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Abstract 
Motivation: In addition to substitution frequency data from protein sequence alignments, many state-
of-the-art methods for contact prediction rely on additional sources of information, or features, of pro-
tein sequences in order to predict residue-residue contacts, such as solvent accessibility, predicted 
secondary structure, and scores from other contact prediction methods. It is unclear how much of this 
information is needed to achieve state-of-the-art results. Here, we show that using deep neural net-
work models, simple alignment statistics contain sufficient information to achieve state-of-the-art pre-
cision. Our prediction method, DeepCov, uses fully convolutional neural networks operating on ami-
no-acid pair frequency or covariance data derived directly from sequence alignments, without using 
global statistical methods such as sparse inverse covariance or pseudolikelihood estimation.  
Results: Comparisons against CCMpred and MetaPSICOV2 show that using pairwise covariance 
data calculated from raw alignments as input allows us to match or exceed the performance of both 
of these methods. Almost all of the achieved precision is obtained when considering relatively local 
windows (around 15 residues) around any member of a given residue pairing; larger window sizes 
have comparable performance. Assessment on a set of shallow sequence alignments (fewer than 
160 effective sequences) indicates that the new method is substantially more precise than CCMpred 
and MetaPSICOV2 in this regime, suggesting that improved precision is attainable on smaller se-
quence families. Overall, the performance of DeepCov is competitive with the state of the art, and our 
results demonstrate that global models, which employ features from all parts of the input alignment 
when predicting individual contacts, are not strictly needed in order to attain precise contact predic-
tions. 
Availability: DeepCov is freely available at https://github.com/psipred/DeepCov 
Contact: d.t.jones@ucl.ac.uk  

 

1 Introduction  
Recent successes in de novo protein structure prediction have been ena-
bled by the availability of new methods which can infer a sufficient 
number of correctly predicted contacts between pairs of residues in the 
target sequence (Monastyrskyy, et al., 2016; Ovchinnikov, et al., 2016). 
The knowledge that specific residue pairs are spatially proximate in the 
three-dimensional structure greatly constrains the space of possible to-
pologies for a predicted protein structure, making it valuable in de novo 

prediction settings (Kim, et al., 2014; Kosciolek and Jones, 2014; Marks, 
et al., 2011; Nugent and Jones, 2012), as well as in analogous fold 
recognition (Buchan and Jones, 2017). Regardless of the eventual appli-
cation, the usefulness of predicted contacts depends on their being pre-
cise with few or no false positives. Predicting contacts with high preci-
sion remains challenging, particularly for small protein families.  
Residue-residue contacts are predicted from large protein sequence 
alignments, based on the principle that evolutionary pressures place 
constraints on sequence evolution. Specifically, correlations in amino 
acid substitution patterns at a pair of sites are indicative of the residues 
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being in contact in the structure (Göbel, et al., 1994; Taylor, et al., 2013). 
Key difficulties in obtaining accurate contact predictions arise from the 
well-known issue of chaining or transitive noise (Burger and van 
Nimwegen, 2010), and correlations arising due to other factors 
(Anishchenko, et al., 2017). Considerable attention has been paid to 
decoupling direct from indirect correlations in the literature, and the 
most prominent (and effective) recent approaches include Direct Cou-
pling Analysis or DCA (Marks, et al., 2011; Morcos, et al., 2011; Weigt, 
et al., 2009), pseudolikelihood maximisation (Balakrishnan, et al., 2011; 
Ekeberg, et al., 2014; Ekeberg, et al., 2013; Kamisetty, et al., 2013; 
Seemayer, et al., 2014), and sparse inverse covariance estimation (Jones, 
et al., 2012). Most recently, groups have focussed on using supervised 
machine learning (ML) techniques to combine multiple sources of con-
tact prediction information (Cheng and Baldi, 2007; Eickholt and Cheng, 
2013; Jones, et al., 2015; Michel, et al., 2017; Stahl, et al., 2017; Wang, 
et al., 2017; Xiong, et al., 2017). 
An approach commonly taken in ML-based predictors is to use large 
feature sets, selected on their likelihood of containing information rele-
vant to the prediction task at hand, and to let the model training process 
work out which features are informative for the task. Such procedures 
can occasionally lead to highly redundant feature sets in that useful in-
formation for the prediction task is contained in a very small subset of 
the inputs. Indeed, one recent study shows that such feature sets can be 
simplified considerably without any loss in contact precision when a 
deep neural network model is used (Stahl, et al., 2017). In this work, we 
are interested in determining an input feature set that is as simple as 
possible but yet contains enough information for a deep neural network 
model to infer contacts with precision competitive with state-of-the-art 
methods. Further, we evaluate the extent to which predictions generated 
using such features can be accurate if only local windows around a puta-
tive contacting pair are considered, without considering the whole input 
sequence alignment. The ability to generate predictions using variable 
local windows in the input is afforded by the use of fully convolutional 
neural network models. 
Although a detailed introduction to deep learning methods is beyond the 
scope of this paper, we will briefly discuss convolutional neural net-
works, and also discuss fully convolutional architectures, which we use 
in this work. We show that our method, named DeepCov, achieves com-
parable or greater precision on average than two state-of-the-art contact 
prediction methods, and that it is markedly more precise than these 
methods on alignments with very low numbers of effective sequences. 

