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Abstract
Telomerase, the enzyme that replenishes telomeres, is essential for most eukaryotes to maintain their generations. Telomere 
length homeostasis is achieved via a balance between telomere lengthening by telomerase, and erosion over successive cell 
divisions. Impaired telomerase regulation leads to shortened telomeres and can cause defects in tissue maintenance. Telom-
eric DNA is composed of a repetitive sequence, which recruits the protective protein complex, shelterin. Shelterin, together 
with chromatin remodelling proteins, shapes the heterochromatic structure at the telomere and protects chromosome ends. 
Shelterin also provides a foothold for telomerase to be recruited and facilitates telomere extension. Such mechanisms of 
telomere recruitment and activation are conserved from unicellular eukaryotes to humans, with the rate of telomere extension 
playing an important role in determining the length maintained. Telomerase can be processive, adding multiple telomeric 
repeats before dissociating. However, a question remains: how does telomerase determine the number of repeats to add? In 
this review, I will discuss about how telomerase can monitor telomere extension using fission yeast as a model. I propose 
a model whereby the accumulation of the Pot1 complex on the synthesised telomere single-strand counteracts retention of 
telomerase via chromatin proteins and the similar system may be conserved in mammals.
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Main

Telomerase plays a critical role in telomere maintenance, 
but its regulation at the telomere remains to be established. 
Telomeres are non-coding guanine (G)-rich DNA repeats 
located at the termini of linear chromosomes. Telomeric 
DNA terminates in a G-rich single-stranded 3′ end or 
G-overhang. They function to stabilise and protect chromo-
some ends. This is achieved by the recruitment of the telom-
eric protein complex, shelterin (de Lange 2005). Conversely, 
telomere attrition occurs after the DNA replication, meaning 
that telomeres progressively shorten through each division 
of the cell. Before becoming critically short and compromis-
ing shelterin functions, cells permanently arrest cycling in 
a phenomenon called ‘replicative senescence’. Some stem 

cells and progenitor cells express the specialised reverse 
transcriptase, telomerase, to add telomeric repeats and delay 
replicative senescence. When telomere addition by telom-
erase, and erosion of telomeric DNA are balanced, cells 
achieve a homeostatic telomere length (Hug and Lingner 
2006). This telomere length homeostasis is observed in uni-
cellular eukaryotes and germ cells, permitting telomeres to 
be maintained to future generations. The conserved function 
of telomerase and the shelterin complex make organisms 
such as fission yeasts useful models to study fundamental 
aspects of telomere maintenance (Armstrong and Tomita 
2017).

Telomerase activity is tightly controlled at multiple levels, 
from the expression of telomerase components to the appro-
priate functioning of assembly factors required to recruit and 
activate telomerase at the telomeres (Armstrong and Tom-
ita 2017; Churikov et al. 2013; Schmidt and Cech 2015). 
Defects in any of these process lead to loss of telomeric 
repeats or the maintenance of short telomeres. In unicellular 
organisms, loss of telomerase activity results in ever shorter 
telomeres (EST) phenotype and the catastrophic cell death. 
However, destabilised telomeres caused by telomere erosion 
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can rarely activate alternative lengthening of telomere (ALT) 
pathways, wherein homology-directed recombination/repli-
cation copies telomeric repeats via strand invasion to inter/
intra-chromosome ends (Gadaleta et al. 2016; Lue and Yu 
2017). Alternatively, impaired telomerase activity can be 
overcome by change in transcription levels, caused by selec-
tive aneuploidy (Millet and Makovets 2016). Therefore, tel-
omerase must be correctly controlled to maintain genome 
stability. In humans, mutations that impair telomerase activ-
ity increase the risk of many diseases and, in severe cases, 
cause development/regeneration-related disorders (Black-
burn et al. 2015). These defects are presumably originated 
from replicative senescence of stem cells and impaired tissue 
regeneration.

