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Abstract. In this note we show that the recent dynamical stability result for
small C1-perturbations of strongly stable minimal submanifolds of C.-J. Tsai

and M.-T. Wang [12] directly extends to the enhanced Brakke flows of Ilma-

nen [5]. We illustrate applications of this result, including a local uniqueness
statement for strongly stable minimal submanifolds amongst stationary vari-

folds, and a mechanism to flow through some singularities of Lagrangian mean

curvature flow which are proved to occur by Neves [7].

1. Introduction

Recently, Tsai and Wang [12] considered n-dimensional minimal submanifolds Σ ⊂
M where (M, g) is an (n + m)-dimensional ambient Riemannian manifold. They
consider the partial Ricci operator on the normal bundle NΣ:

R(V ) = trΣ(R(·, V )·)⊥,

where R is the Riemann curvature tensor of (M, g). They call Σ strongly stable if
R−A is a (pointwise) positive operator on NΣ, where A is a quadratic expression
in the second fundamental form of Σ in (M, g). In coordinates this condition is
equivalent to asking that there exists a constant c0 > 0 such that, for any p ∈ Σ:

−
∑
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∑
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for any V =
∑
α v

αēα ∈ NpΣ, where (ei)i=1,...,n and (ēα)α=1,...,m are orthonormal
bases of TpΣ and NpΣ respectively and (hαij) are the coefficients of A. Note that
strong stability implies the integrand in the second variation formula for the volume
functional is pointwise positive along Σ, and so Σ is strictly stable in the usual sense.

Tsai and Wang show that there are many examples of strongly stable minimal
submanifolds, see [12, Proposition A]. Moreover, they show that strong stability
implies local uniqueness of Σ as a minimal submanifold as follows.

Theorem 1.1 (Theorem A, [12]). Let Σn ⊂ (M, g) be a compact, oriented minimal
submanifold which is strongly stable. There exists a tubular neighbourhood U of Σ
such that Σ is the only compact minimal submanifold in U of dimension at least n.

A further consequence is a dynamical stability result.

Theorem 1.2 (Theorem B, [12]). Let Σn ⊂ (M, g) be a compact, oriented minimal
submanifold which is strongly stable. If Γ is an n-dimensional submanifold that is
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close to Σ in C1, then the mean curvature flow Γt with Γ0 = Γ exists for all time,
and Γt converges to Σ smoothly as t→∞.

We first note the local uniqueness result extends to a considerable weaker setting.

Theorem 1.3. Let Σn ⊂ (M, g) be a compact minimal submanifold which is
strongly stable. There exists a tubular neighbourhood U of Σ such that, up to higher
multiples of Σ, there is no other stationary integral varifold with support in U of
dimension greater than or equal to n.

We also show that dynamical stability extends to much weaker initial conditions.

Theorem 1.4. Let Σn ⊂ (M, g) be a compact, oriented minimal submanifold which
is strongly stable. Then there exists a tubular neighbourhood U of Σ such that the
following holds. Let Γ be an integral n-current in U which is in the same homology
class (as currents) as Σ in U such that M[Γ] < 2|Σ|. Furthermore, let {µt}t≥0 be
an enhanced Brakke flow starting at Γ. Then µt is non-vanishing for any t ≥ 0 and
for t→∞ converges smoothly to Σ.

Here |Σ| denotes the volume of Σ and M[ · ] the mass of a current. For the definition
of an enhanced Brakke flow see Theorem 2.1. We shall deduce Theorem 1.3 from
Theorem 1.4: both are proved in Section 2.

Remark 1.5. One can drop the assumption that Σ is orientable by working with
flat chains mod 2 instead of integral currents. Then the same results hold true.

We shall apply our results to show that we can, in some important cases of interest,
flow through the singularities of Lagrangian mean curvature flow which are proved
to occur in the groundbreaking work of Neves [7]. We also obtain global long-
time existence and smooth convergence of an enhanced Brakke flow starting from
weak initial conditions in key examples of complete Ricci-flat manifolds with special
holonomy. See Section 3 for these applications.