2 Methods 

2.1 Convolutional and Fully Convolutional network models 
Deep learning techniques (LeCun, et al., 2015) have recently proven 
extremely effective in tackling challenging problems in a number of 
problem domains. Their power lies in their ability to learn features of 
data at multiple levels of abstraction, beginning from relatively simple 
feature sets. Methodological advances (Glorot and Bengio, 2010; 
Goodfellow, et al., 2013; Hinton, et al., 2012; Ioffe and Szegedy, 2015; 
Krizhevsky, et al., 2012; Rumelhart, et al., 1986; Srivastava, et al., 2014; 
Sutskever, et al., 2013) including those exploiting advances in computing 
hardware (Raina, et al., 2009; Steinkraus, et al., 2005), have made it 
feasible to train deeper neural network models, allowing for the recogni-
tion of increasingly complex patterns and the use of much larger datasets 
than previously possible.  

Deep learning methods have been applied to contact prediction, with 
some recent methods proving particularly effective (Di Lena, et al., 
2012; Eickholt and Cheng, 2013; Stahl, et al., 2017; Wang, et al., 2017; 
Wang, et al., 2017; Xiong, et al., 2017).  
Whereas “traditional” neural network models (including deep neural 
networks) consist entirely of layers of neurons that are fully connected, 
individual neurons in convolutional layers receive activations from only 
a subset of neurons in the previous layer. Convolutional neural networks 
(CNNs) are especially effective in image and speech recognition tasks 
(e.g. Hinton, et al., 2012; Krizhevsky, et al., 2012; Xiong, et al., 2016), 
as well as other problem domains, due to their ability to detect and learn 
local spatial patterns in data. Spatial patterns are detected by learning 
convolutional filters or kernels, which are small tensors (typically 2D or 
3D) of weights, usually with an additional bias term. During training, the 
filters are effectively swept across the input and the weights and bias are 
adapted to respond to local features that produce the desired output. 
Individual neurons in the output of a convolutional layer (collectively 
called the output feature map) receive the results of single placements of 
the convolutional filter on the input. Once a convolutional filter has been 
trained, an output neuron activates when a local spatial pattern in the 
data closely matches the pattern of the weights in the kernel. A key fea-
ture of this setup is that convolutional layers can recognise spatial fea-
tures regardless of their location in the input. Multiple output feature 
maps (and hence kernels) can be learned in a single convolutional layer, 
meaning that the layer can learn to recognise a number of different spa-
tial patterns. 
Typical implementations of CNNs augment convolutional layers with 
fully connected layers in the later stages of the model (e.g. He, et al., 
2016; Krizhevsky, et al., 2012). This is done as a means to aggregate and 
compose the features learned by the convolutional layers into output 
features that draw on features from all parts of the input. In contrast, 
fully convolutional networks (FCNs; see Shelhamer, et al., 2016 and 
references therein) omit these fully connected layers, and the spatial 
locality of the learned features extends all the way to the output. Config-
ured correctly, FCNs can take inputs of arbitrary dimensionality and 
produce correspondingly-sized outputs, removing the need for cropping, 
padding or other approaches to dealing with variable-size input 
(Shelhamer, et al., 2016). In the case of protein contact prediction, this 
property is advantageous for predicting contact maps for proteins of 
different length. 
The architecture of DeepCov is discussed in Section 2.3, but in sum-
mary, we make use of a straightforward FCN architecture to predict 
whole contact maps from the input data in one go. This is a different 
(and much more efficient) approach to that of MetaPSICOV, where each 
set of input features results in the prediction of a single contact and the 
feature window needs to be moved vertically and horizontally to allow 
the whole map to be predicted. FCNs have been successfully employed 
for contact prediction (Golkov, et al., 2016; Liu, et al., 2018), albeit only 
as post-processing for the outputs of standard covariation algorithms. 
The plmConv approach of Golkov, et al. (2016) uses as its input features 
the coupling matrices output from the plmDCA method (Ekeberg, et al., 
2014; Ekeberg, et al., 2013) for each pair of amino acid residue types, 
and was able to outperform the original MetaPSICOV method in testing. 
The DeepContact approach of Liu, et al. (2018) uses contact predictions 
from several methods, together with predicted secondary structure and 
solvent accessibility, among other features. Compared to this work, the 
feature sets used by these methods offer no interesting direct interpreta-
tion of the learned model characteristics such as the neighbourhood of 
transitive coupling effects around each covarying residue pair. 
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Overall, the DeepCov approach is similar to that of Golkov, et al. (2016), 
however, in this study our primary focus is on whether such an expres-
sive model, combined with relatively simple input feature sets, can be 
used to achieve state-of-the-art results. We discuss the input feature sets 
next. 

