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Abstract

Purpose Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be
technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability
and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D
image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy
of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method
for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a
feature-based multimodality registration method.

Methods A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the
pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated
visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected
based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The
method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus
non-optimised planes using manually segmented CT images and simulated (n = 9) or retrospective clinical (n = 1) EUS
landmarks.

Results The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared
with a non-optimised initialisation approach (p value < 0.01).

Conclusions The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures
may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical
setting.
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Introduction

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11548-018-1762-2) contains supplementary Endoscopic ultrasound (EUS) is a minimally invasive tech-

material, which is available to authorized users. nique to guide interventional procedures to evaluate and treat
59 Ester Bonmati pancreatobiliary disorders, including pancreatic cancer [1].

e.bonmati @ucl.ac.uk EUS provides a safe and effective means of identifying can-
cer and can be combined with fine needle aspiration (FNA)
cytology to provide a high level of sensitivity and specificity
[2].

During an EUS-guided procedure, an endoscope equipped
with an ultrasound (US) transducer and a video camera is
inserted and navigated through the gastrointestinal (GI) tract
to the stomach and duodenum from which the neighbour-
ing organs such as the pancreas, liver, and biliary ducts can
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be imaged. However, the small field-of-view, the variability
in pancreatobiliary anatomy and the lack of easily defin-
able landmarks make this procedure technically difficult to
perform and require skill in both endoscopy and US image
interpretation [3].

Multimodal registration of intra-procedure US with pre-
procedure images, such as computed tomography (CT) or
magnetic resonance (MR) scans, can improve the naviga-
tion to specific locations during image-guided procedures by
providing additional anatomical context [4,5]. Initialising the
MR/CT to US image registration, for example, by identifying
MR- or CT- visible anatomical landmarks on electromagnet-
ically tracked EUS planes [3,5-7], is critical for robust and
accurate registration. However, the relationship between the
initialisation-plane selection and registration robustness and
accuracy is complex and frequently unintuitive due to: (a)
the loss of 3D context in 2D EUS; (b) the limited number of
correspondent EUS/CT-visible anatomical point landmarks
available with which a registration can be performed; and (c¢)
the high dependency on operator skill and experience [8].
Therefore, pre-procedure simulation to identify anatomical
landmarks that are likely to be readily accessible in the EUS
field of view and will yield robust registration initialisations
may significantly reduce the time and complexity of this step,
whilst maximising the accuracy.

Although registration initialisation is common practice
in image registration systems, planning tools for optimis-
ing multimodal registration accuracy and robustness are
not widely available in interventional guidance systems and
do not currently exist for EUS-guided procedures. In this
paper, we present the first report of a method for simulating
the initialisation of a pre-procedure CT- to EUS registra-
tion scheme, based on landmarks-to-structure alignment of
anatomical landmarks. We identify the optimal position of
patient-specific EUS views in terms of enhancing registra-
tion accuracy and robustness by ensuring low variation in
intra-procedural registration accuracy.

Methods
Registration method and initialisation

Landmark-based registration initialisation relies on identify-
ing corresponding landmarks on EUS and CT that represent
the upper abdominal anatomy of interest such as organs
(e.g. the liver and pancreas); blood vessels (e.g. the splenic
artery, splenic vein, and portal vein); and ducts (e.g. the
pancreatic duct and the ducts in the biliary tree). Due to
the loss of 3D contextual information on EUS, the task of
reliably identifying corresponding point landmarks is chal-
lenging, subjective, time-consuming and strongly depends
on the operator’s experience and skills [8]. Therefore, we
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propose to align 2D EUS images and 3D pre-procedure
CT volumes using a rigid landmark-to-structure registration
method, wherein 3D structures (e.g. organ surfaces or ves-
sel/ductal centrelines) are defined on the CT images during
the planning stage and, instead of specifying a point-to-point
correspondence, the gastroenterologist needs only identifying
the corresponding CT-defined structure for each EUS land-
mark during the procedure. The use of landmark-to-structure
registration is in practice more feasible as, generally, finding
corresponding points requires more time than only defining
the structure (i.e. label) to which each point belongs.