Acknowledgements. This research was supported by an HIMR Focused Research
Grant and Leverhulme Trust Research Project Grant RPG-2016-174.

2. Extension to enhanced Brakke flows

Recall that a family of Radon measures (µt)t≥0 on M is called an integral n-Brakke
flow, provided, given any ϕ ∈ C2

c (M ;R+), the following inequality holds for every
t > 0

(2.1) D̄tµt(ϕ) ≤
∫
−ϕ|H|2 + 〈∇ϕ,H〉 dµt,

where D̄t denotes the upper derivative at time t, and H is the weak mean curvature
vector. We take the right-hand side to be −∞ if µt is not the mass measure of an
integral n-varifold which carries a weak mean curvature which is summable in L2.
Note that in the case µt corresponds to a smooth motion by mean curvature flow,
D̄t is just the usual derivative and we have equality in (2.1). For more details we
refer the reader to [5].
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We recall Ilmanen’s existence result for enhanced Brakke flows, which is proven
using an elliptic regularisation scheme.

Theorem 2.1 ([5], §8.1). Let T0 be a local integral n-current in (Mn+m, g) with
∂T0 = 0, finite mass M[T0] <∞ and compact support. There exists a local integral
(n + 1)-current T in M × [0,∞) and a family {µt}t≥0 of Radon measures on M
such that

(i) (a) ∂T = T0

(b) M[TB ], where TB = T L (M ×B), B ⊂ [0,∞), is absolutely continuous
with respect to L1(B).

(ii) (a) µ0 = µT0
,M[µt] ≤M[µ0] for t > 0.

(b) {µt}t≥0 is an integral n-Brakke flow.

(iii) µt ≥ µπ#(Tt) for each t ≥ 0, where Tt is the slice ∂(T L (Mm+k × [t,∞))
and π : M × R→M is the projection on the first factor.

Ilmanen calls ({µt}t≥0, T ) with the above properties an enhanced Brakke motion.
We will instead call this an enhanced Brakke flow.

Tsai–Wang’s local uniqueness and long-time convergence results (Theorems 1.1–1.2)
hinge on the following estimate for the squared distance function ψ to Σ, which we
reformulate slightly for our purposes. Note, although stated there, orientability of
Σ is not needed for the proof.

Proposition 2.2 (Proposition 4.1, [12]). Let Σn ⊂ (M, g) be a compact minimal
submanifold which is strongly stable. There exist positive constants ε1 and c1, which
depend on the geometry of M and Σ, such that on the tubular neighbourhood Uε1
of Σ we have:

trn∇2ψ ≥ c1ψ ,

where ∇2ψ is the Hessian of ψ, and trn is the sum of the smallest n eigenvalues.

We now show how Proposition 2.2 together with White’s barrier theorem, Theorem
A.1, yields the proof of Theorem 1.4.

Let Σn ⊂ (M, g) be a compact, oriented minimal submanifold which is strongly
stable and consider the tubular neighbourhood U = Uε1 given by Proposition 2.2.
Let {µt}t≥0 be an integral n-Brakke flow in (M, g) such that sptµ0 ⊂ U . Recall
c1 > 0 given by Proposition 2.2 and consider for any ε > 0 the function

(2.2) u(p, t) = ec1tψ − εt .
Then we see that

∂u

∂t
− trn∇2u ≤ −ε < 0 ,

and thus by Theorem A.1 that
u(x, t) ≤ ε2

1

on sptµt. Letting ε→ 0 this implies that

ψ ≤ e−c1tε2
1

on sptµt and thus

(2.3) sptµt ⊂ Ue−c1t/2ε1
.
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Proof of Theorem 1.4. Continuing to use the notation above, by making ε1 smaller
if necessary we can assume that [Σ]U 6= 0, where [Σ]U denotes the homology class
of Σ in U with respect to integral currents. This implies that the infimum of M[S],
where S represents the same homology class as Σ in U , is positive, i.e.

(2.4) δ := inf
S∈[Σ]U

M[S] > 0 .