2.2 Input Features 
Two feature sets are considered: 
Pair frequencies: Pair frequency data is calculated as in MetaPSICOV 
(Jones, et al., 2015). For each pair of columns in the input alignment, the 
probability of observing every pair of the 20 canonical amino acids is 
calculated, with gap characters considered as an additional amino acid 
category. Frequencies for unobserved residue pairs are estimated with a 
pseudocount of 1. Sequence clusters are weighted based on a 62% se-
quence identity clustering threshold, as done for MetaPSICOV input. 
Covariance: Using marginal and pair frequencies for each pair of amino 
acids as described above, we calculate the covariance between every pair 
of residues at every pair of sites, and use these as an alternative set of 
input features. 
For a given pair of amino acid types, pair frequencies or covariances are 
composed as an m ´ m matrix, where m is the number of columns in the 
sequence alignment. Considering 20 amino acid types + gap, there are 21 
´ 21 = 441 such matrices for a given alignment. These 441 matrices are 
presented (in image recognition terms) as feature channels in the input to 
the convolutional neural networks. Feature values from all 441 channels 
are used to construct individual output features in the first layer of the 
DeepCov neural networks. Similarly, the plmConv method (Golkov, et 
al., 2016) uses the computed pairwise coupling matrices from plmDCA 
as inputs, which also have dimensions 441 ´ m ´ m. 

Given the feature set, the learning task is to relate the input feature set 
for a given protein to its corresponding binary contact map, where two 
residues are deemed as being in contact if their Cβ atoms (Cα in the case 
of glycine) are within 8 Å of each other. 

2.3 FCN architectures employed in DeepCov 
We compare different architectures for the FCN, but the basic layout is 
the same (Fig. 1). Our networks involve an input layer, a Maxout layer 
(Goodfellow, et al., 2013) to reduce the number of input feature channels 
from 441 to 64, one or more 2D convolutional layers, and a final sigmoid 
output layer, each with batch normalisation applied (Ioffe and Szegedy, 
2015). The only variables in terms of network architecture are the num-
ber of intermediate convolutional layers and the size of the convolutional 
filters used in these layers. The Maxout layer is implemented following 
the method given in Goodfellow, et al. (2013) for convolutional layers: 
first, a 2D convolutional layer with filter size 1´1 is used to produce 128 
affine output maps (i.e. no nonlinearlity is applied). Since the filter size 

 

Fig. 1. The architecture of the neural network models used for DeepCov. The 
number of intermediate convolutional layers and the size of the convolutional 
filters in these layers is variable. The three values in brackets in the right-
hand cells describe the dimensionality of the data output from each layer. The 
values are given in the order: (number of feature channels, width, height). 
The width and height describe the spatial dimensions of the data and are both 
equal to the number of columns in the input alignment, m. 