Our approach uses a labelled CT volume where the struc-
tures are defined prior to the procedure. In theory, this
can be done manually or automatically [9]. Sophisticated
semi-automatic tools exist to accelerate manual image seg-
mentation for some applications, but manual segmentation is
still impractical for many clinical applications. For the pur-
poses of this study, we assume that a segmented CT (or MRI)
volume is available where relevant structures are labelled,
without placing any restrictions on how these data are gener-
ated. Using this labelled volume, we followed two different
strategies depending on the type of structure: (1) for organs,
we extracted the surface from the CT labelled volume (see
Sect. 3.2 for implementation details); (2) in the case of ves-
sels and ducts, given that the centre of the structure can be
easily identified in a 2D US image, we extracted the centre-
line using a parallel medial-axis thinning method [10]. Both
types of structures were represented as a point cloud as illus-
trated in Fig. 1.

During an EUS-guided procedure, a minimum of three
anatomical landmarks need to be manually identified by
the gastroenterologist in the EUS images by defining points
(i.e. clicking on the screen) and assigned to the correspond-
ing CT/MR structure. The registration method starts with
a stochastic initialisation assigning to each US landmark a
random point from the corresponding structure’s point cloud
and then iteratively refines the point correspondence. In each
iteration of refinement, as in the well-known iterative clos-
est point (ICP) algorithm, the method finds an overall rigid
transformation that minimises the root-mean-square (RMS)
distance between all EUS landmarks and their corresponding
point clouds.

Target registration error estimation

The accuracy of navigation depends on the registration ini-
tialisation, and thus, relies on the selection of anatomical
landmarks and the uncertainty on landmark localisation [11].
To evaluate plausible EUS plane positions and orientations
in 3D (determined by the pose of the transducer), and plausi-
ble sets of visible anatomical landmarks, we aim to estimate
the corresponding target registration error (TRE). Although
analytical approximations have been presented to estimate
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Fig. 1 Graphical representation of the planning method (see text for details)

the TRE in point-to-point or surface registration [11,12], the
use of centreline representations preclude their use. There-
fore, we estimated the TRE via a MC simulation of landmark
localisation error. Figure 1 shows a graphical representation
of the proposed method.

Our simulations are constrained to plausible EUS posi-
tions. Considering that the endoscope must be in contact with
the stomach wall or duodenum to ensure acoustic coupling
and obtain a good-quality US image during an EUS-guided
procedure, only positions on the surface of these two organs
should be considered candidates for registration. For this rea-
son, we used the vertices of the surfaces to sample possible
transducer positions during the procedure. From each ver-
tex, considering rotation about the three orthogonal axes,
sector view planes were sampled uniformly to simulate
views obtainable with an EUS transducer. These planes were
considered to be the ground truth for the purposes of the
experiments described in Sect. 3.

For each of the EUS view planes, the MC simulations of
landmark localisation error enable the estimation of a TRE.
Landmarks were automatically extracted depending on the
topology of the structure in question (i.e. a vessel/duct or
organ). We modelled the uncertainty in landmark localisa-
tion as an independent and isotropic Gaussian error with zero
mean. Only planes on which three or more features were
present were considered in the simulation to ensure that a
six-degree-of-freedom rigid transformation could be deter-
mined. Simulations were performed using the registration

method described in Sect. 2.1. The simulation was repeated
to estimate the distribution of TRESs from all orientations that
contain the same set of features (see Sect. 3 for details).
For each simulation, we calculated two metrics: the TRE
between two planes and the TRE for a region of inter-
est. The TRE between two planes (i.e. ground truth and
registered plane) was quantified as the RMS error of the
Euclidean distances between each corresponding point on
the planes (i.e. between corresponding pixels) as follows:
TREpiane = \/% Yo', d(gt;, rp;)?, where n corresponds
to the number of points of the planes and d(gt;, rp;) to
the 3D Euclidean distance between the ith point of the
ground truth plane gf and the i th point of the registered plane
rp. This provided an estimate of the accuracy of registra-
tion for a specific plane. The TRE for a region of interest
which may lay outside the EUS plane but may be of clini-
cal interest (i.e. lesion in the pancreas) was quantified as the
RMS error of the Euclidean distances between each corre-
sponding point on the surfaces of the structures as follows:

TREgurface = \/ % Z;”:] d(s;, rs;)2, where m corresponds to
the number of vertices of the surface and d(s;, rs;) to the
3D Euclidean distance between the ith vertex of the surface
of interest s and the ith vertex of the registered surface of
interest rs. This second measure gives a better estimate of
the possible accuracy targeting a region of interest.

