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ABSTRACT 

This paper presents an advanced Bayesian emulation-based approach (hereafter BEA) that allows a 

reduced number of analyses to be carried out to compute the probabilistic seismic response and fragility 

of buildings. The BEA, which is a version of kriging, uses a mean function as a first approximation of 

the expected Engineering Demand Parameter given Intensity Measure (EDP|IM) and then models the 

approximation errors as a Gaussian Process (GP). A main advantage of the BEA is its flexibility, as it 

does not impose a fixed mathematical form on the EDP|IM relationship (unlike other approaches such 

as the standard cloud method). In addition, BEA makes fewer assumptions than standard methods, and 

provides improved characterization of uncertainty. This paper first presents the BEA approach and then 

assesses its computational efficiency as compared to the standard cloud method. This is done through 

the creation of EDP|IM relationships and fragility functions using the outputs of nonlinear dynamic and 

nonlinear static analyses for two case-study buildings representing Pre- and Special-Code seismic 

vulnerability classes. The nonlinear dynamic and static analysis methods represent different levels of 

accuracy i.e. are of high and low fidelity, respectively. The BEA and standard cloud methods are 

compared in their ability to recreate three “pseudo-realities”, each represented by an artificially 

generated EDP|IM relationship derived from a large set of analysis runs. Several input configurations 

are tested, including, reduced sets of training inputs (analysis runs), training inputs of high and low 

fidelity, two sampling processes for these inputs (i.e. random and stratified sampling) and two different 

IM representations. The results demonstrate that BEA yields both an improved accuracy in terms of 

mean estimates, as well as smaller uncertainty bounds compared to the cloud method. The improved 

performance of the BEA is maintained for all “pseudo-realities” tested regardless of whether it is trained 

with high or low fidelity analysis data, with the improvement particularly pronounced in cases when 

the advanced IM INp is used. It is demonstrated that good accuracy can be achieved with BEA even with 

reduced samples, yielding a saving in 25% in number of analyses required to generate the EDP|IM 

relationship. Finally, the use of BEA drastically improves both the accuracy and efficiency of the 

resultant seismic fragility functions. 

Keywords: probabilistic seismic demand; Bayesian emulation; kriging; fragility curves; 

1. Introduction 

An essential component of the Performance-based earthquake engineering (PBEE) framework is the 

fragility function [1]. Fragility curves are continuous relationships between the ground motion intensity 

and the probability that a specified asset will reach or exceed predefined damage states. In the case of 

buildings and analytical fragility functions, structural models are analyzed under earthquakes of 

increasing intensity and their response, in terms of Engineering Demand Parameters (EDPs), is 

recorded. Statistical methods are employed to characterize this response probabilistically as a function 
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of seismic hazard, and to build relationships relating Engineering Demand Parameters to Intensity 

Measures The ground motion hazard that affects structural response is often represented by a scalar 

parameter, or low-dimensional vector of parameters, known as the intensity measure (IM). In this paper, 

IM is a scalar ground motion parameter that is considered to be representative of the earthquake damage 

potential with respect to the specific structure: using standard notation for conditional probability 

distributions, the relationship with EDP is denoted by EDP|IM. The fragility function is then determined 

by comparing the EDP|IM relationship to properly calibrated EDP thresholds associated with 

predefined damage states or performance levels. State-of-the-art fragility functions are derived either 

analytically, empirically or based on experts’ opinion (also addressed in literature as judgment-based 

or heuristic functions). According to Erberik et al. [2], heuristic fragility curves lack credibility 

comparing to the other two types. On the other hand, several limitations are associated with empirical 

approaches, including the difficulty in properly characterizing the levels of seismic intensity and a non-

subjective damage state allocation; but more importantly, the lack of sufficient seismic damage data in 

most areas of the world.  

Several approaches exist for the analytical fragility assessment of buildings, offering the user the 

flexibility to choose from analysis methodologies, various structural parameters, characteristics of input 

ground motions etc. Large numbers of analysis runs are required in order to account for uncertainties 

in the earthquake ground motions, hence analytical approaches can be computationally very demanding, 

especially when nonlinear dynamic analyses are used. To reduce this computational time, past studies 

have often either made simplifications to the structural model, used a reduced number of ground 

motions or adopted a simplified structural analysis approach. The present study aims to contribute to 

the fragility literature by proposing an approach for both reducing the number of computations required 

to define a fragility curves and for better characterizing the uncertainty associated with the curves. 