 

Fig. 2. Illustration of the relationship between alignment columns and data 
seen by DeepCov during training and inference. The receptive field of Deep-
Cov (green square) is shown on a section of a contact map. The pair frequency 
or covariance matrices used as input to the network have the same dimensions 
as the contact map (m ´ m), and DeepCov learns the relationship between the 
two. As the receptive field moves across the input matrix, it sees a different 
subset of the input, and this corresponds to a different set of columns in the 
input alignment (bottom). In this example, the residue pair i,j (shown in red) is 
being evaluated for the presence of a contact, and the receptive field of Deep-
Cov is set to 11, meaning that windows of 11 residues centred on residues i 
and j are considered during training and prediction (shaded blue and orange, 
respectively). Only the sequence data in these windows (and hence the sec-
tions in the input and output matrices covered by the receptive field in green) 
are used when learning the relationship between sequence data and the pres-
ence or absence of a contact between residues i and j. 
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is 1x1, the resulting output maps have the same spatial dimensions as the 
input (m ´ m). Next, pairs of these affine maps are max-pooled in an 
element-wise fashion such that 64 output feature maps are produced, 
which have the same spatial dimensions as the input to the max-pooling 
layer (m ´ m). This can be termed pooling along the feature axis (in 
contrast to spatial pooling, which is more commonly used). 
The number of subsequent 2D convolutional layers is variable, but each 
layer is composed in a similar way: 3´3 or 5´5 filters are used (see Table 
1) to generate 64 output feature maps with rectified linear unit (ReLU) 
activation functions. Unit stride is used, and the input feature maps to 
each such layer are padded with zeros such that the output feature maps 
have the same dimensions as the input feature maps (this is termed half- 
or same-padding in deep learning frameworks). This property allows us 
to experiment with architectures with essentially arbitrary numbers of 
convolutional layers. Given the locality (in feature space) of the convolu-
tion operation, having more convolutional layers effectively means that 
each feature in the output of the neural network can draw on information 
from (or “sees”) a larger number of features in the input. In our case, this 
allows us to gradually increase the size of the windows in the sequence 
alignment that informs the contact prediction for a given residue pair 
(Fig. 2). 
The output layer in all our networks comprises a 2D convolutional layer 
with a filter size of 1´1, a single output feature map, no zero-padding, 
and a sigmoid activation function. This layer can be thought of as per-
forming an aggregation over the 64 output feature maps from the previ-
ous layer, producing a single output feature map. The output from this 
layer has dimensions m ´ m and represents the predicted contact scores 
for all pairs of residues. Ideally, this output matrix should be symmetric, 
but in practice we find that it is only approximately so. Therefore, the 
predicted scores for residue pairs i,j and j,i are averaged to yield the final 
contact score for that residue pair. 
Our neural network models are implemented using the Lasagne 
(Dieleman, et al., 2015) and Theano (Al-Rfou, et al., 2016) libraries for 
Python. 

2.4 Varying receptive field size 
From the point of view of a single feature in the output layer, we define 
the receptive field of that output feature as the size of the window around 
a single residue in a putative contacting residue pair which is used as the 
source of input features for inferring the presence or absence of a contact 
(see Fig. 2). As discussed above, it is possible to alter the size of the 
maximum possible receptive field for the network by varying the number 
of intermediate convolutional layers and the filter sizes used. Table 1 
lists the various receptive field sizes considered, along with the setup of 
intermediate convolutional layers used. All intermediate convolutional 
layers in our networks use unit stride and half- or same-padding. Under 
these conditions, every intermediate layer with a filter size of k ´ k adds 
k – 1 residues to the receptive field of a single output feature (with the 
exception of the first intermediate layer, which adds k). For a more de-

tailed discussion of the arithmetic of convolutional layers, we refer inter-
ested readers to Dumoulin and Visin (2016). 