@ Springer
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Optimal EUS plane selection

To assist the gastroenterologist during planning of the pro-
cedure, we aim to determine the optimal planes likely to
produce a robust registration initialisation with a minimised
TRE. The mean and variance of TREs obtained from dif-
ferent simulations are both relevant measures to assess the
registration initialisation accuracy as a small estimated TRE
does not guarantee a robust initialisation with small vari-
ance. Therefore, as an alternative, we propose to minimise
the 90th percentile of TREs instead of the estimated mean
TRE. The 90th percentile can be interpreted as the estimated
upper bound of the nonparametric 90% prediction interval,
such that the optimised EUS plane will yield a 90% proba-
bility of achieving the 90th percentile TRE or lower [13]. We
believe that this is a more clinically informative measure for
procedure planning.

Furthermore, registration error depends on the landmark
localisation, which is difficult to generalise to other loca-
tions, especially locations distant to the plane, if only one
EUS plane is used to initialise registration. Therefore, we
investigated whether the addition of a second plane may
provide a more robust registration, by performing a sec-
ond MC simulation. For computational efficiency, pairs of
EUS planes were sampled using a Latin hypercube sam-
pling scheme [14], drawing from all possible pairs of planes
with at least three identifiable features in each plane. This
sampling scheme ensures that the randomly selected values
are uniformly distributed over all possible values. Landmark
localisation uncertainty was defined as described earlier in
Sect. 2.2. Additionally, in practice, the measured relative
position and rotation between planes may be subject to track-
ing errors. We modelled these as Gaussian errors added only
to the 3D position and orientation of the second plane (see
Sect. 3.2 for implementation details). Then, we registered
the pre-procedure point clouds to the automatically extracted
landmarks from each sampled EUS plane, again using the
same registration method described in Sect. 2.1 to evaluate
the difference in TRE due to using multiple planes. The opti-
mised planes were defined as the combination of planes that
yield the smallest 90th percentile of TREs.

The reported mean TREs and 90th percentiles for optimal
planes were re-estimated from a set of 1000 independent,
case-specific, simulations not used in the optimisation to
avoid bias in the TRE estimates. Furthermore, to mitigate
inter-subject variability, statistical tests were used to deter-
mine whether there was an improvement after adding a
second plane. In our statistical analysis, we did not use mul-
tiple comparison correction.
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Experiments
Imaging and post-processing

The evaluation of the method was conducted on nine publicly
available, manually segmented CT volumes from the MIC-
CAI 2015 workshop and challenge: multi-Atlas labelling
beyond the cranial vault [15]. The volumes had variable vol-
ume sizes from 512 x 512 x 117t0 512 x 512 x 198 voxels,
variable pixel sizes from 0.59 x 0.59 to 0.98 x 0.98 mm,
and variable slice thicknesses from 2.5 to 3 mm. From the
labelled volumes, the following anatomical landmarks were
available: organs (stomach, pancreas, liver, gallbladder and
left kidney) and vessels (aorta, inferior vena cava, portal vein
and splenic vein). The duodenum was not available in this
dataset.