This paper introduces an advanced Bayesian emulation-based approach (henceforth BEA) which allows 

a reduced number of analyses to be carried out to compute the probabilistic seismic response and 

fragility of buildings. The BEA, which is a version of kriging, uses a mean function as a first 

approximation of the expected EDP|IM and then models the approximation errors as a Gaussian Process 

(GP). It builds upon the statistical emulation approach proposed by the authors in [3], but improves on 

it considerably by offering a full assessment of uncertainty, including uncertainties in model parameter 

estimation. The main advantage of BEA is that fewer analyses are needed to compute the probabilistic 

seismic response of buildings. In addition, BEA is more flexible as it does not impose a fixed 

mathematical form on the EDP|IM relationship unlike standard approaches for fragility estimation (e.g. 

the cloud method described below). It is highlighted that past risk models were only able to incorporate 

parametric expressions of EDP|IM, however, modern risk codes are able to accommodate non-

parametric relationships. 

The computational efficiency of BEA is assessed and compared to the standard cloud method. This is 

done through the creation of EDP|IM relationships and fragility functions using the outputs of nonlinear 

dynamic and nonlinear static analyses for two case-study buildings representing Pre- and Special-Code 

seismic vulnerability classes. Three different “pseudo-reality” scenarios are implemented to investigate 

the prediction capability of the tested methods under favorable or less favorable conditions. Each 

“pseudo-reality” is represented by an artificially generated EDP|IM relationship derived from a large 

set of analysis runs. A variety of input configurations are tested, including, reduced sets of training 

inputs (analysis runs), training inputs of different levels of accuracy (high and low fidelity), two 

sampling processes for these inputs (i.e. random and stratified sampling) and two different IM 

representations. The results demonstrate that BEA yields both an improved accuracy in terms of mean 

estimates, as well as smaller uncertainty bounds compared to the cloud method. The improved 

performance of the BEA is maintained for all “pseudo-realities” tested regardless of whether it is trained 

with high or low fidelity analysis data. Good results are obtained for standard IMs but strong 

improvement is particularly evident in cases when an advanced IM is used. It is demonstrated that good 
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accuracy can be achieved with BEA even with reduced samples, yielding a saving of 25% in number 

of analyses required to generate the EDP|IM relationship. Finally, the use of BEA drastically improves 

both the accuracy and efficiency of the resultant seismic fragility functions. 

The paper starts with a brief description of the standard cloud method and then provides an overview 

of statistical emulation and BEA. Next, the procedure followed in the paper for the evaluation of BEA 

performance versus that of cloud is described, including how the pseudo-reality experiment is designed 

and sensitivity tests carried out on BEA input. The results are presented and discussed, and conclusions 

are made as to the efficiency of BEA for fragility curve derivation.   

2. Cloud analysis 

The cloud method is one of the most commonly used approaches for characterizing the relationship 

between EDP and IM [4–6]. Within this method, computer simulations are used to determine the seismic 

response of a structure to a series of ground motion (GM) time-histories, each of which has an IM value. 

The simulations are usually based on nonlinear dynamic analysis (e.g. nonlinear time-history analysis 

- NLTHA), with the building response expressed in terms of EDP. It is noted that the incapability of 

some nonlinear static procedures (NSPs) to capture record-to-record variability precludes their use 

within the cloud analysis framework. However, the recently proposed variant of the capacity spectrum 

method FRACAS [7], can be implemented in cloud analysis as it utilizes spectra from GM inputs to 

perform the structural assessment.  

The resultant peak values of EDP for given IM levels form a scatter of points, the so-called “cloud”. 

Least-squares regression is then used to fit a simple model to the cloud of data points. Typically, the 

EDP is considered to vary as a power-law of the form baIM such that, after taking logarithms, the 

relationship can be expressed as in equation (1): 

      ln ln lnEDP a b IM e    (1) 

where EDP is the conditional median of the demand given the IM , a , b are the parameters of the 

regression, and e is a zero mean random variable representing the variability of  ln EDP  given the  

IM . However, some situations exhibit substantial heteroscedasticity (i.e. non-constant variance), 

which needs to be modelled explicitly within the fragility analysis framework [8]; for example by 

performing linear regressions locally in a region of IM values of interest. The use of logarithmic 

transformation indicates that the EDPs are assumed to be lognormally distributed conditional upon the 

values of the IMs. This is a common assumption that has been confirmed as reasonable in many past 

studies [9,10].   