Telomerase is recruited to the telomeres via shelterin or 
other telomere located proteins (Cdc13 in budding yeasts, 
TPP1-TIN2 in mammals and Tpz1-Ccq1 in fission yeasts) 
(Armstrong and Tomita 2017). The recruited telomerase 
relocates to the end of a single-stranded G-overhang by 
hybridising with its RNA template, allowing the reverse 
transcriptase component to add new repeats. The interac-
tion between telomerase and shelterin and/or the formation 
of the telomeric DNA/telomerase RNA hybrid retain telom-
erase at the telomere, permitting the processive extension of 
telomeres (Greider 1991; Wang et al. 2007; Xin et al. 2007). 
Telomerase preferentially targets the shortest telomeres for 
extension, which ensures that an average telomere length 
is maintained across all chromosomes (Hug and Lingner 
2006).

Telomere elongation is observed only during S-phase. 
At the end of S-phase, telomerase access is blocked by the 
DNA-replication complex CST. This comprises of CTC1, 
STN1 and TEN1 in mammals and Stn1 and Ten1 in bud-
ding and fission yeasts (Chen and Lingner 2013). In budding 
yeast, Stn1-Ten1 binds to Cdc13 to block the interaction of 
telomerase (Churikov et al. 2013). A similar mechanism has 
been proposed in mammals and fission yeast, where in the 
CST complex associates with TPP1 and Tpz1, respectively, 
transiently in late S-phase. Furthermore, the CST complex 
recruits the primase-polymerase α complex to fill the com-
plementarily strand of the newly synthesised telomere by 
telomerase (Feng et al. 2017; Grossi et al. 2004). Outside 
S-phase, telomeres form a closed structure, blocking tel-
omerase access known as a ‘non-extendible state’ (Hug 
and Lingner 2006). This is possibly via the accumulation 
of suppressive proteins that bind the double-stranded tel-
omere DNA (the classical counting mechanism) (Marcand 
et al. 1997), the folding of the 3′ G-overhang by the shel-
terin bridge (between single-strand and double-strand telom-
eres) (Jun et al. 2013), or via a t-loop formation, in which 3′ 
G-overhang end displaces and anneals to its double-stranded 
telomere (de Lange 2005). All these closed formation mod-
els involve the shelterin proteins.

How does telomerase dissociate from the telomere? When 
telomerase is released, a newly elongated telomere can be 
subjected to further rounds of telomere extension during 
S-phase, implying that the telomere dissociation is revers-
ible. Hence, a distinct mechanism from the telomerase termi-
nation processes, such as reforming of t-loops or recruitment 
of the CST complex, are expected to occur. In budding yeast, 
the DNA helicase Pif1 preferentially releases telomerase 
RNA by unwinding the DNA/RNA duplex (Bochman et al. 
2010; Sabouri 2017; Stinus et al. 2018). Pif1 is well-con-
served in mammals and expected to perform a similar job. 
However, how and when these DNA helicases are recruited 
to the end of telomere are not known. Another mechanism 
that dissociates telomerase from the telomeric proteins is 
also expected.

How is telomere extension monitored? Processive tel-
omerase is thought to be released once the telomere is suf-
ficiently elongated. This means that a counting mechanism 
for telomere extension is likely to exist. The synthesised 
telomeric DNA can form a G-quadruplex structure. How-
ever, such secondary structure would be unwound by the 
binding of the RPA (replication protein A) complex, which 
facilitates telomerase activity (Audry et al. 2015). RPA is 
replaced by the single-strand DNA binding shelterin protein, 
Pot1 (Flynn et al. 2011; Ray et al. 2014). Hence, I predict 
that accumulation of the Pot1 complex on the synthesised 
telomere G-strand DNA serves to release telomerase, remi-
niscent of the classic counting mechanism (Marcand et al. 
1997). Pot1 interacts with TPP1 in mammals and Tpz1 in 
fission yeast. Therefore, the Pot1 complex at the 3′ end could 
attract telomerase for further rounds of extension.