The feasibility of performing the proposed registration
initialisation on clinical data was evaluated retrospectively
using data from a 62-year-old female patient who underwent
an EUS-guided exploration with FNA. The procedure was
performed at University College London Hospital (UCLH)
with a Hitachi Preirus EUS console and a Pentax EG-
3270UK endoscope with a frequency of 7.5 MHz. During
the procedure, approximately 20 min of untracked US data
was recorded with a frame resolution of 720 x 576 pixels
and a frame rate of 25 frames per second. Two EUS frames
were identified with clear corresponding landmarks localised
by two clinical research fellows (LU and GK), confirmed
by an experienced consultant gastroenterologist (SP). The
region of the stomach (from the pre-procedure CT 3D model)
from which the EUS frames were taken was identified by the
gastroenterologist and used as a ground truth. In the first
frame, using a depth of 4 cm, six landmarks were identified
in both CT and US (the pancreatic duct, the splenic vein,
the mesenteric vein, the portal vein, and the confluence of
the three veins and the common bile duct) with a pixel size
of 0.12 x 0.11 mm (see Fig. 2). In the second frame, four
landmarks were identified in both CT and EUS (the pancre-
atic duct, the bile duct, the superior mesenteric artery and
the superior mesenteric vein) with a depth of 6cm and a
pixel size of 0.18 x 0.16 mm (see Fig. 3). The pre-procedure
CT had a volume size of 512 x 512 x 229 voxels with a
pixel size of 0.55 x 0.55 mm with a slice thickness of 1 mm.
The following labels were extracted automatically using a
deep learning approach for multi-organ abdominal segmen-
tation [9] and manually corrected: spleen, right kidney, left
kidney, gallbladder, oesophagus, liver, stomach, duodenum
and pancreas. Additionally, the following EUS-visible labels
were manually segmented: the pancreatic duct, the bile duct,
the aorta, the vena cava, the splenic vein, the ampulla, the
mesenteric vein and artery, the portal vein and the conflu-
ence of portal vein with mesenteric vein and splenic vein and
the right adrenal gland.



International Journal of Computer Assisted Radiology and Surgery (2018) 13:875-883 879

HITACHI  University College Hosp London

EUS LINEAR

P9s% [JIEE

FR47 BG:19 DR:70
EG-3270UK 7.5MHz

Fig. 2 EUS frame and the corresponding CT slice (ground truth) for the first frame of the patient case with the following landmarks: pancreatic
duct (orange), bile duct (purple), portal vein (yellow), mesenteric vein (green), splenic vein (red) and confluence of the three veins (blue)
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Fig.3 EUS frame and the corresponding CT slice (ground truth) for the second frame of the patient case with the following landmarks: bile duct
(green), pancreatic duct (blue), superior mesenteric vein (red) and superior mesenteric artery (yellow)

Implementation details

To perform the MC simulations, we used a custom-written
software implemented in MATLAB (MathWorks, Natick,
USA). The isosurfaces of the organs and vessels were
extracted from the labelled CT images. To reduce the com-
putational burden, the number of faces on the stomach was
reduced such that the average number of vertices was 2638
with an averaged distance between vertices of 5.33 mm,
corresponding to approximately half the width of the EUS
transducer. The simulated EUS slice sampled from a CT had
a view angle of 120° with a scanning depth of 5 cm, equiva-
lent to standard clinical EUS transducers. For each position,
planes within a range of [— 60, 60]° with a 20° step rotation
in the three orthogonal axes to the normal of the vertex were
considered to simulate physically achievable planes. There-

fore, a total of 125 planes were generated for each vertex of
the stomach surface and, if available, the duodenum.

The automatically extracted landmarks from vessels cor-
responded to the feature centroid (i.e. centre of mass) with
an added localisation error with a normal distribution of
N(O, %(% (w;h) I), where [ is the identity matrix, and w and
h correspond to the width and height of the bounding box
defining the region of the feature visible in the plane, respec-
tively. For organs, the point closest to the mean of all points on
the boundary segment visible in the US plane was automati-
cally extracted with an estimated localisation error sampled
from a Gaussian distribution N(0, o /), where 0 = 2mm.
Features with cross-sectional areas less than 5mm? were
discarded, as a gastroenterologist would be unable to clearly
identify them on EUS images and CT [3]. For each individual
plane, 1000 simulations were performed with samples from
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landmark localisation. For two planes, Gaussian errors with
o0 = 0.4mm and o = 0.36° were added to the transducer
position and rotation of the second plane, respectively, based
on accuracy measurements reported in flexible endoscopes
[16]. In this case, twice the number of vertices (stomach sur-
face) were sampled and 100 simulations were performed for
each pair of planes.