The cloud approach has the advantages of simplicity and rapidity over alternative fragility assessment 

methods. However, it also has some restrictions. Firstly, an assumption is made that the relationship 

between IM and EDP is represented by a linear model in the log space. This assumption may be valid 

for a short range of IM and EDP combinations but not for the entire cloud response space. Additionally, 

the cloud method requires a large number of earthquake records to be used as an input, and the accuracy 

of the approach is highly dependent on the record selection process followed [11]. 

3. Developing EDP versus IM relationships through Bayesian emulation 

Complex mathematical models of real-world processes exist in all scientific and engineering areas. 

These mathematical models are usually translated into computer codes and may require significant 

computational resources. The mathematical functions and the related computer codes may be referred 

to as simulators [12]. A simulator, as a function (.)f , takes vectors of inputs x  and generates unique 

outputs, ( )y f x  for each given input. In the context of analytical fragility estimation, the input x  

represents a ground motion sequence and the output ( )f x  represents the simulated EDP for that 
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sequence. A simulator will produce outputs that have an associated uncertainty, for example, due to 

uncertainties in the inputs and in the simulator construction itself [13]. In analytical fragility functions 

this uncertainty is due to differences in ground motions associated with any IM value, limitations in 

numerically reproducing physical phenomena of the structure response and simplified assessment. To 

assess the effect of these uncertainties, one option is to use uncertainty and sensitivity analysis methods 

requiring many simulator runs, as discussed in [14]. However, this is impractical for complex simulators 

that are computationally demanding to run [12]. To overcome this, an approximation ˆ ( )f x  of the 

simulator ( )f x , known as a statistical emulator, may be introduced to act as a surrogate. If ˆ ( )f x  is a 

good proxy of the simulator, it can be used to carry out uncertainty and sensitivity analysis but with 

significantly less effort. Additionally, ˆ ( )f x can be also used to estimate the values of (.)f , at input 

configurations where the simulator has not been run. 

A small number of data points, obtained by running the simulator at carefully chosen configurations of 

the inputs, is required to train an emulator (and provide values of standard deviations to quantify the 

approximation error). Following common practice in this type of problem (e.g. [13]), the present study 

adopts a Bayesian approach with an emulator based on a Gaussian process (GP) model.  

In the standard GP approach to the modelling of simulator outputs, the output function ( )f x  is regarded 

as a realized value of a random process such that the outputs at distinct values of x jointly follow a 

normal (or Gaussian) distribution. In most applications, ( )f x  is a ‘smooth’ function in the sense that a 

small variation in the input x will result in a small perturbation in the output ( )f x . Smoothness of a 

Gaussian process is ensured by specifying an appropriate structure for the covariance between process 

values at distinct values of x. For example, the use of a Gaussian covariance model (not to be confused 

with the “Gaussian” in the GP, which relates to the distribution, rather than the covariance structure), 

results in smooth realizations that are infinitely differentiable [15]. 

As noted above, in the context of fragility estimation, the input x represents a ground motion sequence. 

However, fragility estimates are rarely presented as functions of an entire ground motion sequence: 

rather, they are presented as a function of an intensity measure ( )t t x , say, that is used as a proxy for 

the complete sequence. In practice, the relationship between any such scalar proxy measure and the 

EDP is imperfect so that the simulator outputs, regarded as a function of t rather than x, are no longer 

smooth. As an example of this, two different ground motion records characterized by the same value of 

t (i.e. having the same IM) will not in general generate identical outputs. Consequently, the standard 

emulation approach must be modified slightly in order for it to be applied in the context of fragility 

estimation. 

The required modification is still to regard ( )f x  as the realized value of a random process, but now 

such that the conditional distributions of ( )f x  given ( )t x  themselves form a Gaussian process. 