The clue as to how telomere extension is monitored 
might be found in fission yeast. Fission yeast Pot1 stably 
forms a complex with Tpz1 and Ccq1. Together with Tpz1, 
Ccq1 has multiple roles in telomerase regulation, from its 
recruitment, activation and release (Armstrong et al. 2014, 
2018; Tomita and Cooper 2008). Telomerase recruitment is 
stimulated by the phosphorylation of Ccq1, which increases 
the affinity between Ccq1 and the telomerase subunit, Est1 
(Moser et al. 2011; Webb and Zakian 2012). Our recent 
study suggested that Ccq1 also counteracts telomerase reten-
tion at the telomere via the chromatin remodelling NuRD 
complex, SHREC (Armstrong et al. 2018). Interestingly, 
SHREC appeared to bind Ccq1 that is not associated with 
Est1, thereby separating active (Ccq1-Est1) and inactive 
(Ccq1-SHREC) forms. SHREC controls telomere length 
only when telomerase is retained at the telomeres, demon-
strated by the artificial recruitment of telomerase. Hence, 
SHREC appeared to have a role in release of telomerase 
from the telomere rather than in the telomerase recruitment 
process. This activity requires complex formation with 
Ccq1 and Tpz1. Therefore, I proposed a model, whereby 
Ccq1-SHREC is recruited to a newly synthesised telomere 
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Fig. 1  Proposed model for tel-
omere extension and telomerase 
turn over in fission yeast. a 
Non-extendible conformation of 
shelterin stabilises 3′ end of the 
telomere. Shelterin is comprised 
for Pot1, Tpz1, Ccq1, Poz1, 
Rap1 and Taz1 that binds to 
the double-stranded telomeric 
DNA. Ccq1 may interact with 
SHREC. Est1 can be recruited 
to Ccq1 when it becomes phos-
phorylated. b The interaction 
between Ccq1 and Est1 results 
in release of SHREC from Ccq1 
and the telomere becomes an 
‘extendible state’ (dissolution 
of the shelterin bridge; Poz1 
is dissociated from Rap1 as 
an example in this diagram). c 
Trt1 associates with Tpz1 and 
Ccq1 to promote telomerase 
activation. The RNA template 
of TER1 hybridises with 3′ 
end of the telomere overhang 
(Arrow: DNA/RNA hybrid for-
mation). Taz1, Rap1 and Poz1 
are omitted from the diagram. 
d Stabilised telomerase adds 
telomeric repeats to the G-rich 
strand. RPA binds to the synthe-
sised DNA. e The Pot1-Tpz1-
Ccq1 complex replaces RPA. 
Ccq1 may recruit SHREC. f 
Accumulation of the Pot1-Tpz1-
Ccq1-SHREC complex on the 
telomere overhang releases the 
telomerase-associated Ccq1 
complex from the telomere. 
The Pot1 complex at the 3′ end 
of the G-overhang can recruit 
telomerase (back to a)
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G-strand via Pot1 and releases Ccq1-Est1, along with tel-
omerase, from the telomere (Fig. 1). Simultaneously, DNA/
RNA helicases would remove telomerase from the DNA end. 
As SHREC does not suppress the telomerase recruitment 
process, Ccq1 at the tip of the G-overhang can be phospho-
rylated and telomerase could be re-directed again, until the 
telomere becomes long enough to form a ‘non-extendible 
state’.

In humans, the Ccq1 equivalent, TIN2, associates with 
telomerase as well as a heterochromain protein 1 (HP1), and 
these association sites appeared to be overlapped (Canudas 
et al. 2011; Yang et al. 2011). Interestingly, overexpression 
of HP1 proteins leads to shortening of telomeres (Sharma 
et al. 2003). These data imply a mutually exclusive interac-
tion of telomerase and HP1 with human TIN2, supporting 
the fission yeast telomerase release model, whereby TIN2-
HP1 replaces TIN2-telomerase at the telomere. In budding 
yeast, the inactive form of telomerase associates with the 
chromatin protein, Sir4, at the telomere. When telomerase 
is activated, the Cdc13-Est1 complex replaces the Sir4 com-
plex for telomerase association (Chen et al. 2018). Thus, a 
role of chromatin proteins in mediating telomerase inactiva-
tion might be conserved among species.

In this review, I summarised the potential function of the 
chromatin proteins in telomerase control. Mutually exclusive 
interaction of the chromatin proteins to the telomeric pro-
teins and/or telomerase can counteract telomerase retention 
at the telomere. Like the processes for telomerase recruit-
ment and blocking, release of active telomerase contributes 
to telomere length homeostasis. Further investigation of two 
key areas is required to establish a high-resolution picture of 
telomerase regulation: how the newly synthesised G-strand 
is organised during telomerase catalytic process and how 
telomerase activity is terminated following processive tel-
omere extension.
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