Results

Using the nine labelled CT volumes, we performed three
comparisons: (a) the result of an optimised plane selection
compared to an alternative with a randomly selected plane
with at least three landmarks representing a non-optimised
approach, (b) the optimised plane compared to planes with
the same landmark composition (i.e. the same number of
ducts/vessels and same number of organs, as anatomical land-
marks) to investigate the dependency of the registration error
on the ultrasound image pose as opposed to the landmark
composition and (c) the result of using one optimised plane
compared to a pair of optimised planes. With a quadratic
complexity due to the use of ICP, registration of each plane
took an average of 47 ms (using an Intel Xeon CPU E5-1607).

The estimated 90th percentile TREs map of the stomach
for each of the nine subjects is illustrated in Table 1. The TRE
distributions at the EUS plane and in the pancreas and the
90th percentile TREs are also summarised in Table 1, for the
one- and two-EUS-plane registrations. We also include the
EUS plane TRE metrics, using the randomly selected planes
(i.e. a non-optimised approach), and with the same landmark
composition with respect to different poses, in terms of mean
and standard deviation (SD).

At a patient level, a Wilcoxon rank-sum test showed a
significant difference in median TREs between one and two
optimised planes (all p values < 0.03). Paired student’s ¢
tests showed a significant difference between the optimised
and non-optimised planes (p value < 0.01), and between
optimised planes and planes with the same landmark com-
position (p value < 0.01), as well as a significant difference
between one- and two-plane TREs calculated on the pancreas
(p value < 0.01).

Additionally, we modelled the effect of landmark com-
position on the 90th percentile TRE as a multiple linear
regression with two factors: the number of ducts and the
number of organs. Under this model, the 90th percentile
TRE decreased by 8.47mm per additional duct landmark
and 9.10mm per organ landmark. The within-group stan-
dard deviation of the 90th percentile TRE from different
poses after accounting for the number and composition of
landmarks was 16 mm. These results suggest that both the
landmark composition and the specific pose are important
factors to determine the accuracy.
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In the second experiment, we assessed the feasibility of
the method by analysing the retrospective data taken during
the EUS-guided pancreas intervention. The 90th percentile
TRE map of the stomach and duodenum of the patient, the
mean TREs, 90th percentile TRE and TRE in the pancreas
for both simulated and obtained with the real EUS frame
are summarised in Table 2. Note that since it is a retro-
spective study, the optimal US frames were not available.
The distribution of TRE and the 90th percentile TRE both
had a skewed distribution along right tale (skewness = 2.38
and 0.72, respectively). Furthermore, we used the retrospec-
tive data to evaluate the correlations between the number
and types of landmarks and the 90th percentile TRE using
the Pearson’s linear correlation coefficient (CC) considering
all vertices. Overall, the number of landmarks was corre-
lated with the 90th percentile TRE with a CC of —0.71. The
number of ducts and vessels was correlated with the 90th per-
centile TRE with a CC of —0.68 and the number of organs
with a CC of —0.10.

Discussion

This work proposes a planning tool for image-guided EUS
therapy to the pancreas. We propose to (1) use a landmarks-
to-structure rigid registration method to relax the dependency
on landmark selection and localisation; (2) predict the TRE
on the surface of the stomach and the duodenum (if available)
via MC simulations; and (3) use the 90th percentile of TREs
to determine optimal EUS frames for a robust and accurate
registration.

Results suggest that optimised planes can potentially
provide a more robust registration in terms of TRE com-
pared to a non-optimised approach and compared to planes
with the same landmark composition but a different pose.
Additionally, using two planes can also provide a better reg-
istration accuracy in regions of interest such as the pancreas.
The estimated accuracy of registration can also inform the
gastroenterologist’s decision whether one or two EUS ini-
tialisation planes should be used, where these planes should
be located and what TRE can be expected with high confi-
dence.

