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Abstract

The need for search often arises from a broad range of complex information needs

or tasks (such as booking travel, buying a house, etc.) which lead to lengthy search

processes characterised by distinct stages and goals. While existing search systems

are adept at handling simple information needs, they offer limited support for tack-

ling complex tasks. Accurate task representations could be useful in aptly placing

users in the task-subtask space and enable systems to contextually target the user,

provide them better query suggestions, personalization and recommendations and

help in gauging satisfaction.

The major focus of this thesis is to work towards task based information re-

trieval systems - search systems which are adept at understanding, identifying and

extracting tasks as well as supporting user’s complex search task missions. This

thesis focuses on two major themes: (i) developing efficient algorithms for under-

standing and extracting search tasks from log user and (ii) leveraging the extracted

task information to better serve the user via different applications. Based on log

analysis on a tera-byte scale data from a real-world search engine, detailed anal-

ysis is provided on user interactions with search engines. On the task extraction

side, two bayesian non-parametric methods are proposed to extract subtasks from a

complex task and to recursively extract hierarchies of tasks and subtasks. A novel

coupled matrix-tensor factorization model is proposed that represents user based on

their topical interests and task behaviours.

Beyond personalization, the thesis demonstrates that task information provides

better context to learn from and proposes a novel neural task context embedding ar-

chitecture to learn query representations. Finally, the thesis examines implicit sig-
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nals of user interactions and considers the problem of predicting user’s satisfaction

when engaged in complex search tasks. A unified multi-view deep sequential model

is proposed to make query and task level satisfaction prediction.
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Chapter 1

Introduction

Search Engines essentially act as filters for the wealth of information available on

the Internet. They allow users to quickly and easily find information that is of

genuine interest or value to them, without the need to wade through numerous irrel-

evant web pages. Over six billion web searches are performed every single day [1]

by over half the world’s population. Given the democratization of content creation

via the internet, the number of web pages indexed by search engines have increased

from 1 billion in 2000 to over 60 trillion in 2017 [2] equivalent of multi-petabytes

of searchable data potentially consumable by internet users.

In order to prevent internet users from drowning in sea of irrelevant information

and irrelevant marketing messages, search engines handle the bulk of information

filtering for the users. For many people, web search engines such as Baidu, Bing,

Google, and Yandex are among the first resources they go to when any question

arises. What is more, these web search engines have for many become the most

trusted source of information, more so even than traditional media such as news-

papers, news websites or news channels on television. What web search engines

present people with thus greatly influences what they believe to be true and conse-

quently it influences their thoughts, opinions, decisions, and the actions they take.

It matters a great deal what search engines present people with; more and more our

world depends on them [3].

With this in mind, from an information retrieval (IR) research perspective, two

things are important. First, it is important to understand what the users are using the
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search engines for and secondly, how can we leverage this knowledge about user

needs to improve a system’s offerings to its users. This thesis is about these two

topics: understanding and extracting user tasks and leveraging this task information

to enhance user support.

Search behavior, and more generally, information-seeking behavior is often

motivated by information needs that prompt search processes that are often lengthy,

iterative, intermittent, and characterized by distinct stages, shifting goals and mul-

titasking. One aspect of characterizing information-seekers’ goals, contexts and

information problems is to consider the tasks which have led them to engage in

information-seeking behavior, and the tasks that they need to accomplish in infor-

mation seeking and in information searching, respectively.

The effectiveness of IR systems is measured based on how well users’ informa-

tion problems are resolved and to what extent the information retrieved helps users

to achieve their goals. Users’ information problems, and their contexts, are various

and thus need different types of information support. However, a big disadvantage

of current IR systems, including search engines and digital libraries, is that they may

not completely comprehend and understand the underlying goal which prompted the

user to seek information. As a result, users’ interactions with IR systems may be

sub-optimal, and returned search results may not help users to achieve their goals.

Therefore, it is necessary to explore how IR systems extract and understand user

needs and tasks, adapt to a variety of users with different goals, contexts and types

of information problems; that is, to contextualize and personalize interaction with

IR systems.

The aim of understanding user’s goals and tasks pre-dates modern web search,

with past research focussing on discovering what people attempt to do in libraries

and why, how these activities relate to their more general goals and other character-

istics, and their degree of success in their information activities. Belkin et al. [4]

presented a description of a method for attempting to discover characteristics of the

goals, contexts and behaviors of users of libraries, in order to specify the function-

ality and other characteristics of computerized catalogs which would support them
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in their tasks. The problem of user task understanding still remains an important

problem in modern era web search.

Contemporary search environments are tailored to support a small set of ba-

sic search tasks and provide searchers with few options to search and interact with

information, and little to help them synthesize and integrate information across ses-

sions. A major portion of the current generation search systems have been designed

to support discrete, transactional searches despite wide recognition that search be-

havior, and information behavior more generally, is often embedded in and moti-

vated by real world tasks. Given the current state of search systems, accomplishing

complex search tasks places intense cognitive burden on the user to explore and

discover varied aspects of the task and therefore, (i) explore the domain-space, (ii)

identify the necessary sub-tasks involved and (iii) issue queries to accomplish these

sub-tasks. Such a multiple stage process becomes prohibitively challenging for

searchers who might not necessarily be domain experts and have little to no do-

main knowledge of the task they’re trying to accomplish. As a result, users require

significantly more effort and time to complete such tasks [5, 6, 7].

To address the above challenges, the need arises for automated methods for

sense-making of search tasks for the development of task based information re-

trieval systems - search systems which are not only adept at modelling, identifying

and extracting tasks but are also capable of supporting user’s complex search task

missions.

Identifying and representing user tasks properly enables system designers to

better understand user interactions and gauge their satisfaction. In light of user’s

task information, user interaction signals aid in devising search systems that can

help end users complete their tasks. Accurate representation of tasks are used to

provide users with better query suggestions, offer improved personalization, pro-

vide better recommendations, help in satisfaction prediction and search result re-

ranking.

In this thesis, we draw inspiration from the importance and numerous possible

applications of the task information. In two parts in this thesis, we address two
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related themes concerning search task information. In the first part of the thesis,

we study methods for understanding and characterizing user’s search behavior and

develop algorithms for extracting search tasks from log data. In the second part

of this thesis, we focus on leveraging the task information in various applications.

Specifically, we focus on learning task based user representations, emphasize the

use of task context while learning neural embeddings and develop deep sequential

algorithms for gauging user’s satisfaction with an IR system at the query and task

level.

In the next section we outline the research in this thesis and the questions that

are answered within it.

1.1 Research Outline & Questions

This thesis focusses on understanding, extracting task information from logged data

and leveraging the extracted task information for enhanced representations and sat-

isfaction prediction. As outlined above, we distinguish two research themes on

automated methods for sensemaking of search tasks:

In the first part, we begin by considering user interactions with a commercial

real world search engine and analyse terascale data comprising of millions of users

and search queries. We present insights on user level and task level heterogeneities

embedded in search logs and characterize user’s multi-tasking behavior. Equipped

with an understanding of user interactions and search tasks, we proceed to develop

task extraction algorithms. Specifically, we focus on complex tasks and present a

bayesian non-parametric approach to extract sub-tasks from a given complex task.

Finally, we hypothesize that tasks could recursively be broken down into sub-tasks,

and propose a hierarchical bayesian non-parametric approach to extract task-subtask

hierarchies.

In the second part of the thesis, we demonstrate how the extracted task infor-

mation could be leveraged in various applications. We first consider user modelling

and personalization and demonstrate that task information is more helpful than tra-

ditionally used topical interests in constructing user representations. Beyond user
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representations, we consider query representations and present a neural embedding

model which leverages task context when learning embeddings. Finally, we move

beyond representations and focus on gauging user satisfaction at the query as well

as task level. Specifically, we propose a novel deep sequential architecture which

makes use of user interaction signals for predicting user’s task satisfaction.

Part I: Understanding and Extracting Tasks

The analysis of search behavior over time helps in identifying different queries that

express the same underlying information need. Most previous work has focused

on search behavior analysis and prediction within a single search session, where

a session refers to a sequence of search activities terminated by a prolonged pe-

riod of inactivity [8]. While existing search engines are adept at handling simple

information seeking needs spanning single or a session full of queries, users get

little or no help when their information need transcends this boundary. Recent

work has started to investigate and analyze multi-session information needs, called

search tasks [9, 10, 6, 11, 12]. While past research has relied on varied definition of

tasks [12, 11], our definition of search tasks follows from previous work [13] which

identified tasks as search missions and goals. More formally,

Definition: A search task is an atomic information need resulting in one or more

queries [13].

Cross-session task consists of a series of queries that corresponds to a distinct

high-level information need. The queries related to the task are not necessarily

consecutive, and a single search session may contain interleaved queries from mul-

tiple cross-session tasks, as well as shorter, within-session tasks. Thus, task based

search systems help users in tackling more complex informational needs spanning

multi-sessions. Often search tasks involve many different but related and necessary

aspects which warrant the need of issuing different sets of queries to fulfil those

different multi-aspect information needs. It is mostly the case that these indepen-

dent information needs arise from an overall complex search goal or task a user has,



30 Chapter 1. Introduction

which prompted the user to attempt tackling these individual information needs.

We define such multi-aspect information needs as Complex Search Tasks:

Definition: A complex search task is a multi-aspect or a multi-step information

need consisting of a set of related tasks [13, 9].

Complex tasks differ from simple atomic tasks in a number of characteristics

including task complexity, time and user effort required, goal difference, cognitive

difference, and task areas. Given the wide array of use cases based on which mil-

lions of users access IR systems, there is rich inherent diversity not just in the kind

of tasks users perform but also in the ways in which different users interact with the

system in performing these tasks.

The first part of this thesis is devoted to understanding and extracting search

tasks from large scale user interaction data. We begin by user behavior based on

large scale user interaction data and extracting search tasks.

Chapter 3. Understanding Search Behavior

We begin our exploration of user behavior and search tasks with a large scale anal-

ysis of search log data from a real world commercial search engine. While a major

share of prior work have considered search sessions as the focal unit of analysis for

seeking behavioral insights, we instead focus on search tasks as our unit of analysis

and quantify user search task behavior for both single- as well as multi-task search

sessions and relate it to tasks and topics. Multi-tasking within a single online search

sessions is an increasingly popular phenomenon. We aim at quantifying, first, the

prevalence of multi-tasking behavior in online search sessions (i.e. how common

is multi-tasking?), and second, the extent of multi-tasking behavior in multi-task

sessions (i.e. how many tasks on average are there in multi-task search sessions?).

We also seek to uncover the presence of user-level idiosyncrasies in multi-tasking

behavior in search sessions. Specifically, we attempt to understand the proportion

of sessions per user that are single tasked vs. multi-tasked. Consequently, we seek

to uncover any underlying categorizations among the users based on the extent of



1.1. Research Outline & Questions 31

their multi-tasking behavior, i.e., Can we identify and classify groups of users who

demonstrate similar proportions of multi-tasking behavior?. The presence of com-

peting or interfering tasks within a single session could accentuate or attenuate the

search effort expended by the users. To this end, we wish to understand the relation-

ship between task multiplicity and total effort expended by the users, i.e., do users

who multitask more(less) expend more effort than users who multitask less(more)?

Going beyond multi-tasking, we characterize the relationship between topics and

search tasks. We investigate user-disposition, topic and user-interest level hetero-

geneities that are prevalent in search task behavior. The insights developed from

understanding user’s task behavior provides firm grounds for rest of the work de-

scribed in the thesis.

Chapter 4. Exploiting Distributional Semantics with Non-

parametric Priors for Extracting Sub-Tasks

While most prior research in the area of task extraction has focused on segmenting

chronologically ordered search queries into higher level search tasks, a more nat-

uralistic viewpoint involves viewing query logs as convoluted structures of tasks-

subtasks, with complex search tasks being decomposed into more focused sub-

tasks. This chapter focusses on complex search tasks and investigates the poten-

tial of breaking down a complex task into simpler sub-tasks. Specifically, we ad-

dress the problem of extracting sub-tasks from a given collection of on-task search

queries. Subtask identification turns out to be a complex problem due to multiple

reasons, including unknown number of subtasks and the strong overlap in the in-

formational needs embodied by the different subtasks. A novel generative model

based on coherence estimates is proposed to identify and extract semantically cohe-

sive subtasks.

Chapter 5. Extracting Hierarchies of Tasks-Subtasks

Task extraction is quite a challenging problem as search engines can be used to

achieve very different tasks, and each task can be defined at different levels of gran-

ularity. A major limitation in existing task-extraction methods lies in their treatment



32 Chapter 1. Introduction

of search tasks as flat structure-less clusters which inherently lack insights about the

presence or demarcation of subtasks associated with individual search tasks. In re-

ality, often search tasks tend to be hierarchical in nature. For example, a search

task like planning a wedding involves subtasks like searching for dresses, browsing

different hairstyles, looking for invitation card templates, finding planners, among

others. Each of these subtasks (1) could themselves be composed of multiple sub-

tasks, and (2) would warrant issuing different queries by users to accomplish them.

Hence, in order to obtain more accurate representations of tasks, new methodolo-

gies for constructing hierarchies of tasks are needed. This chapter considers the

challenge of extracting hierarchies of search tasks and their associated subtasks

from a search log given just the log data without the need of any manual annotation

of any sort. We present an efficient Bayesian nonparametric model for discover-

ing hierarchies and propose a tree based nonparametric model to discover this rich

hierarchical structure of tasks/subtasks embedded in search logs.

Part II: Leveraging Task Information

While user behaviours are largely determined by their own goals, tasks and pref-

erences, the mined knowledge about user tasks and information needs from log

activity data reveals different user intentions and behaviour patterns, which provide

unique signals for user centric optimization and personalization. In Part II of this

thesis, we investigate whether and how the extracted task information be leveraged

to improve search systems.

We begin by focussing on the goal of learning user models for personalization,

and address the question - how can user’s task information be used to develop better

user models and representations? Second, we investigate the benefits of search con-

text in learning query representations and ask the research question whether task

information provides better context for IR systems to learn from. Finally, mov-

ing beyond user modelling and query representations, we consider the problem of

user satisfaction prediction and investigate how useful user interaction signals are

in predicting searcher’s task satisfaction.
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Chapter 6. Task based User Modelling

Given the distinct preferences of different users while using search engines, search

personalization has become an important problem in information retrieval. Most

approaches to search personalization are based on identifying topics a user may

be interested in and personalizing search results based on this information. While

topical interests information of users can be highly valuable in personalizing search

results and improving user experience, it ignores the fact that two different users

that have similar topical interests may still be interested in achieving very different

tasks with respect to this topic (e.g. the type of tasks a broker is likely to perform

related to finance is likely to be very different than that of a regular investor). Hence,

considering user’s topical interests jointly with the type of tasks they are likely to

be interested in could result in better personalised experience for users.

In this chapter, we postulate that in a web search setting, a user representation

based on the search tasks users’ perform as well as their topical interests would bet-

ter capture user actions, interests and preferences. While topical interests capture

the heterogeneity among users stemming from varied topical interests, such task

based approaches would assist in capturing the heterogeneity stemming from dif-

ferences in user needs & behaviors. We present an approach that uses search task

information embedded in search logs to represent users by their actions over a task-

space as well as over their topical-interest space. In particular, we describe a tensor

based approach that represents each user in terms of (i) user’s topical interests and

(ii) user’s search task behaviours in a coupled fashion and use these representations

for personalization. Additionally, we also integrate user’s historic search behavior

in a coupled matrix-tensor factorization framework to learn user representations.

Chapter 7. Task based Embeddings

Continuous space word embedding have been shown to be highly effective in many

information retrieval tasks. Embedding representation models make use of local in-

formation available in immediately surrounding words to project nearby context

words closer in the embedding space. With rising multi-tasking nature of web

search sessions, users often try to accomplish different tasks in a single search ses-
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sion. Consequently, the search context gets polluted with queries from different

unrelated tasks which renders the context heterogeneous. In this work, we investi-

gate the research question whether task information provides better context for IR

systems to learn from. A novel task context embedding architecture is proposed to

learn representation of queries in low-dimensional space by leveraging their task

context information from historical search logs using neural embedding models.

Chapter 8. Task based Satisfaction

Detecting and understanding implicit signals of user satisfaction are essential for

experimentation aimed at predicting searcher satisfaction. Search tasks help us not

only to capture searcher’s goals but also in understanding how well a system is

able to help the user achieve that goal. However, a major portion of existing work

on modelling searcher satisfaction has focused on query level satisfaction. The

few existing approaches for task satisfaction prediction have narrowly focused on

simple tasks aimed at solving atomic information needs. This chapter goes beyond

such atomic tasks and consider the problem of predicting user’s satisfaction when

engaged in complex search tasks composed of many different queries and subtasks.

Specifically, we investigate the research question - how can we best leverage user

interaction signals to gauge user’s task satisfaction?

We begin by considering holistic view of user interactions with the search en-

gine result page (SERP) and extract detailed interaction sequences of their activity.

We then look at query level abstraction and propose a novel deep sequential archi-

tecture which leverages the extracted interaction sequences to predict query level

satisfaction. Further, we enrich this model with auxiliary features which have been

traditionally used for satisfaction prediction and propose a unified multi-view model

which combines the benefit of user interaction sequences with auxiliary features.

Finally, we go beyond query level abstraction and consider query sequences is-

sued by the user in order to complete a complex task, to make task level satisfaction

predictions. A number of functional composition techniques are proposed which

take into account query level satisfaction estimates along with the query sequence

to predict task level satisfaction. We investigate how good the proposed deep se-
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quential models are and how they compare with existing state-of-the-art implicit

signal based satisfaction prediction models.

1.2 Main Contributions
In this section we summarize the main contributions of this thesis. Our contributions

come in the form of analysis, algorithmic and empirical contributions.

1.2.1 Analysis & Algorithmic Contributions

We list five algorithmic contributions and one large scale analysis. The analysis is

from user interaction data from a real world search engine. The first two algorith-

mic contributions are task extraction techniques that focus on complex tasks and

sub-tasks. The third algorithmic contribution preents a tensor based approach for

learning task based user representations. Algorithmic contributions 4 and 5 present

deep learning based approach for learning neural query embeddings and for pre-

dicting task satisfaction, respectively.

1. A large scale study of search tasks. In Chapter 3 we investigate a large

scale search log data from a major US based search engine for a period of one

month spanning a sample of over 2 million users, and 200 million search ses-

sions. We present insights on user’s search behaviour and their multi-tasking

habits. Furthermore, we present insights on how tasks are related to user level

and topic level heterogeneities present in user’s search behavior.

2. Unsupervised generative model for extracting sub-tasks. In Chapter 4 we

propose a novel bayesian non-parametric generative model based on Chinese

Restaurant Processes to extract sub-tasks from a complex search task. The

proposed method is able to automatically identify the appropriate number of

sub-tasks and extract coherent subtasks.

3. Bayesian non-parametric method for task hierarchies. In Chapter 5 we

present a novel bayesian non-parametric hierarchical algorithm to extract re-

cursive hierarchies of search tasks and subtasks. The proposed model is able



36 Chapter 1. Introduction

to leverage insights present in the search log to data to extract rich non-binary

arbitrary shaped task hierarchies in an unsupervised fashion.

4. Coupled matrix-tensor model for personalization. In Chapter 6 we pro-

pose a model that combines topic based user modelling with task based

user models and propose a coupled matrix-tensor factorization model which

jointly learns user representations based on user’s search history, term usage

behavior, topical interest profiles and search task behaviors.

5. Neural embedding model for query representations. In Chapter 7 we pro-

pose a novel task based embedding architecture to learn distributed semantic

representation of query terms which prefers task context over local informa-

tion in immediately surrounding words. The proposed model demonstrates

that embeddings learned on a task-constrained context perform better than

the traditionally used global or session context.

6. Deep sequential architecture for Task satisfaction. In chapter 8 we pro-

pose a novel deep sequential architecture which leverages user’s detailed in-

teraction sequences and enriches this information with auxiliary interaction

features into a unified multi-view model for query satisfaction prediction.

Furthermore, we go beyond query level abstraction and consider query se-

quences issued by the user in order to complete a complex task, to make task

level satisfaction predictions. We propose a number of functional compo-

sition techniques which take into account query level satisfaction estimates

along with the query sequence to predict task level satisfaction.

1.2.2 Empirical Contributions

The research presented in this thesis focusses on developing advanced models of

search tasks and encapsulating user’s task information into different applications.

We list a total of eight empirical contributions resulting from this research. The

first empirical contribution investigates user’s search behavior, characterizes user

groups and quantifies the extent of multi-tasking in web search. Empirical contri-
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butions 2 and 3 compare the proposed subtask extraction and task hierarchy extrac-

tion methods with established baselines. Contributions 5 through 8 discuss various

applications of the extracted tasks, in a number of ways including use modelling

(Contribution 5), query representations (Contribution 6), and user satisfaction pre-

diction (Contribution 7 and 8).

1. Multi-tasking Behavior of Users. In Chapter 3, we derive insights based on

real world search logs and establish user types based on their search behaviors

and establish the need for considering tasks as the atomic unit of investigation.

We quantify the extent of multi-tasking prevalent in web search and character-

izing the multi-tasking behavior of users. Additionally, we identify user level

and topic level heterogeneity and present three user groups based on their

multi-tasking habits: (i) Focussed, (ii) Multi-taskers, and (iii) Super-taskers.

Finally, we show how users exercise specific multi-tasking preferences when

searching for topics that are of high vs. low interest to them.

2. Extracting Coherent Sub-Tasks. In Chapter 4, we empirically demonstrate

that the bayesian non-parametric approach for finding subtasks extracts sub-

tasks which are pure and coherent. Further, a user judgment study is con-

ducted which establishes that the subtasks re indeed valid and help solve re-

lated information needs. Finally, based on a large scale log analysis of over

2 million users, we demonstrate that users expend different efforts in accom-

plishing the different subtasks, and that there significant differences in task

effort metrics across the sub-tasks.

3. Evaluating Task Hierarchies. In Chapter 5, we present a number of eval-

uation strategies to evaluate the quality, validity and usefulness of the task

hierarchies extracted. Based on a labelled task dataset, we demonstrate that

the proposed hierarchical task extraction method achieves competitive perfor-

mance and is able to extract hierarchies of subtasks wherein the subtasks are

coherent, valid and useful.

4. Utility of Task Hierarchy. In Chapter 5, we present experiments on query
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term prediction using TREC Session Track and AOL datasets. Given the

initial queries from a user session and a set of tasks extracted from Session

Track data, we leverage queries from the identified task to predict future query

terms.

5. Learning User Representations. In Chapter 6, we demonstrate that it is

possible to represent users in a joint topic-task-term space via coupled tensor-

matrix model, and demonstrated that coupling user’s task information with

their topical interests indeed helps us build better user models. Further, task

based user representations helps in identifying better user cohorts and demon-

strate that user clusters obtained from via using topic-task coupled represen-

tations indeed perform better than the clusters obtained via just Bag-of-Terms

or task baselines.

6. Task based Query Suggestions. In Chapter 7, we present results on task

based query suggestions wherein query representations are learnt based on

a neural embedding model which leverages task context. Empirical results

based on TREC Tasks Track data from 2015 and 2016 demonstrates that task

based query representations indeed help in suggestion more task-relevant sug-

gestions.

7. User Interaction Sequences. In Chapter 8, we consider detailed user inter-

action sequences and show that the proposed deep sequential model based on

user interaction sequences is better at predicting user satisfaction at the query

level than click based and other static mouse gesture based signals. We also

demonstrate that jointly modelling interaction sequence with static interaction

signals is better than only considering interaction sequences.

8. Task Satisfaction Prediction. In Chapter 8 we go beyond query level ab-

straction and consider query sequences to make task level satisfaction predic-

tions. We evaluate how different functional compositions approaches perform

when predicting task level satisfaction from individual query satisfaction esti-

mates. First we show that the multi-view deep sequential model is better able
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to predict task satisfaction than a number of neural and non-neural baselines,

including CRFs, generative models and simple LSTM architectures. Sec-

ond, while evaluating the performance of functional composition techniques,

we show that the most lenient aggregating technique (Maximum) consistently

achieves higher accuracy than the most strict satisfaction criterion (Minimum)

and that the differential weighting scheme performs better than the average

function, which hints at the fact that not all queries contribute the same to-

wards a task.

1.2.3 Community Contributions

Beyond the analysis, algorithmic and empirical contributions, we also enlist few

contributions made to the overall research community as part of the research done

in this thesis.

1. TREC Tasks Tracks: Based on the research on tasks, a new TREC track was

proposed and run for three years (2015-2017): TREC Tasks Track. The pri-

mary goals of the track were to evaluate system’s understanding of tasks users

aim to achieve and evaluate relevance of retrieved documents with respect to

underlying tasks in query. Datasets containing queries with tagged tasks were

released as part of the process. Overview summaries describe the categories

of evaluation mechanisms used in the track along with the corpus, topics, and

tasks that comprise the test collections [14, 15].

2. CIKM 2017 Tutorial: A tutorial on Understanding Inferring User Tasks and

Needs1 describing the state-of-the-art techniques in understanding and ex-

tracting tasks was proposed and will be presented at CIKM 2017.

3. WSDM 2018 Workshop: A workshop on Learning from User Interactions2

is being organized to provide a forum for academic and industrial researchers

working at the intersection of user understanding, search tasks and user inter-

actions to discuss the research challenges and directions of future research.

1https://task-ir.github.io/Task-based-Search/
2https://task-ir.github.io/wsdm2018-learnIR-workshop/

https://task-ir.github.io/Task-based-Search/
https://task-ir.github.io/wsdm2018-learnIR-workshop/
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1.3 Thesis Overview

This section provides an overview of this thesis. We finish this section with reading

directions.

The first chapter, to which this section belongs, gives an introduction to the

subject of this thesis. This chapter also provides an overview of the research ques-

tions, the contributions and the origins of this work. Chapter 2 then introduces the

background and related work for all six research chapters that follow. The core of

this thesis consists of two parts.

In Part I of this thesis, we study user’s search behavior and present algorithms

for extracting search tasks from logged search interaction data. An overview of user

interaction with search systems is provided in Chapter 3. It build upon search ses-

sions to identify and characterize search tasks and topics. In characterizing these

search tasks across sessions, it considers the different distinct forms of heterogene-

ity inherent in the search-task behavior and additionally provide a detailed analysis

of multi-tasking behavior for different user groups, and across multiple session ses-

sions. Query logs can be viewed as convoluted structures of tasks-subtasks with

complex search tasks being decomposed into more focused sub-tasks. In chapter 4,

we focus on extracting sub-tasks from a given collection of on-task search queries.

Complex tasks often tend to have multiple subtasks associated with them and a more

naturalistic viewpoint would involve viewing query logs as hierarchies of tasks with

complex search tasks being decomposed into more focused sub-tasks. In chapter 5,

we propose an efficient Bayesian nonparametric model for extracting hierarchies of

such tasks and subtasks.

Part II of this thesis revolves around leveraging the extracted task information

in different applications. Considering user’s topical interests jointly with the type of

tasks they are likely to be interested in could result in better personalised experience

for users. In chapter 6, we present a coupled tensor-matrix factorization approach

that uses search task information embedded in search logs to represent users by

their actions over a task-space as well as over their topical-interest space. Chapter

7 discusses a novel task based embedding model which leverages task context to
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learn query representations. Chapter 8 focusses on the problem of predicting user’s

satisfaction when engaged in complex search tasks composed of many different

queries and subtasks. It proposes a multi-view deep sequential model for query as

well as task satisfaction prediction.

Lastly, Chapter 9 concludes this thesis, where we summarize the content and

findings of this thesis, discuss the limitations of the presented work, and briefly

reflect onto future work.

The two parts of this thesis (Part I and Part II) are self-contained and form inde-

pendent parts. Readers familiar with the background on web search and information

retrieval can skip the corresponding sections of Chapter 2 and glance through the

machine learning approaches briefed in Chapter 2 to develop a better understanding

of the algorithmic background needed for understanding the proposed algorithms.

Part II assumes basic understanding of search tasks and in particular, basic under-

standing of any task extraction technique.

1.4 Origins
We list for each research chapter the publications on which it is based. For each

publication we mention the role of each co-author. The thesis is based on in total 8

publications. In addition, it draws on ideas from six others.

1. The first part of Chapter 3 is based on Characterizing Users’ Multi-Tasking

Behavior in Web Search [16], published at CHIIR 2016 by Mehrotra, Bhat-

tacharya and Yilmaz. Mehrotra implemented the analysis components and

performed the experiments. All authors contributed to the text.

2. The second part of Chapter 3 is based on Sessions, Tasks & Topics - Uncov-

ering Behavioral Heterogeneities in Online Search Behavior [17], published

at SIGIR 2017 by Mehrotra, Bhattacharya and Yilmaz. Mehrotra performed

most of the experiments and analysis while all authors contributed to the text.

3. Chapter 4 is based on Deconstructing Complex Search Tasks: a Bayesian

Nonparametric Approach for Extracting Sub-tasks [18] published at NAACL
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2016 by Mehrotra, Bhattacharya and Yilmaz. Part of the chapter are also

based on an extension of the work, Exploiting Distributional Representations

with Distance Dependent CRPs for Extracting Sub-Tasks, which is currently

under review. Mehrotra implemented the algorithm and performed experi-

ments. All authors contributed to the text.

4. Chapter 5 is based on Extracting Hierarchies of Search Tasks & Subtasks

via a Bayesian Nonparametric Approach [19] published at SIGIR 2017 by

Mehrotra and Yilmaz; . Preliminary work of this research originally appeared

in, ”Towards hierarchies of search tasks & subtasks” [20], which was pub-

lished as a Poster at WWW 2015. Mehrotra performed the experiments and

implemented the algorithms. All authors contributed to the text.

5. Chapter 6 is based on Terms, Topics & Tasks: Enhanced User Modelling

for Better Personalization [21], published at ICTIR 2015 by Mehrotra and

Yilmaz. All authors contributed to the text, while Mehrotra implemented the

model and performed the experiments.

6. Chapter 7 is based on Task Embeddings: Learning Query Embeddings us-

ing Task Context [22], published at CIKM 2017 by Mehrotra and Yilmaz.

Mehrotra implemented the model while both authors contributed to the text.

7. Chapter 8 is based on Deep Sequential Models for Task Satisfaction Predic-

tion [23], published at CIKM 2017 by Mehrotra, Awadallah, Shokouhi, Yil-

maz, Zitouni, Kholy and Khabsa. Mehrotra implemented the code for the

deep sequential models, and ran the experiments. Kholy, Khabsa and Mehro-

tra contributed to collecting judgment labels by crowdsourced study, and all

authors contributed to the text.

This thesis also, but indirectly, builds on publications on extracting interaction

subsequences [24], exploring digital assistants tasks [25], auditing search engines

for fairness [26], identifying user sessions in digital assistants, predicting supply

side engagement [27], TREC Tasks Track [14, 15] and query selection for learning

to rank [28].
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Other work, not directly related to this thesis, did contribute to insight in the

broader research areas of causal dependencies in information seeking [29], topic

models [30], learning sparse representations [31] and valence prediction in news

[32].





Chapter 2

Background

The work presented in this thesis sits at the crossing between the fields Information

Retrieval (IR) and Machine Learning (ML). This thesis deals with understanding

search tasks, enabling and improving task extraction and leveraging task informa-

tion for enhanced user modelling, interaction understanding and satisfaction predic-

tion. In this chapter, we present all relevant background and related work that serves

as a basis for understanding this thesis and sets stage for the research chapters in

this thesis. In Section 2.1, we start with a historical introduction into the field of in-

formation retrieval (IR) including description of modern IR methods and systems.

We then continue with understanding user sessions and tasks in Section 2.2, user

representations and satisfaction in Section 2.3, and finally algorithmic background

on bayesian non-parametrics, distributed representations and hierarchical models in

Section 2.4. Section 2.1 serves as background to the whole thesis. Sections 2.2 pro-

vides background to Part I and section 2.3 serve as background to Part II. Section

2.4 provides background context of some of the algorithmic approaches employed

in this thesis.

2.1 Information Retrieval
For thousands of years people have realized the importance of archiving and find-

ing information. With the advent of computers, it became possible to store large

amounts of information; and finding useful information from such collections be-

came a necessity. The field of Information Retrieval (IR) was born in the 1950s out
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of this necessity. Over the last seventy years, the field has matured considerably.

Several IR systems are used on an everyday basis by a wide variety of users. This

section provides a brief overview of the key advances in the field of Information

Retrieval, and a description of modern day information retrieval systems.

2.1.1 Brief History

Conventional approaches to managing large collections of information originate

from the discipline of librarianship. Commonly, items such as books or papers

were indexed using cataloguing schemes. Eliot and Rose claim this approach to

be millennia old: declaring Callimachus, a 3rd century BC Greek poet as the first

person known to create a library catalogue [33]. Facilitating faster search of these

physical records was long researched, for example, Rudolph filed a US patent in

1891 for a machine composed of catalogue cards linked together, which could be

wound past a viewing window enabling rapid manual scanning of the catalogue.

Soper filed a patent for a device in 1918 [34], where catalogue cards with holes,

related to categories, were aligned in front of each other to determine if there were

entries in a collection with a particular combination of categories. If light could be

seen through the arrangement of cards, a match was found.