Specifically, write ( )f x  as: 

 ( ) ( ) ( )f t  x x  (2) 

where ( )t  represents the systematic variation of the output with the IM and ( ) x  is a discrepancy 

term with [ ( )] 0E  x , representing uncertainty due to the fact that t  does not fully capture the relevant 

information in x . In the first instance it is convenient to assume that ( ) x  is normally distributed with 

a constant variance, 2  (this assumption can be checked when applying the methodology). It is also 

assumed that ( ) x  is independent of ( )t , and that 1( ) x is independent of 2( ) x  when 1 2x x . Note 

that in equation (2), the term ( ) x  is deliberately used instead of ( )t . The reason for doing this is to 

allow two simulator outputs with different x  but same value of t , to be considered as separate, hence, 
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allowing for scatter about the overall mean curve in a plot of ( )f x  against ( )t x . Equation (2) then 

immediately yields the conditional distribution of EDP given IM as normal, with expected value 

( )IM and variance 2 . 

To exploit GP emulation methodology, a final additional assumption is made, whereby ( )t varies 

smoothly with t  and hence can itself be considered as a realization of a GP. Specifically, we denote the 

expected value of  ( )t  by ( )m t , its variance by 2 and we specify a correlation function (such as the 

Gaussian) that ensures smooth variation with t. Under the Gaussian correlation function, the covariance 

between 1( )t  and 2( )t  is: 

  
2

1 22

2
exp

2

t t




 
 
  

 (3) 

where   is a parameter controlling the rate of decay of the correlation between function values at 

increasingly separated values of t . As an illustrative example, the mean function ( )m t  could be 

specified as linear, i.e. 0 1( )m t t   : this represents a first approximation to the function ( )t  in 

Eq.(2), with the correlation structure allowing for smooth variation in the “approximation error” 

( ) ( ) ( )t m t z t   , say.  

Combining all of the above, in the case where the mean function ( )m t  is linear we find that values of 

( )f x  at distinct values of x  are jointly normally distributed such that: 

- The expected value of ( )f x  is: 0 1t   

- The variance of ( )f x  is equal to:     2 2Var ( ) +Vart       x  

- For 1 2x x , the covariance between 1( )f x  and 2( )f x  is: 
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x x x x

 (4) 

 where 1 1( )t t x and 2 2( )t t x . 

These expressions depend on the full input vector x  only through the IM ( )t x . As a result, the simulator 

outputs can be analyzed as though they are functions of t  alone and, specifically, subjected to a standard 

GP analysis to estimate the systematic variation ( )t . The only difference between this formulation 

and a standard GP emulation problem is that when 1 2t t , the covariance between the simulator outputs 

is 2 2  rather than just 2 . The additional 2  term allows for additional variance associated with 

the discrepancy term ( ) x  in equation (2).  

Having formulated the problem in terms of Gaussian processes, the simulator can be run a few times at 

different values of  x , and the resulting outputs can be used to estimate the parameters in the GP model 

which, as set out above, are the regression coefficients 0  and 1 , the variances 2  and 2 , and the 

correlation decay parameter  . A simple way to do this is to use ordinary least-squares regression to 

estimate the regression coefficients and then to carry out a least-squares fit on the variogram of the 
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residuals to estimate the remaining parameters as is standard in geostatistics [16]; The resulted 0  and 

1  estimates are then plugged into the relevant formulae in order to carry out the interpolation and 

assess its uncertainty. However, this approach fails to account properly for the uncertainty in the 

parameter estimates. From this perspective a Bayesian approach is preferable: among other things, for 

any IM value this provides samples from the posterior predictive distribution of the associated EDP. 

This predictive distribution automatically accounts for parameter uncertainty: percentiles of the 

distribution can be used to provide prediction intervals (we use 95% intervals below), and the posterior 

predictive probability of exceeding any threshold of interest (e.g. corresponding to a given damage state 

so as to obtain a fragility curve) can be calculated directly. For an introduction to the calculation of 

predictive distributions in Bayesian analyses, see [17]. In our work, the Bayesian approach is 

implemented using the krige.bayes() routine from the geoR package in R [18]. 

Any Bayesian approach requires the specification of prior distributions for each parameter estimated: 

following the implementation in krige.bayes(), we adopt standard non-informative priors where 

possible for all parameters in order to ensure that the results reflect the information content of the 

simulator runs to the maximum extent possible. The model parameters and their prior distribution used 

in our BEA model are listed below:  

 Regression coefficients, 0  and 1  (intercept and slope). Here, non-informative “flat” prior 

distributions are chosen.  