2.5 Training and testing 

2.5.1 Protein sets for training, validation, and testing 

We assessed the mean precision achieved by DeepCov on the now 
standard PSICOV150 set of proteins and alignments, described in Jones, 
et al. (2012). Training was carried out using a set of 6729 protein chains 
(chains in PDB with < 25% sequence identity and length < 500 residues). 
The alignments were identical to those used for training the original 
MetaPSICOV method (Jones, et al., 2015). Proteins in the training set 
with any shared homologous domains with any test set protein were 
excluded, leaving a set of 3456 protein chains for training and validation. 
For validation, we arbitrarily selected the first 130 chains in PDB code 
alphabetical order, which is essentially a random selection. Homology 
between domains was assessed based on the ECOD database classifica-
tion (Cheng, et al., 2014). 
In order to assess the performance of DeepCov on smaller protein se-
quence families, we constructed a second training and test set as follows. 
From the original set of 6729 training proteins, we selected 250 proteins 
whose alignments had a raw sequence count between 50 and 200 as a 
starting point. Chains with detectable homology to this set of 250 pro-
teins were removed from the training set as before, leaving behind 6003 
proteins. Unsurprisingly, there are far fewer homologous chains to ex-
clude for these small families compared to the very large families in the 
PSICOV set. The test set was subsequently filtered to exclude proteins 
with fewer than five long-range contacts (sequence separation greater 
than 23 residues) in the native structure, leaving 232 test proteins with 
between 50 and 199 sequences (Meff between 4 and 158). When evaluat-
ing the performance of MetaPSICOV2 on this dataset, the above proce-
dure was used to construct the training set.  
Additional testing was carried out on the publicly available target do-
mains from the CASP12 experiment. For these targets, we used the 
alignments generated by MetaPSICOV2 during the CASP12 prediction 
season (Buchan and Jones, 2017). We also compared the performance of 
plmConv (Golkov, et al., 2016) on the 32 public CASP12 domains for 
which both plmConv (CASP12 group myprotein-me) and MetaP-
SICOV2 generated predictions during the prediction season. We used 
automatic evaluation results for the myprotein-me group from the Pre-
diction Centre website (predictioncenter.org), since we were unable to 
find plmConv itself either as a server or downloadable software. As a 
result, the plmConv results will have been based on a somewhat different 
set of alignments than MetaPSICOV2, DeepCov and CCMpred. 

2.5.2 Calculation of Meff  

Alignment depth was represented both in terms of raw sequence counts, 
as well as the effective number of sequences (Meff). To calculate Meff, 
each alignment was clustered using CD-HIT (Fu, et al., 2012; Li and 

Table 1. Convolutional neural network architectures. The architecture row lists the number of intermediate 2D convolutional layers (with their 
filter sizes) after the input and Maxout layers and before the final output layer, for a given receptive field size (in amino acid residues). The notation 
"5,5,5" (equivalently, "5(x3)") denotes three intermediate convolutional layers with filter size of 5´5. 

Receptive field (residues) 3 5 7 9 11 13 15 17 21 25 29 33 37 41 45 49 

Architecture 3 3,3 3,3,3 3(x4) 3(x5) 3(x6) 3(x7) 3(x8) 5(x5) 5(x6) 5(x7) 5(x8) 5(x9) 5(x10) 5(x11) 5(x12) 
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Godzik, 2006) with a 62% sequence identity threshold and a word size of 
4. The number of clusters returned by CD-HIT was taken as the Meff. 

2.5.3 Neural network training procedure 

Training was carried out on single examples per weight update (i.e. batch 
size was 1), due to the size of the feature set and models, and GPU 
memory limits. Although a batch size of 1 is used, the batch normalisa-
tion operation remains valid as the means and standard deviations are 
calculated across each feature map per channel. As the network is fully 
convolutional, variable-sized input maps can be used without any need 
for zero-padding or cropping of the input maps (Shelhamer, et al., 2016). 
As an aside, the prediction of contact maps using a fully convolutional 
architecture is algorithmically very similar to the problem of image 
segmentation where input images of a particular size are transformed 
into output images with identical dimensions.  
For initialising the weights in the networks, we used the normalised 
initialisation procedure outlined by Glorot and Bengio (2010) with 
weights sampled from the uniform distribution. Network parameters 
were trained using the Adamax algorithm (Kingma and Ba, 2014) with 
early stopping (details below) to prevent overfitting. During develop-
ment we found that improved results could be achieved by using stochas-
tic gradient descent (SGD) with Nesterov momentum (Sutskever, et al., 
2013) and a varying learning rate, starting from the optimum found by 
Adamax. Both algorithms trained the network parameters by minimising 
the binary cross-entropy (BCE) loss function 