The idea of using computers to search for relevant pieces of information was

popularized in the article As We May Think by Vannevar Bush [35] in 1945. It

would appear that Bush was inspired by patents for a statistical machine. In the

1920s the German scientist Emanuel Goldberg pioneered the electronic retrieval

technology and library automation. Goldberg designed, built and demonstrated a

photoelectric microfilm selector which contained many, if not all, of the concepts

history of science professionals now associate with Vannevar Bush. It seems this

was the first practical application of electronics to the selection of data on film. In

1914, Emanuel Goldberg developed a machine that read characters and converted

them into standard telegraph code (early OCR). Later (by May 1927) Goldberg

designed a photoelectric microfilm selector, which he called a statistical machine.

Two prototypes were built at Zeiss Ikon by 1931 and, perhaps, constitute the first

successful electronic document retrieval.
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Mooers [36] was the first to introduce the term and problem of ”information

retrieval” in the 1950s when he introduced it to this scientific community. Mooers

not only introduced the problem but he also had ideas about how a retrieval systems

should be evaluated based on whether the systems do their job; and how expensive

is it to operate such a system.

The first description of a computer searching for information was described by

Holmstrom at a specially convened conference was held by the UKs Royal Society

in 1948. He described a ”machine called the Univac” capable of searching for

text references associated with a subject code. The code and text were stored on

a magnetic steel tape [37]. Holmstrom stated that the machine could process ”at

the rate of 120 words per minute”. Automated information retrieval systems were

introduced in the 1950s: one even featured in the 1957 romantic comedy, Desk

Set, which drew public attention to the innovation and was centred on a group of

reference librarians who were about to be replaced by a computer. IR as a research

discipline was starting to emerge at this time with two important developments:

how to index documents and how to retrieve them. In the 1960s, the first large

information retrieval research group was formed by Gerard Salton at Cornell. By

the 1970s several different retrieval techniques had been shown to perform well on

small text corpora such as the Cranfield collection (several thousand documents)

[38]. Large-scale retrieval systems, such as the Lockheed Dialog system, came into

use early in the 1970s.

The 1970s and 1980s saw many developments built on the advances of the

1960s. Various models for doing document retrieval were developed and advances

were made along all dimensions of the retrieval process. These new models/tech-

niques were experimentally proven to be effective on small text collections (several

thousand articles) available to researchers at the time. However, due to lack of avail-

ability of large text collections, the question whether these models and techniques

would scale to larger corpora remained unanswered. This changed in 1992 with the

inception of Text Retrieval Conference, or TREC [39]. TREC is a series of evalua-

tion conferences sponsored by various US Government agencies under the auspices
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of NIST, which aims at encouraging research in IR from large text collections. The

algorithms developed in IR were the first ones to be employed for searching the

World Wide Web from 1996 to 1998.

2.1.2 Modern Day Information Retrieval

To the surprise of many, the field of information retrieval has moved from being a

primarily academic discipline to being the basis underlying most people’s preferred

means of information access. Relentless optimization of information retrieval ef-

fectiveness has driven web search engines to new quality levels where most people

are satisfied most of the time, and web search has become a standard and often

preferred source of information finding.

In response to various challenges of providing information access, the field

of information retrieval evolved to give principled approaches to searching various

forms of content. The field began with scientific publications and library records,

but soon spread to other forms of content, particularly those of information profes-

sionals, such as journalists, lawyers, and doctors. Much of the scientific research

on information retrieval has occurred in these contexts, and much of the continued

practice of information retrieval deals with providing access to unstructured infor-

mation in various domains.

Modern IR as we know it started at the 1958 International Conference on Sci-

entific Information, as recalled by Sparck Jones [40]. Following that conference,

researchers considered automating retrieval tasks that were manual tasks until then

[41]. This progress combined with the growing amounts of scientific literature cul-

minated in the Cranfield experiments by Cleverdon [42], setting the stage for much

IR research today.

Prior to web search engines, catalogs have been the primary device by which

people gain access to content of libraries. For most of the twentieth century, this

device has been in the for most of the familiar card catalog. The advent of library

automation systems in the 1960s and 1970s, originally for such housekeeping tasks

as acquisition and circulation control, provided the opportunity for a new form of li-

brary catalog, which is now known generically as the Online Public Access Catalog
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(OPAC).

Since Mooers coined the term ”Information Retrieval”, the field of IR rapidly

evolved, driven by the need to search through the ever larger volumes of information

that are being produced and stored. This was further accelerated with the advent

of the internet and the increased access to digital equipment - such as personal

computers and recently mobile devices - by the masses. Despite the intensified

research in recent years, many of the methods developed in the early years of IR

research are still very central to modern IR systems. We therefore describe them in

some detail here, starting with a widely accepted definition of IR, which we borrow

from Manning et al. [43]: ”Information retrieval (IR) is finding material (usually

documents) of an unstructured nature (usually text) that satisfies an information

need from within large collections (usually stored on computers).”

A searcher approaches an IR system with a need for information derived from

an ”anomalous state of knowledge”. So, in essence, IR starts with an information

need. An information need [44] is born in the head of a person and can be unrec-

ognized by the person as such. If this person would use an IR system to satisfy

the information need, we would refer to this person as a user. The act of retrieving

information used to be a librarian’s task. A user would explain the information need

to a librarian who would then know how to search through a collection of books and

articles. Nowadays the more common scenario is that a user translates their need

into keywords and enters them into a search engine.

While efforts into understanding user needs and tasks have been around for

few decades [4], the problem remains challenging to this day. Indeed, as search

systems have evolved, so have user’s expectations of the kind of information and

the ease with which they can find that information. Consequently, information re-

trieval systems are now able to help searchers on a wide array of information needs,

from simple weather queries to complex conversational queries and interactions.

With internet going mainstream, increasingly larger proportions of users are now

using search engines to solve their information needs. Over the years, domain spe-

cific search portals have been developed which focus on a particular type of content
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and answer domain specific search queries. Further, the traditional web search have

moved beyond simple textual queries to incorporate richer content including im-

ages, media, sound, locations among others. The results shown to the users have

also advanced to include richer content like entity panels, custom answers and dif-

ferent verticals.

Recent years have witnessed a gradual shift towards searching and present-

ing the information in a conversational form. Chatbots, personal assistants in

our phones and eyes-free devices are being used increasingly more for different

purposes, including information retrieval and exploration. With improved speech

recognition and information retrieval systems, more and more users are increasingly

relying on such digital assistants to fulfil their information needs and complete their

tasks.

The notion of tasks helps in providing an interpretable abstraction for ground-

ing user interactions with not just traditional search environments but also with

novel interaction interfaces. Given the importance of understanding user needs and

tasks, this thesis focusses on extracting task information and leveraging it to develop

better search systems. In this thesis, we consider the problem of understanding

user’s task behaviors and present algorithms to extract search tasks and task-subtask

hierarchies. Additionally, we go beyond task extraction and present novel applica-

tions of the task information in a number of applications, including user modelling,

query representations and user satisfaction prediction. In the next two sections, we

briefly overview the background material required to understand and appreciate the

contributions made in this thesis. We begin by a providing gentle background on

log data analysis, search sessions, context and tasks. We then proceed to consider

the user centric view, and discuss prior work on user representations, interpreting

user interaction signals and user satisfaction.

2.2 Understanding User Interaction Logs

Web search logs provide explicit cues about the information seeking behavior of

users. As a result, web logs have been extensively studied to generate insights that
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would improve the search experiences of users. We next describe prior work on

analyzing web search logs to extract search sessions, understand search tasks, char-

acterize user’s multitasking behavior and provide support and assistance to users

engaged in satisfying complex information needs.

Information retrieval (systems target helping people find information. How-

ever, in everyday life, searching for information is often driven by motivating goals,

such as to accomplish some work task at hand [45, 46].

2.2.1 Search Sessions

Session identification is a common strategy used to develop metrics for web ana-

lytics and perform behavioral analyses of user-facing systems. Sessions allow us

to look beyond individual queries, preserve semantic associations between query

trails and maintain context of user activity. Strategies for session identification from

log data have been extensively studied. Content based heuristics [47] exploit lex-

ical content of queries for determining topical shift in query streams. Navigation-

oriented heuristics [48] involve inferring browsing patterns based on the HTTP re-

ferrers and URLs associated with each request by a user. Time-oriented heuristics

[49] refer to the assignment of an inactivity threshold between logged activities to

serve as a session delimiter. The assumption implied is that if there is a break be-

tween a user’s actions that is sufficiently long, it’s likely that the user is no longer

active, the session is assumed to have ended, and a new session is created when the

next action is performed.

Catledge & Pitkow [50] were among the first to use client-side tracking to

examine browsing behavior and propose time based threshold. They reported that

the mean time between logged events 9.3 minutes and chose to add 1.5 standard

deviations to that mean to achieve a 25.5 minutes inactivity threshold. Over time this

threshold has simplified to 30 minutes. This is the most popularly-used approach to

identify sessions, with 30 minutes serving as the most common threshold [51, 48,

52]. In addition, Radlinski and Joachims [53] used a 30-minute timeout together

with query similarity measures to define sequences of similar queries that combine

to form so-called query chains.
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While session identification helps in understanding user behavior at some level,

they offer limited support to help understand the overall task which prompted user

interaction at the first place. In order to understand the inherent search task, methods

relying on just time-oriented heuristics are of limited utility. In a later section, we

discuss recent effort aimed at extracting and identifying search tasks.

2.2.2 Search Context

There is a growing body of work examining how knowledge of a searcher’s in-

terests and search context can be used to improve various aspects of search. The

information retrieval (IR) community has theorized about context [54], developed

context-sensitive search models [55], leveraged context to predict user interests [8]

and performed user studies investigating the role of context in the search process

[56]. Using the context of user activities within a search session has also been used

to improve query analysis. Short queries are often ambiguous, so researchers have

used previous queries and clicks in the same session to build a richer models of

interests and improve how the search system interprets users’ information needs.

Cao et al. [57, 58] represented search context by modeling sessions as sequences of

user queries and clicks. They learned sequential prediction models such as hidden

Markov models and conditional random fields from large-scale log data, and applied

the models to query suggestion, query categorization, and URL recommendation.

Mihalkova and Mooney [59] used similar search session features to disambiguate

the current query.

2.2.3 Search Tasks

The effectiveness of information retrieval (IR) systems is measured based on how

well users’ information problems are resolved and to what extent the information re-

trieved helps users to achieve their goals. One aspect of characterizing information-

seekers’ goals, contexts and information problems is to consider the tasks which

have led them to engage in information-seeking behavior, and the tasks that they

need to accomplish in information seeking and in information searching, respec-

tively.
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The aim of understanding user’s goals and tasks pre-dates modern web search,

with past research focussing on discovering what people attempt to do in libraries

and why, how these activities relate to their more general goals and other character-

istics, and their degree of success in their information activities. Belkin et al. [4]

presented a description of a method for attempting to discover characteristics of the

goals, contexts and behaviors of users of libraries, in order to specify the function-

ality and other characteristics of computerized catalogs which would support them

in their tasks. The problem of user task understanding still remains an important

problem in modern era web search.

There have been many studies on task type classification [60, 61, 46], and Li

& Belkin [46] have proposed an extensive scheme to classify tasks based on many

dimensions of task features. Among the many task features, for work tasks which

consist of multiple sub-tasks, the relationship between the subtasks seems salient

and it is necessary to take it into account because the orders of sub-tasks may vary

during the process of accomplishing the work tasks.

Tasks that drive people to engage in information seeking are not restricted

to those which are strictly work-related, but include various sorts of nonwork

information-seeking activities in individuals’ everyday lives. For instance, everyday

life information seeking (ELIS) has been attracting increasing research attention.

Previous studies in this area have investigated aspects of seeking orienting informa-

tion from media [62], planning for a vacation trip [63], and others like shopping,

weather, transportation, etc. [64]. Such a phenomenologically informed approach

provides novel ideas for IR research. It helps clarify the preference and relevance

criteria for information seeking by extending the evaluation base from the narrower

search task to the broader context of people’s everyday lives, which may be more

suitable in the situation of interactive IR [65].

Researchers have spent a fairly extensive amount of effort examining the ef-

fects of different tasks on information searchers’ behaviors and performance. A

common approach is to classify user tasks into different types along some task fea-

ture(s). These include, for example: closed versus openended tasks [66]; specific



54 Chapter 2. Background

versus general tasks [67]; factual, descriptive, instrumental, and exploratory tasks

[68]; fact-finding versus information gathering [69]; and learning about a topic,

making a decision, finding out how to, finding facts, and finding a solution [60].

The various standards and definitions of task classification make it difficult to com-

pare findings across studies. This makes it necessary to have some standard classi-

fication schemes. A rather comprehensive classification scheme is provided by Li

and Belkin [46], which includes a number of dimensions: task product, objective

complexity, subjective complexity, and difficulty, to name a few.

There has been a large body of work focused on the problem of segmenting

and organizing query logs into semantically coherent structures. There have been

attempts to extract in-session tasks [13, 70, 71], and cross-session tasks [10, 6] from

query sequences based on classification and clustering methods.

Lucchese et al. [72, 70, 73] exploit the collaborative knowledge collected by

Wiktionary and Wikipedia for detecting query pairs that are not similar from a lex-

ical content point of view, but actually semantically related and propose several

variants of well known clustering algorithms, as well as a novel efficient heuris-

tic algorithm for extracting tasks from a given query collection. Kotov et al [6]

and Agichtein et al [74] studied the problem of cross-session task extraction via

binary same-task classification, and found that different types of tasks demonstrate

different life spans. Unfortunately, pairwise predictions alone cannot generate the

partition of tasks, and post-processing is needed to obtain the final task partitions

[75]. Finally, authors in [76] model query temporal patterns using a special class

of point process called Hawkes processes, and combine topic model with Hawkes

processes for simultaneously identifying and labelling search tasks. Tolomei et al.

[77] investigated the concept of taskflows and analyzed a large scale query log to

generate task based query suggestions.

Jones et al. [13] was the first work to consider the fact that there may be multi-

ple subtasks associated with a user’s information need and that these subtasks could

be interleaved across different sessions. However, their method only focuses on the

queries submitted by a single user and attempts to segment them based on whether
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they fall under the same information need. The proposed approach considers solv-

ing the task boundary identification and same task identification problem and finds

limited applicability in being used for task extraction.

Recent studies suggest that users searches may have multiple goals or topics

and occur within the broader context of their information-seeking behaviors [78].

Through an online survey, Wang et al. [79] show that 92% of the participants had

online sessions where they accessed several sites, to perform between 2 to 8 tasks.

In the context of web search sessions, most work on multi-tasking has been based on

user studies [70][80]. Other works do not explicitly refer to online multitasking, but

provide useful insights. For instance, users access different sites during a session

[81] and a large proportion of pages are visited more than once. In addition, the

frequency at which a page is revisited differs depending on user habits and the type

of website [81][82], or in other words, the web tasks a user accomplishes on the

site. More recent studies suggest that users often seek to complete multiple search

tasks within a single search session [70] with over 50% of search sessions having

more than 2 tasks. At the same time, certain tasks require significantly more effort,

time and sessions to complete with almost 60% of complex information gathering

tasks continued across sessions [74, 83].

2.2.4 Supporting Complex Search Tasks

Some previous attempts have been made to support people engaged in complex

tasks by allowing them to take notes and record results that they already exam-

ined [5], or to provide task continuation assistance, whereby the search engine can

predict that a searcher is likely to resume a task and hence preemptively save and

retrieve the current search state on the searcher’s behalf [84]. While these are good

ways to support long term tasks, they do not help searchers directly explore or

identify potential next steps for their tasks. Other research efforts have focused on

building tours or trails to guide the searcher through their search process [85]. While

useful, the methods proposed to date have involved restricted domains or hypertext

corpora rather than Web search, or have retrieved focused trails of URLs rather than

lists of search results[86]. Prior work also studied the problem of predicting the
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next search action based on the current actions, either by predicting the next result

click[87] or by predicting searchers’ short-term interests at a more general level of

abstraction (e.g., topical categories[8].

Baraglia et al. [88] introduced the notion of search shortcuts and offered query

suggestions to drive users towards their goals. Lucchese et al. [89] studied the

concept of related tasks, and introduced the Task Relation Graph as a representation

of users’ search behaviors on a task-by-task perspective. The task relation graph is

used to construct a task recommender system, which suggests related tasks to users

on the basis of the task predictions derived from the task relation graph.

The quality of most of the supporting mechanisms depend on forming accurate

representation of tasks, which is the problem being addressed in Part I of this thesis.

While most research has focused on extracting task clusters from query logs, this

thesis goes a step beyond and considers the problem of complex search and presents

algorithms to decompose complex tasks into simpler sub-tasks.

So far, we have discussed the notions of search sessions, context and tasks

which are useful in understanding user behavior from search interaction logs. An

alternative view of search log data is composed of the user centric view, which

makes use of the concepts defined so far (sessions, context, tasks) in building mod-

els and representations of users, capture and interpret their interaction signals, as

well as decipher whether or not the users are satisfied with system’s performance.

In the next section, we briefly discuss background work for each of these.

2.3 Understanding User Signals

The research discussed so far discusses user sessions, context and tasks, which helps

us understand and comprehend user’s information needs. However, while interact-

ing with a retrieval system, users leave behind traces of their activity which provide

us insights about their interests, and helps us develop user models. Beyond gauging

interests, researchers have leveraged such activity traces to detect implicit feedback

signals to gauge and predict user satisfaction. The algorithms and frameworks de-

veloped in this thesis build upon, extends and evaluates against past work in these
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areas.

2.3.1 User Representations

Irrespective of where the user’s data comes from, a model must encode this data.

A variety of such models have been used in the past including a vector of weighted

terms (e.g. [90]), a set of concepts (e.g. [91]), using topic models (e.g. [92]) or a

hierarchical category tree based on ODP and corresponding keywords (e.g. [93]).

Teevan et al. [94] constructed user profiles from indexed desktop documents

and showed that this information could be used to re-rank search results and im-

prove relevance for individuals. Matthijs and Radlinski [90] constructed user pro-

files using users’ browsing history, and evaluated their approach using an interleav-

ing methodology. Their approach focused on using term based user profiles which

often limit the scope of personalization as different users inherently follow differ-

ent distributions over words. Dou et al. [91] investigated a number of heuristics

for creating user profiles and generating personalized rankings. Bennett et al. [93]

made use of hand picked Open Directory Project (ODP) topical categories to con-

struct user profiles. While such topical categories are easily specified, much human

effort is required in labelling queries for each topic. ODP categories based methods

restricts topic coverage in a major way as search logs offer much richer content both

in terms of the number of topics involved as well as the granularity level of each

topic. Very recently, Wang et al [95] have proposed a generative model which mod-

els users as a mixture over latent user groups wherein each group shares a common

distribution over queries and a common click preference pattern. Finally, Harvey

et al. [92] use the topic model based approach to build user profiles from topics

obtained and personalize search results based on the learnt user profiles.

Aiming for short-term personalization, Sriram et al. [96] describe a search

engine that personalized based on the current user session. A longer term person-

alization click model can also be used, exploting clickthrough data collected over

a long time period. For example, Speretta and Gauch [97] and Qiu and Cho [98]

model users by classifying previously visited web pages into a topic hierarchy, using

this model to re-rank future search results. Also, a particularly straightforward yet
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effective search interaction personalization approach is PClick, proposed by Dou et

al. [91]. This method involves promoting URLs previously clicked on by the same

user for the same query. The user representation model we present in this work

could be easily used in any of these personalization techniques.

2.3.2 Gestures for Relevance

Traditional evaluation techniques relied on classical methodologies that use query

sets and relevance judgments. More recently, a number of different interaction be-

haviors have been taken into consideration in the prediction of search user satis-

factions including both coarse-grained features (e.g. clickthrough based features

in [99]) and fine-grained ones (e.g. cursor position and scrolling speed in [100]).

Mouse movement information like scroll and hover have proven to be valuable sig-

nals in inferring user behavior and preferences [101, 102, 103], search intent [104],

search examination [105] and predicting result relevance [106]. However, none

of these studies tried to extract mouse movement patterns and adopt them to pre-

dict search satisfaction. Arapakis et al. [107] extracted mouse gestures to measure

within-content engagement. Lagun et al. [108] introduced the concept of frequent

cursor subsequences (namely motifs) in the estimation of result relevance.

User action sequences have been used to predict user satisfaction [109], graded

satisfaction [110] and to study search engine switching behavior [111, 112]. Se-

quential user actions have also been used to explore developing search trails com-

posed of query sequences for enhancing search support [113, 86]. Liu et al. [114]

estimate the utilities of search results and the efforts in search sessions with motifs

extracted from mouse movement data on search result pages (SERPs).

2.3.3 User Satisfaction

The concept of satisfaction was first introduced in IR researches in 1970s according

to Su et al. [115]. A recent definition states that ”satisfaction can be understood

as the fulfillment of a specified desire or goal” [116]. However, search satisfaction

itself is a subjective construct and is difficult to measure. Some existing studies

tried to collect satisfaction feedback from users directly. For example, Guo et al.
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’s work [100] on predicting Web search success and Feild et al.’s work [117] on

predicting searcher frustration were both based on searchers’ self-reported explicit

judgments. Differently, other researchers employed external assessors to restore the

users’ search experience and make annotations according to their own opinions. For

example, Guo et al.’s work [99] on predicting query performance was based on this

kind of annotations.

Recently, simplistic user feedback signals have been used to gauge user sat-

isfaction. For instance, it has previously been shown that clicks followed by long

dwell times are correlated with satisfaction [118]. Hassan et al. [119] propose to use

query reformulation as a negative indicator of search success and thus satisfaction

and show how an approach based on query features outperforms an approach based

on click features, with the best performance being achieved by a combination of

the two. Kim et al. [120] consider three measures of dwell time and evaluate their

use in detecting search satisfaction. Lagun et al.[121] consider scroll and viewport

features for predicting satisfaction in mobile search.

The background on general IR, understanding user behavior and user interac-

tions provided thus far provides readers with the grounds necessary to conceptually

understand the work proposed in this thesis. This thesis additionally builds up on

some of the recent advancements in the different areas of Machine Learning, some

of which we discuss in the next section.

2.4 Algorithmic approaches
Part of the thesis builds upon and extends various machine learning algorithms,

from different areas. We next briefly discuss background work for each.

2.4.1 Distributional Semantics for IR

While many word embedding models have been proposed recently, the Contin-

uous Bag-of-Words (CBOW) and the Skip-Gram (SG) architectures proposed by

Mikolov et al. [122] are arguably the most popular. Word embeddings have also

been studied in IR contexts such as term reweighting [123], cross-lingual retrieval

[124, 125] and short text similarity [126]. Beyond word co-occurrence, recent stud-
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ies have also explored learning text embeddings from clickthrough data [127], ses-

sion data [128] and for query prefix-suffix pairs [129]. While most of these works

aim at learning richer embeddings, we instead focus on using existing embeddings

in a novel way. We explore the use of embeddings by proposing a novel distance

metric which takes into account the task information.

2.4.2 Nonparametric Priors

The Dirichlet Process (DP) [130] is a prior over a countably infinite set of atoms, and

is popularly used as a prior for mixture models (DP Mixture Model) in applications,

where the number of clusters is difficult to provide as a parameter. The Chinese

Restaurant Process (CRP) [131] provides a generative description for the Dirichlet

Process, and is useful for designing sampling algorithms for DP mixture models.

Recently, online variants of CRPs have been proposed [132] which make it possible

to model streaming data with CRPs. Socher et al. [133] proposed a method to

cluster non-exchangeable data that combines the advantages of nonparametric and

spectral methods. dd-CRPs have also shown promising results for person discovery

in videos [134], POS induction [135] and for modelling influence in social media

[136].

2.4.3 Hierarchical Models

Rich hierarchies are common in data across many domains, hence quite a few hi-

erarchical clustering techniques have been proposed. The traditional methods for

hierarchically clustering data are bottom-up agglomerative algorithms. Probabilis-

tic methods of learning hierarchies have also been proposed [137, 138] along with

hierarchical clustering based methods [139, 140]. Most algorithms for hierarchi-

cal clustering construct binary tree representations of data, where leaf nodes corre-

spond to data points and internal nodes correspond to clusters. There are several

limitations to existing hierarchy construction algorithms. The algorithms provide

no guide to choosing the correct number of clusters or the level at which to prune

the tree. It is often difficult to know which distance metric to choose. Additionally

and more importantly, restriction of the hypothesis space to binary trees alone is
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undesirable in many situations - indeed, a task can have any number of subtasks,

not necessarily two. Past work has also considered constructing task-specific tax-

onomies from document collections [141], browsing hierarchy construction [142],

generating hierarchical summaries [143]. While most of these techniques work in

supervised settings on document collections, our work instead focused on short text

queries and offers an unsupervised method of constructing task hierarchies. Finally,

Bayesian Rose Trees and their extensions have been proposed [144, 145, 137] to

model arbitrary branching trees. These algorithms naively cast relationships be-

tween objects as binary (0-1) associations while the query-query relationships in

general are much richer in content and structure.

2.4.4 Task Extraction Algorithms

The analysis on searcher’s multi-tasking behavior presented later in the thesis as-

sumes that search log data is pre-tagged with task information. While we propose

new subtask and task hierarchy extraction algorithms in Chapter 4 and 5 respec-

tively, we make use of an existing state-of-the-art task extraction algorithm pro-

posed by Wang et al. [10] to extract on-task queries, i.e., pre-tag search queries

with task information. In this section, we briefly describe the algorithm in detail.

Given query sequences within sessions, Wang et al. proposed that search tasks

are identified by clustering queries into tasks by find the strongest link between a

candidate query and queries in the target cluster (bestlink). This is achieved by

making use of a structural learning method with latent variables, i.e., latent struc-

tural SVMs, to utilize the hidden structure of query inter-dependencies to explore

the dependency among queries within the same task.

Given a query sequence Q= q1,q2, ...,qM, a feature vector for the task partition

y is specified by the hidden best-link structure h as ψ(Q,y,h). Based on ψ(Q,y,h),

the bestlink SVM is a linear model parameterized by w, and predicts the task parti-

tion by,

(y∗,h∗) = argmaxy,hwT
ψ(Q,y,h) (2.1)

where Y and H represent the sets of possible structures of y and h respectively. y∗
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becomes the output for cross-session tasks and h∗ is the inferred latent structure.

Based on the best-link structure, h(qi,q j) = 1 if query qi and q j are directly con-

nected in h; and otherwise, h(qi,q j) = 0, with the added clause that a a query can

only link to another query in the past, or formally, ∑
j−1
i=0 h(qi,q j) = 1 ∀ j ≥ 1. The

feature vector for any particular task partition y is defined over the links in h as,

ψ(Q,y,h) = ∑
i, j

h(qi,q j)
S

∑
s=1

φs(qi,q j) (2.2)

where a set of symmetric pairwise features φs(qi,q j) is given to characterize the

similarity between query qi and q j. Given a set of query logs with annotated tasks,

the feature vector design and the directed linkage structure of h can be inferred in

an SVM setting. A detailed overview of the approach can be found in Wang et al.

[10].

2.4.5 Tensor Factorization

Chapter 6 of this thesis presents a user modelling approach based on task informa-

tion wherein we leverage recent advancements in tensor factorization. This section

briefly introduces tensors and lays background needed to better understand the con-

tributions presented in Chapter 6.

In recent years, researchers have started to realize that many phenomena are

inherently multi-way. In such a case, tensors are more natural data representations

than matrices - stacking the data in a matrix results in loss of information. Tensor de-

compositions often have better uniqueness properties than matrix decompositions,

which makes that they are often easier to interpret. Multilinear algebra is richer

than vector/matrix algebra, which means that more information can be extracted.

Roughly speaking, generalizing different properties of the matrix SVD leads to dif-

ferent tensor decompositions.

A tensor is a multidimensional array. More formally, a N-way tensor or N-th

order tensor is an element of the tensor product of N vector spaces each of which as

its own co-ordinate system. A first-order tensor is a vector, a second-order tensor is

a matrix, and tensors of order three or higher are called higher-order tensors. The
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order of a tensor is the number of dimensions, also known as modes. A third order

tensor can be represented as T ∈ℜI1×I2×I3 with each element of the tensor denoted

as ti, j,k with i ∈ (1, I1), j ∈ (1, I2) and k ∈ (1, I3).

Existing tensor factorization methods vary in their sensitivity to noise in the

tensor, their tolerance of non-orthogonality and in their convergence properties. A

Tucker Decomposition of a tensor T ∈ℜI1×I2×I3 is a decomposition of T of the form

T = D◦A◦B◦C (2.3)

The symbol ◦ represents the vector outer product. This decomposition was intro-

duced by [146, 147]. It is not unique. For instance, if A is post-multiplied by

a square nonsingular matrix F, then this can be compensated by replacing D by

D ◦F−1. Part of the degrees of freedom can be used to make A, B and C column-

wise orthonormal. One particular constrained version of the Tucker decomposition

can be obtained by computing A as the matrix of left singular vectors of an (IJK)

matrix in which all the columns of T are stacked one after the other; B and C are

obtained by working with the rows and mode-3 vectors, respectively. Tucker ap-

proximation is useful for dimensionality reduction of large tensor datasets. The

actual data analysis can then be carried out in a space of lower dimensions. Tucker

approximation is also important when one wishes to estimate signal subspaces from

tensor data.

Another approach for tensor decomposition is the PARAFAC tensor decompo-

sition [148]. By PARAFAC, the input tensors are transformed into Kruskal tensors,

a sum of rank-one-tensors. Formally, the tensor T ∈ ℜI1×I2×I3 is decomposed into

component matrices U ∈ ℜI1×d , T ∈ ℜI2×d and S ∈ ℜI3×d and d principal factors

λi in descending order. Via these, tensor T can be written as a Kruskal tensor by:

T ≈ Σ
d
k=1λk ·Uk ◦T k ◦Sk (2.4)

where λk denotes the k-th principal factor. The goal is to compute a decomposition
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with d-components that best approximates our tensor T , i.e., to find

min∼
T
‖T −

∼
T‖ (2.5)

such that
∼
T = Σ

d
k=1λk ·Uk ◦T k ◦Sk (2.6)

The above objective could be solved using the Alternating Least Squares (ALS)

approach [149] - having fixed all but one matrix, the problem reduces to a linear

least-squares problem.

Readers interested in details about multilinear subspace learning for tensor data

and a survey of tensor factorization approaches are referred to De et al. [150] and

Lu et al. [151].
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Chapter 3

Understanding Search Behavior

3.1 Introduction

Search engine users’ information needs span a broad spectrum [70]. While simple

needs, such as homepage finding, can mostly be satisfied via a single query, users

may also issue a series of queries to collect, filter, and synthesize information from

multiple sources to solve a task. Given the inherent diversity in information needs,

users engage with search systems in varied ways.

Search sessions have been exploited in previous work on information search,

as being the major focus for most analysis of search behavior. The context of search

activities within the current session has been used to build richer models of interests

and improve how the search system interprets the user’s current query. Session con-

text has been used for modeling query and click sequences [57, 58], to disambiguate

current search query [59], to build topical profiles for future interest prediction [8],

to improve search quality [152, 153] to quantify struggling users [154], for under-

standing learning and expertise development [51] and for detecting atypicality in

user behavior [155].

While search sessions are an important and convenient source for analysis,

we contend that this conceptualization of sessions as focal units of analysis makes

certain assumptions that are quite untenable in the general case. First, there ex-

ists no theoretical basis for bounding search sessions, as it is largely a data-driven

subject. Previous research on the topic have adopted a time-out based strategy to
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bound search sessions [50, 156, 157]. However, it remains to be understood if such

time-out based techniques have strong external validity across search contexts. Sec-

ond, and most importantly, evidence from analysis of search logs show that users

do indeed search for multiple unrelated topics within a single search session.

Further, and as a direct result of the increasingly complex informational en-

vironment around us, users are increasingly engaged in multitasking and informa-

tional task switching behaviors. Multitasking is the ability of humans to simulta-

neously handle the demands of multiple tasks through task switching [158][159].

While such multi-tasking behavior is becoming increasingly popular especially in

the context of online search, many interactive technologies do not provide effective

support for managing such multitasking behaviors.

Web search engines offer a typical environment where users perform multiple

search tasks across diverse contexts. For example, a programmer searching for

solutions to a bug in his code, might take a brief hiatus to listen to some music.

The two tasks described here need not be at the same level of importance for the

user, nor must they be performed in parallel. While such situations are commonly

observed in our daily search behavior, not much is understood about the kind of

users who indulge in such multi-tasking behavior or even the extent or nature of such

multi-tasking behavior in major search engines. This research gap stems mainly

from the difficulty in identifying, quantifying and fully describing multiple task

completions from observational data.

In this chapter, we leverage back-end search logs from a large-scale search

engine to provide a detailed analysis of multi-tasking behavior for different user

groups, and across multiple session sessions over a 30-day period. Our analysis

demonstrates the presence of multiple search tasks within single session. We seek

to provide evidence that multi-tasking has emerged as a dominant characteristic of

online search behavior and that users have varying propensities to indulge in such

multi-tasking. Further, we also uncover significant heterogeneities in search topics

across single- and multi-task sessions, and across different user groups.

Departing from existing studies on multi-tasking which have used topics of
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queries as proxies for tasks, we make use of an explicit search task extraction frame-

work to extract the task information from web search sessions. This allows us to

provide richer insights on the prevalence of task multiplicity in search sessions.