The evaluation in a clinical setting was performed using
retrospective data, where the optimal plane was not avail-
able. The purpose of this experiment was to demonstrate the
feasibility and application of the method in a real clinical sce-
nario. Although with the limited data available, a rigorous
validation of the TRE estimation was not possible, results
showed differences between the predicted plane TRE and
the calculated TRE. Based on our observations, we suspect
this was in part due to the number of landmarks that were
automatically identified from the CT, which were not visi-
ble on EUS images (Fig. 2), and may also be attributed to
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Table1 Mean and 90th percentile of TREs (+ SD) in mm for nine cases
with one and two optimised planes (TRE =+ SD, 90th p.), the expected
mean plane TRE of a non-optimised approach (Non-opt.), the TRE when

using the same landmark composition (Comp. TRE) and the expected
mean TRE (£ SD) on the vertices of the pancreas (Pancreas)

Case 1 Case 2

Case 3 Case 4 Case 5

w105

90th p. TREs 1] s 118 9 m—m 115 10— 9 12 8 —
TRESD lp. 7.52+£2.92 6.47 £ 2.56 8.27£1.86 6.30 £ 2.39 5.79 £1.95
90th p. 1p. 11.27 8.99 10.50 9.60 8.57
Pancreas 1p. 16.93 £+ 8.57 10.88 +5.34 14.99 +9.89 18.28 4+ 8.36 10.61 +5.45
Non-opt. 1p. 49.75 £ 19.99 41.16 =17.03 46.19 + 18.95 47.63 +19.57 43.20 + 16.81
Comp. TRE 35.88 £ 11.98 27.73 £11.26 24.43 +8.07 17.48 £4.14 7.85+2.21
Opt. planes
TRE+£SD 2p. 5.924+2.36 491 +£1.96 5.41+£2.50 4.71+£1.94 5.57+1.39
90th p. 2p. 8.63 7.26 7.54 7.06 7.37
Pancreas 2p. 9.31+£3.90 5.49 +£2.65 5.72+1.84 6.22+2.71 8.66 £+ 1.60
Non-opt 2p. 20.76 +10.8 20.54 £ 14.30 24.50 £ 17.09 28.39 +18.91 26.52 +15.76
Case 6 Case 7 Case 8 Case 9
90th p. TREs 16— 170 12 142 10— 1)
TRE+£SD Ip. 10.64 £ 4.61 9.49 £2.78 7.67+2.6 9.53 +£1.91
90th p. 1p. 16.95 12.73 10.99 11.54
Pancreas 1p. 21.76 +£10.35 16.46 = 7.87 15.35 £7.21 18.67 +4.99
Non-opt 1p. 21.98 4+ 24.66 38.72 +£21.20 43.72 £23.18 42.13 £ 15.94
Comp. TRE 15.58 +8.34 30.36 = 15.44 23.13+10.13 10.71 £2.82
TRE+£SD 2p. 6.09+1.23 5.15+£2.49 4.58 £ 1.55 4.54 £ 1.56
90th p. 2p. 7.30 8.93 6.95 6.58
Pancreas 2p. 6.62 = 1.86 4.63 +£1.68 542+ 1.81 5.98 £2.09
Non-opt 2p. 25.45+19.31 21.56 £ 16.14 17.32 £ 15.67 22.32+14.59

White regions on the wireframe mesh of the stomach correspond to positions where fewer than three features were identifiable. The 90th percentile
TRESs map corresponds to the simulation with one single ultrasound plane

our conservative overestimate of landmark uncertainty for
segmentation-defined landmarks, which was higher than the
manual variation (Fig. 3). Both issues could be solved using
more accurate models of the landmark distributions on the
sector-plane view and are interesting subjects of future inves-
tigation.

Our sector-view-plane simulation approach could be
applied in a variety of EUS-landmark-based registrations. In
this work, we registered the US frames to the pre-procedural
CT using an ICP method, as it is widely known and used

for multimodal registration initialisation [5,8]. Other algo-
rithms, such as robust ICP [17,18], have a similar unintuitive
relationship between plane selection and TRE and therefore
could also benefit from these simulations.