 Partial sill, 2 . A prior distribution proportional to 21/  (“reciprocal”) is used here. 

 Range,  . An improper “uniform” prior distribution over the range (0,∞) is selected. 

It is noteworthy that the krige.bayes() function does not allow a Bayesian treatment of the variance 2   

so this is fixed at the value obtained from a conventional kriging analysis as defined above. The effect 

will be that uncertainty in the predictions will still be underestimated, albeit much less than in most 

standard analyses. The results of the pseudo-reality experiment reported below will help to determine 

whether this is likely to be a problem in practice. 

Having estimated the parameters, the results can be used to interpolate optimally between the existing 

simulator runs so as to construct an estimate of the predicted EDP|IM curve ( )t  and associated 

standard deviation. The optimal interpolation relies on standard results for calculating conditional 

distributions in a Gaussian framework. The approach is used extensively in geostatistics to interpolate 

between observations made at different spatial locations, where it is often referred to as “kriging” [19]. 

In geostatistics, the term 2  is referred to as a ‘nugget’ and accounts for local-scale variation or 

measurement error. Nonetheless, in the present context the above argument shows that it can be derived 

purely by considering the structure of the probabilistic seismic demand problem. 

It is noteworthy to mention that similarly to the cloud method, the BEA analysis is also carried in terms 

of  ln EDP , due to the normality and heteroscedasticity assumptions, which are better justified on the 

log scale.  

4. Methodology 

The adequacy and the performance of the proposed Bayesian approach (BEA) for seismic response is 

assessed through its comparison with the cloud based approach. A roadmap of the methodology 

followed herein is shown in Figure 1. As a first step, two case study buildings, representing distinct 

vulnerability classes, are analyzed at two levels of analysis fidelity (i.e. using nonlinear dynamic and 

static analysis methods, representing high and low fidelity respectively), in order to construct the 

associated EDP|IM relationships (steps 1-3, Section 4.1). Each of the resultant data sets of IM and EDP 

is used to generate three “pseudo-realities” based on different assumptions, which are each 
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characterized by a mean and standard deviation value. The reason for implementing three different 

“pseudo-reality” scenarios is to investigate the prediction capability of the tested methods under 

favorable or less favorable conditions. A large number of data sets of IM and EDP are then simulated, 

using the same mean and standard deviation values as calculated for each “pseudo-reality” (step 4, 

discussed in Section 4.2). Different sampling configurations are employed, including two sampling 

types and three sampling sizes to construct the data sets (step 5, Section 4.3), which are used to train 

the tested methods (step 6). The effect of selecting different covariance structures within BEA is also 

investigated. Finally, the results of the tested methods are compared and evaluated against the “pseudo-

realities” with the aim of three different metrics (step 7, Section 5). A computer code implementing the 

proposed framework is scripted in R[20]. A code supplement to this study can be accessed online 

through EPICentre website (http://www.ucl.ac.uk/epicentre/resources/software). Note that although the 

scripted BEA procedure is more complex than the standard method, it does not practically increase the 

computational expense.   

This methodology process aims to shed light on the sensitivity of the BEA to several input assumptions, 

and sampling configurations, in the estimation of the mean of the EDP|IM distribution and the 

uncertainty characterization. The comparisons presented here are carried out in terms of EDP|IM 

predictions, however, a single case-study example is presented in Section 5.7 where the two methods 

are compared at the fragility level. 

http://www.ucl.ac.uk/epicentre/resources/software
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Figure 1 - Schematics of the methodology roadmap. 
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4.1 Case study structures and analysis setup 

Two regular reinforced concrete (RC) moment resisting frames (MRF) are modelled and implemented 

as case studies for the current research work. These structures, which are regular in plan and elevation 

and share the same geometry, represent distinct vulnerability classes, as they are characterized by 

different material properties and reinforcement detailing. The first frame is designed to only sustain 

gravity loads following the Italian Royal Decree n. 2239 of 1939 [21] that regulated the design of RC 

buildings in Italy up to 1971, hereafter called the Pre-Code building. The Pre-Code building’s first-

mode period is T1 = 0.9s with a modal mass participation factor of 95.4%. The second frame is designed 

according to the latest Italian seismic code (or NIBC08; [22]), fully consistent with Eurocode 8 (EC8; 

[23]), following the High Ductility Class (DCH) rules, hereafter called the Special-Code building. The 

Special-Code building’s first-mode period is T1 = 0.5s with a modal mass participation factor of 92.8%. 