Making use of real world search logs, we first quantify the extent of multi-tasking

behavior in search sessions and show the existence of user groups based on the ex-

tent of multi-tasking behavior. Further, we analyse the user groups on a number of

search interaction metrics and quantify the differences in these user groups based

on how they interact with search systems.

Finally, we investigate user search task behavior for both single- as well as

multi-task search sessions and relate it to tasks and topics. Specifically, we analyze

user-disposition, topic and user-interest level heterogeneities that are prevalent in

search task behavior. Our results show that while search multi-tasking is a common

phenomenon among the search engine users, the extent and choice of multi-tasking

topics vary significantly across users. We find that not only do users have varying

propensities to multi-task, they also search for distinct topics across single-task and

multi-task sessions.

3.2 Characterizing Multi-Tasking Behavior
In this chapter, we seek to characterise user behavior in online search sessions based

on task specificity and multiplicity. While users generally perform a single task in

a single search session, the task process might get interrupted by other competing

tasks that become salient in the particular context. Given this backdrop, we contend

that it is imperative for the search engine to understand the type of users who might

be more prone to multi-tasking within a single session, and also the type of tasks

that might be more susceptible to interleaving or interference by competing tasks.

3.2.1 Research Questions

In this chapter, we formulate and propose the following 5 research questions, and

offer evidence from a large scale observational dataset on search behavior to answer

them.

1. RQ1: To what extent do users multi-task in web search sessions?
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Figure 3.1: The variations of number of the number of queries in a session.

2. RQ2: Quantifying user heterogeneity: Is there evidence of user-level het-

erogeneity based on task behavior? i.e. do different users behave differently

in terms of their multi-tasking behaviors?

(a) RQ2.1: How does the search task effort vary across different user

groups?

(b) RQ2.2: Is there an association between users’ choice of search topics

and task multiplicity?

3. RQ3: Quantifying topic-category heterogeneity: Is there a topic-category

level heterogeneity across single- and multi-task sessions, for different user

groups?

3.2.2 Data Context

We use back-end search logs for a subset of users from a major US-based search

engine for a period of 30 days from May 1, 2015 to May 31, 2015, and choose a

random sample of over 2 million users where each user is identified by a unique

user ID derived from their IP address. Over the 30-day period, users participated in

a total of over 200 million search sessions comprising one or more search queries, as

illustrated in Fig. 3.1, wherein sessions are identified based on an inactivity period

of 30 minutes. In order to avoid biasing the results by inactive users, we filter out

users from our dataset who participate in ≤50 sessions, and focus instead on the

more active user population.



3.3. Quantifying the Extent of Multitasking 71

Figure 3.2: Quantifying the extent of multi-tasking in search sessions: .

3.2.3 Task Extraction

For our analysis, we make use of the Latent Structural SVM framework [10] for

task identification. Given query sequences within sessions, search tasks are identi-

fied by clustering queries into tasks by find the strongest link between a candidate

query and queries in the target cluster (bestlink). This is achieved by making use

of a structural learning method with latent variables, i.e., latent structural SVMs, to

utilize the hidden structure of query inter-dependencies to explore the dependency

among queries within the same task. The algorithm is described in more detail in

section 2.4.4 of the previous chapter.

3.3 Quantifying the Extent of Multitasking
While it is well known that online search sessions often tend to have interleaving of

multiple tasks, an understanding of the multi-tasking heterogeneities at a user level

and/or a search session level has been largely ignored. Specifically, we aim at quan-

tifying, first, the prevalence of multi-tasking behavior in online search sessions (i.e.

how common is multi-tasking?), and second, the extent of multi-tasking behavior in

multi-task sessions (i.e. how many tasks on average are there in multi-task search

sessions?).

Fig.3.2 illustrates the prevalence and extent of multi-tasking behavior in the

sessions which have more than one tasks. In our dataset, we find close to 90 million

search sessions which have 2 or more completed tasks. Among these 90 million

search sessions, there is a varied distribution of task multiplicity as described by
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Figure 3.3: User groups based on multi-tasking behaviors.

Fig. 3.2. Specifically, we observe that while over 60% of the sessions have 2 or

3 tasks, about 20% of the sessions have 5 or more tasks. On average, each user

participates in 76 sessions in which they performs an average of 2 tasks.

We next extend our multitasking analysis to investigate user level differences

in multi-tasking behavior.

3.4 Uncovering User Level Heterogeneity
In this section, we seek to uncover the presence of user idiosyncrasies in multi-

tasking behavior in search sessions. Specifically, we attempt to understand the pro-

portion of sessions per user that are single tasked vs. multi-tasked. Consequently,

we seek to uncover any underlying categorizations among the users based on the

extent of their multi-tasking behavior. Specifically, we wish to answer questions

like: Can we identify and classify groups of users who demonstrate similar propor-

tions of multi-tasking behavior?. Uncovering such user groups would pave the way

for the search engine to provide better personalized search assistance based on the

group-level features and characteristics. We next describe the user groups obtained.

3.4.1 Uncovering User Groups

In an attempt to uncover different groups of users based on their multi-tasking

habits, we look at the user-level heterogeneities in search sessions. Specifically,

we categorize users based on the average number of tasks completed by the user

across all sessions in the 30-day period. We observe that a sizable number of users

(i.e. more than 20%) perform just a single task on average across their session his-
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Figure 3.4: Investigating User Level variations in Multi-tasking.

tory. We call such users focussed users, as their search behavior is focussed on a

specific task, free from interference of competing tasks. On the other extreme, we

also find a small group of users who perform 4 or more tasks on average across their

session history. We call such users supertaskers, who perform several tasks within

a single session. We categorize all the other users as multi-taskers who completed

more than 1 but less than 4 tasks on average in their session history.

The density of users across each of the three groups have been better depicted

in 3.3. Moreover, we show the task multiplicity distribution for our user sample

in 3.4. Interestingly, from Fig.3.3 and Fig.3.4, we observe that most users are not

focussed in the search behavior, and tend to complete at least 2 tasks within a ses-

sion. This is not unsurprising, given that one of the tasks could be the primary (e.g.

search for solution to a programming bug on the Internet) or important task, while

the others might be ancillary tasks (e.g. listen to music, check weather updates).

Table 3.1 provides a list of sample queries executed by users across the three user

groups.

3.4.2 Characterizing Effort Across User Groups

The presence of competing or interfering tasking within a single session could ac-

centuate or attenuate the search effort expended by the users. Specifically, we wish

to understand the relationship between task multiplicity and total effort expended

by the users (i.e. do users who multitask more(less) expend more effort than users

who multitask less(more)?. In the context of the current study, following part work

around search effort, we operationalize search effort using the query time, the aver-
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User Type Example Queries from an exemplary session

Focussed User

”test guide.com”, ”CNA Practice Test”, ”CNA State
Board Exam”, ”CNA Testing Schedule and Locations”,
”CNA State Board Practice Test”, ”CNA Practice Test
2014”, CNA 50 Questions Test”, ”Free GED Practice Test
2014”

Multi-Tasking User
”Gravity FSX 2.0”, ”Full Suspension Mountain Bikes”,
”Walmart Cards”, ”Walmart Instant Card Application”,
”Gravity FSX 2.0 price”, ”full suspension bike sale”

Supertasking User
”hairstyles for women over 50”, ”thin wavy hairstyles for
women”, ”facebook”, ”fb sign in”, pulled pork crock pot
recipe easy”, ”Slow-Roasted Pulled Pork”, ”barefoot con-
tessa”, ”miley cyrus hair styles”, ”hairstyler.com”

Table 3.1: Example query sessions from the different user groups.

age length of queries and other metrics as described below.

We analyse search effort across the three user groups identified in the study.

We characterise search effort using 4 different metrics:

1. Time to First Click (TTFC): measures the time elapsed before the user

clicks the first link on the query result page. A longer TTFC is an indica-

tion of user surprise or confusion with the search results, and hints at a more

extensive cognitive elaboration process as the user decides which link to click

on.

2. Time to Last Click (TTLC): measures the time elapsed before the user clicks

the final link in her search session. The TTLC is a more direct measure of

search effort expended by the user within a particular session. A higher TTLC

could indicate that the user disatisfaction with the early results provided by

the query results, or a heightened motivation on part of the user to search

more about the particular topic of interest.

3. Page Click Count (PCC): quantifies the total number of clicks observed on

the SERP.

4. Pagination Click Count (PgCC): quantifies the amount of pagination ac-

tivity observed. Higher PgCC values indicate users examining results from

beyond the first page. Both PCC & PgCC metrics are direct measures of the

search effort put in by the user, and are hence good proxies to capture the
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Figure 3.5: Differences in user groups quantified via effort based metrics. The scores re-
ported are deviations from the Multi-taskers group which is held as baseline.
All numbers are standard scores (Z-scores).

different facets of search effort.

We compute each of these metrics across each of the user groups as defined

earlier, and highlight our findings in Figure 3.5. Our analysis indicates that super-

tasking users have a much higher TTFC and TTLC scores, but a lower PCC score

than the focussed and multi-tasking groups. This supports our conjecture that most

supertaskers perform multiple tasks in a master-slave fashion, where they focus

bulk of their attention on a focal task, while being periodically distracted by ancil-

lary tasks (e.g. music, weather updates). This periodic distraction causes a decrease

in attention span on the focal task, which is manifested by a decrease in click count,

and an increase in click delays on the focal task. We do not, however, find any

noticeable difference in the PgCC scores across the groups.

Given the user heterogeneity in session level multi-tasking, an important ques-

tion arises as to how these multi-tasking behavior links to user’s interest profiles.

In the next section, we investigate such behavior in terms of topical profile of users

and quantify the topic-wise extent of search multi-tasking.
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Time Query SessionID TaskID Topic
05/29/2012 14:06:04 adele songs 1 1 Arts
05/29/2012 14:11:49 wedding venue 1 2 Society
05/29/2012 14:12:01 video download 1 3 Arts
05/29/2012 14:06:04 Obama care 2 4 News
05/29/2012 14:11:49 running shoes 2 5 Shopping
05/29/2012 14:12:01 sports shoes 2 5 Shopping
05/29/2012 14:22:12 wedding cards 2 2 Society

Table 3.2: Sample search sessions

3.5 Uncovering Behavioral Heterogeneities in Search

Behavior
In characterizing these search tasks across sessions, we consider the possibility of

three distinct forms of heterogeneity inherent in the search-task behavior. First,

there could be user-disposition level heterogeneity wherein some users have a

higher propensity to multi-task when searching for information, than other users.

Second, there could be topic level heterogeneity wherein searchers have a higher

(or lower) propensity to multi-task when searching information for specific kind of

topics. Third, and finally, there could be user-interest level heterogeneity wherein

users might have a higher or lower propensity to multi-task when searching for

topics they are most or least interested in.

While recent work has highlighted the prevalence of multi-tasking behavior in

online search [70, 16, 80], not much effort has been expended at fully characteriz-

ing online search tasks with an emphasis on such user- and topic-level differences.

This section focuses on such differences. Specifically, we find that while most users

(>50%) choose to multi-task in their search sessions, there exists significant differ-

ences in their choice of topics between single-task and multi-task sessions.

Through our analyses, we offer the following three insights:

1. Users’ preference towards multitasking(3.3): We find evidence that most

users multi-task when searching for information with over 50% users com-

pleting more than 2 tasks within a single search session, and a minority of

users even completing more than 5 tasks within a single session.

2. Topic level heterogeneity(3.5.1): For certain type of topics, users prefer to
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Figure 3.6: Top topics prone to multi-tasking (Top) and single-tasking (Bottom) across dif-
ferent user groups.

multi-task (e.g. kids, news, shopping etc.), while for certain others, users

prefer to single-task (e.g. computers, games, adult etc.).

3. User-interest level heterogeneity(3.5.2): Users have different preferences

towards multitasking depending on their level of interest in the specific search

topic (e.g. some groups of users prefer to search about most-interested top-

ics in single-tasking sessions and least-interested topics in mult-tasking ses-

sions).

3.5.1 User-disposition and Topic Level Heterogeneity

Recent work on the topic of search multi-tasking has shown that a majority of users

perform two or more tasks within a single search session [16]. Consistent with

these studies, our analysis also uncovers that close to 80% of users perform two

or more tasks within a single session, with a minority of users even performing 5

or more tasks within the single session, as illustrated in Figure 3.3. We term these

three discernible classes of users based on their frequency of multitasking behavior

viz. focused (i.e. 1 task per session), multitaskers (i.e. 2-5 tasks per session) and

supertaskers (i.e. >5 tasks per session). Having established that users vary on their

disposition to single-task and multi-task, we now delve deeper into understanding

whether users multi-task to varying extents depending on their search topics.
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To obtain such a topic representation for this study, we labeled each document

with a vector of probabilities of categories from the top two levels of the Open

Directory Project (ODP ) hierarchy using a text-based classifier. Each documents

vector was restricted to the three most probable classes. The classifier has a micro-

averaged F1 value of 0.60 and is described more fully in [8]. The most prominent

topic among the top 3 returned results per query was used as the final tagged topic

for that query.

We analyse topic level heterogeneity by investigating the level of multi-tasking

in sessions filtered by topics. Our results are illustrated in Figure 3.6 wherein we

highlight the top 4 most prevalent topics across multi-tasking and single-tasking

sessions (top to bottom panels), for all three category of users (left to right panels).

The length of the bars in each of the charts in the Figure 3.6 highlights the extent

of multitasking (top panels) and the extent of single-tasking (bottom panels). The

extent of multi-tasking is defined as NM−NS
Ntotal

, which measures the difference between

the proportion of times the topic featured in a multi-tasking session (NM) and the

proportion of times the topic featured in a single-tasking session (NS). Conversely,

the extent of single-tasking was calculated as the difference between the proportion

of times the topic featured in a single-tasking session and the proportion of times

the topic featured in a multi-tasking session.

We find that focused users primarily multi-task for topics related to shopping,

home, kids, health and recreation. However, both multi- and super-taskers have

a shared preference for multi-tasking on topics related to news, sports and arts.

We also observe that focused users prefer to single task when searching for top-

ics related to computers, games, adult and arts categories, while multi-taskers and

super-taskers do not prefer to single-task when searching for their preferred topics.

This is reflected by the negative scores on the extent of single-tasking in the bottom

panel of Figure 3.6. These findings confirm our intuition that indeed certain topics

are more prone to multi-tasking (e.g. news, sports) while others (e.g. computers,

adult) usually witness single tasking sessions.
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Focussed Multi-taskers Super-taskers
Single-Tasking Multi-Tasking Single-Tasking Multi-Tasking Single-Tasking Multi-Tasking

Most Interested Topics 0.593 0.407 0.310 0.690 0.105 0.895
Least Interested Topics 0.458 0.542 0.249 0.751 0.081 0.919

Table 3.3: Relating User’s Mono/Multitasking Nature with their interest profiles.

3.5.2 User-interest Level Heterogeneity

We next investigate whether users exercise any specific search preference when

searching for topics that are of high vs. low interest to them. To analyze this, we

compute the frequency of most and least searched topic categories from the search

history of users in each of the three user groups viz. focused, multi-taskers and

super-taskers 1. Following this, we analyze their search behavior during single-

tasking and multi-tasking sessions to investigate the distribution of high and low

interest topic categories across these sessions. The results from this analysis are de-

scribed in Table 3.3, and highlight that users exercise distinct preferences towards

the extent of their multi-tasking nature in search sessions for high vs. low interest

topics.

Our results show that multi-taskers and super-taskers prefer to multi-task for

a large majority of their search sessions (i.e. almost always >70%), irrespective

of whether they are searching for high or low interest topics. In contrast, however,

focused users prefer to search for high interest topics in single-tasking sessions (i.e.

59% of the time), and low interest topics in multi-tasking sessions (i.e. 54% of the

time) in the small portion of their multi-task sessions.

Analyzing such heterogeneities in online search behavior lends us a better un-

derstanding of how users interact with search systems when performing different

tasks. The findings from this study offer valuable insights into the search strategies

employed by online users on search engines.

3.6 Implications & Discussion
The research presented in this chapter is among the first to analyze and quantify

user centric multi-tasking behavior in web search sessions using large-scale and

1Note that this is different from the identification of top topics in the previous section which were
identified at a session-level and not at a user-level.
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Figure 3.7: Topical distribution of queries for Single tasking & multi-tasking sessions for
Multi-taskers (left) & super-taskers (right).

objective search logs. Specifically, we emphasize (Sec 3.4.1) that while most users

on search engines are multi-task users performing 2 or more tasks within a single

search session, there exist a sizable proportion of users who are more focussed

and mostly mono-task. We also provide evidence of ”Supertaskers” who perform

onwards of 4 tasks within a single session. This widespread prevalence of task

multiplicity makes it imperative for search engines to refocus their personalization

and recommendation strategy towards a task-oriented view. For example, if search

engines can fully identify and characterize the number and types of tasks performed

by a given population of users on the engine, they could potentially optimize the

session to better fit specific user- and task-based needs, while also making potential

task-recommendations to reduce the search effort, as quantified in this chapter.

As highlighted by the varying search effort metrics in Sec 3.4.2, the different

user groups indeed interact with the search results differently and hence motivate

the need for incorporating such differences in multi-tasking behavior of users while

personalizing search experiences.

Yet another finding we wish to highlight through our study is the characteriz-

ing of multiple tasks into a combination of a single primary and multiple ancillary

tasks. Our task effort scores provide preliminary evidence to suggest that such cat-

egorization of multiple tasks into a task-hierarchy might indeed be plausible. Such

insights are useful for search engines in that they could reduce task-transition de-

lays and make design improvements to reduce cognitive loads in such multi-task

sessions.

Finally, we performed a deeper task-level analysis to uncover possible topical
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differences among tasks that occur frequently in multi-task sessions, versus those

that occur frequently in single-task sessions (i.e. Are tasks & topics in single-task

sessions qualitatively different than those prevalent in multi-task sessions?. Under-

standing such task-level differences provide a stepping stone towards understanding

specific task-characteristics that might make it more or less susceptible to interfer-

ence and/or distraction.

These insights could help in making more accurate task-predictions within a

single search session, as well as across multiple sessions for a given user. With a

steadily improving understanding of task and search behavior online, we envision

a day when the search engine would be able to infer user-,task- as well as session-

level characteristics based on just the first query issued by the user and user’s multi-

tasking habits, and personalize their search experience accordingly.





Chapter 4

Exploiting Distributional Semantics

with Nonparametric Priors for

Extracting Sub-Tasks

4.1 Introduction

User initiated search is often motivated by their informational need required to

achieve a goal, or a task such as booking travels, buying a house, etc. Search en-

gines play an important role in not just facilitating such information discovery but

also in guiding users towards completing specific tasks, by offering search results

in a fashion which assists users in completing their tasks.

While existing search engines are adept at handling simple information seek-

ing needs composing simple tasks, users get little or no help when their information

need transcends this boundary. This major limitation majorly stems from search

engine’s treatment of search tasks as structure-less clusters which inherently lack

insights about the presence or demarcation of subtasks associated with individual

search tasks [70, 10, 6] . A more naturalistic viewpoint would involve consider-

ing complex search tasks as being decomposed into more focused subtasks. For

instance, a complex task like planning a wedding involves many different sub-tasks

like buying bridal dresses, deciding on wedding themes, searching for invitation

card designs etc., each of which is a subtask which a user intends to accomplish by
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issuing a set of related queries.

Clearly, identifying and analysing subtasks becomes an extremely important

activity for search engine providers in their effort to improve user experience on

their platforms. Subtask identification turns out to be a complex problem for three

reasons. First, the number of sub-tasks in a given task is not a parameter than can

be explicitly defined and is generally and strongly task-dependent. Second, while

similar sounding queries like ”wedding planning checklist” and ”wedding dress”

belong to the same task, they inherently represent different sub-tasks. This necessi-

tates the use of advanced distancing techniques, beyond the usual bag-of-words or

TF-IDF approaches to identify subtask clusters, which are coherent and homoge-

nous. Finally, it is often non-trivial to homogeneously demarcate the sub-tasks due

to the strong overlap in the informational needs embodied by the different subtasks

which makes the process of identifying coherent subtasks all the more important.

In this chapter, we focus on extracting coherent subtasks from a given query

collection of on-task queries. We exploit the benefits offered by modeling bayesian

nonparametrics jointly with distributional representations and propose a nonpara-

metric models to extract subtasks. Specifically, we propose a novel generative

model based on subtask coherence estimates, which is not restricted by a fixed

number of sub-task clusters, and assumes an infinite number of latent groups, with

each group being described by a certain set of parameters. We specify our non-

parametric model by defining a Distance-dependent Chinese Restaurant Process

(dd-CRP) prior and a Dirichlet multinomial likelihood [160]. The non-parametric

model is enriched by working in the vector embedding space which uses a word-

embedding based distance measure to encode query distances for efficient sub-task

extraction. Further, we formally define the notion of subtask affinity, which helps

us quantify the semantic cohesiveness and coherence of a given subtask, based on

which we propose a novel likelihood function which encodes the coherence esti-

mates. We hypothesize that a coherence aware subtask extraction technique enables

us to extract more cohesive and homogeneous subtasks. We validate our proposed

method using a number of experiments, including both qualitative and quantitative
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evaluations to demonstrate that our proposed TE-coh-ddCRP model is able to ex-

tract coherent tasks. We additionally show how a search engine might benefit from

the proposed subtask discovery, by investigating user effort expended in the differ-

ent subtasks.

4.2 Problem Formulation

Our definition of search tasks follows from previous work [13] which identified

tasks as search missions and goals. Often search tasks involve many distinct, but

related aspects which warrant the need for issuing different sets of queries over a

number of sessions in order to fulfil the multi-aspect information needs. It is mostly

the case that these independent information needs arise from an overall complex

search goal or task. Following past work, Complex Search Tasks which can be

defined as a multi-aspect or a multi-step information need consisting of a set of

related tasks [13, 9]. A complex search task could be broken down into smaller

multi-step or multi-aspect sub-tasks that represent atomic informational needs, for

which it is trivial for users to issue satisfying queries.

In this chapter, we explicitly focus on complex search tasks and intend to ex-

tract the different subtasks associated with them. Given a collection of on-task

queries, i.e., queries belonging to the same overall task, our goal in this chapter is to

extract the subtasks. It is important to note that while the queries are observed, the

inherent sub-tasks and their numbers are latent. Indeed, tasks differ in complexities

and different tasks would have different number of subtasks. We present an ap-

proach to subtask extraction which makes use of a predefined collection of on-task

queries. We next describe the process by which we collect such on-task queries,

and use this process throughout the rest of the paper.

We draw from a number of existing work on bayesian nonparametric models,

task extraction techniques and nonparametric subtask extraction methodologies. In

this section we go through the background material in detail and define constructs

which will be used throughout the paper. In Section 7.2.1, we describe an existing

task extraction technique used to extract ”on-task” queries.
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plan wedding buy shoes get insurance listen to music
wedding theme text running shoes insurance rates song download site
wedding printables sports wear shoes buy insurance free music download

wedding dresses gowns men’s shoes cheap insurance latest soft rock
wedding planners women’s shoes car insurance rates streaming music free

inexpensive wedding ideas shoe stores online insurance agents blues reggae songs
wedding insurance shoe discounts pet insurance online radio music

Table 4.1: Sample search tasks and associated queries

4.2.1 Extracting ”On-Task” Queries

Prior to extracting subtasks, we first need to extract the set queries which belong

to the same overall complex task. In order to extract on-task queries, we make use

of the Latent Structural SVM framework [10] for task identification. We run the

task extraction algorithm as described in section 2.4.4 of Chapter 2 on search logs

to extract all queries belonging to the same task. Such a query collection is hence-

forth referred to as ”on-task queries”. Table 4.1 provides example on-task queries

extracted from four different tasks. As can be seen from the queries constituting

different tasks, there are few clear subtasks embedded in those tasks. The given

collection of on-task queries would be used on a per-task basis to extract subtasks

for any given task.

4.2.2 Non-parametric Subtask Extraction

Currently there are several task extraction techniques [9, 10, 70, 6] but the idea of

subtask extraction has not yet received considerable attention in the research com-

munity. In this section, we provide an overview of a simple bayesian non-parametric

approach for sub-task exatraction , which serves as a starting point for our proposed

model which is described in detail in the next section (4.3).

Consider a collection of queries (Q) issued by searchers trying to accomplish

certain complex search task. Our goal is to extract the different sub-tasks from

such a collection of on-task search queries. Since the complexity of different search

tasks vary based on the task, the number of subtasks associated with them cannot

be explicitly specified beforehand.

The recently proposed distance dependent Chinese restaurant process (ddCRP)

[160], a generalization of the CRP underlying Dirichlet process mixture models
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[131], has a number of attractive properties which make it particularly well suited

for modeling search tasks and subtasks. By placing prior probability mass on par-

titions with arbitrary numbers of parts, it allows data-driven inference of the true

number of sub-tasks underlying the observed search tasks. In addition, by choos-

ing an appropriate distance function we can enforce those set of queries which help

users solve a common information need, to group as a common subtask, and hence,

guarantee that all inferred subtasks are coherent.

4.2.3 Chinese Restaurant Processes

The Chinese Restaurant Process (CRP) [131] is a distribution on all possible par-

titions of a set of objects. The generative process can be described by considering

a Chinese restaurant with an infinite number of tables and a sequential process by

which customers enter the restaurant and each sit down at a randomly chosen table.

After N customers have sat down, their configuration at the tables represents a ran-

dom partition. Customers sitting at the same table are in the same cycle. In the tra-

ditional CRP, the customers sit at an occupied table with a probability proportional

to the number of customers already sitting there, or a new table with probability

proportional to a scaling parameter α .

The distance dependent-CRP [160] alters the CRP by modeling customer links

not to tables, but to other customers. In this distribution, the seating plan probability

is described in terms of the probability of a customer sitting with each of the other

customers. The allocation of customers to tables is a by-product of this representa-

tion. When used in a Bayesian model, the posterior provides a new tool for flexible

clustering of non-exchangeable data.

4.2.4 Nonparametric Priors for Modeling Sub-Tasks

We formulate the subtask extraction problem in terms of dd-CRPs and propose a

novel generative model for the same. In our sub-task extraction problem, each

search task is associated with a dd-CRP and its tables are embellished with IID

draws from a base distribution over mixture component parameters. Let zi denote

the query assignment for the ith query, i.e., the index of the query with whom the ith
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Figure 4.1: Visual formulation of the proposed approach. The tables represent the different
subtasks while each traingle represents the search queries. Query assignment
leads to subtask assignments.

query is linked. Let di j denote the distance measurement between queries i and j, let

D denote the set of all distance measurements between queries, and let f be a decay

function. The distance dependent CRP independently draws the query assignments

conditioned on the distance measurements between the queries,

p(zi = j‖D,α) ∝

 f (di j) if j 6= i

α if j = i

Here, di j is an externally specified distance between queries i and j, and α deter-

mines the probability that a query links to themselves rather than another query.

The monotonically decreasing decay function f (d) mediates how the distance be-

tween two queries affects their probability of connecting to each other, i.e., their

probability of belonging to the same sub-task. We consider an exponential decay

function for all the experiments. Queries are assigned to subtasks by considering

sets of queries that are reachable from each other through the query assignments.

We denote the induced subtask assignments t(z), and notice that many configurations

of query assignments z might lead to the same subtask assignment. Finally, query

assignments can produce a cycle, e.g., query 1 linking with 2 and query 2 linking

with 1. This still determines a valid subtask assignment: all queries linked in a cy-
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cle are assigned to the same subtask. Figure 4.1 provides a pictorial representation

of the subtask assignment process. We have described a way of extracting on-task

queries and briefed a general formulation of the distance dependent CRP. We now

describe our subtask extraction framework for modelling search queries into differ-

ent subtasks. When extracting subtasks, it is important to segregate subtasks which

don’t solve the same information need into separate subtasks. We present a novel

formulation of query clusters which promote task coherence and explicitly encodes

subtask coherence as an integral part of the likelihood function. We demonstrate

how one might use the posterior distribution of the partitions, given search log data

and an assumed generating process based on the distance dependent CRP.

4.3 Extracting Coherent Subtasks
An important characteristic of task and subtask is their coherence, a measure which

estimates the cohesiveness of the queries belonging to the task. Often, tasks learned

on sparse or noisy query data tend to be less coherent, difficult to interpret, and

not particularly useful. Some of these noisy tasks can be vaguely interpretable,

but contain one or two unrelated queries, while other subtasks can be practically

incoherent with the constituent queries solving completely different information

needs altogether. This motivates the need to extract subtasks which are coherent in

terms of the task they solve.

We build upon past work on subtask extraction and introduce a novel likeli-

hood function to extract more coherent subtasks. In this section, we first present

a way to define and operationalize our notion of task coherence and then present

a generative model which incorporates the task coherence aspect when assigning

queries to different sub-tasks.

4.3.1 Quantifying Subtask Coherence

When extracting sub-tasks, sub-tasks which help the searcher address a common

information need are more desirable. With the help of a task affinity function, we

introduce a mechanism which enables the proposed model to extract coherent sub-

tasks. While traditional dd-CRPs enforce similar queries to belong to the same task,
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often it might be the case that two queries solve different tasks despite having high

similarity scores. In order to bias the subtask extraction algorithm to favor coherent

subtask, we introduce the notion of subtask coherence and weight the likelihood of

each subtask with its coherence score. More specifically, we define Subtask Affinity

as follows:

Definition: Subtask Affinity is a measure indicating the cohesiveness of the query

collection in terms of the information need the queries help to address. It is captured

by the semantic closeness of the queries associated with the subtask.

By measuring Subtask Affinity, we aim at capturing the semantic variability of

queries within this subtask in an attempt to identify how cohesive the query col-

lection represented by the subtask is. To measure task affinity for a given query

collection, we propose the use of a novel affinity score based on Pointwise Mutual

Information (PMI) [161]. Pointwise Mutual Information has been studied variously

in the context of collocation extraction [162] and is one measure of the statistical in-

dependence of observing two words in close proximity. We compute affinity score

by using PMI scores for each subtask. We split queries into terms and obtain a set

of terms corresponding to each subtask, and calculate a subtask’s PMI scores using

its set of query terms. More specifically, the PMI of a given pair of query terms (w1

& w2) is given by:

PMI(w1,w2) = log
p(w1,w2)

p(w1)p(w2)
(4.1)

All the probabilities are determined from the empirical statistics of some full stan-

dard collection. We employ the AOL log query set for this and treat two query terms

as co-occurring if both terms occur in the same search session. For a given subtask

(t), we measure subtask affinity as the average of PMI scores for all pairs of the

search terms associated with the task node:

PMIt =
1
|w|

|w|

∑
i=1

|w|

∑
j=1

PMI(wi,w j) (4.2)
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ψ(qtk(z)) = PMItexp
−(PMIt−b)2

c2 (4.3)

where |w| represents the total number of unique search terms associated with sub-

task t and PMIt is the PMI value obtained for subtask t. Since smaller subtasks (2/3

queries) might result higher PMI scores, we introduced a Gaussian weighting term

which helps in giving weights to the subtasks based on their PMI scores. The gaus-

sian parameters b indicates the mean subtask coherence at any stage of sampling

and c its standard deviation.

4.3.2 Generative Process

The generative process of queries in a subtask is as follows. For each query, we draw

a query assignment based on the dd-CRP prior described in Section 4.2.4. Subse-

quently, the queries are then placed at different subtasks via these assignments, and

the query terms then assigned to the queries associated with their tables. Subsets

of the queries exhibit a partition structure by sharing the same subtask. The overall

link structure specifies a partition: two queries are clustered together in the same

sub-task if and only if one can reach the other by traversing the link edges.

Formally, each search task is associated with a distance dependent CRP, and

its subtasks are embellished with IID draws from a base distribution over terms or

words (G0). The mixture component for a query depends on the mixture component

for nearby queries. G0 is typically a Dirichlet distribution over distributions of query

terms. We define z∗q{1:N}
to be the first customer (query) to sit at each table (subtask),

i.e., those queries who link to themselves. Given a decay function f , distances

between queries D, scaling parameter α , and an exchangeable Dirichlet distribution

with parameter λ , N M-word queries are drawn as follows,

1. For each query i ∈ [1,N], draw assignment zi ∼ dist−CRP(α, f ,D).

2. For each sub-task, k ∈ {1, ....}, draw a parameter θ ∗k ∼ G0.

3. For each query i ∈ [1,N],

(a) If ci /∈ z∗q1:N
, set the parameter for the ith query to θi = θqi . Otherwise

draw the parameter from the base distribution, θi ∼ Dirichlet(λ ).
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(b) Draw the ith query, wi ∼Mult(M,θi).

Since subtask assignment heavily depends on how we specify the distance met-

ric between two queries, we need a way of capturing distances between queries

keeping in mind their task relatedness, i.e., two queries belonging to the same sub-

task should have smaller distance than pair of queries belonging to different sub-

tasks. We next describe our approach in modelling such subtask specific distances

between queries.

4.3.3 Quantifying Task Based Query Distances

To capture task specific distances between queries, we propose a novel embedding

based distance metric between queries. Word embeddings capture lexico-semantic

regularities in language, such that words with similar syntactic and semantic prop-

erties are found to be close to each other in the embedding space. We leverage this

insight and propose a novel query-query distance metric based on such embeddings.

We train a skip-gram word embeddings model where a query term is used as an in-

put to a log-linear classifier with continuous projection layer and words within a

certain window before and after the words are predicted. We next describe how we

use these query term embedding vectors to define query distances.