Consider now an enhanced Brakke flow ({µt}t≥0, T ) starting at Γ such that sptµ0 ⊂
U . By (2.3) and by Theorem 2.1 (iii) we have that

sptµπ#(Tt) ⊂ Ue−c1t/2ε1

and thus sptT ⊂ U × [0,∞). Since ∂(T[0,t]) = Γ− Tt we obain

∂π#(T[0,t]) = Γ− π#(Tt)

and thus π#(Tt) ∈ [Σ]U for all t ≥ 0. By (2.4) and Theorem 2.1 (iii) we obtain

(2.5) µt(M) ≥M(π#(Tt)) ≥ δ > 0

for all t ≥ 0, and thus the flow is non-vanishing. Observe that the definition of
Brakke flow implies that that for any 0 ≤ t1 ≤ t2 one has the estimate

(2.6)

∫ t2

t1

∫
|H|2 dµt dt ≤ µt1(M)− µt2(M) ,

where H is the mean curvature vector. Combining this with (2.5) implies that
for any sequence ti → ∞ there is a subsequence t′i → ∞ such that the flows
{µt+t′i}−ti≤t<∞ converge to a non-vanishing Brakke flow {µ̄t}t∈R. By (2.3) we

have spt µ̄t ⊂ Σ for all t ∈ R and by (2.6) we have that µ̄t is the mass measure of
a stationary varifold for almost all t ∈ R. Thus by the constancy theorem, see for
example [8], we have for any such t that

µ̄t = θHn LΣ

for some constant multiplicity θ ∈ N. By assumption we have M[Γ] < 2|Σ| and thus
the monotonicity of total measure for Brakke flows implies that the multiplicity θ
has to be one. Thus {µ̄t}t∈R is the static Brakke flow corresponding to Σ. Brakke’s
regularity theorem, see [1] or [6, 10], now implies that the convergence is smooth.
This implies that as t→∞ the Brakke flow {µt}t≥0 converges smoothly to Σ. �

Proof of Theorem 1.3. One can use Proposition 2.2 and the first variation formula
for stationary varifolds to deduce Theorem 1.3. For convenience we use Theorem
1.4. We choose U = Uε1 as above. Assume Γn+k is a stationary integral varifold
with spt Γ ⊂ U . Note first that the barrier (2.2) works for all Brakke flows of
dimension n + k ≥ n. We can thus treat Γn+k as a stationary Brakke flow. The
proof of Theorem 1.4 yields that spt Γ ⊂ Σ. Thus k = 0 and even more Γ is the
varifold associated to Σ up to a constant multiplicity. �
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3. Applications

3.1. Singularities of Lagrangian mean curvature flow. Consider a compact
special Lagrangian L in a Calabi–Yau manifold. Suppose that L is strongly sta-
ble. For example, we could assume L has positive Ricci curvature, such as the
zero section in T ∗Sn with the Stenzel metric [9], since L is then strongly stable
by [12, Proposition A]: this is a consequence of the Gauss equation and the spe-
cial Lagrangian condition, which in particular imposes symmetries on the second
fundamental form of L. It is worth noting that, by the work of Hein–Sun [4], spe-
cial Lagrangian n-spheres with positive Ricci curvature are now known to exist in
certain compact Calabi–Yau n-folds.

Using the work of Neves in [7] we may construct a Lagrangian L′ Hamiltonian
isotopic to L which is arbitrarily C0 close to L but Lagrangian mean curvature flow
L′t starting at L′ will develop a finite-time singularity. Thus, L′ cannot satisfy the
conditions of Tsai–Wang’s result, Theorem 1.2.

However, we can choose L′ so that M[L′] < 2|L|, and L′ is homologous to L since
it is Hamiltonian isotopic to L. Moreover, we can ensure that L′ lies in the tubular
neighbourhood U provided by Theorem 1.4, as L′ is C0 close to L. Hence, applying
Theorem 1.4 gives that the enhanced Brakke flow starting at L′ exists for all time
and converges smoothly to L.

For all times before the first singular time of L′t, the enhanced Brakke flow will
agree with L′t. Hence the enhanced Brakke flow enables us to flow through the
singularity of L′t and still converge smoothly to the special Lagrangian L.