Both building models have a total mass of 173tn. Interstorey heights, the spans of each bay and cross-

sections dimensions for each case-study building are reported in Figure 2. Details regarding the design 

and the modelling of the buildings are available in [24] and [25]. 

 

Figure 2 - Elevation dimensions and member cross-sections of the Pre-Code (left) and Special-Code (right) RC 

frames. 

NSP and NLTHA are utilized to estimate the seismic response of the studied frames, representing two 

different levels of fidelity analysis, namely low fidelity and high fidelity respectively. Unscaled ground 

motion records from the SIMBAD database (Selected Input Motions for displacement-Based 

Assessment and Design; [26]), are used here as input to the nonlinear time history of the buildings (high 

fidelity). SIMBAD includes a total of 467 tri-axial accelerograms, consisting of two horizontal (X-Y) 

and one vertical (Z) components, generated by 130 worldwide seismic events (including main shocks 

and aftershocks). In particular, the database includes shallow crustal earthquakes with moment 

magnitudes (Mw) ranging from 5 to 7.3 and epicentral distances R ≤ 35 km. A subset of 150 records is 

considered here to provide a significant number of strong-motion records of engineering relevance for 

the applications presented in this paper. These records are selected by first ranking the 467 records in 

terms of their PGA values (by using the geometric mean of the two horizontal components) and then 

keeping the component with the largest PGA value (for the 150 stations with highest mean PGA). 

Regarding low fidelity analysis, the simplified approach FRAgility through Capacity spectrum 

ASsessment (FRACAS) is used [7]. FRACAS is a variant of the capacity spectrum method, which uses 

ground motion time histories and pushover (PO) curves to compute the elastic/inelastic spectra and 

capacity curves respectively, in order to estimate the performance points [27]. Here, the same 150 

records used for the NLTHA are used for the assessment in FRACAS. Static pushover (PO) analysis is 

carried out by applying increments of lateral loads to the side nodes of the structure. These lateral loads 

are proportionally distributed with respect to the interstorey heights (triangular distribution). The PO 

analysis is conducted until a predefined target displacement is reached, corresponding to the expected 

collapse state.  
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Figure 3 (left panel) shows the static PO curves associated with the two case-study buildings. The curves 

are reported in terms of top center-of-mass displacement divided by the total height of the structure (i.e., 

the roof drift ratio, RDR) along the horizontal axis of the diagram, and base shear divided by the 

building’s seismic weight along the vertical axis (i.e., base shear coefficient). Figure 3 (right panel) 

shows the performance points of the two case-study buildings within an acceleration-displacement 

response spectrum (ADRS) space computed by FRACAS using the GMs records described above, and 

assuming elastic-perfectly plastic response of the structure. 

 

Figure 3 - Static PO curves for the Pre-Code and Special-Code buildings (left panel), and performance points 

generated by FRACAS using Elastic Perfectly Plastic (EPP) idealization model in ADRS space (right panel). 

The results obtained from the various analyses are then expressed in data sets of IM and EDP. In each 

data set, the ground motion records that did not manage to push the structures to the nonlinear range are 

discarded. This is because FRACAS, as a capacity spectrum based method, draws a direct correlation 

between the seismic intensity and the estimated demand parameters within the elastic regime; therefore, 

bias is introduced [25]. For consistency, the same records are also discarded from the NLTHA analysis. 

After this amendment, the actual number of GM that pushed the frame into the nonlinear range is 

relatively small but still significant, corresponding to 15% and 23% of the total number of records used, 

for the case of Special- and Pre-Code buildings respectively (i.e. 68 and 108 GMs). Table 1 summarizes 

the number of ground motion records used for analysis of the case-study buildings based on three 

sample sizes, namely full-, large- and medium-sample. 

Table 1 - Number of ground motions used for analysis of the case-study buildings based on sample size. 