For a search task like ”planning a wedding”, frequent queries include wedding

checklist, wedding planning and bridal dresses. Ideally, checklist and planning re-

lated queries constitute a different sub-task than bridal dresses. Moreover, given the

overall context of weddings, words like checklist and dresses are more informative

than generic words like weddings. To this end, we classify each word as back-

ground word or subtask-specific word and use a weighted combination of their

embedding vectors to encode a query’s vector:

Vq =
1

nterms
∑

i

nqti

Σqnq
Vti (4.4)

where ti are the terms in the query q, nqti
is the number of queries in the current task

which contain the term ti. We encode each query by its corresponding embedding

vector representation Vq and take the cosine distance of these vectors while defining
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di j. We consider a simple window decay f (d) = 1[d < a] to only considers queries

that are at most distance a from the current query for a given sub-task.

4.3.4 Coherence based Likelihood Function

In order to fully specify our model, we need to formulate the likelihood function

which specifies the likelihood of observing a given collection of queries in a partic-

ular subtask partition. Given the collection of N queries pertaining to a search task,

let t(z) donates the subtask assignment, i.e., the set of queries assigned to a particu-

lar subtask. The likelihood function then factors into a weighted product of terms,

each of which is the probability of the set of queries at each subtask. Let jt(z)| be

the number of subtasks and tk
c be the set of indices that are assigned to subtask k.

The likelihood term is:

p(q|t(z),G0) =
|t(c)|

∏
k=1

ψ(qtk(z))p(qtk(z)|G0) (4.5)

=
|t(c)|

∏
k=1

PMItexp
−(PMIt−b)2

c2 p(qtk(z)|G0) (4.6)

wherein, each of the subtask is weighted by its subtask coherence score ψ(qtk(z)) as

defined in Section 4.3.1, while p(qtk(z)|G0) is the likelihood of each subtask, which

in turn is described by the probability of observing queries in this subtask given

the base distribution. We compute the marginal probability that the set of queries

from each subtask are drawn independently from the same parameter, which itself

is drawn from G0. Each subtask term then becomes:

p(qtk(z)|G0) =
∫ (

∏
i∈tk(z)

p(qi|θ)
)

p(θ |G0)dθ (4.7)

To maintain conjugacy and avoid additional layer of sampling, we model the query

terms in a conjugate Dirichlet-Multinomial distribution wherein the integral is

straightforward to compute. As can be seen from the likelihood equation, the con-

tribution from each subtask is weighed by a task coherence score associated with

the subtask. Having defined the subtask likelihood p(qtk(z)|G0) and the correspond-
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ing subtask coherence function (ψ(qtk(z))), we now can fully specify the likelihood

function of the entire subtask partitioning scheme, which we make use of to perform

inference.

4.3.5 Posterior Inference

Posterior inference helps us determine the conditional distribution of the hidden

variables given the query observations, which could then be used for exploratory

analysis of the search tasks and how the different subtasks cluster, and is needed

to compute the predictive distribution of a new query, given a set of observations.

The posterior of the proposed TE-coh-ddCRP model is intractable to compute be-

cause the dd-CRP places a prior over a combinatorial number of possible customer

configurations. We provide a general strategy for approximating the posterior us-

ing Monte Carlo Markov chain (MCMC) sampling. We aim to construct a Markov

chain whose stationary distribution is the posterior of interest. For our TE-coh-

ddCRP model, the state of the chain is defined by zi, the query assignments for

each query point. We will also consider t(z), which are the subtask assignments

that follow from the customer assignments. Let η = {D,α, f ,G0} denote the set of

model hyperparameters. It contains the distances D, the scaling factor α , the decay

function f , and the base measure G0. Let q denote the query observations.

We employ Gibbs sampling wherein we iteratively draw from the conditional

distribution of each latent variable given the other latent variables and observations.

The Gibbs sampler iteratively draws from

p(qnew
i |q−i,x) ∝ p(qnew

i )|D,α)

p(x|z(c−i∪ cnew
i ),G0)

(4.8)

The first term is the dd-CRP prior (4.2.4) and the second term is the likelihood of

the observations under the subtask partition given by t(z−i ∪ t(new)
i ). This can be

thought of as removing the current link from the ith query and then considering how

each alternative new link affects the likelihood of the observations.

Given that the likelihood term factorizes into a product of independent terms,
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the Gibbs sampler need only compute terms that correspond to changes in the sub-

task partition. Consider the partition t(z−i), which may have split a subtask, and the

new partition t(z−i∪ t(new)
i ). There are three cases to consider. First, zi might link to

itself - there will be no change to the likelihood function because a self-link cannot

join two subtasks. Second, zi might link to another subtask but cause no change in

the partition. Finally, zi might link to another subtask and join two subtasks k and l.

The Gibbs sampler for the the proposed model thus becomes:

p(z(new)
i |z−i,q,η) ∝



α if z(new)
i is equal to i

f (di j) if z(new)
i = j does not

join 2 tables

f (di j)
p(qtk(z−i)∪tl (z−i)

|G0)

p(qtk(z−i)
|G0)p(qtl (z−i)

|G0)
if z(new)

i = j joins

two tables

The values p(qtk(z)|G0) for the different sets of subtasks partitions can be computed

based on the the likelihood functions defined in Section 4.3.

The proposed Gibbs sampler enables us to perform inference on the proposed

TE-coh-ddCRP model based on which we can extract the different subtasks embed-

ded in query collections belonging to any complex search tasks. We next present

our evaluation strategies which demonstrate the efficacy of the proposed subtask

extraction method.

4.4 Experimental Evaluation

In this section, we evaluate the robustness of the proposed sub-task extraction

framework. We perform a user judgement study to evaluate the quality of the ex-

tracted sub-tasks. Further, we perform quantitative experiments wherein we report

how the compared approaches perform in terms of task coherence metrics. We
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finally show how search engines could leverage insights about subtasks and help

gauge user effort expended in search.

4.4.1 Dataset

We primarily use two different real world datasets for our experiments. We make

use of the AOL log dataset (Dataset 1) which consists of 20M web queries collected

over three months [163]. The AOL log is a very large and long-term collection

consisting of about 20 million of Web queries issued by more than 657000 users

over 3 months. The dataset comprises of five fields viz. the search query string, the

query time stamp, the rank of the selected item (if any), the domain of the selected

item’s URL (if any), and a unique user identifier. In addition to the AOL search

logs, we use backend search logs of users (Dataset 2) from a major US-based search

engine for a period of 30 days from May 1, 2015 to May 31, 2015, and choose a

random sample of over 2.6 million users where each user is identified by a unique

IP address, with over 200 million search sessions. We filter out inactive users from

our dataset who participate in <50 sessions, and focus instead on the more active

user population.

4.4.2 Baselines

To compare the performance of the proposed subtask extraction algorithm, we base-

line against a number of methods including state-of-the-art task extraction systems,

in addition to parametric and non-parametric clustering approaches.

1. QC-HTC/QC-WCC [70]: frequently used search task identification meth-

ods. QC-WCC conducted clustering by dropping query-pairs with low

weights, while QC-HTC considered the similarity between the first and last

queries of two clusters in agglomerative clustering.

2. BHTD [20]: a recently proposed non-parametric bayesian method which ex-

tracts hierarchies of search tasks and subtasks. To make fair comparisons, we

flatten out the hierarchy at the appropriate depth so as to obtain comparable

number of task clusters.
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3. LDA Time-Window(TW): building on top of a standard LDA topic model

[164], this model assumes queries belong to the same search task only if they

lie in a fixed or flexible time window, and uses LDA to cluster queries into

topics based on the query co-occurrences within the same time window. We

tested time windows of various sizes and report results on the best performing

window size.

4. LDA Word-Related (LDA-WR): assumes that queries belongs to the same

search task only if they share at least one query term, and uses LDA [164] to

cluster queries into topics based on the co-occurrences of queries that share

at least one term.

5. CRP model ([165]): the traditional Chinese Restaurant Process model which

serves as a non-parametric clustering baseline.

Additionally, in order to gauge the contributions arising from the different aspects

of the TE-coh-ddCRP model, we also consider a number of variants of the proposed

approach:

1. vanilla-ddCRP: the vanilla version of the ddCRP with basic Dirichlet Multi-

nomial (DCM) likelihood and cosine similarity between query terms as the

distance measure.

2. BNP Subtasks: the Bayesian nonparametric subtask extraction algorithm

without the coherence based likelihood objective.

3. TE-coh-ddCRP: the entire proposed model with task embedding based dis-

tances and coherence based likelihood function.

4.4.3 User Study

Owing to the absence of ground truth data on sub-task classification, we resort to

user judgments in order to validate the quality of sub-tasks extracted.
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Figure 4.2: Judgments results for sub-task validity across compared approaches. The dif-
ference between TE-cor-ddCRP is statistically significant at p=0.05 level using
a paired t-test.

4.4.3.1 Study Methodology

For the judgment study, we make use of the AOL search logs and sampled entire

query history of frequent users who had more than 1000 unique search queries. We

run the task extraction algorithms (as described in Section 7.2.1) on the entire set of

queries of the sampled users to obtain a set of tasks from which we extract on-task

queries to be used for further sub-task level analysis. We run the different baseline

algorithms along with the proposed approach to these on-task queries to extract the

sub-tasks. From among the set of subtasks extracted, we randomly selected a subset

and collect judgments to access the quality of the sub-tasks extracted. Judgments

were provided by judges who were recruited from the Amazon Mechanical Turk

crowdsourcing service. Judges resided in the United States and were fluent in En-

glish. We restricted annotators to those based in the US because our logs came from

searchers based in the US. We also used hidden quality control questions to filter

out poor-quality judges.

4.4.3.2 Evaluating Subtask Coherence

In an ideal subtask extraction system, all the queries belonging to the same subtask

cluster should ideally help a searcher solve the same information need, belong to the
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same subtask and as a result have better subtask coherence. To this end, we evaluate

the coherence property of the subtasks extracted by the different algorithms. We

select a sub-task at random and then choose a randomly selected pair of queries

from that sub-task. We then ask the human judges the following research question:

RQ: Subtask Relatedness: Are the given pair of queries related to the same sub-

task? The possible judge options include (i) Related, (ii) Somewhat Related and

(iii) Unrelated.

The subtask relatedness score provides an estimate of how coherent the ex-

tracted subtasks are. Indeed, a subtask cluster containing queries from different

tasks would score less on Subtask Relatedness score since, if the cluster is impure,

there is a greater chance that the 2 randomly picked queries would belong to differ-

ent tasks and hence get judged as Unrelated. We repeat this process for a total of

100 iterations and compare the results with the ones obtained by our proposed ap-

proach, as well as with the ones obtained by few baselines. We report the proportion

of query pairs judged as Related in Fig. 6.3. It is clear that our proposed method

outperforms all the baselines considered, in making correct sub-task assignments.

4.4.4 Subtask Coherence Metric

In addition to the visual qualitative and judgement based evaluation, we also wish

to measure coherence of the extracted subtasks. An ideal subtask would contain

queries which all solve similar information needs. Recent work has demonstrated

that it is possible to automatically measure topic coherence with near-human accu-

racy [166, 161] using a score based on pointwise mutual information (PMI). These

studies show (using 6000 human evaluations) that the PMI-Score broadly agrees

with human-judged topic coherence. We leverage the same insights and derive an

estimate using PMI to capture subtask coherence. The Subtask Coherence measure

indicates the atomicity of the information need associated with the subtask. It is

captured by the semantic closeness of the queries associated with the subtask.

For each dataset, we treat two query terms as co-occurring if both terms occur
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in the same search session. For a given subtask (t), we measure subtask coherence

as the average of PMI scores for all pairs of the search terms associated with the

task node:

Subtask Coherence =
1
|w|2

|w|

∑
i=1

|w|

∑
j=1

PMI(wi,w j) (4.9)

where |w| represents the total number of unique search terms associated with sub-

task t. The subtask coherence score would be high for subtasks which contain

queries that address similar information needs.

We present the results based on Subtask Coherence for the two datasets con-

sidered in Figures 4.3a & 4.3b. The proposed TE-coh-ddCRP model performs

better than all baselines considered which shows that the tasks extracted are more

coherent in terms of the information needs they address. The recently proposed

task extraction systems QC-HTC and BHTD perform better than other baselines

while LDA-TW approach performs the worst. By comparing the performance of

coh-ddCRP and BNP, we are able to estimate the contributions by the different

aspects of the proposed approach. Indeed, the coherence likelihood function helps

improve performance over the vanilla-ddCRP model, while when combined with

task based embeddings (TE-coh-ddCRP), the model outperforms all other methods

in terms of task coherence.

Purity Estimates:

From a given collection of on-task queries, the proposed model simultaneously clus-

ters queries into subtasks. Thus, the performance of identifying and labeling search

subtasks mainly depends on how we cluster query words into different tasks. In the

next few experiments, we evaluate the quality of obtained query clusters/subtasks,

which in turn depends on their purity. Since no ground truth about the correct com-

position of a subtask is available, we assess purity by the average similarity of each

pair of queries within the same subtask as:

Purity =
1
K ∑

k

∑qi,q j∈tksim(qi,q j)

Nk(Nk−1)/2
×100 (4.10)
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(c) Purity Estimates: Dataset1
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(d) Purity Estimates: Dataset2

Figure 4.3: Quantitative Evaluation of the subtasks extracted in terms of (i) Task Coherence
and (ii) Purity estimates.

where Nk is the number of queries in subtask k. We evaluate the query similarity

based on their task based vector embeddings as described in detail in Section 4.3.3.

Figure 4.3c and 4.3d compares the purity of topics detected by the proposed

model, alternative probabilistic models, and state-of-the-art query clustering ap-

proaches on both the datasets considered. We observe that the proposed TE-coh-

ddCRp model outperforms all compared approaches in terms of purity and is able

to find subtask clusters wherein the query terms are more similar. It improves over

the second best method by over 20%. We observe similar trends in terms of top

performing baselines as we did while evaluating coherence. Among the variants of

the proposed approach, the coherence enabled version performs better than the em-

bedding enabled variant while their combination performs the best. This highlights

the importance of considering both the embedding based distance metric aspect as

well as the coherence based likelihood aspect, while extracting subtasks.
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Figure 4.4: Effort metrics comparisons across different subtasks. To avoid publishing exact
metric values, we treat Subtask 2 as 0 for normalization and report deviation
scores for Subtask 1 and 3.

4.5 Subtask Efforts

Users invest significant time and effort in searching for information on search en-

gines. Consequently, task effort metrics are an important indicator of user engage-

ment with specific search tasks. In the current section, we make use of the proposed

TE-coh-ddCRP model to extract real world subtasks and quantify some popular

search metrics by aggregating across all queries for each of our identified sub-tasks.

We highlight that task effort varies significantly across the different sub-tasks within

a single task. Search engines need to be aware of such effort variations across sub-

tasks in order to provide better task-aware personalizations.

4.5.1 Effort Metrics

We wish to understand the relationship between the different subtasks and total

effort expended by the users in trying to accomplish them. We hypothesize that

users expend different amounts of effort in completing the sub-tasks and this is

reflected in the scores of task effort metrics that are recorded by search engines.

We analyse search effort across the different subtasks as extracted by our TE-

coh-ddCRP model. We characterise search effort using 5 different metrics:
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1. Time to First Click (TTFC): measures the time elapsed before the user

clicks the first link on the query result page. A longer TTFC is an indica-

tion of user surprise or confusion with the search results, and hints at a more

extensive cognitive elaboration process while the user decides which link to

click on.

2. Time to Last Click (TTLC): measures the time elapsed before the user clicks

the final link in her search session. The TTLC is a more direct measure of

search effort expended by the user within a particular session. A higher TTLC

could indicate user disatisfaction with the early results provided by the query

results, or a heightened motivation on part of the user to search more about

the particular topic of interest.

3. Page Click Count (PCC): quantifies the total number of clicks observed on

the search results page.

4. Pagination Click Count (PgCC): quantifies the amount of pagination ac-

tivity observed. Higher PgCC values indicate users examining results from

beyond the first page. Both PCC and PgCC metrics are direct measures of

the search effort put in by the user, and are hence good proxies to capture the

different facets of search effort.

5. Query Dwell Time (QDT): quantifies the total time spent by the user on a

particular query result before returning to the query result page or leaving

the search engine. Thus, a higher QDT indicates a higher user interest and

engagement with the selected query result and is therefore a good measure of

the quality of query processing on part of the search engine.

4.5.2 Analysis

In this section, we provide an illustration of task effort differences within a single

task. We choose ”plan wedding” task from the previous section and compute task

effort metrics for the various subtasks, by aggregating these metrics over the con-

stitutent queries for each of these three identified sub-tasks: Sub-task 1:Wedding
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dresses, Sub-task 2:Wedding hairstyles, Sub-task 3:Wedding cards.

Figure 4.4 illustrates that there exists significant differences in task effort met-

rics across the three sub-tasks. For instance, we find that wedding dresses (sub-

task 1) and wedding hairstyles (sub-task 2) have a higher time to last click (TTLC)

than wedding cards (sub-task 3). Conversely, however, the pagination click count

(PgCC) for wedding cards is higher than both wedding hairstyles and wedding

dresses. Understanding persistent differences in sub-task effort metrics is instru-

mental for search engines in developing context-aware personalizations.

4.6 Conclusion
Web search tasks are often complex and comprise several constituent sub-tasks. In

this chapter, we offer a non-parametric Bayesian approach to identifying sub-tasks

by grouping search queries using an embedding based dd-CRP approach. The pro-

posed model combines insights from Bayesian nonparametrics and distributional

semantics to extract subtasks which are not only meaningful but are also coher-

ent. We evaluate our proposed method on a proprietary search logs dataset as well

as on the AOL search logs and demonstrate the superiority over comparable ap-

proaches. We contend that our proposed approach is significantly more useful in

online environments where the number of sub-tasks is never known a priori and im-

possible to ascertain or approximate. Further, using an embedding based distancing

scheme we offer an improvement in empirical performance over prior clustering

approaches that have used either a bag-of-words or TF-IDF based approach. Our

method offers search engine providers with a novel method to identify and analyse

user task-behavior, and better support task decisions on their platforms.



Chapter 5

Extracting Hierarchies of Search

Tasks & Subtasks

5.1 Introduction

The need for search often arises from a person’s need to achieve a goal, or a task

such as booking travels, buying a house, etc., which would lead to search processes

that are often lengthy, iterative, and are characterized by distinct stages and shifting

goals [13]. Thus, identifying and representing these tasks properly is highly impor-

tant for devising search systems that can help end users complete their tasks. It has

previously been shown that these task representations can be used to provide users

with better query suggestions [167], offer improved personalization [21, 168], pro-

vide better recommendations [169], help in satisfaction prediction [170] and search

result re-ranking. Moreover, accurate representations of tasks could also be highly

useful in aptly placing the user in the task-subtask space to contextually target the

user in terms of better recommendations and advertisements, developing task spe-

cific ranking of documents, and developing task based evaluation metrics to model

user satisfaction. Given the wide range of applications these tasks representations

can be used for, significant amount of research has been devoted to task extraction

and representation [73, 171, 6, 13, 76].

Task extraction is quite a challenging problem as search engines can be used to

achieve very different tasks, and each task can be defined at different levels of gran-
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ularity. A major limitation in existing task-extraction methods lies in their treatment

of search tasks as flat structure-less clusters which inherently lack insights about the

presence or demarcation of subtasks associated with individual search tasks. In re-

ality, often search tasks tend to be hierarchical in nature. For example, a search

task like planning a wedding involves subtasks like searching for dresses, browsing

different hairstyles, looking for invitation card templates, finding planners, among

others. Each of these subtasks (1) could themselves be composed of multiple sub-

tasks, and (2) would warrant issuing different queries by users to accomplish them.

Hence, in order to obtain more accurate representations of tasks, new methodologies

for constructing hierarchies of tasks are needed.

As part of the proposed research, we consider the challenge of extracting hi-

erarchies of search tasks and their associated subtasks from a search log given just

the log data without the need of any manual annotation of any sort. We present

an efficient Bayesian nonparametric model for discovering hierarchies and pro-

pose a tree based nonparametric model to discover this rich hierarchical structure of

tasks/subtasks embedded in search logs. Most existing hierarchical clustering tech-

niques result in binary tree structures with each node decomposed into two child

nodes. Given that a complex task could be composed of an arbitrary number of

subtasks, these techniques cannot directly be used to construct accurate represen-

tations of tasks. In contrast, our model is capable of identifying task structures

that can be composed of an arbitrary number of children. We make use of a num-

ber of evaluation methodologies to evaluate the efficacy of the proposed task ex-

traction methodology, including quantitative and qualitative analyses along with

crowdsourced judgment studies specifically catered to evaluating the quality of the

extracted task hierarchies. We contend that the techniques presented expand the

scope for better recommendations and search personalization and opens up new

avenues for recommendations specifically targeting users based on the tasks they

involve in.
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Symbol Description
nT number of children of tree T
ab|c partition of set {a,b,c} into disjoint sets {a,b},{c}
ch(T) children of T
φ(T ) partition of tree T
p(Dm|Tm) likelihood of data Dm given the tree Tm
πTm mixing proportions of partition of tree T
f (Dm) marginal probability of the data Dm
H(T ) set of all partitions of queries Q = leaves(T )
f (Q) task affinity function for set of queries Q
rk

qi,q j
the k-th inter-query affinity between qi & q j

Table 5.1: Table of symbols

5.2 Defining Search Tasks

Jones et al. [13] was one of the first papers to point out the importance of task

representations, where they defined a search task as:

definition A search task is an atomic information need resulting in one or more

queries.

Follow-up work on tasks, specifically Lucchese et al.et al.[70] and Ahmed et

al. [167] later extended this definition to a more generic one, which can also capture

task structures that could possibly consist of related subtasks, each of which could

be complex tasks themselves or may finally split down into simpler tasks or atomic

informational needs. A complex search task can then be defined as [70, 167]:

definition A complex search task is a multi-aspect or a multi-step information

need consisting of a set of related subtasks, each of which might recursively be

complex.

The definition of complex tasks is much more generic, and captures all possible

search tasks, that can be either complex or atomic (non-complex). Throughout this

paper we adopt the definition provided in Definition 5.2.2 as the definition for a

search task. Hence, by definition a search task has a hierarchical nature, where each

task can consist of an arbitrary number of, possibly complex subtasks. An effective

task extraction system should be capable of accurately identifying and representing

such hierarchical structures.
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5.3 Constructing Task Hierarchies
While hierarchical clustering are widely used for clustering, they construct binary

trees which may not be the best model to describe data’s intrinsic structure in many

applications, for example, the task-subtask structure in our case. To remedy this,

multi-branch trees are developed. Currently there are few algorithms which gener-

ate multi-branch hierarchies. Blundel et al. [145, 137] adopt a simple, deterministic,

agglomerative approach called BRTs (Bayesian Rose Trees) for constructing multi-

branch hierarchies. In this work, we adapt BRT as a basic algorithm and extend it for

constructing task hierarchies. We next describe the major steps of BRT approach.

5.3.1 Bayesian Rose Trees

BRTs [145, 137] are based on a greedy probabilistic agglomerative approach to

construct multi-branch hierarchies. In the beginning, each data point is regarded as

a tree on its own: Ti = {xi} where xi is the feature vector of i-th data. For each

step, the algorithm selects two trees Ti and Tj and merges them into a new tree Tm.

Unlike binary hierarchical clustering, BRT uses three possible merging operations,

as shown in Figure 5.1:

• Join: Tm = Ti,Tj, such that the tree Tm has two children now

• Absorb: Tm = children(Ti)∪Tj, i.e., the children of one tree gets absorbed

into the other tree forming an absorbed tree with >2 children

• Collapse: Tm = children(Ti)∪ children(Tj), all the children of both the sub-

trees get combined together at the same level.

Specifically, at each step, the algorithm greedily finds two trees Ti and Tj to merge

which maximize the ratio of probability:

p(Dm|Tm)

p(Di|Ti)p(D j|Tj)
(5.1)

where p(Dm|Tm) is the likelihood of data Dm given the tree Tm, Dm is all the leaf

data of Tm, and Dm = Di∪D j . The probability p(Dm|Tm) is recursively defined on
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the children of Tm:

p(Dm|Tm) = πTm f (Dm)+(1−πTm) ∏
Ti∈ch(Tm)

p(Di|Ti) (5.2)

where f (Dm) is the marginal probability of the data Dm and πTm is the ”mixing

proportion”. Intuitively, πTm is the prior probability that all the data in Tm is kept in

one cluster instead of partitioned into sub-trees. In BRT[145], πTm is defined as:

πTm = 1− (1− γ)nTm−1 (5.3)

where nTm is the number of children of Tm, and 0 ≥ γ ≤ 1 is the hyperparameter to

control the model. A larger γ leads to coarser partitions and a smaller γ leads to finer

partitions. Table 6.1 provides an overview of notations & symbols used throughout

the paper.

5.3.2 Building Task Hierarchies

We next describe our task hierarchy construction approach built on top of Bayesian

Rose Trees. A tree node in our setting is comprised of a group of queries which

potentially compose a search task, i.e. these are the set of queries that people tend

to issue in order to achieve the task represented in the tree node.

We define the task-subtask hierarchy recursively: T is a task if either T contains

all the queries at its node (an atomic search task) or if T splits into children trees as

T = {T1,T2, ...,TnT } where each of the children trees (Ti) are disjoint set of queries

corresponding to the nT subtasks associated with task T . This allows us to consider

trees as a nested collection of sets of queries defining our task-subtask hierarchical

relation.

To form nested hierarchies, we first need to model the query data. This corre-

sponds to defining the marginal distribution of the data f (Dm) as defined in Equa-

tion 2. The marginal distribution of the query data ( f (Dm)) helps us encapsulate

insights about task level interdependencies among queries, which aid in construct-

ing better task representations. The original BRT approach [145] assumes that the
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Figure 5.1: The different ways of merging trees which allows us to obtain tree structures
which best explain the task-subtask structure.

data can be modeled by a set of binary features that follow the Bernoulli distribu-

tion. In other words, features (that represent the relationship/similarities between

data points) are not weighted and can only be binary. Binary (0/1) relationships

are too simplistic to model inter-query relationships; as a result, this major assump-

tion fails to capture the semantic relationships between queries and is not suited

for modeling query-task relations. To this end, we propose a novel query affinity

model and to alleviate the binary feature assumption imposed by BRT, we propose

a conjugate model of query affinities, which we describe next.

5.3.3 Conjugate Model of Query Affinities

A tree node in our setting is comprised of a group of queries which potentially

belong to the same search task. The likelihood of a tree should encapsulate infor-

mation about the different relationships which exists between queries. Our goal
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Query-Term Based Affinity (r1)
cosine cosine similarity between the term sets of the queries

edit norm edit distance between query strings
Jac Jaccard coeff between the term sets of the queries

Term proportion of common terms between the queries
URL Based Affinity (r2)

Min-edit-U Minimum edit distance between all URL pairs from the queries
Avg-edit-U Average edit distance between all URL pairs from the queries
Jac-U-min Minimum Jaccard coefficient between all URL pairs from the queries
Jac-U-avg Average Jaccard coefficient between all URL pairs from the queries

Session/User Based Affinity (r3)
Same-U if the two queries belong to the same user
Same-S if the two queries belong to the same session

Embedding Based Affinity (r4)
Embedding cosine distance between embedding vectors of the two queries

Table 5.2: Query-Query Affinities.

here is to make use of the rich information associated with queries and their result

set available to compute the likelihood of a set of queries to belong to the same task.

In order to do so, we propose a query affinity model which makes use of a number

of different inter-query affinities to determine the tree likelihood function.

We next describe the technique used to compute four broad categories of inter-

query affinity and later describe the Gamma-Poisson conjugate model which makes

use of these affinities to compute the marginal distribution of the data.

Query-term based Affinity (r1):

Search queries catering to the same or similar informational needs tend to have

similar query terms. We make use of this insight and capture query level affinities

between a pair of queries. We make use of cosine similarity between the query term

sets, the normalized edit distances between queries and the Jaccard Coefficient

between query term sets.

URL-based Affinity (r2):

Users tackling similar tasks tend to issue queries (possibly different) which return

similar URLs, thus encoding the URL level similarity between pairs of queries into
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the query affinity model helps in capturing another task-specific similarity between

queries. Any query pair having high URL level similarity increase the possibility of

the query pair originating from similar informational needs. We capture a number

of URL-based signals including minimum and average edit distances between URL

domains and jaccard coefficient between URLs.

User/Session based Affinity (r3):

It is often the case that users issue related queries within a session so as to satisfy

their informational need. We leverage this insight by making use of session level

information (as a 0/1 binary feature) and user-level information (as a 0/1 binary

feature) in our affinity model to identify queries issued in the same session and by

the same user accordingly.

Query Embedding based Affinity (r4):

Word embeddings capture lexico-semantic regularities in language, such that words

with similar syntactic and semantic properties are found to be close to each other in

the embedding space. We leverage this insight and propose a query-query affinity

metric based on such embeddings. We train a skip-gram word embeddings model

where a query term is used as an input to a log-linear classifier with continuous

projection layer and words within a certain window before and after the words are

predicted. To obtain a query’s vector representation, we average the vector repre-

sentations of each of its query terms and compute the cosine similarity between two

queries’ vector representations to quantify the embedding based affinity (r4).

Table 5.2 summarizes all features considered to compute these affinities. Our

goal is to capture information from all four affinities when defining the likelihood

of the tree. We assume that the global affinity among a group of queries can be

decomposed into a product of independent terms, each of which represent one of

the four affinities from the query-group. For each query group Q, we take the nor-

malized sum of the affinities from all pairs of queries in the group Q to form each

of the affinity component (rk, k=1,2,3,4).
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Poisson models have been shown as effective query generation models for in-

formation retrieval tasks [172]. While these affinities could be used with a lot of

distributions, in the interest of computational efficiency and to avoid approximate

solutions, our model will use a hierarchical Gamma-Poisson distribution to encode

the query-query affinities. We incorporate the gamma-Poisson conjugate distribu-

tion in our model under the assumptions that the query affinities are discretized and

for a group of queries Q, the affinities can be decomposed to a product of indepen-

dent terms, each of which represents contributions from the four different affinity

types. Finally, for a tree (Tm) consisting of the data (Dm), i.e. the set of queries Q,

we define the marginal likelihood as:

f (Dm) = f (Q) =
k=4

∏
k=1

p
(

∑
i∈1···|Q|

∑
j∈1···|Q|

rk
qi,q j
|αk,βk

)
(5.4)

where αk & βk are respectively the shape parameter & the rate parameter of the four

different affinities. Making use of the Poisson-Gamma conjugacy, the probability

term in the above product can be written as:

p(r|α,β ) =
∫

λ

p(r|λ )p(λ |α,β )dλ (5.5)

=

{
Γ(α + r)
r!Γ(α)

(
β

β +1

)α(
1

β +1

)r}
(5.6)

where λ is the Poisson mean rate parameter which gets eliminated from computa-

tions because of the Gamma-Poisson conjugacy and where r, α & β get replaced

by affinity class specific values.

5.3.4 Task Coherence based Pruning

The search task extraction algorithm described above provides us a way of con-

structing a task hierarchy wherein as we go down the tree, nodes comprising of com-

plex multi-aspect tasks split up to provide finer tasks which ideally should model

user’s fine grained information needs. One key problem with the hierarchy construc-

tion algorithm is the continuous splitting of nodes which results in singleton queries
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occupying the leave nodes. While splitting of nodes which represent complex tasks

is important, the nodes representing simple search task queries corresponding to

atomic informational needs should not be further split into children nodes. Our goal

in this section is to provide a way of quantifying the task complexity of a particular

node so as to prevent splitting up nodes representing atomic search task into further

subsets of query nodes.

5.3.4.1 Identifying Atomic Tasks

We wish to identify nodes capturing search subtasks which represent atomic infor-

mational need. In order to do so, we introduce the notion of Task Coherence:

definition Task Coherence is a measure indicating the atomicity of the infor-

mation need associated with the task. It is captured by the semantic closeness of the

queries associated with the task.

By measuring Task Coherence, we intend to capture the semantic variability of

queries within this task in an attempt to identify how complex or atomic a task is.

For example, a tree node corresponding to a complex task like planning a vacation

would involve queries from varied informational needs including flights, hotels, get-

aways, etc; while a tree node corresponding to a finer task representing an atomic

informational need like finding discount coupons would involve less varied queries

- all of which would be about discount coupons. Traditional research in topic mod-

elling has looked into automatic evaluation of topic coherence [166] via Pointwise

Mutual Information. We leverage the same insights to capture task coherence.

5.3.4.2 Pointwise Mutual Information

PMI has been studied variously in the context of collocation extraction [162] and is

one measure of the statistical independence of observing two words in close prox-

imity. We wish to compute PMI scores for each node of the tree. A tree node in

our discussion so far has been represented by a collection of search queries. We

split queries into terms and obtain a set of terms corresponding to each node, and

calculate a node’s PMI scores using the node’s set of query terms.

For the PMI computation, we employ the AOL log query set and treat two

query terms as co-occurring if both terms occur in the same session. For a given
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task node, we measure task coherence as the average of PMI scores for all pairs of

the search terms associated with the task node. The node’s PMI-Score is used as

the final measure of task coherence for the task represented via the corresponding

node.