Abdominal CT organ segmentation uncertainty could
affect simulation results in multiple ways. First, different
segmentation errors could yield different optimal planes
and TREs. This is expected and not a problem because
the same segmentation is used for planning and intra-
procedural guidance, and different segmentations may, in
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Table 2 Mean and 90th
percentile of TREs (in mm) and
the expected TRE at the surface
of the pancreas for the two US
frames obtained from a patient
case

90th percentile TRE map of the stomach

Frame 2

Simulated

TRE £+ SD plane 11.55 £3.60 23.08 £5.09

90th p. TRE plane 16.76 29.17

TRE £ SD pancreas 65.76 £ 28.07 127.58 +34.57
US frame

TRE £ SD plane 8.87 £1.82 13.27 +£5.76

90th p. TRE plane 11.03 21.60

TRE +£ SD pancreas 65.77 £ 12.36 62.28 +42.91

fact, require different initialisation planes. Second, seg-
mentation uncertainty can increase the effective landmark
localisation uncertainty. Our simulations include a model
of the distribution of the EUS-localised landmarks /; on
the simulated sector views, represented as a distribution
of offsets o; = [; — s; from segmentation-defined points,
s;. In Sect. 2.2, we modelled the EUS landmark localisa-
tion distribution relative to EUS-defined ground truth points,
e;. If segmentation uncertainty induces variability in the
segmentation-defined points, s;, then the distribution of off-
sets between EUS-defined and segmentation-defined points
[iie.oj = 1; —s; = (I; —e;) + (ej — s;)] is the sum of
the two distributions, which in general will have a larger
magnitude and could be modelled in future simulations. On
the other hand, considering organ deformation requires a
robust non-rigid registration method, which, to the best of
our knowledge, has not been proposed yet for the applica-
tion of interest. This could also reduce the potential limitation
such as availability of landmarks during the procedure caused
by out-of-plane rotation. The robustness of the planes could
be further evaluated by assessing different distributions for
modelling the uncertainties. However, for the purposes of this
study, some simplifications such as using Gaussian distribu-
tions with zero mean, were needed to show and demonstrate
the feasibility of the method.

In this proof-of-concept work, we used the TRE between
the registered and ground truth plane as a measure of registra-
tion accuracy for optimisation. Regions of clinical interest,
such as a target lesion or an anatomical structure that lies far
from the optimised plane, may of course be registered with a
different TRE (e.g. pancreas in Table 1) and compromise the
accuracy of the navigation in that area. In this case, the mean
pancreas TRE was typically larger than the mean EUS-plane

@ Springer

TRE, by 95% for the one-plane registration and by only 23%
for the two-plane registrations. When specific clinical targets
are defined before the procedure, the methodology described
could be easily adopted to directly minimise the TRE on the
clinical target (estimated to be useful with an accuracy within
5cm) yielding a patient-and-procedure-specific plan.

Conclusion

This work proposes a planning method for endoscopic pro-
cedures involving the gastrointestinal tract with the aim to
improve the navigation accuracy during EUS procedures.
In conclusion, results show that optimised planes provide
a more robust initialisation and that there is a time—accuracy
trade-off in opting to use one or two planes for registration
initialisation. We evaluated the use of the method in a clinical
setting retrospectively using US images from a EUS case.

Future work will include more patient data to further
assess the proposed method in a clinical environment for
EUS-guided procedures.

Acknowledgements EB, EG, KG, BD, SP, MC and DC are sup-
ported by Cancer Research UK (CRUK) Multidisciplinary Award
(C28070/A19985). YH is funded by CRUK and the UK Engineering
and Physical Sciences Research Council (EPSRC) as part of the UCL-
KCL Comprehensive Cancer Imaging Centre. SP is also supported by
the National Institute for Health Research University College London
Hospitals Biomedical Research Centre.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of
interest.

Ethical approval For this type of study, formal consent is not required.



