion. Seven 
cases were diagnosed with Amyotrophic Lateral Sclerosis (FTD-ALS) of which 3 cases were C9orf72 expansion 
carriers. There were no other reported pathogenic variants in any genes that were screened, including MAPT 
and GRN. Prior to making the comparison between FTD cases and controls, we normalized and processed the 
DNA-methylation beta values to remove technical biases and irrelevant probes (as described below), allowing us 
to combine the two batches of samples from the original study, instead of performing a meta-analysis by analyz-
ing both batches separately19.

The DNA-methylation profiles contained 485,577 probes over 23,179 genes, which were annotated using offi-
cial Infinium HumanMethylation450 BeadChip annotations. The software package Combat50 was used to remove 
batch effects, allowing us to combine all samples for further analysis instead of performing meta-analysis as pre-
viously described19. Furthermore, we removed probes that contained > 20% missing values based on all samples. 
We removed probes that are located on the X and Y chromosome to avoid gender related biases. Furthermore, we 
removed probes that contain SNPs with MAF > 0.1 (derived from the dbSNP137) as the detection of SNPS that 
are common in the population can affect DNA-methylation levels and are more likely associated with e.g., ethnic-
ity51 instead of disease phenotype. We also removed so-called control probes, and probes that are marked as being 
spurious52. Furthermore, we retained only probes located in close proximity of the annotated gene, i.e., TSS1500, 
TSS200, 5UTR, 1st Exon, Body, or 3′UTR (based on original Infinium HumanMethylation450 BeadChip anno-
tations). Probes that contained missing values were imputed using the K = 3 nearest neighbor approach. Beta 
values were zero-mean normalized, i.e., DNA hypermethylation is depicted with relative values above 0 and DNA 
hypomethylation is depicted with relative values below 0. The final set contained 214,170 probes over 20,956 
genes. Currently, various pipelines and packages for Infinium HumanMethylation450 BeadChip processing are 
developed that can be used for data pre-processing53.

Gene-expression validation data sets. Dataset 1. Cell line derived gene expression profiles are utilized 
that mimic hallmarks of frontotemporal dementias and amyotrophic lateral sclerosis. Processed data is utilized 
with accession number GSE1863254 (Affymetrix Human Genome U133A 2.0 Array), that studied the knockdown 
of transactive response DNA-binding protein TDP-43 by comparison of 4 controls (HEK293E cells, scrambled) 
versus 4 KO (HEK293E cells, TDP-43 siRNA). Processed gene expression profiles are log2 transformed. The data 
set contains in total 54,675 probes over 22,486 unique gene symbols.
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Dataset 2. For FTD, processed gene expression values (Affymetrix Human Genome U133A 2.0 Array) were 
utilized from Chen-Plotkin AS. et al.55 (GEO, accession number GSE13162). This cohort contains in total 56 
postmortem human brain samples, among them 39 FTLD-U samples (Frontotemporal lobar degeneration), and 
17 control samples. Processed gene expression profiles contain in total 22,277 probes over 13,331 unique gene 
symbols.

Dataset 3. Processed gene expression data is utilized with accession number GSE6860556 (Affymetrix Human 
Genome U133A 2.0 Array), that studied 8 ALS patients with C9orf72 mutations versus 3 neurologically healthy 
controls. The data set contains in total 54,675 probes over 22,486 unique gene symbols.

Dataset 4. Processed gene expression profiles (Affymetrix Human Genome U133 Plus 2.0 Array) were utilized 
with accession number GSE4043857, that studied the selective vulnerability of motor neurons in ALS. This cohort 
contains samples from 4 oculomotor and 4 lumbar spinal motor neurons which are isolated by laser capture 
microdissection from the midbrain and spinal cord of neurologically normal human controls. Processed gene 
expression profiles are log2 transformed, and contains in total 54,675 probes over 22,486 unique gene symbols.

Tissue-type association. RNA sequencing data, with the expression levels of 16,115 genes, from 1,641 
tissue samples over 25 unique tissue types was derived from the GTEx consortium26, 27. To determine tissue 
enrichment with the DNA-methylated genes, we followed the procedure as outlined in Fig. 2A. Step 1: for each of 
the 25 tissue types we tested for differential gene expression between samples within a tissue versus all other tissue 
samples. Step 2: significantly differentially expressed genes for each tissue type were selected when the absolute 
Fold-difference > 1.5, and the P-value of the Students T-test was ≤ 0.05 after correcting for multiple testing using 
the Benjamini and Hochberg method. Step 3: the hypergeometric test was applied to determine the significance 
in overlap between the tissue-type-genes and the DNA-methylated genes in FTD(/ALS) based on the following 
parameters; total number of genes from GTEx consortium (M = 16,115), number of tissue specific genes (K), 
number of significant differentially methylated genes (N), and the overlap of significant differentially methylated 
genes and the genes in the tissue specific gene set (x). The adjusted P-value (P*) with < 0.05 was used for tissue 
selection.

The same procedure was applied for the BrainSpan28 data to determine brain-tissue enrichment based on 
the RNA-sequencing data of 525 samples across 26 brain regions, DNA-methylation data of 177 samples over 
17 brain regions, and by using 22 pre-defined gene sets. The pre-defined gene sets describe genes with known 
function across the various brain regions, and are derived from the official BrainSpan website. As a background, 
we used the total number of unique genes from Brainspan (RNA-sequencing M = 18,107, and DNA-methylation 
M = 23,093).

Pathway/gene set analysis. We utilized the following pathways and gene sets from the molecular sig-
nature database (MsigDB v5.1)31: chemical and genetic perturbations (n = 3,396), Biocarta genesets (n = 217), 
KEGG genesets (n = 186), Canonical pathways (n = 1,330), Gene ontology Biological Processes (GO, n = 825), 
Gene ontology Cellular Components (GO, n = 233), Gene ontology Molecular Function (GO, n = 396), 
Oncogenic signatures(n = 189), and Immunologic signatures(n = 4,872). To lower the computational burden, we 
selected a priori for pathways/gene sets with brain or neurological function. Using the hypergeometric test, we 
calculated a P-value for the fraction of genes that overlapped with the annotated pathways/gene sets. A pathway 
was considered statistically significant when the P-value from the hypergeometric test ≤ 0.05 after correcting for 
multiple testing using the Benjamini and Hochberg method. As a background, we used the M = 25,318 genes 
from UCSC HG19.

Co-expression network. The co-expression network is constructed based on pairwise Spearman correla-
tions between the continuous mRNA expression levels using gene expression profiles of the GTEx consortium. 
For FTD-ALS we started out with the 224 genes and retained 150 genes that overlapped with genes from the 
GTEx consortium, and that showed a minimum absolute correlation of |r| > 0.6, and significant pairwise inter-
actions P < 0.001. Edges with positive correlations are indicated in red (r > 0.6), whereas negative correlations 
are indicated in blue (r < 0.6). Thickness of edges is based on the absolute correlation measure, |r|, which varies 
between 0.6 and 1. The gene-degree is determined by the number of edges a gene contains in the co-expression 
network.
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