5.3.4.3 Tree Pruning

We use the task coherence score associated with each node of the task hierarchy

constructed, and prune lower level nodes of the tree to avoid aggressive node split-

ting. The overall motivation here is to avoid splitting nodes which represent simple

search tasks associated with atomic informational needs. We scan through all lev-

els of the search task hierarchy obtained by the algorithm described above and for

each node compute its task coherence score. If the task coherence score exceeds

a specific threshold, it implies that all the queries in this particular node are aimed

at solving the same or very similar informational need and hence, we prune off the

sub-tree rooted at this particular node and ignore all further splits of this node.

5.3.5 Algorithmic Overview

We summarize the overall algorithm to construct the hierarchy by outlining the

steps. The problem is treated as one of greedy model selection: each tree T is a

different model, and we wish to find the model that best explains the search log data

in terms of task-subtask structure.

Step 1: Forrest Initialization:

The tree is built in a bottom-up greedy agglomerative fashion, starting from a forest

consisting of n (=|Q|) trivial trees, each corresponding to exactly one vertex. The

algorithm maintains a forest F of trees, the likelihood p(i) = p(Di|Ti) of each tree

Ti ∈ F and the different query affinities. Each iteration then merges two of the trees

in the forest. At each iteration, each vertex in the network is a leaf of exactly one

tree in the forest. At each iteration a pair of trees in the forest F is chosen to be

merged, resulting in forest F∗.
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Step 2: Merging Trees:

At each iteration, the best potential merge, say of trees X and Y resulting in tree I, is

picked off the heap. Binary trees do not fit into representing search tasks since a task

is likely to be composed of more than two subtasks. As a result, following [137] we

consider three possible mergers of two trees Ti and Tj into Tm. Tm may be formed

by joining Ti and Tj together using a new node, giving Tm = {Ti,Tj}. Alternatively

Tm may be formed by absorbing Ti as a child of Tj, yielding Tm = {Tj}
⋃

ch(Ti), or

vice-versa, Tm = {Ti}
⋃

ch(Tj). We explain the different possible merge operations

in Figure 5.1. We obtain arbitrary shaped sub-trees (without restricting to binary

tress) which are better at representing the varied task-subtask structures as observed

in search logs with the structures themselves learnt from log data. Such expressive

nature of our approach differentiates it from traditional agglomerative clustering

approaches which necessarily result in binary trees.

Step 3: Model Selection:

Which pair of trees to merge, and how to merge these trees, is determined by con-

sidering which pair and type of merger yields the largest Bayes factor improvement

over the current model. If the trees Ti and Tj are merged to form the tree M, then

the Bayes factor score is:

SCORE(M; I,J) =
p(DM|F∗)
p(DM|F)

(5.7)

=
p(DM|M)

p(Di|Ti)p(D j|Tj)
(5.8)

where p(Di|Ti) and p(D j|Tj) are given by the dynamic programming equation men-

tioned above. After a successful merge, the statistics associated with the new tree

are updated. Finally, potential mergers of the new tree with other trees in the forest

are considered and added onto the heap.

The algorithm finishes when no further merging results in improvement in the

Bayes Factor score. Note that the Bayes factor score is based on data local to the

merge - i.e., by considering the probability of the connectivity data only among



5.4. Experimental Evaluation 117

the leaves of the newly merged tree. This permits efficient local computations and

makes the assumption that local community structure should depend only on the

local connectivity structure.

Step 4: Tree Pruning:

After constructing the entire hierarchy, we perform the post-hoc tree pruning pro-

cedure described in Section 5.3.4 wherein we identify atomic task nodes via their

task coherence estimates and prune all child nodes of the identified atomic nodes.

5.4 Experimental Evaluation

We perform a number of experiments to evaluate the proposed task-subtask extrac-

tion method. First, we compare its performance with existing state-of-the-art task

extraction systems on a manually labelled ground-truth dataset and report superior

performance (5.4.1). Second, we perform a detailed crowd-sourced evaluation of

extracted tasks and additionally validate the hierarchy using human labeled judg-

ments (5.4.2). Third, we show a direct application of the extracted tasks by using

the task hierarchy constructed for term prediction (5.4.3).

Parameter Setting:

Unless stated otherwise, we made use of the best performing hyperparameters for

the baselines as reported by the authors. The query affinities in the proposed ap-

proach were computed from the specific query collection used in the dataset used

for each of the three experiments reported below. While hyperparmeter optimiza-

tion is beyond the scope of this work, we experimented with a range of the shape and

inverse scale hyperparameters (α , β ) used for the Poison Gamma conjugate model

and used the ones which performed best on the validation set for the search task

identification results reported in the next section. Additionally, for the tree pruning

threshold, we empirically found that a threshold of 0.8 gave the best performance

on our toy hierarchies, and was used for all future experiments.
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5.4.1 Search Task Identification

To justify the effectiveness of the proposed model in identifying search tasks in

query logs, we employ a commonly used AOL data subset with search tasks anno-

tated which is a standard test dataset for evaluating task extraction systems. We used

the task extraction dataset as provided by Lucchese et al.[70]. The dataset comprises

of a sample of 1000 user sessions for which human assessors were asked to manu-

ally identify the optimal task-based query sessions, thus producing a ground-truth

that can be used for evaluating automatic task-based session discovery methods.

For further details on the dataset and the dataset access links, readers are directed to

Lucchese et al.[70].

We compare our performance with a number of search task identification ap-

proaches:

• Bestlink-SVM [10]: This method identified search task using a semi-

supervised clustering model based on the latent structural SVM framework.

• QC-HTC/QC-WCC [70]: This series of methods viewed search task identi-

fication as the problem of best approximating the manually annotated tasks,

and proposed both clustering and heuristic algorithms to solve the problem.

• LDA-Hawkes [76]: a probabilistic method for identifying and labeling

search tasks that model query temporal patterns using a special class of point

process called Hawkes processes, and combine topic model with Hawkes pro-

cesses for simultaneously identifying and labeling search tasks.

• LDA Time-Window(TW): This model assumes queries belong to the same

search task only if they lie in a fixed or flexible time window, and uses LDA to

cluster queries into topics based on the query co-occurrences within the same

time window. We tested time windows of various sizes and report results on

the best performing window size.
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Figure 5.2: F1 score results on AOL tagged dataset

5.4.1.1 Metrics

A commonly used evaluation metric for search task extraction is the pairwise F-

measure computed based on pairwise precision/recall [13, 6] defined as,

ppair =
Σi≤ jδ (y(qi),y(q j))δ (ŷ(qi), ŷ(q j))

δ (ŷ(qi), ŷ(q j))
(5.9)

rpair =
Σi≤ jδ (y(qi),y(q j))δ (ŷ(qi), ŷ(q j))

δ (y(qi),y(q j))
(5.10)

where ppair evaluates how many pairs of queries predicted in the same task, i.e.,

δ (ŷ(qi), ŷ(q j) = 1, are actually annotated as in the same task, i.e., δ (y(qi),y(q j)) =

1 and rpair evaluates how many pairs annotated as in the same task are recovered

by the algorithm. Thus, globally F-measure evaluates the extent to which a task

contains only queries of a particular annotated task and all queries of that task.

Given ppair and rpair, the F-measure is computed as:F1 =
2×ppair×rpair

ppair+rpair
.

5.4.1.2 Results & Discussion

Figure 5.2 compares the proposed model with alternative probabilistic models and

state-of-the-art task identification approaches by F1 score. To make fair compar-

isons, we consider the last level of the pruned tree constructed as task clusters when
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computing pairwise precision/recall values. It is important to note that the labelled

dataset has only flat tasks extracted on a per user basis; as a result, this dataset is

not ideal for making fair comparisons of the proposed hierarchy extraction method

with baselines. Nevertheless, the proposed approach manages to outperform exist-

ing task extraction baselines while having much greater expressive powers and pro-

viding the subdivision of tasks into subtasks. LDA-TW performs the worst since

its assumptions on query relationship within the same search task are too strong.

The advantage over QC-HTC and QC-WCC demonstrates that appropriate usage of

query affinity information can even better reflect the semantic relationship between

queries, rather than exploiting it in some collaborative knowledge.

5.4.2 Evaluating the Hierarchy

While there are no gold standard datasets for evaluating hierarchies of tasks, we

performed crowd-sourced assessments to assess the performance of our hierarchy

extraction method. We separately evaluated the coherence and quality of the ex-

tracted hierarchies via two different set of judgements obtained via crowdsourcing.

Evaluation Setup

For the judgment study, we make use of the AOL search logs and randomly sampled

entire query history of frequent users who had more than 1000 search queries. The

AOL log is a very large and long-term collection consisting of about 20 million of

Web queries issued by more than 657000 users over 3 months. We run the task

extraction algorithms on the entire set of queries of the sampled users and collect

judgments to assess the quality of the tasks extracted. Judgments were provided by

over 40 judges who were recruited from the Amazon Mechanical Turk crowdsourc-

ing service. We restricted annotators to those based in the US because the logs came

from searchers based in the US. We also used hidden quality control questions to

filter out poor-quality judges. The judges were provided with detailed guidelines

describing the notion of search tasks and subtasks and were provided with several

examples to help them better understand the judgement task.
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Evaluating Task Coherence

In the first study, we evaluated the quality of the tasks extracted by the task ex-

traction algorithms. In an ideal task extraction system, all the queries belonging to

the same task cluster should ideally belong to the same task and hence have better

task coherence. To this end, we evaluate the task coherence property of the tasks

extracted by the different algorithms. For each of the baselines and the proposed

algorithm, we select a task at random from the set of tasks extracted and randomly

pick up two queries from the selected task. We then ask the human judges the

following question:

RQ1: Task Relatedness: Are the given pairs of queries related to the same task?

The possible options include (i) Task Related, (ii) Somewhat Task Related and (iii)

Unrelated.

The task relatedness score provides an estimate of how coherent tasks are. In-

deed, a task cluster containing queries from different tasks would score less in Task

Relatedness score since if the task cluster is impure, there is a greater chance that the

2 randomly picked queries belong to different tasks and hence get judged Unrelated.

Evaluating the hierarchy

While there are no gold standard dataset to evaluate hierarchies, in our second

crowd-sourced judgment study, we evaluate the quality of the hierarchy extracted.

A valid task-subtask hierarchy would have the parent task representing a higher

level task with its children tasks representing more focused subtasks, each of which

help the user achieve the overall task identified by the parent task.

We evaluate the correctness of the hierarchy by validating parent-child task-

subtask relationships. More specifically, we randomly select a parent node from the

hierarchy and then randomly select a child node from the set of its immediate child

nodes. Given such parent-child node pairs, we randomly pick 5 queries from the

parent node and randomly pick 2 queries from the child node. We then show the
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human judges these parent and child queries and ask the following questions:

RQ2: Subtask Validity: Consider the set of queries representing the search task

and the pair of queries representing the subtask. How valid is this subtask given the

overall task?

The possible judge options include (i) Valid Subtask, (ii) Somewhat valid and

(iii) Invalid. Answering this question helps us in analyzing the correctness of the

parent-child task-subtask pairs.

RQ3: Subtask Usefulness: Consider the set of queries representing the search task

and the pair of queries representing the subtask. Is the subtask useful in completing

the overall search task?

The possible judge options include (i) Useful, (ii) Somewhat Useful and (iii)

Not Useful. This helps us in evaluating the usefulness of task-subtask pairs by

finding the proportion of subtasks which help users in completing the overall task

described by the parent node. Overall, the RQ2 and RQ3 help in evaluating the

correctness and usefulness of the hierarchy extracted.

Baselines

Since RQ1 evaluates task coherence without any notion of task-subtask structure,

we compare against the top performing baselines from the task extraction setup

described in section 5.4.1. On the other hand, RQ2 & RQ3 help in answering ques-

tions about the quality of hierarchy constructed. To make fair comparisons while

evaluating the hierarchies, we introduce additional hierarchy extraction baselines:

• Jones Hierarchies [13]: A supervised learning approach for task boundary

detection and same task identification. We train the classifier using the su-

pervised Lucchese AOL task dataset and use it to extract tasks on the current

dataset used in the judgment study.

• BHCD [137]: A state-of-the-art bayesian hierarchical community detection
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Task Relatedness
Proposed LDA-TW QC-WCC LDA-Hawkes QC-HTC

Task Related 72%* 47% 60% 67% 61%
Somewhat Related 20% 14% 15% 13% 5%

Unrelated 10% 23% 25% 20% 34%

Table 5.3: Performance on Task Relatedness. The results highlighted with * signify statisti-
cally significant difference between the proposed approach and best performing
baseline using χ2 test with p≤ 0.05.

Subtask Validity
Proposed Jones BHCD BAC

Valid 81%* 69% 51% 49%
Somewhat Valid 8% 19% 17% 21%

Not Valid 11% 12% 32% 30%
Subtask Usefulness

Useful 67%* 52% 41% 43%
Somewhat Useful 8% 17% 19% 20%

Not Useful 25% 31% 40% 37%

Table 5.4: Performance on Subtask Validity and Subtask Usefulness. Results highlighted
with * signify statistically significant difference between the proposed frame-
work and best performing baseline using χ2 test with p≤ 0.05.

algorithm based on stochastic blockmodels and makes use of Beta-Bernoulli

conjugate priors to define a network. We build a network of queries and apply

BHCD algorithm to extract hierarchies of query communities.

• Bayesian Agglomerative Clustering (BAC) [139]: A standard agglomera-

tive hierarchical clustering model based on Dirichlet process mixtures.

Results & Discussion

For the first judgment study, each HIT is composed of 20 query pairs per approach

being judged for task relatedness. We had three judges work on every HIT. Overall,

per method we obtained judgments for 60 query pairs to evaluate the performance

on task-relatedness. From among the three judges judging each query-pair, we fol-

lowed majority voting mechanism to finalize the label for the instance. Table 5.3

presents the proportions of query pairs judged as related. About 72% of query pairs

were judged task-related for the proposed approach with LDA-Hawkes performing

second best with 67%. Task relatedness measures how pure the task clusters ob-
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tained are, a higher score indicates that the queries belonging to the same task are

indeed used for solving the same search task. The overall results indicate that the

tasks extracted by the proposed task-subtask extraction algorithm are indeed better

than those extracted by the baselines.

For the second judgment study used for evaluating the quality of the hierarchy,

we show 10 pairs of parent-child questions in each HIT and ask the human annota-

tors to judge the subtask validity and usefulness. Overall, per method we evaluate

300 such judgments resulting in over 1200 judgments and used maximum voting

criterion from among the 3 judges to decide the final label for each instance. Table

5.4 compares the performance of the proposed hierarchy extraction method against

other hierarchical baselines. The identified subtask was found useful in 67% cases

with the best performing baseline being useful in 52% of judged instances. This

highlights that the extracted hierarchy is indeed composed of better subtasks which

are found to be useful in completing the overall task depicted by the parent task.

It is interesting to note that for BHCD and BAC baselines, most often the subtasks

were found to be invalid and not useful.

Since the same parent-child task-subtask was judged for validity and useful-

ness, it is expected that the proportion of task-subtasks judged useful would be less

than the ones judged valid. Indeed, as can be seen from the Table 5.4, the relative

proportions of tasks-subtasks found useful is much less than those found valid.

5.4.3 Term Prediction

In addition to task extraction and user study based evaluation, we chose to follow an

indirect evaluation approach based on Query Term Prediction wherein given an ini-

tial set of queries, we predict future query terms the user may issue later in the ses-

sion.This is in line with our goal of supporting users tackling complex search tasks

since a task identification system which is capable of identifying ”good” search

tasks will indeed perform better in predicting the set of future query terms.

To evaluate the performance of the proposed task extraction method, we pri-

marily work with the TREC Session Track 2014 [173] and AOL log data and con-

structed a new dataset consisting of user sessions from AOL logs concerned with
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Figure 5.3: Term Prediction performance

Session Track queries. The session track data consists of over 1200 sessions while

AOL logs consists of 20M search queries issued by over 657K users. We find the

intersection of queries between the Session Track data and AOL logs to identify

user sessions in AOL data trying to achieve similar task objectives. The Session

Track dataset consists of 60 different topics. For each of these 60 topics, we sep-

arately find user sessions from the entire AOL logs which contain query overlaps

with these topics. For each topic, we iterate through the entire AOL logs and select

any user session which contains query overlap with the current topic. As a result,

we obtain a total of 14030 user sessions which contain around 6.4M queries.

Given the initial queries from a user session and a set of tasks extracted from

Session Track data, we leverage queries from the identified task to predict future

query terms. For each Session Track topic, we construct a task hierarchy and use

the constructed task hierarchy to predict future query terms in the associated user

sessions. More specifically, for each topic, we split each user session into two

parts: (i) task matching and (ii) held-out evaluation part. We use queries from the

task matching part of user sessions to obtain the right node in the task hierarchy

from which we then recommend query terms. We pick the tree node which has the
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highest cosine similarity score based on all the query terms under consideration. We

evaluate based on the absolute recall scores - the average number of recommended

query terms which match with the query terms in the held-out evaluation part of

user sessions.

We baseline against the top performing task extraction baselines from Section

5.4.1 as well as the top performing hierarchical algorithms from Section 5.4.2. To

make fair comparisons, we consider nodes at the bottom most level of the pruned

tree for task matching and term recommendation.

Figure 5.3 compares the performance on term prediction against the consid-

ered baselines. We plot the average number of query terms predicted against the

proportion of user session data used. The proposed method is able to better predict

future query terms than a standard task extraction baseline as well as a very recent

hierarchy construction algorithm.

5.5 Conclusion
Search task hierarchies provide us with a more naturalistic view of considering com-

plex tasks and representing the embedded task-subtask relationships. In this chapter,

we first motivated the need for considering hierarchies of search tasks & subtasks

and presented a novel bayesian nonparametric approach which extracts such hierar-

chies. We introduced a conjugate query affinity model to capture query affinities to

help in task extraction. Finally, we propose the idea of Task Coherence and use it

to identify atomic tasks. Our experiments demonstrated the benefits of considering

search task hierarchies. Importantly, we were able to demonstrate competitive per-

formance while at the same time outputting a richer and more expressive model of

search tasks. This expands the scope for better task recommendation, better search

personalization and opens up new avenues for recommendations specifically target-

ing users based on the tasks they are involved in.
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Chapter 6

Terms, Topics & Tasks: Enhanced

User Modelling for Better

Personalization

6.1 Introduction

As consumers of the informational content, different users have distinct informa-

tion seeking preferences; thus accurately understanding their respective informa-

tion needs and decision preferences is crucial for providing effective support during

search interactions. While user behaviours are largely determined by their own

goals and preferences, the mined knowledge from log activity data reveals differ-

ent user intentions and behaviour patterns, which provide unique signals for user

centric optimization and personalization.

Web search personalization has recently received a lot of attention by the re-

search community. Personalized search leverages information about an individual

to identify the most relevant recommendations for that person. A challenge for per-

sonalization is in collecting user profiles that are sufficiently rich to be useful in

settings such as result ranking and query recommendations.

Most previous work on personalization has focused on using long term search

histories to provide better personalized results. In particular, most recent personal-

ized search systems mainly focus on identifying topics a user might be interested in
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based on their search history and improving their search experience by identifying

and using information from different topics [95, 93].

Even though using topical interest of users can be highly valuable in personal-

izing search results and improving user experience, it still ignores the fact that two

different users that have similar topical interests may still be interested in achieving

very different tasks with respect to this topic. For example, a stockbroker and a

normal investor while being interested in the same topic (finance), perform quite

different set of search tasks and as a result need different kinds and levels of sup-

port while tackling these tasks. More generally, while topical interests capture the

heterogeneity among users stemming from varied topical interests, such task based

approaches would assist in capturing the heterogeneity stemming from differences

in user needs and behaviors. Hence, using task information together with topics

could result in systems that can provide improved personalized search experience

to users.

In this chapter, we focus on using search task information for user modeling,

where a search task has been previously defined as an atomic information need that

consists of a set of related (sub)tasks [174]. In a recent poster [175], we showed

that search tasks can indeed be used for personalization. This work was based on

replacing topic models with search tasks for personalization and building task based

representations of users for topic modelling. Hence, this work ignores the fact that

tasks users are interested in tend to be topic specific: people tend to be interested in

achieving certain tasks only for certain topics. In this work, we investigate the idea

of task based personalization in detail and develop a model that combines topic

based user modelling with task based user models. Additionally, we look at the

user’s search history that provides information about user’s term usage behavior.

We integrate user’s historical information to the task-topic tensor framework by

proposing a coupled matrix-tensor factorization model which jointly learns user

representations based on their search history, term usage behavior, topical interest

profiles and search task behaviors.

In particular, we show that it is possible to represent the topic specific tasks
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users are interested in by representing users in terms of a 3-modal < user− topic−

task > tensor (multidimentional array). We show that tensor factorization can be

used to learn coupled task-topic based user representations for each user, thereby

incorporating tasks together with topics in representing the user population. The

tensor based framework helps in encapsulating the complex interactions between

topics and tasks across the entire user population and learns a low dimensional

factor model wherein user’s interests, preferences and behaviors are determined

by an interplay between these latent factors. We further extend the tensor based

framework to include user’s search history information by proposing the use of

coupled matrix-tensor factorization model [176] wherein the matrix captures user’s

topical interest and search task information while the matrix captures user’s term

usage behavior.

Finally, we show that the proposed methods result in better user profiles by

evaluating the quality of our approach on a variety of tasks for personalisation in-

cluding collaborative query recommendation, cluster based recommendation and

user cohort analysis.

6.2 Methodology

We propose a new direction in learning user representations by modeling user’s

task behaviors. We posit that topics and tasks capture different set of insights about

user’s behavior and information needs and can be coupled with their term usage

behavior to jointly learn richer user representations, which is the main goal of this

work.

To this end, we intend to extract search tasks from a given search log and repre-

sent users in terms of these tasks. In the next sub-section, we describe the approach

we use to extract search tasks. This is followed by briefly describing our initial ef-

forts in modeling users based on tasks alone ignoring the topical information [175]

in section 6.3. Finally, we present our approach of coupling task and topical infor-

mation in Section 6.4 and extend it to include user’s language model and term usage

behavior in Section 6.5. We describe the experimental evaluation set up and results
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Symbol Description
ALS Alternating Least Squares
CMTF Coupled Matrix Tensor Factorization
A�B Khatri-Rao product
a◦b◦ c (a◦b◦ c)(i, j,k) = a(i)b( j)c(k)
Ai

1 series of matrices or vectors, indexed by i
‖A‖F Frobenius norm of A
T User-Topic-Task tensor
M User-Term matrix
U User representation matrix
S Search Task matrix
L LDA topics matrix
W User language model matrix

Table 6.1: Table of symbols

in Section 6.6, while section 6.7 concludes.

6.2.1 Notation & Background

We start with defining the notations used throughout the chapter. Columns of a

matrix are denoted by boldface lower letters with a subscript, e.g., ar is the r− th

column of matrix A. Entries of a matrix or a tensor are denoted by lowercase letters

with subscripts, i.e., i1 entry. Given two matrices A ∈ ℜI×K and B ∈ ℜJ×K , their

Khatri-Rao product is denoted by A� B and defined as column-wise Kronecker

product. The result is a matrix of size (IJ)×K and defined by

A�B = [a1⊗b1a2⊗b2 . . .aK⊗bK] (6.1)

where ⊗ denotes Kronecker product. For more details on properties of Kronecker

and Khatri-Rao products, the reader is referred to Kolda et al. [149].

Table 6.1 shows a list of symbols used throughout the chapter, together with

their descriptions.

6.2.2 Extracting Search Tasks

In order to build task based representaions of users, we first need to identify and

extract search tasks users are likely to perform when they use a search engine. Here

we describe our approach of extracting these tasks given a search log. Following
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the approach in Lucchese et al. [70], we employ a graph based query-clustering

approach based on finding weighted connected components of a graph.

Given a user session φ , we build a complete graph Gφ = (V,E,w), whose

nodes V are the queries in φ , and whose E edges are weighted by the similarity

of the corresponding nodes. The weighting function w is a similarity function w :

E → R ∈ [0,1] that can be easily instantiated in terms of the distance functions µ ,

which we describe a bit later. The graph Gφ describes the similarity between any

pair of queries in the given session. For evaluating similarity between two queries,

we make use of the following two similarity features:

• Content-based: Two queries that share some common terms are likely re-

lated. Sometimes, such terms may be very similar, but not identical, due to

mispelling, or different prefixes/suffixes. To capture content distance between

queries, following Lucchese et al. [70] we adopt a Jaccard index on tri-grams

along with a normalized Levenstein distance which is widely accepted as the

best edit-based feature for identifying goal boundaries [70].

• Semantic-based: Following Lucchese et al. [70], we assume that a

Wikipedia article describes a certain concept and that the presence of a term in

a given article is an evidence of the correlation between that term and that con-

cept. We represent each term in a high-dimensional concept space, and sum

over each query term to obtain a query’s concept vectors. The cosine similar-

ity between such concept-vectors of queries provides the semantic similarity

between the two queries. The distance between two queries is defined as a

(1- weighted average of the two similarities). For further details, users are

referred to Lucchese et al. [70].

Based on the query pair distances obtained above, weak edges with low simi-

larity are dropped, since the corresponding queries are not related, and clusters are

built on the basis of the strong edges, i.e. with high similarity, which identify the

related query pairs. The connected components of the pruned query-query graph

identify the clusters of related queries and provides us with our set of search tasks.
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Lucchese et al. [70] provide further details on the above mentioned similarity fea-

tures.

6.3 Learning Task Based User Representations

We postulate that in a web search setting, search logs contain information about

various actions that users perform and profiling users based on search tasks would

better capture the heterogeneity in user information and help us in modeling users.

In a recent poster [175], we present some preliminary work which describes a

purely search task based user representation system (ignoring topical information)

as described in this section. We later propose a novel way of combining such task

based representations with user’s topical interest information to learn a coupled

task-topical interest user profile and additionally incorporate user’s term histories

via a coupled matrix-tensor factorization framework described in Section 6.5.

User-Task Association Matrix: Based on the extracted search tasks, we con-

struct a user-task association matrix which represents the search tasks users have

been involved with. For each user ui, we consider their search history and create a

bag-of-queries representation from the list of queries issued by the user and com-

pare each user with each of the search tasks t j obtained by the method described

in section 6.2.2. For each user-task < ui, t j > pair, we populate the corresponding

value in the user-task association matrix (R) with the cosine similarity score (ri j)

we obtain for the pair. For tasks in which users do not have any matching queries,

we assign a score of 0 to the corresponding pair. The overall motivation behind

such a set-up is to capture information about whether or not users have performed

such a search task before.

Probabilistic Matrix Factorization for User Representations: We wish to

extract task-based user vector representations by jointly mapping users and tasks

to a joint latent factor space. Following Salakhutdinov et al. [177], we model

the user-task association in terms of probabilistic matrix factorization problem and
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learn latent vector representation for each user from the user-task association matrix

by fitting a probabilistic model. Given the user-task association matrix R, we find

the user feature matrix U = [ui] and task feature matrix T = [t j]. The conditional

distribution over the observed user-task associations R ∈ℜN×M is given by:

P(R|U,T,α) =
N

∏
i=1

M

∏
j=1

[
N (Ri j|UT

i Tj,σ
2)
]Ii j

(6.2)

where N denotes the Gaussian distribution and Ii j is the indicator function which

is 1 if the user i was involved in search task j. The latent vector representations for

the users, the system minimizes the regularized error:

minu∗,t∗∈κ ∑
i, j
(ri j− tT

j ui)
2 +λ (‖ui‖2 +‖t j‖2) (6.3)

where κ is the set of non-zero ri j values, ui represents the user and t j represents a

task. The user matrix U obtained as a result, contains vector representations of each

of the users which is used in further experiments.

So far, we have been able to extract collective search tasks from all users and

learnt a user representation based on these search tasks. We show in Section 6.6

that task based user models indeed result in better performance than basic bag-of-

term based or basic topical interest based representation which further motivates us

to investigate combining the two different modalities of user information: topical

interests and tasks associations. Indeed, the information carried by user’s topical in-

terest profiles and their task profile are different and it would make sense to couple

both these informations to jointly learn user profiles. In the next section, we further

augment our task based user profiles by incorporating user’s topical interest profiles

and describe our tensor based approach for the joint model.

6.4 Combining Search Tasks with Topics
Our objective in this section is to build succinct user profiles from the search task

information embedded in search logs while at the same time incorporating user’s

topical interest profiles. Building upon on prior work, we augment our task based



136Chapter 6. Terms, Topics & Tasks: Enhanced User Modelling for Better Personalization

Figure 6.1: The overview of the user-topic-task tensor constructed by jointly considering
user’s topical interest profiles alongwith their search task interaction behavior.
The tensor decompisiton breaks the tensor into latent factors which encode the
complex interactions between the three different modes of the tensor.

user representation model with user’s topical information by coupling the topical

interest with task based information in the form of a tensor and learning user profiles

based on the decomposition of the < user, topic, task > tensor. We first describe the

model we use for identifying topical interests of users and further show how we

combine this model with task based representation.

6.4.1 Learning Topical Interest Profiles

Topical interests based methods are quite popular in learning user representations

[93, 92]. Given user’s history of search queries, we aim to develop a topic interest

model which captures user’s interest distribution over different topics. We make

use of the Latent Dirichlet Allocation (LDA) model to learn the latent set of topics

embedded in the search log [92]. It is to be noted that LDA topic model based

approaches are standard methods to extract user’s topical interest profiles and are

widely used across user modelling applications.

We hypothesize that each search query is motivated by choosing a topic of

interest first and subsequently a query is issued to describe that search need from

the catalogue of words consistent with that particular topic. Based on this intuition,

we learn an LDA based topic model and use the learnt model to do topical inference

for each user to obtain a topic-distribution for the user over the set of learnt topics.

We refer to this distribution as a user’s topical profile.
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6.4.2 Coupling Topics & Tasks

Our main intuition behind leveraging both the topical profile as well as the search

task profile of users is to better differentiate between users who share similar topical

profiles. Topics and tasks capture different information: topical interest information

help in capturing the user heterogeneity resulting from varied interests while task

information helps in capturing user heterogeneity resulting from different informa-

tion needs.

We formulate this intuition in our model by coupling task information

with topical information on a per-user basis. We construct a 3-mode tensor

< user, topic, task > to jointly capture user’s topical as well as search task based

information. Next, we briefly describe the tensor formulation.

Tensors: a primer

A tensor is a multidimensional array. More formally, a N-way tensor or N-th order

tensor is an element of the tensor product of N vector spaces each of which as its

own co-ordinate system. A first-order tensor is a vector, a second-order tensor is

a matrix, and tensors of order three or higher are called higher-order tensors. The

order of a tensor is the number of dimensions, also known as modes. A third order

tensor can be represented as T ∈ℜI1×I2×I3 with each element of the tensor denoted

as ti, j,k with i∈ (1, I1), j ∈ (1, I2) and k ∈ (1, I3). The symbol ◦ represents the vector

outer product.

Constructing < user, topic, task > Affinity Tensor

To jointly model the user’s topical and task preferences, we construct a 3-mode

tensor - users, topics and tasks. Each element of our tensor (T ∈ ℜI1×I2×I3), ti, j,k

defines user i’s combined task based and topical preference - a user’s participation

in a certain task gets weighted by his topical affinity, thereby coupling his task

based and topical affinity. More formally, we define each tensor-component value

as follows:

ti, j,k =Uitopic j
×Uitaskk

(6.4)
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Figure 6.2: The coupled matrix-tensor obtained by coupling user’s term usage behavior
matrix with the user-topic-task tensor. The matrix and the tensor share a com-
mon mode of ’users’. On the left, we highlight some task related activity of the
users and the associated topics obtained and the terms used on the top and right
parts of the figure respectively.

where Uitopic j
is user Ui’s topical affinity for topic j obtained from the LDA model

learnt before while Uitaskk
represents the task affinity for user Ui’s for search task k

obtained in earlier the user-task association phase (Section 6.3). To obtain user’s

topical affinity estimates (Ui), we train an LDA topic model on the entire query

collection and use user’s historical queries to create user’s term profile which is

then used for estimating the topic proportions using LDA inference techniques.

I1, I2, I3 are the different dimensions of the different modes of the tensor - in our

case, these represent the number of users, number of topics and the number of

search tasks extracted respectively. Thus, for each user we construct his coupled

task-topic affinity value and populate the corresponding component in the tensor T .

Tensor Decomposition

Tensor decomposition methods are regarded as higher-order equivalents to matrix

decompositions. The PARAFAC tensor decomposition [148] allows us to leverage

connections between the different users across different topics and different search

tasks. By PARAFAC, the input tensors are transformed into Kruskal tensors, a

sum of rank-one-tensors. Formally, the tensor T ∈ ℜI1×I2×I3 is decomposed into

component matrices U ∈ ℜI1×d , T ∈ ℜI2×d and S ∈ ℜI3×d and d principal factors
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λi in descending order. Via these, tensor T can be written as a Kruskal tensor by:

T ≈ Σ
d
k=1λk ·Uk ◦T k ◦Sk (6.5)

where λk denotes the k-th principal factor. The goal is to compute a decomposition

with d-components that best approximates our tensor T , i.e., to find

min∼
T
‖T −

∼
T‖ (6.6)

such that
∼
T = Σ

d
k=1λk ·Uk ◦T k ◦Sk (6.7)

We make use of the Alternating Least Squares (ALS) approach [149] to solve the

above objective - having fixed all but one matrix, the problem reduces to a linear

least-squares problem.

