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Supplement 

 

Methods – Diffusion kurtosis imaging  

 

The DWI signal intensity, S, can be regarded as a function of the b-value, which for a Stejskal-

Tanner sequence is defined by 

   (1) 

where g is the proton gyromagnetic ratio, gamma is the amplitude of the diffusion sensitizing 

magnetic field gradient pulses, delta is the duration of the gradient pulses, and D is the time interval 

between the centres of the gradient pulses. According to the Taylor series 1,2  

  (2) 

where Dapp is the ‘apparent’ diffusion coefficient and S0 (three lines) S(0). Notably, it is assumed 

that both D and delta are fixed so that b is varied by changing g. In the short pulse duration limit 

delta   0, Dapp approaches the true diffusion coefficient D for a diffusion time t = . Generally, if 

we assume the dependence on delta is small, we have the approximation 

  (3) 

The DKI model is based on the eqn (2) but includes explicitly the O(b2) term. The eqn (2) is 

expressed as  

  (4) 

corresponding to a cumulant expansion for the diffusion MR signal, where Kapp is the apparent 

diffusional kurtosis (unitless, equals 0 in the setting of completely Gaussian diffusion), which 

approaches the true kurtosis K in the limit of short pulse durations and contains specific information 

on the non-Gaussian diffusion behaviour 3-5. The parameter Dapp is the diffusion coefficient that is 

corrected to account for the observed non-Gaussian behaviour. The DKI extension of eqn (3) is 

  (5) 
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where b-values are regarded sufficiently small so that the O(b3) term of eqn (4) is negligible. With 

this approximation, one can estimate both D and K by fitting to diffusion-weighted signal intensity 

data with three or more b-values in any gradient direction. The DKI model is parameterized by the 

diffusion tensor (DT) and kurtosis tensor (KT) from which several rotationally invariant scalar 

measures (e.g mean, axial, and radial diffusivity as well as fractional anisotropy (FA); and axial, 

radial, and mean kurtoses) 6-8. The interpretability of these metrics is influenced by the estimation 

accuracy of the tensors. Thus, any hampering factor (incl. noise, motion, and artifacts) can 

introduce errors that may propagate to render physically and/or biologically implausible tensor 

estimates 9. In this work, directionally-averaged Kapp (later referred to as MK) were calculated using 

were estimated using unconstrained nonlinear least squares, which has been previously reported and 

demonstrated tissue-specific geometry for different brain regions 7.  
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Methods – Support Vector Machine (SVM) 

 

In general, an SVM is a binary pattern recognition technique. The aim of SVM is to construct a 

hyperplane (e.g., decision boundary) that best separates the two groups by maximising a margin 

between the groups. Prediction of an unseen sample is performed by identifying which side of the 

hyperplane the data lies. 

 

Theoretically, given a training set consisting N subjects (xi, yi), i=1,…,N; where xi constitutes a 

feature vector of each subject (e.g., the extracted biomarkers from DKI images), and yi represents a 

subject’s group label (e.g., -1 or 1), SVM finds the optimal hyperplane wTx + b = 0 by solving the 

following optimization problem: 

 

         

  

 

    (1)

where C is a parameter controlling the trade-off between model complexity and training errors; ξi 

(i=1,…,N) are slack variables, which penalises each misclassified subjects as a function of distance 

from the hyperplane.  

 

Formula (1) can be solved by optimizing the following dual form: 

 

 

 

 

 

     (2)
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where αi is the Lagrange dual variable. A full derivation of the mathematics involved in SVMs can 

be found in [1]. For non-linear separable data, SVM uses a kernel <xi, xj> to map the data into a 

higher dimensional space where the data can be linearly separated by a hyperplane. One common 

choice for the kernel is the radial basis function (RBF): 

 

      (3)

 

where γ is a free parameter controlling the width of the Gaussian kernel. 

 

Once the SVM has identified the optimal hyperplane from the training data, the unseen test data x 

can then be classified based the sign of the decision function: 

 

 

 

     (4)

 

Methods – Handling class imbalance 

 

The training phase of SVM is sensitive to class imbalance, an issue which occurs when one group 

has more subjects than the other. In this case the major group will overwhelm the correct training of 

the classifier, making the label of major group more likely to be predicted during testing. In our 

case, both tasks have imbalance data (e.g., 23 WHO grade 2 vs. 14 WHO grade 3 and 26 mutants 

vs. 11 wild-type). We addressed this problem by replacing the free parameter C with Cp and Cn for 

positive and negative classes respectively. Formula (1) then becomes: 
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(5) 

where xi+, xi- are positive and negative training examples in the training set; N+ and N- are 

the numbers of such examples; ξi+, i=1,…,N+ and ξi- are slack variables; Cp and Cn are set 

as Cp = (N+ + N-)/(2N+) × C0 and as Cn = (N+ + N-)/(2N-) × C0 . C0 was found by grid 

search. 
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