 Ground motion sample size 

Building Type Full sample (100%) Large sample (75%)  Medium sample (50%) 

Pre-Code 108 81 54 

Special-Code 68 51 34 

 

In this paper, the deformation-based EDP maximum (over all storeys) peak interstorey drift ratio 

(denoted as MIDR) is adopted. With regard to IM inputs, two scalar IMs are used herein, namely the 

spectral ordinate Sa(T1) and the advanced IM INp [28]. The selection of the adopted IMs was based on 

the study conducted by [25], on the selection of optimal IMs for the fragility assessment of mid-rise RC 

buildings. INp is based on the spectral ordinate Sa(T1) and the parameter Np, and is defined as: 

  1Np a pI S T N  (5) 
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where α parameter is assumed to be α = 0.4 based on the tests conducted by the authors and Np is defined 

as: 

 

 
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(6) 

TN corresponds to the maximum period of interest and lies within a range of 2 and 2.5T1, as suggested 

by [25]. 

4.2 Defining pseudo-realities 

Three different scenarios are considered herein, each corresponding to a different “reality” represented 

by an artificially generated EDP|IM relationship, constructed as described below. This pseudo-reality 

approach is used to provide an experimental setup that mimics real applications as closely as possible. 

In each relationship, the expected value of some function of the EDP is given by a mean function ( )t  

as in equation (2); where ( )t  is the sum of the deterministic mean function ( )m t  and an approximation 

error ( )z t : 

 ( ) ( ) ( )t m t z t    (7) 

The deterministic mean function ( )m t  is represented by a simple regression model, which is trained 

using the sets of EDP|IM data generated as described in Section 4.1. Standard cloud analysis 

corresponds to a situation in which ( )t  is the expected value of ln( )EDP , the mean function ( )m t  is 

a linear function of ln( )t and the approximation error ( )z t  is zero. However, the framework considered 

here allows exploration of the capability of the tested methods to predict EDP|IM relationship under 

favorable or less favorable situations.  

Our three chosen “pseudo-realities” are as follows:  

a) Reality 1: the expected value of ln( )EDP is an exact linear function of ln( )IM  with no 

approximation error (i.e. with ( ) 0z t   in equation (7)). This “pseudo-reality” is exactly the 

situation for which the cloud method is designed. The coefficients in the linear function are 

derived from a sample of real analysis data, as described in Section 4.1: this ensures that as a 

test case, this represents the kind of scenario that might conceivably be encountered in a real 

earthquake engineering situation.  

b) Reality 2: this is as Reality 1 except that a non-zero approximation error ( )z t  is included in 

equation (7) so that ( )t  is no longer an exact linear function of ln( )t .  The approximation 

error is generated as a Gaussian random field (but making sure that the resultant “true” function 

is monotonically increasing) – again, derived from the real analyses of Section 4.1. The choice 

of this “reality” favors the BEA methodology.  

c) Reality 3: the function ( )t  is constructed in the same way as for Reality 2, but now it 

represents the expected value of EDP  rather than ln( )EDP . This case can be used as an 

example where both models (cloud and BEA) are wrong, and will shed light on the capability 

of these two models to estimate the EDP|IM relationship.  
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As an example, the three pseudo-realities generated for the Special-Code building analyzed at high 

fidelity is illustrated in Figure 4.  

For each “pseudo-reality”, an artificial analysis dataset can be simulated by adding random “residuals” 

to the fitted mean curve, at the given IM locations of the original analysis set. In each simulation 

experiment reported below, 1000 such datasets were generated. A subset of the generated EDPs is 

utilized to calibrate both the cloud and BEA methods. These approaches are then assessed for their 

ability to predict the target “pseudo-reality”. The predictive performance of the tested methods is not 

only assessed in terms of estimation of the mean “pseudo-reality”, but also in terms of evaluating the 

uncertainty of the entire distribution, as both parameters are required for the fragility analysis. As well 

as predicting the mean “pseudo-reality” function itself, 95% prediction intervals are computed as a way 

of quantifying the uncertainty in the predictions. 

 
Figure 4 - Three artificially generated “pseudo-realities” from the real high-fidelity analyses (analysis inputs) of 

the Special-Code case study.  

The coverage probability of the 95% prediction intervals (hereafter called coverage), the average length 

of these intervals and the mean squared error (MSE) are the metrics used to assess the predictive 

performance of the BEA and cloud approaches. The coverage measures the accuracy of the uncertainty 

assessment, by calculating the proportion of intervals containing the actual EDP. If the uncertainty 

assessment is accurate, the coverages from a method should be equal to their nominal value of 0.95. 