Overall, the above formulation helps us to couple user’s topical interests with

their search task associations and learn a user representation based on this coupled

tensor. This tensor decomposition based user modelling approach allows us to use

multi-modal user information and leverage insights from each of them while learn-

ing user representations.

Similar to other works based on tensors, an important characteristic of the pro-

posed user modelling approach is that this method is generic enough and allows us

to plug-in other sources of user information - click models, data from advertisement

responses, etc.

6.5 Incorporating Historical Behavior
One widely used aspect of user behavior that provides especially strong signals

for delivering better personalized services is an individual’s history of queries and

clicked documents. To construct the profiles necessary for personalization, evi-

dence of a user’s interests can be mined from observed past behaviors which can

be sourced from their short-term (e.g., the current search session) or the long-term

(e.g., across many previous sessions) search histories [93]. User’s term history com-
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prises of the set of terms users used to compose search queries. The tensor based

approach described in the previous section looks at utilizing user’s topical interest

profile along with user’s task association information. We hypothesize that addi-

tional signals about user’s profile could be obtained by jointly modeling user’s term

usage behavior together with their task and topical interests information.

Overall, our motivation is to combine user’s historic term usage behavior with

their topical and task based information to learn user representations. We construct

a user’s term usage behavior over a set of combined vocabulary space. Combining

the different users term histories together provides us with a user-term matrix (W ),

which we intend to jointly factorize while performing tensor factorization of the

user-topic-task tensor (T ). The idea behind the coupled matrix-tensor decomposi-

tion is that we seek to jointly analyze T and M, decomposing them to latent factors

who are coupled in the shared user dimension. More specifically, the first mode of

T shares the same low rank column subspace as M; this is expressed through the

latent factor matrix U which jointly provides a basis for that subspace.

6.5.1 Coupled Matrix-Tensor Factorization (CMTF)

In the topic-task tensor we described earlier, we have a user by topic by task tensor

which encodes user’s topical interest profiles and task activities. We also have a

semantic matrix which provides additional information for the same sets of users -

the user by term matrix. In such cases, we may say that the tensor and the matrix

are coupled in the user mode. Following Acar et al. [176], we next describe the

joint analysis of a matrix (M) and a 3th-order tensor (T ) with one mode in common,

where the tensor is factorized using the CP model and the matrix is factorized by

extracting latent factors using matrix factorization.

Let T ∈ ℜI1×I2×I3 and M ∈ ℜI1×I4 have the first mode (user) in common; the

objective function for coupled analysis is defined by [176]

f (U,S,L,W ) =
1
2
‖T − [U,L,S]‖2

F +
1
2
‖M−UW T‖2

F (6.8)

Our goal is to find the matrices U, L, S, W that minimize this objective. In
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order to solve this optimization problem, we can compute the gradient and then use

any first-order optimization algorithm [178]. Rewriting the equation,

f (U,S,L,W ) = f1 + f2 (6.9)

where f1 = ‖T − [U,L,S]‖2
F and f2 = ‖M−UW T‖2

F . The partial derivative of f1

with respect to the different matrices has been derived in [179] so we just present

the results here. Let Z = [U,L,S], then

∂ f1

∂U
= (Zi−Ti)U (−i) (6.10)

where U (−i) = U (I1)� . . .U (i+1)�U (i−1)� . . .�U (1). Similar computations can

be made for the other matrices components L and S. The partial derivatives of the

second component, f2, with respect to U,L,S and W can be computed as

∂ f2

∂U
=−MW +UW TW

∂ f2

∂U
=−W TU +WUTU

(6.11)

Combining the above results, the partial derivative of f with respect to factor matrix

can be computed as

∂ f
∂U

=
∂ f1

∂U
+

∂ f2

∂U
∂ f
∂W

=
∂ f2

∂W

(6.12)

Similar computations can be made for the S and L components. With these gradi-

ents, the aforementioned coupled matrix-tensor optimization problem can then be

solved using any first-order optimization algorithm [176, 178].

On solving the coupled factorization objective1, we obtain latent factor ma-

trices which could be used as latent representations. More specifically, by making

use of the latent factor matrix U we’re able to learn user representations that jointly

1We make use of the CMTF toolbox provided by [176]: http://www.models.life.ku.
dk/joda/CMTF_Toolbox

http://www.models.life.ku.dk/joda/CMTF_Toolbox
http://www.models.life.ku.dk/joda/CMTF_Toolbox
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express user’s topical, task and term profile information.

6.6 Experimental Evaluation
In order to evaluate the performance of the proposed user modelling techniques,

we use three different techniques of evaluation based on collaborative query recom-

mendation, query recommendation based on user groups and user cohort analysis.

6.6.1 Compared Approaches

We consider the following baselines to evaluate the performance of the proposed

tensor based method:

• TermSim (TermSim) is a method that only uses bag-of-words based repre-

sentation for each user where the terms are extracted from user queries and

similar users found using cosine similarity between each user’s bag-of-word

based representations[90].

• LDA Topic Based (LDA) is a method of representing users in terms of their

topical interests where the topics are extracted via a common Latent Dirichlet

Allocation setup [92]. It s important to note that topic based representations

are one of the most commonly used representations for personalization.

• Task Based: (Task) The first step towards coupling tasks with topics is rep-

resenting users just in terms of search tasks. We use the user representations

obtained in Section 3 as a result of matrix factorization as another baseline

to compare the gain in performance obtained as a result of adding the topical

aspect on top of user’s search task information [175].

• TT-Tensor: (TT) Topic-Task Tensor (TT-Tensor) based user representation

is the proposed technique which combines user’s task information with their

topical interests.

• CMTF: Coupled Matrix Tensor Factorization (CMTF) [176] based user rep-

resentation is our second novel contribution which takes into account the user

histories in addition to their topical and task based profiles.
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User Profile Information TermSim LDA Task TT-Tensor CMTF
Term History X X
Topical Interests X X X
Search Task information X X X

Table 6.2: User profile information encapsulated in each of the compared approaches. We
notice that the proposed TT-tensor and CMFT based methods maximally incor-
porate the different user profile information available.

Each of the compared approaches work with different user information. In Table

6.2 we summarize the different modalities of user information used by the different

approaches.

6.6.2 Dataset

We make use of the AOL log dataset which consists of∼20M web queries collected

over three months and use data for a subset of ∼1200 users who have issued more

than certain threshold (550) number of queries. We run our Task Discovery algo-

rithm on the set of queries for each of these users which results in a total of∼0.12M

tasks which we cluster to obtain a set of 1521 search tasks. Such a setting for task

extraction is in line with the original proposed research by Lucchese et al. [70].

These tasks are then used to create the user-task association matrix, as described in

Section 6.3 and for constructing the coupled matrix-tensor, as described in Section

6.5. To make fair comparisons between the topical and task based user profiles, we

keep the number of latent factors for tasks same as the number of latent topics.

6.6.3 Collaborative Query Recommendation

A good user profile for query recommendation should capture a user’s specific in-

terests and informational needs. Based on this intuition, we evaluate performance

of the proposed approach on Collaborative Query Recommendation [95] where

the goal is to recommend queries to a user based on queries issued by similar users.

For each user we select the n-most similar users where the similarity is calculated

by a cosine similarity score using the user representations learnt. We calculate the

weighted frequency of a candidate query for most similar users of the target user u,

and select the top-k queries as recommendation.

To evaluate the performance of the above mentioned techniques, we consider
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Figure 6.3: Performance on Collaborative Query Recommendation (left figure: Preci-
sion@10 & right figure: Precision@20). Based on the average number of query
matches between the recommended set of queries and user’s own test set of (un-
seen) queries, the precision at 10 and precision at 20 values are plotted against
the number of similar users considered (n). The results obtained at n=10, 20,
30 (left) and n=10, 20 (right) were statistically significant (p<0.05) based on
pairwise tests between the proposed method and the best performing baseline.

the test-set of queries in the target user as relevant, and computed average number

of relevant queries matched in the recommendation query set as the performance

metric. The training/test set per user is populated based on a 20% split across all

user queries. We use the training set for populating the matrix/tensor while the test

set of queries per user for evaluating the quality of the recommended queries. We

plot precision@10 and precision@20 values based on the average number of query

matches between the recommended set of queries (top-10 (left) and top-20 (right))

and user’s own test set of (unseen) queries. Given that the task at hand is collab-

orative query recommendations from similar users, comparison with other general

purpose query recommendation techniques is beyond the scope of our experiments.

Discussion

Our results (Figure 6.3) show that the proposed Topic-Task Tensor based user mod-

elling approach(TT-Tensor) and the coupled matrix factorization method (CMTF)

performs better than TermSim as well as TaskBased which demonstrates that com-

bining search task information with user’s topical interests thus help us better cap-

ture different aspects of user profiles and can serve as potent user modelling tools.

Since TermSim relies strictly on term matching for measuring user similarities, its

coverage is limited: it might not capture insights for the users with too few queries
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Figure 6.4: Performance on Cohort Query Recommendation (left figure: Precision@10 &
right figure: Precision@20). Based on the average number of query matches
between the recommended set of queries and user’s own test set of (unseen)
queries, the precision at 10 and precision at 20 values are plotted against the
number of similar users from user’s cluster considered (n). The results obtained
between the CMTF and the best performing baseline at n=10, 20 (left) and
n=10, 20, 30 (right) were statistically significant (p<0.05) based on pairwise
tests between the proposed method and the best performing baseline.

or those who shared the same search interest but issued different queries or per-

formed different tasks. Task based user modelling can help in better differentiating

between users which have similar topical interests but perform different tasks.

The proposed tensor based approach combines the best of both the worlds and

hence was able to leverage the topical user profile information with the task as-

pect. Additionally, the CMTF model combines information from all available data

modalities and learns a joint user representation. We see that the CMTF model

outperforms the other methods which highlights the importance of jointly consider-

ing user’s term, topic and task information. On analysis of the dataset, we figured

out that the overall lower average query recall values across all methods can be at-

tributed to the fact that there is less query overlap between users, i.e., the upper limit

of common query among users is indeed low on average.

6.6.4 Cohort based Query Recommendation

It is well-known that preferences across a user population often decompose into a

smaller number of communities of commonly shared preferences [180, 181]. In

this study, we investigate the performance by means of groupization: a variant of

personalization whereby other users’ profiles can be used to personalize current

user’s experience. As opposed to finding similar users from the entire user popu-



146Chapter 6. Terms, Topics & Tasks: Enhanced User Modelling for Better Personalization

lation for collaborative query recommendation, we explore the use of user-cohorts

obtained above and leverage information from users belonging to the same cluster

to aid in query recommendation. A good cluster should contain better similar users

- users who are indeed more representative of the current user. Based on this, we

evaluate the performance of the proposed approach on Cohort based Query Rec-

ommendation where the goal is to recommend queries to a user based on queries

issued by users in the same cluster. Following similar set up as before, we present

cohort-based query recommendation results (clustering performed with 10 clusters)

in Fig. 6.4.

Discussion

The proposed approach of encapsulating user’s historic term usage behavior with

their topical and task oriented interests consistently performs better than our base-

lines in terms of recommending queries from users from the cluster. As can be

seen in Fig. 6.4, the CMTF and coupled task-topic representation performs signifi-

cantly better right at the start with the difference between the approaches slimming

down as we go towards more query recommendations. This is indeed expected

since we are measuring precision of queries and eventually not-so-efficient meth-

ods will eventually be able to recommend better queries as we increase the number

of queries suggested.

Recent research on groupization has focussed on developing different ways of

building user cohorts based on topical interests, location, etc [168]. In the present

study, we used simple clustering on user features for building cohorts; in future

study we intend to compare cohorts of varying sizes and variants of cohort con-

struction techniques to obtain detailed insights on user cohort behaviors.

In addition to performing cohort based query recommendation, we also in-

vestigate the goodness of the user cohorts we obtain, which were used for query

recommendation as described above. We next describe the experimental set-up to

analyze the performance of the compared approaches on the task of user cohort

formation.
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DB Index SI Index
nClusters TermSim LDA Task TT CMTF TermSim LDA Task TT CMTF

10 1.61 1.55 1.98 1.52 1.46 0.19 0.20 0.16 0.43 0.48
30 1.69 1.66 1.83 1.48 1.47 0.23 0.26 0.24 0.36 0.41
50 1.58 1.65 1.84 1.52 1.50 0.27 0.28 0.28 0.27 0.27
80 1.71 1.67 1.80 1.58 1.57 0.29 0.35 0.28 0.47 0.51

100 1.75 1.65 1.76 1.63 1.59 0.31 0.57 0.32 0.58 0.62

Table 6.3: Cluster Analysis of User Representations - cluster evaluation metrics perfor-
mance for the different approaches are shown. TermSim represents the simple
term similarity baseline, LDA represents the topic model based user representa-
tions, Task represents user representations learnt via PMF by using task infor-
mation while TT represents the proposed Task-Topic Tensor based user repre-
sentations.

CH Index
nClusters TermSim LDA Task TT CMTF

10 453 643 352 534 658
30 297 353 203 377 411
50 213 258 151 285 299
80 178 192 116 212 234
100 96 165 99 182 194

Table 6.4: Cluster Analysis of User Representations - internal cluster evaluation metric (CH
Index) performance for the different approaches are shown. TermSim represents
the simple term similarity baseline, LDA represents the topic model based user
representations, Task represents user representations learnt vi PMF by using task
information while TT represents the proposed Task-Topic Tensor based user rep-
resentations.

6.6.4.1 User Cohort Analysis

We believe that incorporating task behavior of users while learning user represen-

tations enables us to better decompose users into user cohorts or clusters. In this

study, we test the hypothesis that a good user modeling scheme would allow for

good cluster formation based on the learnt user representations. We evaluate the

user representations learnt in terms of the quality of user clusters formed. Unlike

external cluster validation measures, which use external information (”true” cluster

membership) not present in our data, internal cluster validation measures only rely

on information in the data [182]. In Table 6.3 and Table 6.4, we present the cluster

validation results on a variety of different metrics, which, to the best of our knowl-

edge, represent a good coverage of the validation measures available in different
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fields, such as data mining, information retrieval, and machine learning.

The different measures used capture different goodness measures of clusters

based on inter-cluster and intra-cluster similarities. The Davies-Bouldin index (DB)

[183] is calculated as follows. For each cluster C, the similarities between C and all

other clusters are computed, and the highest value is assigned to C as its cluster sim-

ilarity. Then the DB index can be obtained by averaging all the cluster similarities.

The smaller the index is, the better the clustering result is.

The Silhouette index (SI) [184] validates the clustering performance based

on the pairwise difference of between and within-cluster distances. The Calinski-

Harabasz index (CH) [185] evaluates the cluster validity based on the average

between and within cluster sum of squares. Larger values of SI and smaller values

of CH are preferred.

Discussion

As can be seen in Table 6.3 and table 6.4, the user clusters obtained from via using

topic-task coupled representations indeed perform better than the clusters obtained

via just Bag-of-Terms or task baselines. This is in line with our hypothesis that

capturing task behaviors across user populations indeed helps us in forming well-

knit user clusters and thus could help us perform better in ”groupization”. Having

good clusters could be useful for many applications, one of them being collaborative

query recommendation, as shown above.

6.7 Conclusion

We presented a novel approach to couple user’s topical interest information with

their search task information and their term usage behavior to learn a joint user rep-

resentation technique. We demonstrated that coupling user’s task information with

their topical interests indeed helps us build better user models. We show through ex-

tensive experimentation that our task based method outperforms existing query term

based and topical interest based user representation methods. This clearly demon-

strates the value of considering search tasks rather than just query terms or topics
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during personalization. Future work involves the development of more sophisti-

cated and generalizable models of task behavior that can model task-relevant activ-

ity beyond search engine interactions. The flexibility of the tensor based framework

makes our proposed method generic enough to add more data sources and modali-

ties. The user representations learnt can be used for various different applications,

something we intend to explore as future work.





Chapter 7

Learning Query Embeddings using

Task Context

7.1 Introduction

Users tend to seek information by issuing queries to a search engine. The need for

search often resides within an external context that prompts the user to formulate

their information needs as search queries. When an information need, or task, re-

quires multiple searches, the sequence of queries form a context which influences

interaction behavior for the duration of the search process. Search context plays an

important role in understanding user’s needs and can be leveraged to develop better

representations and ranking models. While a major portion of existing work have

investigated user behavior using search sessions as the fundamental focus of search

activity, search tasks are emerging as a competing perspective in this space with

recent studies suggesting that users seek to complete multiple search tasks within

a single search session, while also taking multiple sessions to finish a single task

at times [16]. As a result, search tasks have steadily emerged as accurate units to

capture searcher’s goals and seeking behavioral insights.

A direct result of users being engaged in multitasking and task switching be-

haviors is that the resulting search context is heterogeneous, composed of inter-

leaved search goals and tasks. Recent advancements in task extraction techniques

have made it possible to segregate search activity logs into a set of interleaved tasks
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Figure 7.1: Exemplar user interaction with search engine.

[165, 186]. For example, while multi-tasking in their search sessions, users pursue

many different tasks at once, often switching between them. Figure 7.1 shows an

example of a user multitasking in her search session, with her task of finding in-

formation on GRE exams interleaved with finding music videos of Coldplay band.

Such heterogenous context makes it difficult for the retrieval system to use to create

localized user interest models, provide contextual result rankings, query sugges-

tions, and other user support offerings.

In this chapter, we aim at mitigating the ill effects of heterogeneous contexts

by leveraging task information while learning representations of users’ information

needs. Learning meaningful and accurate representations of queries is an important

problem in web search, with most retrieval, ranking, query expansion and query

suggestion methods heavily relying on informative ways of representing search

queries. Beyond traditional one-hot vectors and TF-IDF approaches, the distributed

semantic representations based on dense vectors of vocabulary terms, also known as

word embeddings, have been shown to be highly effective in many natural language

processing and information retrieval tasks [187, 129]. In general, these approaches

provide global representations of words; each word has a fixed representation, re-

gardless of any discourse context. While a global representation provides some

advantages, search context can vary dramatically by task. Most word embedding
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learning techniques rely on a window-based training which uses local information

in immediately surrounding words. Given the multi-tasking nature of search ses-

sions, the resulting query context is rendered heterogeneous and might consist of

queries from different unrelated tasks.

In this work, we aim at leveraging task context while learning query represen-

tations. Specifically, we propose a novel task based embedding architecture to learn

distributed semantic representation of query terms which prefers task context over

local information in immediately surrounding words. We propose that embeddings

be learned on a task-constrained context instead of the traditionally used global or

session context. The proposed task embedding model is able to extract improved

query representations which capture task context. In addition to qualitative analy-

sis, we demonstrate the benefit of learning task based embeddings over traditional

query representation techniques by showing enhanced performance when generat-

ing query suggestions. Our findings have implications on the design of future task

aware search systems which better model user needs and help them in accomplish-

ing their task.

7.2 Task Embeddings
Our goal in this work is to learn richer embeddings and explore the use of task

context to learn more contextual query representations. In this section, we propose

a novel embedding architecture based on task context. As a precursor to generating

relevant task context, we first need to extract the set queries which belong to the

same overall task given a sequence of queries issued by a user over a period of time.

7.2.1 Extracting ”On-Task” Queries

In order to extract on-task queries, we make use of the Latent Structural SVM

framework [10] for task identification. Given query sequences, search tasks are

identified by clustering queries into tasks by find the strongest link between a can-

didate query and queries in the target cluster (bestlink). We run the task extraction

algorithm as described in section 2.4.4 of Chapter 2 on search logs to extract all

queries belonging to the same task. Such a query collection is henceforth referred
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to as ”on-task queries”. We run the task extraction algorithm on search logs to ex-

tract all queries belonging to the same task. Such a query collection is henceforth

referred to as ”on-task queries”.

7.2.2 Task Context Embedding Architecture

Estimating accurate query representations plays a crucial role in many informa-

tion retrieval tasks and past work have relied on a number of different ways of

building such representations from simple term frequency based approaches to the

recent word embeddings. While generically learnt word embedding models have

performed well in various NLP tasks, we hypothesize that incorporating task con-

text while learning query embeddings would result in more accurate representation.

In this section we describe the propose task based embedding architecture which

leverages the task information as described in Section 7.2.1.

Given a search log comprising of a set S of ‖S‖ query sequences obtained

from online users, where each query sequence S = (q1, ...,qMs) ∈ S is defined as an

uninterupted sequence of Ms queries, and each query qm = (wm1,wm2, ...wmTm) con-

sists of Tm words, our objective is to find D-dimensional real-valued representation

vqm ∈ RD of each query qm. We begin by tagging task membership information for

each query tqm using the task extraction module and casting a query sequence from

a given user as a sentence fed into the neural embedding model.

Traditionally, embedding based models learn query representations using the

skip-gram model [122] by maximizing the objective function over the entire set S

of search sessions, defined as:

L = ∑
s∈S

∑
qm∈s

∑
−b≤i≤b,i 6=0

logP(qm+i|qm) (7.1)

where vq and vi
q are the input and output vector representations of query q, b is

defined as length of the context for query sequences, and V is the number of unique

queries in the vocabulary. To incorporate the task context, we modify the objective

function and incorporate a selective task context window selection function in the
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likelihood objective:

L = ∑
s∈S

∑
qm∈s

∑
−b≤i≤b,i6=0

1(tqm+i = tqm)× log P(qm+i|qm) (7.2)

The objective only considers surrounding queries which belong to the same task

as the current query and disregards other non-task queries from consideration for a

query’s context. An alternate approach could replace the exact task based matching

of queries (1(tqm+i = tqm)) by a probabilistic matching, which we leave for future

investigation. Probability P(qm+i|qm) of observing a neighboring query qm+i given

the current query qm is defined using soft-max,

P(qm+i|qm) =
exp(vT

qm
v
′
qm+i

)

∑
|V |
q=1 exp(vT

qm
v′qm

)
(7.3)

From these equations we can see that the model considers the temporal and

task context of query sequences, where queries with similar contexts (i.e., with

similar neighboring queries which belong to the same task) will have similar vector

representations in the projected semantic space.

The proposed objective is optimized using stochastic gradient ascent, suitable

for large-scale problems. However, computation of gradients5L for the likelihood

function equation above is proportional to the vocabulary size V , which is compu-

tationally expensive in practical tasks as V could easily reach hundreds of millions.

As an alternative, we used negative sampling approach proposed in [122], which

significantly reduces the computational complexity.

7.3 Experimental Evaluation

In this section we demonstrate the benefit of incorporating task context while learn-

ing query representations. We consider the task of query suggestions and provide

empirical comparisons of the proposed method against various baselines.
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7.3.1 Dataset

In order to extract query embeddings, we use a random sample of 1 week of search

log data from May 2016 of a commercial web search engine comprising of user ID

information along with session identifier and query text. The dataset composed of

over 24M search impressions spread over 8M search sessions, issued by over 200K

users, resulting in a vocabulary size of over 5M words. We train the Continuous-

Bag-of-Words model of Word2Vec using all the queries in this corpus. As per the

free parameters, the dimension of the word vectors was set to values in 100, 300, the

number of negative examples is in 5. Since query text is used to learn embedding,

we keep the window size as 2 which totals to 4 words as context per query term.

Sub-sampling of frequent terms was not performed and all other parameters were

set to default values.

7.3.2 Baselines

We consider a number of baselines, including non-neural approaches as well as

neural embedding based approaches.

1. One-hot vector representation: The traditional representation technique

which represents queries using 0/1 vector encoding.

2. Global Embeddings: We use word2vec model trained on GoogleNews corpus

as global embeddings.

3. Session embeddings: We use search sessions as context while learning em-

beddings.

4. Random: To validate the usefulnes of considering query sequence informa-

tion, we randomly shuffle queries issued by a user before inputting to embed-

ding learning model.

7.3.3 Qualitative Analysis

We begin with a qualitative analysis of the extracted representations by showing

nearby query terms. Table 7.1 shows the top 3 query terms which are most similar
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Query: london Query: usps
Global Task Context Global Task Context

birmingham weather postal service track
nyc time fedex hours

england tube track delivery

Table 7.1: Qualitative comparison of similar words fetched using global embeddings and
task embeddings.

TREC Tasks 2015
Method NDCG@3 NDCG@5 NDCG@10
Random 0.613 0.56 0.542
Global 0.631 0.572 0.558
Session 0.633 0.573 0.564
Task 0.662∗& 0.591∗& 0.571∗&

Table 7.2: Average Relevance results. * and & indicate statistical significant (p ≤ 0.05)
using paired t-tests compared to the Global and Session context baselines re-
spectively.

TREC Tasks 2016
Method NDCG@3 NDCG@5 NDCG@10
Random 1.13 0.99 0.926
Global 1.15 1.01 0.932
Session 1.14 1.02 0.934
Task 1.16& 1.04∗ 0.944∗&

Table 7.3: Average Relevance results. * and & indicate statistical significant (p ≤ 0.05)
using paired t-tests compared to the Global and Session context baselines re-
spectively.

to two randomly chosen queries. We observe that the suggestions shown using task

embeddings are more coherent and related than the ones from global embeddings.

In web search context, suggestions like ’weather’ and ’tube’ are more contextually

relevant to be one of the aspects a user might be looking for rather than suggestions

comprising of similar city name suggestions.

In addition to the qualitative analysis, we provide empirical evidence which

demonstrates the usefulness of considering task context when learning representa-

tions.
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TREC Tasks 2015
Method NDCG@3 NDCG@5 NDCG@10
Random 0.289 0.3 0.302
Global 0.292 0.301 0.309
Session 0.314 0.309 0.318
Task 0.314∗ 0.311∗& 0.321∗&

Table 7.4: NDCG@k results. * and & indicate statistical significant (p≤ 0.05) using paired
t-tests compared to the Global and Session context baselines respectively.

TREC Tasks 2016
Method NDCG@3 NDCG@5 NDCG@10
Random 0.511 0.509 0.522
Global 0.524 0.513 0.52
Session 0.510 0.514 0.527
Task 0.526& 0.529∗& 0.535∗&

Table 7.5: NDCG@k results. * and & indicate statistical significant (p≤ 0.05) using paired
t-tests compared to the Global and Session context baselines respectively.

7.3.4 Query Suggestions

To evaluate our approach we make use of the query representations obtained to

generate lists of query suggestions. Specifically, we make use of the TREC Tasks

track data from two years (2015 & 2016) to rank query suggestions that would

help users fulfil their information need. Tasks track data provides test collections

for evaluating the usefulness of retrieval systems in terms helping people achieve

their search tasks. The dataset comprise of 100 different tasks embodied by a query

each, with each task containing a list of possible candidate queries that represent the

set of all tasks a user who submitted the query may be looking for. Each of these

candidate queries are judged for relevance labels by human assessors. Overall, the

dataset spans over 2 years and comprises of X candidates in 2015 and Y candidate

queries in 2016.

For each query, we consider the entire pool of candidate queries and use the

query representations to find the similarity of the query with each candidate query

based on which they are rank. The relevance labels provided with each candidate

query are used to compute the average relevance and NDCG@k metrics.
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Tables 2 presents the average precision scores for the different baselines con-

sidered. We observe that though global representations perform better than tradi-

tional and simpler representation techniques, they perform worse than session based

and task based embeddings. This highlights the importance of considering local

context when learning representations, since generic contexts are usually heteroge-

neous and ill fitted to retrieval problems. Among the neural local context models,

task based context performs better than session based contexts. This confirms our

hypothesis that sessions are usually polluted with queries from various tasks, and as

a result the resulting context isn’t informative enough. An overall performance im-

provement of all compared approaches is observed in the TREC Tasks 2016 dataset

over 2015 dataset; this is in line with the performance improvement observed in the

TREC submissions as well.

While relevance scores are important, often system designers have a constraint

to rank top-k suggestions. To this end, in addition to average relevance scores, we

make use of the candidate ranking to compute NDCG scores and present results

in Table 3. Similar to our previous observation, we observe that neural represen-

tation methods generally perform better than non-neural models. Amidst session

based and task context based, task based representation performs better than the

corresponding session context.

7.4 Conclusion
Search context has played an important role in solving various retrieval tasks. In

this chapter, we leveraged task context to learn query representations. Experimental

evidence suggests tasks context enriched representations perform better than tradi-

tional representations, and at the same time, task context is more informative than

session context. These findings have implications in designing better personaliza-

tion and recommendations techniques aimed at exploiting task context for enhanced

support.





Chapter 8

Deep Sequential Models for Task

Satisfaction Prediction

8.1 Introduction

As search systems have advanced, an increasingly larger proportions of users are

relying on search engine to satisfy their information needs. Developing better un-

derstanding of how users interact with search engines is becoming important for

gauging user satisfaction and improving user’s search experience. Since obtaining

explicit feedback from users is often prohibitively expensive and challenging to im-

plement in real-world systems, commercial search engines have exploited implicit

feedback signals derived from user activity. While users interact with a search en-

gine, they leave behind fine grained traces of interaction signals. These interaction

signals contain valuable information, which could be useful for predicting user sat-

isfaction as well as developing metrics for search engine evaluation to assist rapid

experimentation.

User initiated search is often motivated by a search goal, or a task. A simple

task refers to an atomic information need resulting in one or more queries [13].

Understanding and evaluating a search engine’s performance from a task centric

view attains paramount importance. Most existing work on gauging user satisfac-

tion have focused on query level satisfaction [188, 100, 99, 119], with some initial

efforts aimed at measuring task satisfaction for simple tasks [109]. Often, indepen-
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dent information needs arise from an overall complex search task, where a complex

search task refers to a multi-aspect or a multi-step information need consisting of

a set of related tasks, each of which might recursively be complex [13, 9, 186, 19].

While existing work has primarily focused on measuring user satisfaction on simple

search tasks, work on understanding and measuring user satisfaction for complex

search tasks remains in its infancy.

In this chapter, we take a comprehensive look at user satisfaction from differ-

ent levels of abstractions. We begin by investigating query level satisfaction, and

propose a deep sequential model which considers holistic view of user’s interac-

tion with the search engine result page (SERP), constructs detailed interaction se-

quences of their activities and leverages such interaction sequences to predict query

level satisfaction. In addition to interaction sequences, we consider various different

behavior signals (e.g. click features, dwell times) and treat such signals as auxil-

iary features providing an alternate view of user interactions. We propose a unified

multi-view deep model composed of parallel convolutional and recurrent neural net-

works capable of utilizing both the views of user interactions for predicting query

level satisfaction. Finally, we go beyond query level abstraction and consider the

problem of task satisfaction prediction. We propose a novel functional composition

model which takes into account user satisfaction at the query level and the sub-

task level when making task satisfaction predictions. We present rigorous evalua-

tion of the proposed approach using crowdsourced judgments as well as large scale

pseudo-labeled data and demonstrate that the unified multi-view deep sequential

model significantly outperforms a number of established baselines at query satis-

faction prediction. We additionally show that the proposed deep sequential models

are also better at predicting task level satisfaction. Our findings provide a valuable

tool for gauging task satisfaction and developing next generation task-aware search

engines.

Our work is different from existing work not only in measuring query level

satisfaction but also in measuring task satisfaction. We not only consider extracting

interpretable interaction sequences from user interactions, we propose novel ways
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of combining different views of user interactions in a unified model for predicting

query satisfaction. Further, unlike past work which considers simple tasks com-

posed of query reformulations for measuring task satisfaction, we go beyond such

simpler tasks and also consider complex tasks composed of many different queries

and subtasks. Finally, we propose novel ways of aggregating query satisfaction

estimates for task satisfaction prediction.

8.2 Problem Formulation

Our goal in this chapter is to extract and leverage user interaction data to predict

query and task level satisfaction. We begin by defining the key concepts used

throughout the chapter.

Sequence: Given a search impression and a list of possible user actions, a sequence

is defined as a time-ordered list of actions performed by the user when interacting

with the search result page.

Search Task: A search task is an atomic information need resulting in one or more

queries [13]

Complex Task: A complex search task is a multi-aspect or a multi-step informa-

tion need consisting of a set of related tasks, each of which might recursively be

complex [113].

With this background, we formally define the problem of satisfaction prediction as:

Query Satisfaction (QSAT): Given user interaction data, predict whether the user’s

interaction with the search engine result page (SERP) rendered for the query was

satisfying or not.

Task Satisfaction: Given a sequence of queries issued by the user to accomplish

a complex task along with user interaction data and satisfaction estimate for each

query, predict user’s satisfaction in accomplishing the overall task.

In order to make task satisfaction predictions, we employ query level satisfac-

tion estimates as well as subtask level satisfaction estimates. While few efficient

approaches exist for identifying subtasks [186], we assume access to subtask de-

marcation information (obtained via crowdsourced labeling) for the scope of this
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Figure 8.1: Example of user interaction with the SERP elements rendered for the query
Brian Scott NASCAR. The sequence of green dots denotes the user’s cursor
position over a period of time.

chapter. We first describe the technique used to extract meaningful action sequences

from user interactions with SERP (Section 8.3) . We then present in Section 8.4 our

proposed deep sequential model for query level satisfaction prediction. Finally, in

Section 8.5 we present different techniques for functional composition of query sat-

isfaction estimates to make task satisfaction predictions.

8.3 Extracting User Interaction Data
The richness of the result page rendered in response to a user query allows users to

interact with SERPs in myriad ways, including clicking results, scrolling, expanding

task panels, hovering over images, pausing to read and absorb content among others.