International Journal of Computer Assisted Radiology and Surgery (2018) 13:875-883 883

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Gonzalo-Marin J, Vila JJ, Perez-Miranda M (2014) Role of endo-
scopic ultrasound in the diagnosis of pancreatic cancer. World J
Gastrointest Oncol 6(9):360

2. Mertz H, Gautam S (2004) The learning curve for eus-guided fna
of pancreatic cancer. Gastrointest Endosc 59(1):33

3. Gruionu LG, Saftoiu A, Gruionu G (2016) A novel fusion imaging
system for endoscopic ultrasound. Endosc Ultrasound 5(1):35

4. Nagelhus Hernes TA, Lindseth F, Selbekk T, Wollf A, Sol-
berg OV, Harg E, Rygh OM, Tangen GA, Rasmussen I, Aug-
dal S, Couweleers F, Unsgaard G (2006) Computer-assisted
3d ultrasound-guided neurosurgery: technological contributions,
including multimodal registration and advanced display, demon-
strating future perspectives. Int J Med Robot Comput Assist Surg
2(1):45

5. Hummel J, Figl M, Bax M, Bergmann H, Birkfellner W (2008)
2d/3d registration of endoscopic ultrasound to CT volume data.
Phys Med Biol 53(16):4303

6. Reichl T, Luo X, Menzel M, Hautmann H, Mori K, Navab N (2013)
Hybrid electromagnetic and image-based tracking of endoscopes
with guaranteed smooth output. Int J] Comput Assist Radiol Surg
8(6):955

7. José Estépar RS, Stylopoulos N, Ellis R, Samset E, Westin CF,
Thompson C, Vosburgh K (2007) Towards scarless surgery: an
endoscopic ultrasound navigation system for transgastric access
procedures. Comput Aided Surg 12(6):311

8. Markelj P, Tomazevi¢ D, Likar B, Pernu§ F (2012) A review of
3d/2d registration methods for image-guided interventions. Med
Image Anal 16(3):642

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K,

Davidson B, Pereira S, Clarkson M, Barratt D (2017) Towards
image-guided pancreas and biliary endoscopy: automatic multi-
organ segmentation on abdominal CT with dense dilated networks.
Lecture notes in computer science, vol 10433

Lee T, Kashyap R, Chu C (1994) Building skeleton models via 3-
d medial surface axis thinning algorithms. CVGIP Graph Models
Image Process 56(6):462

Fitzpatrick J, West J, Maurer C (1998) Predicting error in rigid-
body point-based registration. IEEE Trans Med Imaging 17:694
Ma B, Ellis RE (2006) Analytic expressions for fiducial and surface
target registration error. In: Larsen R, Nielsen M, Sporring J (eds)
Medical image computing and computer—assisted intervention—
MICCAI 2006, MICCAI 2006. Lecture Notes in Computer Sci-
ence, vol 4191. Springer, Berlin, Heidelberg. https://doi.org/10.
1007/11866763_7

Hall P, Rieck A (2001) Improving coverage accuracy of nonpara-
metric prediction intervals. J R Stat Soc 63(4):717

McKay MD, Beckman RJ, Conover WJ (1979) A comparison of
three methods for selecting values of input variables in the analysis
of output from a computer code. Technometrics 21(2):239
Landman B, Xu Z, Igelsias JE, Styner M, Langerak TR, Klein A
(2015) Multi-atlas labeling beyond the cranial vault. https://www.
synapse.org/#!Synapse:syn3193805/

Bonmati E, Hu Y, Gurusamy K, Davidson B, Pereira S, Clarkson M,
Barratt D (2017) Assessment of electromagnetic tracking accuracy
for endoscopic ultrasound. Lecture notes in computer science, vol
10170

Estépar RSJ, Brun A, Westin CF (2004) Robust generalized total
least squares iterative closest point registration. Lecture notes in
computer science, pp 234-241

Maier-Hein L, Franz AM, dos Santos TR, Schmidt M, Fangerau
M, Meinzer H, Fitzpatrick JM (2012) Convergent iterative closest-
point algorithm to accomodate anisotropic and inhomogenous
localization error. IEEE Trans Pattern Anal Mach Intell 34(8):1520

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/11866763_7
https://doi.org/10.1007/11866763_7
https://www.synapse.org/#!Synapse:syn3193805/
https://www.synapse.org/#!Synapse:syn3193805/

	Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures
	Abstract
	Introduction
	Methods
	Registration method and initialisation
	Target registration error estimation
	Optimal EUS plane selection

	Experiments
	Imaging and post-processing
	Implementation details

	Results
	Discussion
	Conclusion
	Acknowledgements
	References