It would be useful to study this situation further, to see if this sheds light on the
problem of long-time existence and converge of Lagrangian mean curvature flow.

3.2. Non-compact manifolds with special holonomy. There are several well-
known examples of manifolds M with complete Ricci-flat metrics with special ho-
lonomy and maximal volume growth, which have the structure of a vector bundle
over a compact base:

• T ∗Sn (n ≥ 2) and T ∗CPn (Calabi–Yau, i.e. holonomy SU(n), metrics [3, 9]);
• Λ2

−T
∗S4, Λ2

−T
∗CP2 and the spinor bundle of S3 (holonomy G2 metrics [2]);

• the negative spinor bundle of S4 (holonomy Spin(7) metric [2]).

In each case the zero section Σn of the bundle is volume-minimizing (since it is cal-
ibrated) and strongly stable by [12, Proposition A]. Moreover, the squared distance
function to Σ is strictly convex away from 0 [11], so we can take U = M in our
Theorems 1.3–1.4 in all of these cases.

We deduce that we get global uniqueness of Σ amongst stationary integral varifolds
in M with support of dimension at least n, up to multiplicity, and long-time smooth
convergence to Σ of an enhanced Brakke flow starting at any Γ ∈ [Σ] with mass
strictly less than twice the volume of Σ.

Notice in particular in the Calabi–Yau cases that we do not have to start with a
Lagrangian and yet we still get convergence of an enhanced Brakke flow to the spe-
cial Lagrangian base. As the results of Neves indicate [7], one expects singularities
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to develop along the flow, even starting with a smooth Lagrangian initial condition,
and so the enhanced Brakke flow gives a flow through singularities in these cases.
We would similarly expect the mean curvature flow in the G2 and Spin(7) cases to
develop singularities in general, yet we can still obtain a flow through singularities
to the volume-minimising base.

Appendix A. Avoidance principle in higher codimension.

We recall White’s barrier theorem for mean curvature flow, see [13, Theorem 14.1].
We include the proof for completeness.

Theorem A.1 (White). SupposeM is the space-time support of an n-dimensional
integral Brakke flow {µt}t∈I in Ω ⊂ M . Let u : Ω × R → R be a smooth function,
so that at (x0, t0),

∂u

∂t
< trn∇2u ,

where ∇2u is the spatial ambient Hessian, and trn is the sum of the smallest n
eigenvalues. Then

u
∣∣
M∩{t≤t0}

cannot have a local maximum at (x0, t0).

Proof. Suppose otherwise, for a contradiction. We may assumeM =M∩{t ≤ t0}
and that u|M has a strict local maximum at (x0, t0). (Otherwise we could replace
u by u− d(x, x0)4 − |t0 − t|2).

Let P (r) = Br(x0)× (t0− r2, t0]. Choose r > 0 small enough so that t0− r2 is past
the initial time of the flow, r is smaller than the injectivity radius at x0, u|M∩P (r)

has a maximum at (x0, t0) and nowhere else and ∂u
∂t < trn∇2u on P (r). By adding

a constant we can furthermore assume that uM∩(P̄\P ) < 0 < u(x0, t0). We let

u+ := max{u, 0} and insert (u+)4 into the definition of Brakke flow. Thus

0 ≤
∫
Br

(u+)4 dµt0 =

∫
Br

(u+)4 dµt0 −
∫
Br

(u+)4 dµt0−r2

≤
∫ t0

t0−r2

∫ (
∂

∂t
(u+)4 + 〈H,∇(u+)4〉 − |H|2(u+)4

)
dµtdt

≤
∫ t0

t0−r2

∫ (
∂

∂t
(u+)4 − divM

(
∇(u+)4

))
dµtdt

=

∫ t0

t0−r2

∫
4

(
(u+)3 ∂

∂t
u+ − 3(u+)2|∇Mu+|2 − (u+)3divM

(
∇(u+)

))
dµtdt

≤
∫ t0

t0−r2

∫
4(u+)3

(
∂

∂t
u+ − trn∇2u+

)
dµtdt < 0 ,

which is a contradiction. �
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