While most existing work has considered click based interaction signals or mouse

movement features, these signals either lack coverage or are often abstracted at

high SERP-level aggregates, which blinds the models to finer level user interaction

signals. Our aim here is to analyze user interaction with the SERP (as depicted in

Figure 8.1) and extract an interpretable interaction sequence. To do so, we construct

a universal action sequence timeline from the following three different timelines:

1. Viewport Timeline: Viewport is defined as the position of the webpage that
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is visible at any given time to the user. Viewport timeline allows us to consider

user actions concerning the viewport, for example, scroll on the result page

and resize of the screen.

2. Cursor Timeline: The cursor timeline provides us with all the cursor related

user activity. Backend search logs record detailed user mouse activity which

helps us to track the mouse movement and link the corresponding cursor ac-

tivity to the different elements on the SERP.

3. Keyboard Timeline: The keyboard timeline records all keyboard related user

activity (for example, text enter).

For each search impression, we log the three timelines with corresponding

user actions along with the timestamp. Based on these three timelines, we generate

one holistic universal action sequence timeline describing all user activity on the

SERP by temporal sorting of individual timelines followed by stacking up the three

timelines, and then interleaving them based on timestamps of the recorded actions.

This provides us with a universal sequence of user interaction, examples of which

are shown in Table 8.2. We next take a more detailed look at the actions considered

to construct the timelines.

Actions Considered: In order to construct the three timelines, we considered a

number of actions which include all types of interactions performed by the users.

For click based actions, we associate the cursor information with the correspond-

ing element on the SERP and recorded the joint action-element pair as an action,

for example, click algo1 signified a click on algorithmic result at position 1. Be-

yond clicks, we considered a range of cursor movement actions ranging from sim-

ple Move (denoting a mouse movement across different SERP element) to more

sophisticated and intentional cursor movements like a MouseRead. We define a

MouseRead as a horizontal line across a result snippet of length > 50px and dura-

tion > 100 ms that goes from left to right which starts and ends inside an algo-result,

or advertisement or an answer result. Beyond cursor movement actions, we consid-
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Action Description
Click algoX Click on the X-th algorithmic result
Click Ans Click on any answer (non-image) result
Click IMG Click on any image result

MouseRead
horizontal line across a result snippet of length > 50px and duration
> 100 ms that goes from left to right which starts and ends inside an
algo-result, or advertisement or an answer result

Scroll page scroll recorded on the search engine result page
Move any cursor movement of length > 10px and duration greater than > 50 ms

pause

smallPause: no cursor movement on the SERP for time < 5 seconds
mediumPause: no cursor movement on the SERP for 5s < time < 20s
longPause: no cursor movement on the SERP for 20s < time < 40s
veryLongPause: no cursor movement on the SERP for time > 40s

Resize change in the size of the window/screen encompassing the result page
IssueQuery user movement to the Search Box on the SERP and typing of text in the query box

dwellTime

smallDwellTime: dwell time on a clicked result URL with time spent
< 10s
mediumDwellTime: dwell time on a clicked result URL with 10s <
time < 40s
longDwellTime: dwell time on a clicked result URL with time spent >
40s

QuickBack click on a SERP URL followed by returning back to the SERP within 5s

Table 8.1: Examples of actions considered along with their description used to create the
user interaction sequence.

Example Sequences
Scroll→ smallPause→ Move-algo-1→ smallPause
→Move-algo-2→ smallPause→ Click-algo-2
smallPause → Move → Click-IMG → longDwell-
Time

Table 8.2: Example of sequences extracted.

ered inter-activity time as pauses and categorized a pause into one of three types

based on the duration of the pause: (i) short pause (time), (ii) medium pause (time)

and (iii) longPause (time). We additionally considered issuing query and scroll re-

lated activities. Table 8.1 lists the major actions considered.

8.4 Query Level SAT Prediction
While implicit feedback measures like mouse clicks, reading and dwell times, gaze

tracking have been extensively used in predicting search satisfaction, they ignore

the sequence information accompanying any user interaction. Given the detailed

action sequence extracted from user’s interaction with SERP, we aim at predicting

user satisfaction using the extracted sequence.

Gauging user satisfaction is the problem of predicting satisfaction label given a
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query q, the search results page rendered, detailed user interaction actions recorded

(Section 8.3) and aggregate implicit signals according to a parametric probability

measure:

y = arg maxy∈0,1 p(y|q,SERP,A, f ;θ) (8.1)

where θ represent a vector of all parameters to learn, q is the query, A is the user

action sequence. In order to predict query level satisfaction, we leverage interaction

sequences and propose a deep sequential model to predict satisfaction. Further, we

augment the sequence model with SERP level signals which have been traditionally

used to propose a coupled model which combines interaction sequence information

with auxiliary implicit feedback signals to propose a unified model for query level

satisfaction prediction.

8.4.1 Sequential Model for SAT

To leverage the entire interaction sequence we make use of recent advancements in

the field of deep recurrent network and formulate our problem as that of sequence

classification. Recurrent neural networks (RNNs) are a powerful family of connec-

tionist models that capture time dynamics via cycles in the graph, thereby enabling

them to process sequences of data. A RNN maintains a memory based on history

information, which enables the model to predict the current output conditioned on

long distance features. An important characteristic of user interactions is that the

resulting sequences are of variable length. Long Short-Term Memory (LSTM) net-

works are a special case of Recurrent Neural Networks (RNNs) which are capable

of creating internal cell states of the network which allow it to exhibit dynamic tem-

poral behavior thereby enabling the RNN to process arbitrary sequences of inputs

such as user interaction sequences.

The action-LSTM takes as input a sequence of user actions x = (x1,x2, ....,xT )

and computes the hidden sequence h = (h1,h2, ...,hT ) as well as the output vector
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Figure 8.2: The Bi-directional LSTM model for query SAT prediction.

y = (y1,y2, ...,yT ) by iterating from t = 1 to T :

ht = H (Wxhxt +Whhht−1 +bh) (8.2)

yt = Whyht +by (8.3)

where T is the total number of sequences; Wxh are the weight matrices between the

input layers a and h and so on; b is a bias vector, and H is the composite function.

The action-LSTM architecture is composed of two components: (i) Action Embed-

dings and (ii) LSTM sequence model. We next discuss both these components in

detail.

Action Embeddings:

The input to the action-LSTM is the sequence of user actions on the rendered

SERP. While one-hot vector representations have been traditionally used as input

to the recurrent neural networks, recently embeddings have shown enhanced per-

formance. We learn action embeddings from the interaction sequence data. Given

the set of action sequences, the first layer embeds each action into a continuous
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vector space using a skip-gram model [122]. Since the input sequences are of

arbitrary length, we mask the input sequences with dummy symbol which are ig-

nored during training phase. The embedding layer is optimized jointly with the

rest of the model through backpropagation, [189] optimizing the individual actions’

embedding vectors to be more reflective of their semantic closeness to other actions.

Sequence LSTM Model:

After passing through the embedding layer, the input action sequences are input to

the LSTM module. The LSTM composite function forming the LSTM cell with

peephole connections is defined as:

it = σ(Wxixt +Whiht−1) (8.4)

ft = σ(Wx f xt +Wh f ht−1) (8.5)

ct = ft� ct−1 + it� tanh(Wxcxt +Whcht−1) (8.6)

ot = σ(Whxxt +Whoht−1 +Wcoct) (8.7)

ht = ot� tanh(ct) (8.8)

where σ denotes the sigmoid function, σ(z) = (1+ e−z)
−1. The superscripts

(t) denote the index of the current time step, i, f and o, are respectively the input,

forget and output gates, and c the cell activation vector with the same size than the

hidden vector h. The weight matrices W from cell c to gates i, f and o, are diagonal,

and thus, an element e in each gate vector receives only the element e from the cell

vector.

In any action in a interaction sequence, we not only have historic actions,

but also have future actions user took on the SERP. For many sequence labelling

tasks it is beneficial to have access to both past (left) and future (right) actions

contexts. However, the LSTM’s hidden state ht takes information only from past,

knowing nothing about the future. To leverage future action information, we use

bi-directional LSTM (BLSTM) wherein the basic idea is to present each sequence

forwards and backwards to two separate hidden states to capture past and future
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Figure 8.3: Neural architecture of the proposed deep Unified Multi-view CNN-LSTM
model.

information, respectively. It is important to note that our goal is retrospective satis-

faction prediction, i.e., offline prediction of user satisfaction based on the observed

interaction signals. While future action sequences will not be available in an on-

line setting, this restriction does not apply in our offline setting, as a result, bi-

directional LSTMs can be used in retrospective offline satisfaction prediction. This

type of RNN feeds to a same output layer fed forwarded inputs through the two

hidden layers. Therefore, the BLSTM computes both forward hidden sequence~h

and backward sequence
←−
h as well as the output vector y, by iterating~h from t = 1

to T , and
←−
h from t = T to 1:

~ht = H (Wx~hxt +W~h~h
~ht−1 +b~h) (8.9)

←−
ht = H (Wx

←−
h xt +W←−h←−h

←−
h t−1 +b←−h ) (8.10)

yt = W~hy
~ht +W←−hy

←−
h t +by (8.11)

where H is the composite function. The BLSTM allows to exhibit long range

context dependencies and takes advantage from the two directions structure. The

output vector y is processed by evaluating simultaneously the two directions hidden

sequences by computing the composite function H in the forward and backward

directions.

8.4.2 Unified Multi-View Interaction Model

Although sequence based approaches to satisfaction prediction are an effective way

of capturing user interactions, we hypothesize that better, richer representation of
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user activity can be obtained by incorporating other interaction signals in the model

architecture. The traditionally used static features and implicit signals provide a

different view of the user interactions. Our primary contribution here is a novel

neural architecture that is designed to jointly leverage sequence information with

such static implicit feedback signals to predict search satisfaction.

To illustrate, consider the example of a user action sequence: Pause – Scroll –

Click. While sequence information is informative, aggregate metrics such as dwell

times etc provide useful cooked information and is helpful in capturing domain

information about user behavior with SERP.

8.4.2.1 Auxiliary Signals

A number of different interaction behaviors have been taken into consideration in

the prediction of search user satisfactions including both coarse-grained features

(e.g. clickthrough based features [99]) and fine-grained ones (e.g. cursor position

and scrolling speed [100]). We use a number of such traditionally used signals as

auxiliary side-information which provides an alternative view of user interaction.

We categorize these signals into three groups: (i) Temporal signals, (ii) Click based

signals and (iii) Scroll & pointer signals. Table 8.3 presents the different types of

signals captured under each of these groups which provide us an alternative view

of the user interaction. We next describe our model which jointly encodes these

auxiliary features with the sequential action-LSTM model.

8.4.2.2 Unified Multi-View Interaction Model

The auxiliary signals described above provide us with an alternate view of user

interaction. We use these auxiliary signals to enrich our sequential model to create

a unified multi-view model of user interactions. We propose a coupled architecture

composed of deep convolutional network and dense layers for modelling auxiliary

features and couple it with the action-LSTM architecture described before. Its main

building blocks are (i) action-LSTM which use the action sequences and (ii) the

auxiliary feature module based on convolutaional neural networks (ConvNets), both

of which work in parallel mapping details of user interactions to their distributional

vectors which are then used to predict user satisfaction for each query.
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Feature Set Feature List

Temporal Signals

Page dwell time
Reading time per pixel
Viewport time per instance
Time to first pointer event
Time to first scroll event

Click based Signals
Total click count
Algo click count
Answer click count

Scroll & Pointer Signals

Total scroll count
Pointer horizontal distance
Pointer vertical distance
Pointer event count
Scroll Up count
Scroll down count
Viewport direction changes

Table 8.3: Auxiliary Signals: List of implicit signals used as side information.

The architecture of our ConvNet for mapping implicit signals to features is

mainly inspired by the various CNN architectures used for performing different

classification tasks. However, different from previous work the goal of our distribu-

tional auxiliary signals model is to learn good intermediate representations of such

signals, which are then coupled together with the output representation of the se-

quential action-LSTM model and used for satisfaction prediction. The input to the

ConvNet module are the three set of implicit feedback signals (as shown in Table

8.3) that are processed by intermediate convolutional layers. The aim of the con-

volutional layers is to extract patterns, i.e., discriminative signal sequences found

within the input signals that are common throughout the training instances.

More specifically, the convolution operator operates on sliding windows of

signals, and the convolutions in deeper layers are defined in a similar way. Suppose

we have a discrete input function g(x) ∈ [1, l]→ R and a discrete kernel function

f (x)∈ [1,k]→ R. The convolution h(y)∈ [1,b(l−k)/dc+1]→ R between f(x) and

g(x) with stride d is defined as:

h(y) =
k

∑
x=1

f (x) ·g(y ·d− x+ c) (8.12)
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where c = k - d + 1 is an offset constant. The module is parameterized by a set of

such kernel functions fi j(x)(i = 1,2, ...,m and j = 1,2, ...,n) which we call weights,

on a set of inputs gi(x) and outputs h j(y). The output from the convolutional layer

(passed through the activation function) are then passed to the pooling layer, whose

goal is to aggregate the information from the previous layer. Given a discrete input

function g(x) ∈ [1, l]→ R, we employ a 1-D spatial max-pooling function h(y) ∈

[1,b(l− k)/dc+1]→ R of g(x) defined as:

h(y) = maxk
x=1g(y ·d− x+ c) (8.13)

where c = k - d + 1 is an offset constant. To allow the network learn non-linear

decision boundaries, each convolutional layer is typically followed by a non-linear

activation function applied element-wise to the output of the preceding layer. The

non-linearity used in our model is the rectifier or thresholding function

h(x) = max{0,x} (8.14)

which makes our convolutional layers similar to rectified linear units (ReLUs)

[190].

Convolutional layer passed through the activation function together with pool-

ing layer acts as a non-linear feature extractor. Finally, we combine the ConvNet

feature extractor with the output of the action-LSTM and pass it through 2 dense

layers. and a softmax layer at the end.

Interaction Layers:

Our model includes an additional hidden layer right before the softmax layer (de-

scribed next) to allow for modelling interactions between the components of the

intermediate representation, i.e., the different views of user interactions. The hidden

layer computes the following transformation: α(wh · x+b) where wh is the weight

vector of the hidden layer and α() is the ReLU non-linearity function.
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Softmax Layer:

The output of the penultimate convolutional and pooling layers is flattened to a

dense vector x, which is passed to a fully connected softmax layer. It computes the

probability distribution over the labels:

p(y = j|x) = exT θ j

∑
K
k=1 exT θk

(8.15)

where θk is a weight vector of the k-th class. x can be thought of as a final abstract

representation of the input example obtained by a series of transformations from the

input layer through a series of convolutional and pooling operations.

8.4.3 Training

The parallel multi-view CNN-LSTM model is trained to minimize the RMSE error

on satisfaction prediction accuracies. We use the ADAM optimization algorithm

for training [191], with a batch size of 64. The learning rate is initially chosen

as 0.01, and dropped to 0.003 in the middle of training before convergence. We

useed the standard default values for other parameters of the optimizer: β1 = 0.9,

β2 = 0.999, ε = 108. While neural networks have a large capacity to learn com-

plex decision functions they tend to easily overfit especially on small and medium

sized datasets. To mitigate the overfitting issue we insert 2 dropout modules in be-

tween the fully-connected layers to regularize. They have dropout probability of

0.2. Dropout prevents feature co-adaptation by setting to zero (dropping out) a por-

tion of hidden units during the forward phase when computing the activations at the

softmax output layer and also acts as an approximate model averaging [192].

8.5 Functional Composition for Task Satisfaction
Given details of user interactions at the query level and the corresponding query

level satisfaction prediction architecture proposed in the previous section, our over-

all goal is to make task satisfaction predictions. In this section, we enumerate dif-

ferent ways of using query satisfaction predictions to make task level satisfaction

predictions. Specifically, given a sequence of queries Q = q1,q2, ...,qt belonging to
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a search task t ∈ T , where T is the set of all tasks, the Multi-view CNN-LSTM archi-

tecture provides us with estimates of query level satisfaction Yqi = ϕq(qi,aqi) where

Yqi ∈ {0,1} is the query level satisfaction estimate, aq is the set of action sequence

observed for the search impression for query q and ϕq is the query level satisfaction

prediction function. Our goal is to make task level satisfaction prediction:

yt = F
({

q1,ϕq(q1)
}
,
{

q2,ϕq(q2)
}
,
{

q3,ϕq(q3)
}
, ...,

{
qi,ϕq(qt)

})
(8.16)

where F: {q1,ϕq(q1)} → Yt ∈ 0,1 represents the functional transformation which

maps query-satisfaction estimate tuple {qi,ϕq(qi)} to a task satisfaction label.

Based on known insights on task satisfaction, we present a number of different

functional compositions techniques at two levels of abstract: (i) query level aggre-

gation and (ii) subtask level aggregation.

8.5.1 Query level composition

To make task level satisfaction predictions, we being by aggregating satisfaction

signals at the query level. We consider four distinct functional forms of aggregation,

ranging from extremely strict to lenient evaluation of task satisfaction.

1. Maximum: This functional composition method assumes that the user is sat-

isfied in completing their task if they are satisfied in any of the queries they

issued while completing the task. Specifically:

yt = max
(

ϕq(q1),ϕq(q2),ϕq(q3), ...,ϕq(qt)
)

(8.17)

where ϕq(qi) gives the query level satisfaction estimate based on the Multi-

View CNN-LSTM architecture. It is to be noted that such a functional com-

position is the most lenient way of evaluating search engine performance.

2. Average: This functional composition techniques considers equal contri-

bution from each query in predicting task satisfaction. Specifically, yt =

∑
|Qt |
i=1 ϕq(qi)
|Qt | where |Qt | is the number of queries associated with the task t.

3. Differential Weighting: Often users reformulate their information needs and
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issue a series of queries as they complete their task. We hypothesize that

queries towards the end of the task are more important than the ones at the

start, based on which we over emphasize queries towards the end of the task

when considering their contribution towards task satisfaction. Specifically:

yt =
∑
|Qt |
i=1 wiϕq(qi)

|Qt |
(8.18)

where wi is the weight associated with query qi.

4. Minimum: This functional composition assumes that a user is satisfied is

completing their task if they are satisfied in each of the queries they issued to

accomplish the task. Specifically:

yt = min
(

ϕq(q1),ϕq(q2),ϕq(q3), ...,ϕq(qt)
)

(8.19)

Such an computation of task satisfaction is the most strict estimate of task

satisfaction since if any SERP rendered for query is unsatisfying to the user,

the whole task is rendered unsatisfying.

8.5.2 Subtask based composition

Often search tasks involve many distinct, but related aspects which warrant the need

for issuing different sets of queries over time in order to fulfill the multi-aspect infor-

mation needs. A complex search task could be broken down into smaller multi-step

or multi-aspect sub-tasks that represent atomic informational needs, for which it is

trivial for users to issue satisfying queries. We hypothesize that task-level satisfac-

tion could estimated based on user’s satisfaction levels when attempting different

subtasks. An ideal task completion engine would help the user satisfactorily ac-

complish each of the associated subtasks. We utilize this insight to estimate task

satisfaction from the associated subtask satisfaction estimates.

Given a task t composed of |St | subtasks, we consider a nested functional com-

position of satisfaction estimates at two levels: (i) aggregating query satisfaction

estimates to compute subtask satisfaction and (ii) aggregating subtask satisfaction



8.6. Experimental Evaluation 177

Method Type Method Accuracy Precision Recall FMeasure Log-Loss

Feature based baselines

Baseline 1(Clicks+Dwell Time) 0.561 0.86 0.58 0.6927 13.88
Baseline 2 (Click based actions) 0.593 0.78 0.61 0.6846 13.67
Baseline 3 (Mouse Movement) 0.606 0.72 0.66 0.6886 13.32
Baseline 4 (Scroll & Viewport)) 0.586 0.71 0.67 0.6894 13.73
Baseline 5 (Reading Pattern Signals) 0.596 0.72 0.69 0.7046 13.61

Sequential baselines
Generative Probabilistic 0.631 0.81 0.67 0.7333 13.04
CRF-Actions 0.593 0.77 0.6 0.6744 14.74
CRF-Queries 0.582 0.75 0.62 0.6788 14.89

Proposed/Variants

SimpleRNN 0.654 0.72 0.85 0.7796 11.36
action-Embedding + LSTM 0.668 0.71 0.88 0.7859 11.08
action-Embedding + Bi-LSTM 0.677∗& 0.73 0.89∗& 0.8020∗& 10.98∗&

Table 8.4: Query level SAT prediction. * and & indicate statistical significant (p ≤ 0.05)
using paired t-tests compared to the best performing feature based baseline and
the best performing sequential baseline respectively.

estimates to compute task satisfaction. Specifically,

yt = f
(

g
(
{ϕq(qi)}∀qi ∈ S1

)
,g
(
{ϕq(qi)}∀qi ∈ S2

)
,

...,g
(
{ϕq(qi)}∀qi ∈ St

))

where Si represents the subtask j and St represents the total number of subtasks

in the task t. The functions f(.) and g(.) could be either of the four query level

aggregate functions defined before. While there exist automated subtask extrac-

tion approaches [186], for the scope of this chapter, we assume access to subtask

demarcation information obtained via crowdsourced labeling.

8.6 Experimental Evaluation
In this section, we demonstrate how our satisfaction prediction models perform for

predicting both query and task level satisfaction. We conduct a number of exper-

iments using crowdsourced judgments as well as real world search engine traffic.

We make use of labels obtained via crowdsourced judgments studies as ground

truth labels for all evaluations considered; however, we leverage large scale pseudo-

labelled data with weak supervision signals to train our deep models.

8.6.1 Dataset

Our data consists of a random sample of user sessions from a major US commer-

cial search engine engine during a week in June 2016. We randomly sampled user
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Figure 8.4: Summary of user interaction on the SERP shown to judges.

sessions with substantial user activity, and included all queries, search result page

impressions on all results on the search result page from that user in the timeframe.

Additionally, detailed user activity on the result page was logged for model devel-

opment. In total, our sample contained No of sessions over 14670 search sessions,

resulting in about 148561 search queries.

8.6.1.1 Large Scale Pseudo-Labelled Data

While we collect crowdsourced labels for creating ground truth labels, owing to the

limited scale of experimentation possible with crowd-sourced judgments as well

as the differences in opinion of crowdsourced judges and actual users, we may

have insufficient data and labels to reliably train deep parameter-rich models. To

resolve this problem, we build a pseudo-labeled dataset comprised of the entire

large-scale query log described in Section 8.6.1. To assign pseudo satisfaction labels

to search interactions, we assume that a click followed by a query reformulation is a

dissatisfied click, while a click with a dwell time of≥ 30 seconds not followed by a

query reformulation is a satisfied click. Post-click query reformulation is considered

a strong DSAT predictor and has been used as a predictor of search satisfaction in

previous work [119, 188]. To identify query reformulations we use a method similar

to that described in Boldi et al.[193], where features of query similarity (e.g. edit

distance, word overlap, etc.) and time between queries are used to identify query

reformulations. To remain conservative while creating the pseudo-labelled data, we

ignored all other cases and only considered the cases highlighted above wherein the

system was sure of a satisfactory or unsatisfactory experience.
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8.6.2 Collecting Task SAT Judgements

Crowdsourced judgments have commonly been used to obtain labeled data [194,

195]. To gauge user satisfaction at both query level and task level, we collect judge-

ment labels at both levels. For each search impression as well as the overall task,

we obtained human labelled judgments on whether the user interaction was satis-

fying (labelled SAT) or not (labelled DSAT). The labelling was conducted using

an in-house microtasking platform that outsources crowd work to vendors, similar

to CrowdFlower, and provides access to judges who regularly perform relevance

judgment tasks. Workers were under NDA and all data containing personal identifi-

able information (PII), such as names, phone numbers, addresses, or social security

numbers, were removed.

Detailed guidelines were issued to the judges to describe the task and a number

of examples were shown defining what constitutes a query, a subtask and a task and

explaining how to judge for query as well as task level satisfaction. To ensure

the quality of the judging results, we apply a series of quality control methods.

One of the methods is creating ’gold hits’ that you already know the answer of,

then measure the judges by comparing how far off their answers are from the gold

hits answers. We also measure the quality of the judgments with the amount of

consensus reached which required overlap on the hits, i.e. the same hit to be judged

by multiple judges.

The data presented to the judges come from previously annotated data where

another group of judges defined the task boundaries within a session. In other

words, each session was divided into one of more coherent tasks. A sequence of

queries are considered part of a coherent task if they collectively try to achieve a

certain goal. The output of the task boundary annotation is given to our group of

judges where each is represented as a series of queries along with the corresponding

user interaction information. In order to provide relevant information to the judges,

we provided a detailed summary of user interaction with the SERP. The judges

were provided a link to the SERP shown to the user alongside details like number

of clicks, time spent on the SERP and scroll information. Additionally, for all the
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Method Accuracy Precision Recall FMeasure Log-Loss
CRF-Actions 0.593 0.77 0.6 0.6744 14.74
CRF-Actions + All Signals 0.603 0.78 0.61 0.6848 14.29
Generative Probabilistic 0.631 0.81 0.67 0.7333 13.04
Generative Probabilistic + All Signals 0.651 0.823 0.681 0.744 12.97
action-Embedding+ LSTM 0.677 0.73 0.89 0.8020 10.98
action-Embedding+ LSTM + Click based Signals 0.678 0.744 0.825 0.783 11.11
action-Embedding+ LSTM + Temporal Signals 0.699 0.714 0.954∗& 0.817∗& 10.36
action-Embedding+ LSTM + Scroll/Viewport Signals 0.689 0.728∗& 0.89 0.801 10.72
Unified Multi-View Model (action-LSTM + All Signals) 0.703∗& 0.717 0.944 0.815 10.25∗&

Table 8.5: Evaluating the unified model for Query SAT prediction. * and & indicate statis-
tical significant (p ≤ 0.05) using paired t-tests compared to the CRF all signals
and Generative Probabilistic - All Signals baselines respectively.

clicked documents, we provided URL level details which included the exact URL,

the position on the SERP where it was shown and the total dwell time on each URL.

Each judge was asked to consider the user interaction summary and provide labels

for query and task satisfaction. Figure 8.4 provides an example summary of user

interaction.

We randomly sampled over 2100 user tasks and over 450 judges provided

judgments for about 6820 search impressions, resulting in over 20460 judgments.

Among the first two judgments collected for each query, the judges agreed on the la-

bel 74% of the time. We measured inter-rater agreement using Fleiss’ Kappa [196],

which allows for any number of raters and for different raters rating different items.

This makes it an appropriate measure of inter-rater agreement in our study since

different judges provided labels for different items. A kappa value of 0 implies that

any rater agreement is due to chance, whereas a kappa value of 1 implies perfect

agreement. In our data, κ = 0.64, which, according to Landis and Locke [197],

represents substantial agreement.

8.6.3 Baselines

We consider a number of baselines from recent published literature, including both

non-neural and neural models, as well as non-sequential and sequence based mod-

els.

• Baseline 1 (click with dwell time): Spending a minimum amount of time on

a webpage is known as a long dwell click and has been shown to be correlated

with satisfaction [188]. In this study, we set t = 30 seconds.
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• Baseline 2 (click based actions): This baseline is based on predicting satis-

faction based on clickthrough based features [100].

• Baseline 3 (Mouse movement): This baseline is based on recent work aimed

at predicting satisfaction using mouse movement patterns [114].

• Baseline 4 (Scroll & Viewport): This baseline is based on the recently pro-

posed scrolling and viewport features [108, 195]

• Baseline 5 (Reading pattern signals): This baseline is based on the reading

pattern signals from Kiseleva et al.[198]

Additionally, we consider a number of sequence based models to compare the per-

formance of the proposed approach.

• Generative Probabilistic Model:[199] A semi-supervised generative model

wherein every action sequence is generated using a probability distribution

specified by a 2-component mixture model.

• CRF Models: Conditional random field models are popularly used for many

different sequence labeling tasks. We consider two variants of CRF models

based on the input features they use:

– action-CRF: this CRF makes use of only the action information for con-

structing CRF features.

– query-CRF Model: in addition to action co-occurrence features, this

CRF model takes into account query level features during training.

We also consider variants of the proposed model: (i) simple RNNs, (ii) action-

embedding LSTM and (iii) action-Embedding Bi-LSTM.

8.6.4 Query Level SAT Prediction

As our first experiment, we consider predicting user satisfaction for each search im-

pression. We compare the proposed sequential action embedding + LSTM model

with traditionally used features as well as other popular feature based and sequen-

tial models. For each query, we extract the set of features needed by the different
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Functional Composition Type Method Accuracy Precision Recall FMeasure Log-Loss

Maximum

CRF 0.639 0.914 0.629 0.7454 12.46
Generative Probabilistic 0.811 0.917 0.852 0.883 6.49
action-Embedding Bi-LSTM 0.823 0.841 0.974 0.902 6.08
Unified Multi-View 0.8309∗& 0.838 0.988∗& 0.907∗& 5.83∗&

Minimum

CRF 0.5259 0.785 0.589 0.679 16.37
Generative Probabilistic 0.826 0.838 0.983 0.904 6.003
action-Embedding Bi-LSTM 0.618 0.94∗& 0.356 0.517 19.32
Unified Multi-View 0.5952 0.882 0.597 0.712 13.98

Average

CRF 0.57 0.906 0.544 0.6807 14.82
Generative Probabilistic 0.797 0.918 0.832 0.873 6.99
action-Embedding Bi-LSTM 0.6809 0.847 0.756 0.799 11.
Unified Multi-View 0.801∗& 0.842 0.895∗& 0.868 6.89∗&

Differentially Weighted

CRF 0.632 0.913 0.62 0.739 12.7
Generative Probabilistic 0.814 0.917 0.855 0.885 6.41
action-Embedding Bi-LSTM 0.714 0.853 0.781 0.815 8.21
Unified Multi-View 0.824∗& 0.849 0.929∗& 0.887∗ 6.84∗&

Subtask (Max-Average)

CRF 0.591 0.926 0.553 0.6924 13.66
Generative Probabilistic 0.761 0.901 0.812 0.8541 8.89
action-Embedding Bi-LSTM 0.70 0.83 0.79 0.82 10.36
Unified Multi-View 0.77∗& 0.84 0.89∗& 0.86∗ 8.14∗&

Subtask (Average-Max)

CRF 0.621 0.904 0.632 0.7439 12.89
Generative Probabilistic 0.814 0.921 0.841 0.8791 6.41
action-Embedding Bi-LSTM 0.79 0.85 0.92 0.88 7.56
Unified Multi-View 0.838∗& 0.84 0.98∗& 0.91∗& 6.08∗&

Table 8.6: Task level SAT prediction. * and & indicate statistical significant (p ≤ 0.05)
using paired t-tests compared to the CRF and Generative Probabilistic baselines
respectively.

baselines as well as the detailed user interaction action sequence and consider the

judgment labels obtained from the crowdsourced study as the ground truth. We

randomly split the data into training and test set in 60/40 ratio. We use the pseudo-

labelled data described in Section 8.6.1.1 to pre-train the neural models.

Table 8.4 presents the prediction results comparing the proposed approach with

established baselines. We observe that sequence based baselines perform better

than feature based baselines in general, with the generative probabilistic baseline

performing particularly better with over 7% improvement in accuracy scores. A

satisfying click, i.e., click followed by a long dwell time, has traditionally been used

to gauge user satisfaction. We re-confirm such known insights since we observe

that Click+DwellTime obtain the best precision; however this method misses out

on capturing various other satisfactory interactions, as is evident from their low

recall scores. Further, we observe that mouse movement information (baseline 3) in

general is more predictive than just click based features.

Overall, we observe that the proposed deep sequential model and its variants

outperform all baselines considered in predicting user satisfaction and register an
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improvement in over 11% over the worst performing baseline and ∼5% over the

best performing generative sequence modelling approach. Among the variants con-

sidered, the simple RNN model is outperformed by the more sophisticated LSTM

models which confirms known benefits offered by LSTMs over RNNs. The bidirec-

tional version of the proposed model outperforms the LSTM model on all metrics,

which confirms our hypothesis that including future action signal information helps

in modeling user interaction better. Indeed, since most satisfaction detection and

evaluation is performed post-hoc, and historic data logs entire user interactions, fu-

ture actions signal information is readily available and should be used in modeling

user interactions. The proposed deep sequential models perform significantly bet-

ter in terms of recall, with obtaining 20% improvement over the best performing

baselines. This strongly suggests that the rich user interaction signals used by our

deep sequence models are perhaps able to capture and detect user satisfaction in

non-click scenarios, and abandonment cases.

8.6.5 Unified View for QSAT

We next evaluate the benefit of unifying the different interactions signals, both static

features and interaction sequences. We investigate how adding different sets of

features to the sequential model help in better predicting user satisfaction. Table 8.5

presents the results on query level satisfaction prediction comparing the proposed

Unified Multi-View CNN+LSTM model with the best performing baselines.