𝐿 = −𝑡 ∙ log𝑝 − (1 − 𝑡) log(1− 𝑝), 

where t is the true label (presence/absence of contact represented as 1/0) 
and p Î [0, 1] is the predicted contact score for a given residue pair. The 
final training loss was calculated as the mean BCE across all residue 
pairs with a sequence separation greater than 4 residues (shorter range 
pairs were masked out). An L2 regularisation term for the network 
weights was added to the BCE loss function given above, with the regu-
larisation parameter set to 10-4. When using either SGD with Nesterov 
momentum or Adamax, early stopping was carried out based on the 
Matthews correlation coefficient (MCC) between predicted and true 
labels on the validation set. Residue pairs with a sequence separation of 
4 or fewer residues were masked out for the MCC calculation, and train-
ing was stopped when the MCC value did not improve after 10 epochs 
(or passes through all training examples). 
Parameters for the optimisers were set as follows: the learning rate for 
Adamax was 0.002 and the initial learning rate for the SGD optimiser 
was 0.001 and the Nesterov momentum was set to 0.9. After each epoch, 
the SGD learning rate was incremented by a factor of 1.1 and decre-
mented by 0.5 if the training loss decreased or increased relative to that 
in the previous epoch, respectively. The learning rate was not allowed to 
increase beyond 0.01. We found that the optimisation process for any 
single DeepCov model typically completed training in 15 to 20 epochs 
before converging, with the longest optimisation taking 30 epochs. 

3 Results and Discussion 
We compare our method against CCMpred (Seemayer, et al., 2014), a 
representative technique using pseudolikelihood maximization, and 
MetaPSICOV2, the latest version of our neural network-based contact 
meta-prediction approach, which was amongst the top-ranked contact 
prediction methods in the recent CASP12 experiment (Buchan and 
Jones, 2017). We focus primarily on mean precision achieved for long-
range contacts (sequence separation greater than 23 residues), since long-

range contacts are thought to be the most informative for tertiary struc-
ture modelling (Graña, et al., 2005). Some results for short-range con-
tacts are given in the Supplementary information.  
  

3.1 Comparison of network architectures and feature sets 
Fig. 3 compares the mean precision achieved by DeepCov with differing 
receptive field sizes (and therefore numbers of intermediate convolution-
al layers) against that achieved by MetaPSICOV2 and CCMpred. In 
general, we find that increasing the size of the receptive field of the 
DeepCov model leads to gains in predictive precision on the 
PSICOV150 test set as expected. However, these gains tail off rapidly 
once a receptive field size of around 15 residues is reached; further in-

 

 

Fig. 3. Mean long-range contact precision achieved by DeepCov on the 
PSICOV150 dataset using various receptive field sizes (see Table 1), using 
pair frequency (top 4 plots) and covariance data (bottom 4 plots). Data for 
DeepCov are plotted as solid blue lines for top-L, L/2, L/5 and L/10 predicted 
contacts. For DeepCov data, the maximum observed mean precision is 
marked. Dashed lines represent the mean precision achieved by CCMpred 
(red) and MetaPSICOV2 (black) respectively on the same dataset. Using 
covariance data, DeepCov achieves greater mean precision than CCMpred 
and MetaPSICOV2 when receptive field sizes of around 15 residues or more 
are used. 
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creases in receptive field size lead to only minor gains in precision, or no 
clear gains in most cases. It should be pointed out that the receptive field 
specified by a given FCN architecture represents only a maximum possi-
ble size; the actual set of input features used to inform individual contact 
predictions will vary depending on the values of the trained network 
parameters. Nevertheless, these results suggest that a significant amount 
of information needed to distinguish true- from false-positive contacts 
can be found in reasonably close sequence proximity to the residue pair 
of interest. 
Using pair frequency data as the input features (Fig. 3, top panels), 
DeepCov is able to almost match the average performance of MetaP-
SICOV2, which is quite impressive given the simplicity of the feature 
set. Covariance data provides higher precision than pair frequency data 
for a given DeepCov architecture (Fig. 3, bottom panels), and using 
covariance data with receptive field sizes of approximately 15 residues 
or greater, DeepCov outperforms both CCMpred and MetaPSICOV2 in 
terms of mean long-range contact precision on the PSICOV150 set of 
alignments. When short-range contacts are considered (Supplementary 
Figure S1), DeepCov achieves similar mean precision as MetaPSICOV2, 
and both of these methods outperform CCMpred. The distribution of 
precision values for long- and short-range contacts can be found in Sup-
plementary Fig. S2. 
The input feature sets used by DeepCov are conceptually much simpler 
than feature sets used in some other works. Many contact prediction 
methods (MetaPSICOV2 is one example) employ feature sets which 
include data such as predicted secondary structure, solvent accessibility 
etc., which are themselves derived from alignments; it seems that the 
expressive power of a sufficiently deep neural network model is able to 
achieve precision comparable to, and even exceeding, methods explicitly 
providing these “handcrafted” features. Further, DeepCov does not rely 
on other covariation-based contact predictors. These properties present 
significant advantages from the end user’s perspective in that there are 
far fewer preprocessing steps to run (compared to MetaPSICOV2 for 
example). As a result, DeepCov takes considerably less time to generate 
predictions than MetaPSICOV2; generating new predictions using the 
trained neural network model takes no more than a few seconds, even on 
a CPU. Comparing the predicted contact scores to their true precision 
values (Supplementary Fig. S3), we find that DeepCov’s scores are well-
calibrated and very close to their true precision on the PSICOV150 set, 
meaning that a priori identification of true contacts may be possible. 