We observe that adding the other view of user interaction data always helps in

improving prediction performance across all methods. Adding click based signal

information to the interaction sequence information improves SAT precision (at the

cost of recall), which is consistent with what was observed before. Adding tempo-

ral signals give a significantly improved performance in terms of recall, with over

27% improvement in detecting satisfaction cases which may have otherwise been

missed by baseline approaches. Indeed, temporal signals and detailed user interac-

tions go well beyond shallow methods which assume a very restrictive view of user

satisfaction. Further, the unified multi-view model achieves the best accuracy in

predicting user satisfaction with over 5% improvement in accuracy, 26% improve-
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Method Accuracy Precision Recall FMeasure Log-Loss
CRF 0.639 0.914 0.629 0.7454 12.46
Generative Probabilistic 0.826 0.838 0.983 0.9045 6.003
action-Embedding Bi-LSTM 0.823 0.841 0.974 0.9022 6.08
Unified Multi-View 0.843∗& 0.851 0.991∗& 0.9156∗& 5.62 ∗&

Table 8.7: Comparing the performance of different task SAT prediction approaches across
all functional compositional techniques. * and & indicate statistical significant
(p≤ 0.05) using paired t-tests compared to the CRF and Generative Probabilistic
baselines correspondingly.

ment in recall and 7% improvement in F-score. These results strongly demonstrate

the benefits offered by the enriched unified multi-view models by leveraging not

only the interaction sequence information, but also other static implicit signals.

8.6.6 Task SAT Prediction

One major motivation for the current work is to leverage user interaction signals

to predict task level satisfaction of users. To this end, we consider the problem of

task satisfaction prediction and compare how the different compositional functions

perform in predicting task level satisfaction. Since we collected task satisfaction

judgements alongside query level satisfaction judgements, we make use of these

task level judgements as ground truth information.

Before diving deep into different compositional functions, we first look at how

the proposed models perform on the task satisfaction problem. As shown in Ta-

ble 8.7, we observe that the proposed deep sequential model performs better than

the best performing baselines in predicting task satisfaction across all five metrics.

Moreover, the unified multi-view model performs better than the deep sequential

model, which demonstrates that the combined information from interaction se-

quences and other auxiliary implicit feedback signals are not only good for query

level satisfaction prediction, but also work best at measuring task satisfaction.

We additionally analyze how the different functional composition techniques

fare. Table 8.6 presents the task satisfaction prediction results wherein we com-

pare the proposed models with best performing baselines across the different func-

tional composition techniques. We considered five different functional composition

techniques for aggregating query level satisfaction estimates to compute task satis-
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faction. We observe that the most lenient aggregating technique (Maximum) con-

sistently achieves higher accuracy than the most strict satisfaction criterion (Mini-

mum). We observe that the differential weighting scheme performs better than the

average function, which hints at the fact that not all queries contribute the same

towards a task. Finally, considering subtasks information in the intermediary stage

between query and task level abstractions helps in better predicting task satisfaction.

8.7 Conclusion
We considered a holistic view of user interaction and presented deep sequential

models for predicting user satisfaction at various levels of abstraction. While most

exiting approaches focus on query satisfaction or task satisfaction for simple atomic

tasks, we go beyond such atomic tasks and consider the problem of predicting user’s

satisfaction when engaged in complex search tasks composed of many different

queries and subtasks. The proposed unified multi-view model and the functional

composition approach performs better than a number of established baselines. We

hope that the findings of this work would inspire future research in developing so-

phisticated techniques for quantifying the importance of different queries and sub-

tasks in any given complex task. For instance, certain queries would be more im-

portant to accomplish a task, and certain subtasks could be option and be potentially

skipped. Further, task satisfaction prediction could inspire research in developing

retrieval algorithms optimized for task completion. Finally, we contend that the

promising results demonstrated by the unified multi-view approach would help in

improving satisfaction prediction and good abandonment detection on mobile de-

vices.





Chapter 9

Conclusion & Future Work

In this thesis, we have investigated user’s task behavior and presented techniques

for understanding, extracting and leveraging search tasks. We have done so in two

parts: in Part I we have studied user behavior and search tasks, presented techniques

for extracting tasks-subtasks, and in Part II we have leveraged task information to

learn user models, query representations and gauge user satisfaction.

Part I revolved around understanding and extracting search task. Recent ad-

vances in understanding online search behavior has introduced the idea of search

tasks as the atomic unit of search activity on the web. We illustrate in this paper how

a shift of focus from the idea of a search session to a search task raises a number

of important questions. First in chapter 3, we investigated behavioral insights into

how users interact with search systems and accomplish various search tasks. We

presented analysis on user’s propensity to multi-task, user groups based on multi-

tasking habits of users, and the interplay between user-disposition, topic-level het-

erogeneities and search tasks. In order to fully understand the different aspects of

complex search tasks, we presented a bayesian non-parametric subtask extraction

algorithm in Chapter 4 which extracted subtasks from a given collection of on-task

queries without specifying the expected number of subtasks apriori. In chapter 5,

we showed that a more naturalistic view of looking at tasks consists if hierarchies of

tasks with complex tasks hierarchically decomposed into more focussed subtasks.

We presented a hierarchical bayesian non-parametric model to extract these hierar-

chies and presented a comprehensive evaluation setup to quantify the quality of the
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extracted hierarchy.

In Part II, we turned to different ways in which the task information could

be useful in helping search systems better serve users. In chapter 6, we presented

an application of leveraging task information and showed that incorporating task

information indeed helps in developing better user models for personalization. Be-

yond user representations, we also showed that task information helps in learn-

ing better query representations. Specifically, in Chapter 7 we presented a novel

task based embedding architecture that learns distributed semantic representation

of query terms preferring task context over local information in immediately sur-

rounding words. Finally, moving beyond user and query representations, in Chap-

ter 8, we took a comprehensive look at user satisfaction from different levels of

abstractions. We proposed a deep sequential model which considers holistic view

of user interaction with the search engine result page (SERP), constructs detailed

interaction sequences of their activity and leverages such interaction sequences to

predict query level satisfaction. In this chapter, we also proposed a novel functional

composition model which takes into account user satisfaction at the query as well

as the subtask level to make task level satisfaction predictions.

In this concluding chapter we first look back at the research questions we

sought to answer in the first chapter of this thesis, in Section 1.1, and summarize

the answers to our research questions asked in Parts I and II. We briefly summarize

all our findings once more in Section 10.2, discuss implications of our findings in

Section 10.3 and present some limitations of the work in Section 10.4. Building on

top the presented limitations, we reflect on few promising future research directions

in Section 10.6.

9.1 Main Findings

Here we summarize in detail the methods and findings presented in this thesis in

line with the Research Questions raised in Chapter 1.
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Part I: Understanding and Extracting Tasks

An important starting question we investigated dealt with fully characterizing the

extent and underlying heterogeneities surrounding single-task and multi-task search

sessions. The answers to these questions would be instrumental for search engine

platforms to generate more accurate personalization strategies for their users. In

Chapter 3, we emphasized that while most users on search engines are multi-task

users performing 2 or more tasks within a single search session, there exist a size-

able proportion of users who are more focussed and mostly mono-task. We also

provide evidence of ”Supertaskers” who perform onwards of 4 tasks within a sin-

gle session. As highlighted by the varying search effort metrics, the different user

groups indeed interact with the search results differently and hence motivate the

need for incorporating such differences in multi-tasking behavior of users while per-

sonalizing search experiences. Yet another finding we wish to highlight through our

study is the characterizing of multiple tasks into a combination of a single primary

and multiple ancillary tasks. Our task effort scores provide preliminary evidence to

suggest that such categorization of multiple tasks into a task-hierarchy might indeed

be plausible.

While we draw on previous work as well as our own set of analyses to show

that multi-tasking within a search session is fairly common, we also emphasize that

the extent and nature of multi-tasking is strongly influenced by user dispositions (i.e.

whether a user is naturally disposed to single vs. multi-tasking), topic preferences

(i.e. users might prefer to multi-task when searching for certain topics than others),

and interest preferences (i.e. users might prefer to multi-task about topics they are

more or less interested in).

Prior work on identifying search-tasks mainly explores task extraction from

search sessions with the objective of segmenting a search session into disjoint sets

of queries where each set represents a different task. Despite these efforts, problems

with existing task extraction systems abound. We presented two novel algorithms

for task and subtask extraction and experimentally demonstrated that the proposed

task extraction algorithms are able to extract richer set of tasks and subtasks than
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existing baselines. In Chapter 4, we exploited the concept distributional semantics

with non-parametric priors and presented a bayesian non-parametric model for ex-

tracting coherent subtasks from a given query collection of on-task queries. The

proposed generative model (TE-coh-ddCRP) is not restricted by a fixed number of

sub-task clusters, and assumes an infinite number of latent groups, with each group

being described by a certain set of parameters. We specified our non-parametric

model by defining a Distance-dependent Chinese Restaurant Process (dd-CRP)

prior and a Dirichlet multinomial likelihood and enriched the model by working

in the vector embedding space which uses a word-embedding based distance mea-

sure to encode query distances for efficient sub-task extraction. Further, we for-

mally defined the notion of subtask affinity, which helps us quantify the semantic

cohesiveness and coherence of a given subtask, based on which we propose a novel

likelihood function which encodes the coherence estimates.

Based on several experiments presented in Chapter 4, we demonstrated that

the proposed model indeed helps in extracting coherent subtasks from a collection

of on-task queries. Using a user judgement study, we measured the subtask relat-

edness score which provides an estimate of how coherent the extracted subtasks

are and showed that the proposed method outperforms all the baselines considered,

in making correct sub-task assignments. Further, we demonstrated the efficacy of

the model by measuring sub-task coherence estimates as well as purity estimates.

We observe that the proposed TE-coh-ddCRP model outperforms all compared ap-

proaches in terms of purity and is able to find subtask clusters wherein the query

terms are more similar. It improves over the second best method by over 20%. We

observe similar trends in terms of top performing baselines as we did while evaluat-

ing coherence. Among the variants of the proposed approach, the coherence enabled

version performs better than the embedding enabled variant while their combination

performs the best. This highlights the importance of considering both the embed-

ding based distance metric aspect as well as the coherence based likelihood aspect,

while extracting subtasks.

In addition to decomposing complex tasks into subtasks, we considered the
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challenge of extracting hierarchies of search tasks and their associated subtasks

from a given search log given just the log data without the need of any manual anno-

tation of any sort. In Chapter 5, we presented an efficient Bayesian non-parametric

model for discovering hierarchies and proposed a tree based bayesian hierarchial

task construction algorithm to discover this rich hierarchical structure embedded

within search logs.

We used a number of evaluation methodologies to evaluate the efficacy of the

proposed task extraction methodology, including quantitative and qualitative analy-

ses along with crowdsourced judgment studies specifically catered to evaluating the

quality of the extracted task hierarchies. First, to justify the effectiveness of the pro-

posed model in identifying search tasks in query logs, we employ a commonly used

AOL data subset with search tasks annotated which is a standard test dataset for

evaluating task extraction systems. The proposed approach manages to outperform

existing task extraction baselines while having much greater expressive powers and

providing the subdivision of tasks into subtasks. While there are no gold standard

datasets for evaluating hierarchies of tasks, we performed crowd-sourced assess-

ments to assess the performance of our hierarchy extraction method. We separately

evaluated the coherence and quality of the extracted hierarchies via two different

set of judgements obtained via crowdsourcing. We measured Task Relatedness,

which measures how pure the task clusters obtained are, with a higher score indi-

cating that the queries belonging to the same task are indeed used for solving the

same search task. The overall results indicate that the tasks extracted by the pro-

posed task-subtask extraction algorithm are indeed better than those extracted by

the baselines. Additionally, we asked the human annotators to judge the subtask va-

lidity and usefulness. The identified subtask was found useful in 67% cases with the

best performing baseline being useful in 52% of judged instances. This highlights

that the extracted hierarchy is indeed composed of better subtasks which are found

to be useful in completing the overall task depicted by the parent task.

In addition to task extraction and user study based evaluation, we chose to

follow an indirect evaluation approach based on Query Term Prediction wherein
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given an initial set of queries, we predict future query terms the user may issue later

in the session. This is in line with our goal of supporting users tackling complex

search tasks since a task identification system which is capable of identifying good

search tasks will indeed perform better in predicting the set of future query terms.

We demonstrated that the proposed method is able to better predict future query

terms than a standard task extraction baseline as well as a very recent hierarchy

construction algorithm.

Part II: Leveraging Task Information

In Part II of the thesis, we highlighted a number of ways in which the extracted task

information could be used in different applications. In Chapter 6, we presented an

approach to model user’s in terms of their tasks by coupling user’s topical interest

information with their search task information to learn a joint user representation

technique. We demonstrated that coupling user’s task information with their top-

ical interests indeed helps us build better user models. In order to evaluate the

performance of the proposed task based user modelling techniques, we used three

techniques of evaluation based on collaborative query recommendation, query rec-

ommendation based on user groups and user cohort analysis.

Our results showed that the proposed Topic-Task Tensor based user modelling

approach and the coupled matrix factorization method performs better than the term

based similarity method (TermSim) as well as topic based method, which demon-

strates that combining search task information with user’s topical interests thus help

us better capture different aspects of user profiles and can serve as potent user mod-

elling tools. Since TermSim relies strictly on term matching for measuring user

similarities, its coverage is limited: it might not capture insights for the users with

too few queries or those who shared the same search interest but issued different

queries or performed different tasks. Task based user modelling can help in better

differentiating between users which have similar topical interests but perform dif-

ferent tasks. The proposed tensor based approach combines the best of both the

worlds and hence was able to leverage the topical user profile information with the
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task aspect. Additionally, the coupled matrix-tensor method (CMTF) combines in-

formation from all available data modalities and learns a joint user representation.

We see that the CMTF model outperforms the other methods which highlights the

importance of jointly considering user’s term, topic and task information.

Experimental results also indicated that the user clusters obtained from via us-

ing topic-task coupled representations perform better than the clusters obtained via

just Bag-of-Terms or task baselines. This is in line with our hypothesis that captur-

ing task behaviors across user populations indeed helps us in forming well-knit user

clusters and thus could help us perform better in groupization.

A direct result of users being engaged in multitasking and task switching be-

haviors is that the resulting search context is heterogeneous, composed of inter-

leaved search goals and tasks. Aimed at mitigating the ill-effects of such heteroge-

neous contexts, in Chapter 8 we proposed a novel task based embedding architec-

ture to learn distributed semantic representation of query terms which prefers task

context over local information in immediately surrounding words. We contributed

the idea that word embeddings be learned on a task-constrained context instead of

the traditionally used global or session context. We demonstrated that the proposed

task embedding model is able to extract improved query representations which cap-

ture task context. In addition to qualitative analysis, we demonstrate the benefit of

learning task based embeddings over traditional query representation techniques by

showing enhanced performance when generating query suggestions.

We observe that though global representations perform better than traditional

and simpler representation techniques, they perform worse than session based and

task based embeddings. This highlights the importance of considering local context

when learning representations, since generic contexts are usually heterogeneous and

ill fitted to retrieval problems. Among the neural local context models, task based

context performs better than session based contexts. This confirms our hypothesis

that sessions are usually polluted with queries from various tasks, and as a result the

resulting context isn’t informative enough. While relevance scores are important,

often system designers have a constraint to rank top-k suggestions. To this end,
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in addition to average relevance scores, we make use of the candidate ranking to

compute NDCG scores. Similar to our previous observation, we observe that neural

representation methods generally perform better than non-neural models. Amidst

session based and task context based, task based representation performs better than

the corresponding session context.

Beyond user models, personalization and query representations, we considered

using task information for predicting user satisfaction. A major portion of existing

work on modelling searcher satisfaction has focused on query level satisfaction. The

few existing approaches for task satisfaction prediction have narrowly focused on

simple tasks aimed at solving atomic information needs. In Chapter 9, we go beyond

such atomic tasks and considered the problem of predicting user’s satisfaction when

engaged in complex search tasks composed of many different queries and subtasks.

We worked on a random sample of user sessions from a major US commercial

search engine engine during a week in June 2016 comprising of over 14670 search

sessions resulting in about 148561 search queries. We considered a holistic view of

user interactions with the search engine result page (SERP) and extracted detailed

interaction sequences of their activity. We then looked at query level abstraction and

proposed a novel deep sequential architecture which leverages the extracted inter-

action sequences to predict query level satisfaction. Further, we enriched this model

with auxiliary features which have been traditionally used for satisfaction predic-

tion and proposed a unified multi-view model which combines the benefit of user

interaction sequences with auxiliary features. Finally, we go beyond query level ab-

straction and considered query sequences issued by the user in order to complete a

complex task, to make task level satisfaction predictions. We proposed a number of

functional composition techniques which take into account query level satisfaction

estimates along with the query sequence to predict task level satisfaction.

We conducted a number of experiments using crowdsourced judgments as well

as real world search engine traffic. We made use of labels obtained via crowd-

sourced judgments studies as ground truth labels for all evaluations considered;

however, we leveraged large scale pseudo-labeled data with weak supervision sig-
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nals to train our deep models. As our first experiment, we considered predicting

user satisfaction for each search impression. We compared the proposed sequential

action embedding + LSTM model with traditionally used features as well as other

popular feature based and sequential models. We observed that sequence based

baselines perform better than feature based baselines in general, with the generative

probabilistic baseline performing particularly better with over 7% improvement in

accuracy scores. A satisfying click, i.e., click followed by a long dwell time, has

traditionally been used to gauge user satisfaction. We re-confirm such known in-

sights since we observe that Click+DwellTime obtain the best precision; however

this method misses out on capturing various other satisfactory interactions, as is

evident from their low recall scores.

We observed that the proposed deep sequential model and its variants outper-

form all baselines considered in predicting user satisfaction and register an improve-

ment in over 11% over the worst performing baseline and 5% over the best per-

forming generative sequence modelling approach. Among the variants considered,

the simple RNN model is outperformed by the more sophisticated LSTM models

which confirms known benefits offered by LSTMs over RNNs. The bidirectional

version of the proposed model outperformed the LSTM model on all metrics, which

confirmed our hypothesis that including future action signal information helps in

modelling user interaction better.

Additionally, we evaluated the benefit of unifying the different interactions

signals, both static features and interaction sequences. We investigated how adding

different sets of features to the sequential model helps in better predicting user sat-

isfaction. We observed that adding the other view of user interaction data always

helps in improving prediction performance across all methods. Adding click based

signal information to the interaction sequence information improves SAT precision

(at the cost of recall), which is consistent with what was observed before. Adding

temporal signals give a significantly improved performance in terms of recall, with

over 27% improvement in detecting satisfaction cases which may have otherwise

been missed by baseline approaches. Further, the unified multi-view model achieves
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the best accuracy in predicting user satisfaction with over 5% improvement in ac-

curacy, 26% improvement in recall and 7% improvement in F-score.

One major motivation for the work presented in Chapter 9 was to leverage user

interaction signals to predict task level satisfaction of users. To this end, we con-

sidered the problem of task satisfaction prediction and compared how the different

compositional functions perform in predicting task level satisfaction. We observed

that the proposed deep sequential model performs better than the best performing

baselines in predicting task satisfaction across all five metrics considered. More-

over, the unified multi-view model performs better than the deep sequential model,

which demonstrates that the combined information from interaction sequences and

other auxiliary implicit feedback signals are not only good for query level satis-

faction prediction, but also work best at measuring task satisfaction. Compari-

son of the different functional compositional techniques for task SAT prediction

highlighted that the most lenient aggregating technique (Maximum) consistently

achieves higher accuracy than the most strict satisfaction criterion (Minimum). We

also observed that the differential weighting scheme performs better than the aver-

age function, which hints at the fact that not all queries contribute the same towards

a task. Finally, considering subtasks information in the intermediary stage between

query and task level abstractions helps in better predicting task satisfaction.

9.2 Implications

In this section, we discuss some of the implications of the research presented in

the different chapters of this thesis. The findings on user’s multitasking behavior

presented in Chapter 3 are useful for search engines in that they could reduce task-

transition delays and make design improvements to reduce cognitive loads in multi-

task sessions. Insights about the presence of various user groups based on searcher’s

multi-tasking habits could inspire the development of personalized models for dif-

ferent user groups based on user’s inherent multi-tasking habits. Additionally, the

insights presented about user, interest and topic level heterogeneities in search be-

havior motivates the need for a shift in focus from search sessions to search tasks as
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the primary focal unit of consideration and analysis.

The task-subtask extraction methods presented in Chapters 4 and 5 have impli-

cations not just in the area of web search but also in other digital online user facing

services. Understanding the task a user is trying to accomplish would assist the

search engine to make better task-aware query suggestions, help develop improved

personalization models, provide better recommendations not just for the current

subtask but also for any future subtask the user might attempt. Such proactive task

aware recommendations could propel a paradigm shift in web search from a reactive

interaction towards more proactive interactions. Moreover, accurate representations

of tasks could also be highly useful in aptly placing the user in the task-subtask

space to contextually target the user in terms of better recommendations and ad-

vertisements, developing task specific ranking of documents, and developing task

based evaluation metrics to model user satisfaction.

In addition to offering improved services, task awareness could inspire re-

search and development of novel task aware interfaces which shift the focus of

search engines from single query information solving tools to task completion en-

gines.

The research presented in Chapter 6 on task based personalization encourages

researchers to appreciate the benefits of task information while building user mod-

els, and motivates the need for developing task aware user representations. User

modelling is common to all online services which aim to offer personalized services.

Given the fact that users use these services to perform certain tasks, developing task

based representations would enable service provides to personalize and assist their

users in successfully using their services. The successful results on user cohorts and

user modelling presented in Chapter 6 clearly demonstrates the value of considering

search tasks rather than just query terms or topics during personalization.

The research presented in Chapter 7 considers task context for learning query

representations. The findings presented in this chapter imply that tasks context

enriched representations perform better than traditional representations, and at the

same time, task context is more informative than session context. Since search
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context is heavily used in a number of search services including user interest mod-

elling, search re-ranking, query suggestions etc, these findings have implications in

designing better context-sensitive search models aimed at exploiting task context

for enhanced user support.

Beyond user modelling and query representations, this thesis considers the

problem of predicting task based user satisfaction in Chapter 9. The implication

of our finding is that detailed view of user interactions helps in predicting not just

query level but also task level user satisfaction. Going beyond atomic tasks and con-

sidering the problem of user’s satisfaction when engaged in complex search tasks

composed of many different queries and subtasks, enables system designers to de-

velop metrics which capture user’s overall satisfaction in completing the task which

inspired them to engage with the search system in the first place. Furthermore, the

findings of this work could inspire future research in developing sophisticated tech-

niques for quantifying the importance of different queries and subtasks in any given

complex task. Further, task satisfaction prediction could inspire research in devel-

oping retrieval algorithms optimized for task completion. Finally, we contend that

the promising results demonstrated by the unified multi-view approach would help

in improving satisfaction prediction and good abandonment detection on mobile

devices.

Finally, it is important to note that the notion of tasks is not limited to web

search space, but easily transcends the search domain and has wide applicability in

other user centric online services. Task aware models and metrics could help system

designers in specifically targeting users based on the tasks they are involved in. We

believe that insights from this work could spark future research in developing richer

and generalizable models of tasks beyond web search.

9.3 Limitations

While the methods and results presented in the thesis advance our understanding of

search tasks and advance the state-of-the-art in task extraction, the work presented

has certain limitations which warrant further investigation in future research. One



9.4. Future Work 199

major limitation of the extracted tasks is interpretability. The extracted tasks often

comprise of a collection of queries without any textual description of what the task

is about. This limits the applicability of the tasks to user facing systems wherein

we want to show task summaries to the user. Another limitation of the proposed

algorithms is exhibited the lack of task sequence data, which prohibits us from

investigating and proposing task sequence prediction algorithms. Indeed, both at

the task level and the subtask level, often times there exists an underlying sequence

which is preferred by users. Identifying and leveraging such sequential information

would help us better plan user’s journey toward task completion.

A related aspect about subtasks is information about their attributes. Certain

subtasks could be optional, or compulsory; real world task or digital tasks; easy

or difficult to complete. The algorithms presented in this thesis do not leverage

such attributes of subtasks and are hence limited in exploiting these aspects to better

assist users. Finally, this thesis considers and covers web search as the focal domain

for grounding research on task understanding and extraction. While information

about search tasks is indeed very useful in web search context, the notion of tasks

extend naturally to most other digital activity of the user across different devices and

platforms. This thesis doesn’t not presents results on task based recommendations

or task based interfaces. Finally, as increasingly more users rely on mobile devices

to complete their tasks, it becomes important to incorporate mobile specific nuances

in the task extraction models. The research presented in this thesis mainly focuses

on query text and in some instances, on the presence of mouse movement features,

and thus, incorporation of mobile specific features would need to be addressed in

future work. Given these limitations, we next discuss few potential areas of future

research.

9.4 Future Work

The research presented in this thesis has many important implications, as described

above. However, there are a number of opportunities for further work. In this

section we select the most prominent directions and summarize them.
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9.4.1 Task based Conversational Intelligence

While reactive search by issuing query remains as common as before, recent years

have witnessed the emergence of various proactive systems in the form of digital

assistants such as Siri, Google Now and Microsoft Cortana. Such systems make use

of a plethora of signals including user’s input query and contextual information to

provide assistance by answering questions in natural language, making recommen-

dations, and performing actions. An important outcome of the research presented in

this thesis is task understanding and extraction. Parts of the algorithms presented in

Part I of this thesis could be adapted to understand user’s task from conversational

context. Given the task information, an intelligent task aware conversational mod-

ule could be build by enriching current conversational context with domain specific

task information, thereby constructing intelligent verbal responses from user con-

text, task domain knowledge and current information needs of the user. Imparting

task awareness to any chatbot is a completely open and promising area not just for

research but also for consumer centric industrial applications.

9.4.2 Extracting Sub-Task Sequences

While web search researchers have investigated benefits of incorporating sequence

predictions for enhanced search support, huge gaps still remain. Recent efforts have

highlighted the importance of considering search trails for enhancing search sup-

port. Recent studies have quantified the benefit that users currently obtain from trail

following and compare different methods for finding the best trail for a given query

and each top-ranked result. An important step in developing task based systems

is automatically identifying such sequences and aspects of complex tasks which

searchers engage in. While the research presented in Part I of this thesis helps in

extracting the subtasks forming the complex task, an important problem in devel-

oping a task aware system is to find out the order (or sequence) of the subtasks.

Specifically, this research direction entails developing sequence extraction and pre-

diction algorithms capable of scanning web search logs and identifying the differ-

ent sub-task sequences which constitute various aspects and steps of the different

search tasks. Identifying sub-task (and task) sequences would tremendously bene-
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fit systems such as task tours since by making use of the extracted sequences, the

quality of the task tours developed could be improved and the tours themselves be

personalized.

9.4.3 Metrics for Evaluating Hierarchies

Evaluating the quality of a task hierarchy is a non-trivial task, the ultimate test being

user judgment. While there is no concrete standardized metric used in evaluating

hierarchies, existing clustering based literature has made use of FScore to evaluate

the accuracy with which the documents are assigned to the clusters. While evaluat-

ing task hierarchy extraction systems, there are two scenarios to consider: (i) with

tagged query-task gold standard dataset and (ii) unsupervised evaluation. Expected

outcomes include a set of evaluation metrics for both the cases where gold stan-

dard dataset is available and when its not. A good future research direction would

evaluate all the existing task extraction systems on the proposed metrics and addi-

tionally present a survey of the task understanding field and existing task extraction

algorithms based on the detailed experimentation on such new task-aware metrics.

9.4.4 Modelling Tasks beyond Web Search

The concept of tasks in generalizable across different fields and systems built around

user interactions. An important future direction to consider would be to model gen-

eral user tasks across devices, applications and systems to better target users with

enhanced forms of contextual personalization. As stated earlier, the notion of tasks

extends well beyond web search, with each user action with an online service hint-

ing towards certain task the user is trying to accomplish. Identifying such generic

task spaces in different application domains and developing generic task extraction

systems could benefit many different online services in better serving their users.

Beyond the above mentioned applications, task information can be leveraged

to develop novel task completion interfaces, develop guides for users to support and

complete their tasks, among others.
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Learning semantic representations using convolutional neural networks for

web search. In Proceedings of the 23rd International Conference on World

Wide Web, pages 373–374. ACM, 2014.

[128] Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavljevic, Fabrizio Silvestri,

and Narayan Bhamidipati. Context-and content-aware embeddings for query

rewriting in sponsored search. In Proceedings of the 38th international ACM

SIGIR conference on research and development in information retrieval,

pages 383–392. ACM, 2015.



224 Bibliography

[129] Bhaskar Mitra and Nick Craswell. Query auto-completion for rare prefixes.

In Proceedings of the 24th ACM international on conference on information

and knowledge management, pages 1755–1758. ACM, 2015.

[130] Thomas L Griffiths, Michael I Jordan, Joshua B Tenenbaum, and David M

Blei. Hierarchical topic models and the nested chinese restaurant process. In

Advances in neural information processing systems, pages 17–24, 2004.

[131] Jim Pitman et al. Combinatorial stochastic processes. 2002.

[132] Chien-Liang Liu, Tsung-Hsun Tsai, and Chia-Hoang Lee. Online chinese

restaurant process. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 591–600. ACM,

2014.

[133] Richard Socher, Andrew Maas, and Christopher Manning. Spectral chinese

restaurant processes: Nonparametric clustering based on similarities. In Pro-

ceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, pages 698–706, 2011.

[134] Adway Mitra, Soma Biswas, and Chiranjib Bhattacharyya. Temporally co-

herent crp: a bayesian non-parametric approach for clustering tracklets with

applications to person discovery in videos. In Proceedings of the 2015 SIAM

International Conference on Data Mining, pages 801–809. SIAM, 2015.

[135] Kairit Sirts, Jacob Eisenstein, Micha Elsner, and Sharon Goldwater. Pos in-

duction with distributional and morphological information using a distance-

dependent chinese restaurant process. In Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers), volume 2, pages 265–271, 2014.

[136] Himabindu Lakkaraju, Indrajit Bhattacharya, and Chiranjib Bhattacharyya.

Dynamic multi-relational chinese restaurant process for analyzing influences

on users in social media. In Data Mining (ICDM), 2012 IEEE 12th Interna-

tional Conference on, pages 389–398. IEEE, 2012.



Bibliography 225

[137] Charles Blundell and Yee Whye Teh. Bayesian hierarchical community

discovery. In Advances in Neural Information Processing Systems, pages

1601–1609, 2013.

[138] Xueqing Liu, Yangqiu Song, Shixia Liu, and Haixun Wang. Automatic

taxonomy construction from keywords. In Proceedings of the 18th ACM

SIGKDD international conference on Knowledge discovery and data min-

ing, pages 1433–1441. ACM, 2012.

[139] Katherine A Heller and Zoubin Ghahramani. Bayesian hierarchical cluster-

ing. In Proceedings of the 22nd international conference on Machine learn-

ing, pages 297–304. ACM, 2005.

[140] Shui-Lung Chuang and Lee-Feng Chien. Towards automatic generation of

query taxonomy: A hierarchical query clustering approach. In Data Mining,

2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on,

pages 75–82. IEEE, 2002.

[141] Hui Yang. Constructing task-specific taxonomies for document collec-

tion browsing. In Proceedings of the 2012 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Lan-

guage Learning, pages 1278–1289. Association for Computational Linguis-

tics, 2012.

[142] Hui Yang. Browsing hierarchy construction by minimum evolution. ACM

Transactions on Information Systems (TOIS), 33(3):13, 2015.

[143] Dawn J Lawrie and W Bruce Croft. Generating hierarchical summaries for

web searches. In Proceedings of the 26th annual international ACM SI-

GIR conference on Research and development in informaion retrieval, pages

457–458. ACM, 2003.

[144] Eran Segal, Daphne Koller, and Dirk Ormoneit. Probabilistic abstraction

hierarchies. In Advances in Neural Information Processing Systems, pages

913–920, 2002.



226 Bibliography

[145] Charles Blundell, Yee Whye Teh, and Katherine A Heller. Bayesian rose

trees. arXiv preprint arXiv:1203.3468, 2012.

[146] Ledyard R Tucker. The extension of factor analysis to three-dimensional

matrices. Contributions to mathematical psychology, 110119, 1964.

[147] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis.

Psychometrika, 31(3):279–311, 1966.

[148] Alwin Stegeman and Nicholas D Sidiropoulos. On kruskals uniqueness con-

dition for the candecomp/parafac decomposition. Linear Algebra and its

applications, 420(2-3):540–552, 2007.

[149] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications.

SIAM review, 51(3):455–500, 2009.

[150] Lieven De Lathauwer. A survey of tensor methods. In Circuits and Systems,

2009. ISCAS 2009. IEEE International Symposium on, pages 2773–2776.

IEEE, 2009.

[151] Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopoulos.

A survey of multilinear subspace learning for tensor data. Pattern Recogni-

tion, 44(7):1540–1551, 2011.

[152] Biao Xiang, Daxin Jiang, Jian Pei, Xiaohui Sun, Enhong Chen, and Hang Li.

Context-aware ranking in web search. In Proceedings of the 33rd interna-

tional ACM SIGIR conference on Research and development in information

retrieval, pages 451–458. ACM, 2010.

[153] Mariam Daoud, Lynda Tamine-Lechani, Mohand Boughanem, and Bilal

Chebaro. A session based personalized search using an ontological user pro-

file. In Proceedings of the 2009 ACM symposium on Applied Computing,

pages 1732–1736. ACM, 2009.

[154] Daan Odijk, Ryen W White, Ahmed Hassan Awadallah, and Susan T Du-

mais. Struggling and success in web search. In Proceedings of the 24th ACM



Bibliography 227

International on Conference on Information and Knowledge Management,

pages 1551–1560. ACM, 2015.

[155] Carsten Eickhoff, Kevyn Collins-Thompson, Paul N Bennett, and Susan Du-

mais. Personalizing atypical web search sessions. In Proceedings of the

sixth ACM international conference on Web search and data mining, pages

285–294. ACM, 2013.
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