Comparing the true positive contacts predicted by the three methods, we 
find that while all three methods produce a good number of unique true-
positive contacts (Supplementary Fig. S4), which suggests that a meta-
prediction approach involving these three methods may be valuable. 
DeepCov produces the largest number of unique true positives. We also 
assessed the redundancy of the predicted contacts from a structural per-
spective, as done in Jones, et al. (2015). We found that CCMpred tends 
to produce more redundant contact sets, although there is little difference 
between MetaPSICOV2 and DeepCov in terms of structural redundancy 
(Supplementary Fig. S6). 

3.2 Performance on shallow alignments 
Having established the superiority of the covariance-based feature set, 
we assessed the performance of DeepCov using covariance-based fea-
tures on a set of 233 shallow alignments (see Section 2.5.1), in order to 
assess DeepCov’s performance on small protein families. A fixed archi-
tecture with a sufficiently large maximum receptive field of 41 residues 
was used (See Table 1). We find that DeepCov outperforms the other 
two methods in terms of the mean precision on this set of alignments 
(Fig. 4). Targets with relatively few sequence homologues are generally 
the most difficult modelling targets in the CASP experiments, and any 
improvements in typical precision of predicted contacts are likely to be 
useful. In the three ranges of Meff in the left panel of Fig. 4, DeepCov’s 
mean precision exceeds that of MetaPSICOV2 by 8.3%, 11.9%, and 
17.4%, respectively. The magnitude of improvement over MetaP-
SICOV2 is encouraging, especially for alignments with Meff greater than 
100, as more than half of all Pfam domains of unknown structure have 
100 or more effective sequences available (Michel, et al., 2017). Howev-
er, the median Meff of all 232 alignments in our shallow alignment test set 
is 48.5, and only 26 alignments have an Meff greater than 100. Of these, 
DeepCov achieves equal or greater top-L/5 precision than MetaP-
SICOV2 on 23 proteins, and is equal to or better than CCMpred on 25 
proteins. Improvements in precision are much less pronounced when raw 
sequence counts are considered (right panel of Fig. 4). This is due to the 
well-known fact that the effective sequence number accounts for the 
redundancy within individual sequence families, and is thus a better 
predictor of “useful” information content in alignments. 
Although DeepCov is more effective than MetaPSICOV2 and CCMpred 
on shallow alignments, success clearly still depends on the number of 
effective sequences in the input alignment, and the highest mean preci-
sion is still seen on deeper alignments. It is therefore still the case that 
precise contact prediction relies on having as many homologous se-
quences in the alignment as possible, and we hope that with further im-
provements to methodology, we can further lower the minimum effective 
alignment depth necessary to obtain predictions of sufficient quality for 
reliable structure modelling. As a simple test of whether contacts pre-
dicted for these shallow alignments may be useful for modelling, we 
considered the number of targets in each sequence bin in Fig. 4 on which 
a precision of at least 0.5 was achieved on the top-L long-range contacts. 
DeepCov achieves a precision of 0.5 or higher on more targets than 
MetaPSICOV2 or CCMpred (Supplementary Table S1), although the 
fraction of such targets in each sequence bin is low. Nevertheless, these 
results suggest that there is room for improvement in contact precision 
on shallow sequence alignments, and we are currently working to im-
prove this aspect of our methods. 

3.3 Performance on CASP12 targets 

 

Fig. 4. Comparison of performance on 232 shallow alignments. Mean preci-
sion for the top-L/5 contacts are plotted as a function of alignment depth for 
CCMpred, MetaPSICOV2 and DeepCov. Raw and effective sequence counts 
are binned into three categories. DeepCov achieves higher precision than 
CCMpred and MetaPSICOV2 on small protein sequence families. Similar 
trends are seen when considering the top-L, L/2 and L/10 contacts. 
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Table 2 shows the performance of DeepCov on the publicly available 
CASP12 target domains and compares its performance to MetaPSICOV2 
and CCMpred. All three methods used identical input alignments. De-
tailed results for each domain can be found in Supplementary Fig. S5. 
For this analysis, we ran DeepCov with the covariance model used in 
Section 3.1 and a receptive field of 41 residues. It can be seen that alt-
hough DeepCov does not reach MetaPSICOV2’s performance, it is 
remarkably precise (especially when one considers the simplicity of the 
input feature set), and is still considerably more precise than CCMpred. 
We also compared the performance of these methods against plmConv 
on a common set of CASP12 domains (Section 2.5.1). We find that on 
this set of targets, plmConv achieves a mean L/5 precision of 53.27% on 
long-range contacts, whereas CCMpred, MetaPSICOV2 and DeepCov 
obtain mean precision values of 48.43%, 67.74% and 67.99%, respec-
tively. Again, DeepCov is competitive with MetaPSICOV2, and is much 
more precise than plmConv, which uses a similar FCN architecture (alt-
hough plmConv used different alignments). The key difference between 
our approach and plmConv is the input feature set used. plmConv’s input 
features are the raw coupling parameters calculated by the plmDCA 
method, and so the input coupling matrices will already contain the 
predicted graphical structure of the protein. In the case of DeepCov, this 
structure is learned directly from the raw sequence data, across distinct 
protein families, and this no doubt helps our model to generalise better. 

4 Conclusions 
Recent work has shown that machine learning methods are proving 
increasingly useful for a number of challenging tasks, including protein 
contact prediction. In this work, we developed a contact prediction 
method based on fully convolutional network models but where the input 
features are stripped down to the absolute bare minimum of raw pairwise 
substitution counts derived from a multiple sequence alignment. Our 
results suggest that simple residue pair covariance data often contains 
sufficient information for predicting contacts at state-of-the-art or even 
higher precision. Our method is especially effective on input alignments 
with relatively few effective sequences. Further improvements in contact 
precision may be possible, for example by including DeepCov as one of 
the sources of contact predictions in a meta-prediction approach such as 
MetaPSICOV. We intend to develop the method further and look for-
ward to testing it in upcoming CASP experiments. 
Beyond the performance of the method, our results suggest that a global 
view of alignment statistics is not strictly necessary in order to achieve 
state-of-the-art results in contact prediction, provided one uses a suffi-
ciently expressive model; even with a maximum receptive field of only 
15, which would include only the 7 immediate upstream and 7 down-
stream residues around each of the pair of residues being considered, 
DeepCov reaches close to its maximum precision in our tests. It is cur-
rently not clear whether this effect is due somehow to an increased abil-

ity to disentangle correlation chains, which are assumed to be a road-
block to achieving high precision. 
Correlations between residue substitutions are not necessarily indicative 
of intra-chain contacts; these patterns can arise due to various other 
factors, such as oligomerisation and protein-protein interactions 
(Anishchenko, et al., 2017; de Oliveira and Deane, 2017). An advantage 
of machine learning methods over approaches such as DCA is the fact 
that the learned models can encompass features learned across distinct 
sequence and structure families (Wang, et al., 2017). These advantages 
could translate into improved models for predicting inter-chain contacts 
in homo- or hetero-oligomeric complexes, as well as other biomedically 
relevant properties also associated with residue covariation signals. 
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