The average interval length assesses the amount of uncertainty in the prediction intervals and, for any 

collection of n prediction intervals, is computed as:  

 

1

95 95
Average Length

n
i i

i

UL LL

n

 
  

 
  (8) 

where UL95i and LL95i are respectively the upper and lower limits of the ith interval. Ideally, prediction 

intervals should be as small as possible subject to the correct coverage. 

The MSE assesses empirically the quality of the vector of n  predictions, Ŷ , with respect to a vector 

of simulated EDPs, Y , and is defined as: 

 
 

2

1

1 ˆ
n

i i

i

MSE Y Y
n 

    (9) 

4.3 Sampling configuration – Training of the BEA and the cloud method 

The predictive ability of the BEA and cloud approaches are checked when different sampling 

configurations are adopted for the selection of EDP|IM training data sets.  
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Two sampling configurations are considered here, one focusing on the sample size and one on the 

sampling method. With regard to the sample size, three different cases are investigated, one using the 

full training input (N and M samples respectively for the Pre-Code and Special Code buildings, as 

described above), and two utilizing large and medium training samples, which correspond to 75% and 

50% of the full samples respectively. The use of smaller sample sizes results in a reduction of the 

computational time. This is particularly true for high fidelity analyses, which each have a runtime of 

between a few minutes to two hours on an average personal computer, depending on the complexity of 

the structural model and the duration of the GM. 

Two sampling methods are considered in determining the reduced training data sets from the full 

sample: random sampling, and stratified sampling. For the stratified sampling, the full input sample is 

divided into 5 strata (bins) of equal intensity measure width, and then random sampling is applied within 

each stratum to select the user-specified number of inputs.  

Following the sampling procedure, the selected inputs are used to train the cloud and BEA. In the case 

of BEA, as stated in Section 3, the setup of the emulation model allows one to implement a regression 

model to describe the mean function ( )t  and is suitable for the nature of the problem of interest. In 

this study, a power-law regression model is adopted to enable a comparison with the cloud method. 

However, alternative models, such as linear or higher order polynomials may also be used.   

The results of this exercise shed light on the capability of the BEA to compute the probabilistic seismic 

response of buildings using a reduced number of analyses. This is a first step towards the development 

of an optimal experimental design for BEA, which will be a subject of future work.   

5. Results of comparison – Evaluation against pseudo-realities 

All the steps discussed in the Section 3 are applied here in order to build the BEA. BEA accounts for 

the uncertainty of the model’s parameters, and provides estimates, and the associated variances, for the 

conditional distribution of the EDP|IM relationship. The outcomes of the BEA approach are here 

compared to the cloud method outcomes. A series of tests, which are described in detail in Section 4, 

are carried out to facilitate the evaluation process, highlighting the sensitivity of the BEA to several 

input assumptions and revealing the range of applicability of the approach proposed herein. In addition 

to these tests, the sensitivity of BEA predictions to the choice of the covariance structure is explored. 

Last, a section on fragility analysis using BEA is presented. 

5.1 Performance assessment for the 2 case study buildings analyzed using NLTHA 

In the first test-case investigated, the high fidelity analysis data sets, expressed in terms of MIDR and 

INp, are used to train both the BEA and the cloud method models. Following the procedure described in 

the methodology section, the two data sets, corresponding to Pre- and Special-Code buildings 

respectively, are sampled to three sample subsets following the stratified sampling process. Based on 

these test samples, the BEA and the cloud processes are used to predict the “three assumed realities”. 

The performance of the emulation and cloud approach is then assessed using the coverage probability, 

MSE and average interval length metrics. A detailed summary of results for this test-case is presented 

in Table A.1 in the appendix. The first metric to check is the coverage, which in both the cloud and the 

BEA case closely matches the nominal coverage probability of 95% (never more than +1.1% 

difference). Having this condition satisfied, next step is to assess the performance of the two tested 

approaches in terms of MSE and average length, as shown in Figure 5.  

The MSE estimates for the BEA are smaller than those for the Cloud approach for “pseudo-realities 2 

and 3”, whilst they are comparable for “pseudo-reality 1”. This observation highlights the superiority 

of the BEA method over the Cloud method in predicting the mean EDP|IM function, under different 

“pseudo-reality” scenarios. The same observation also applies to the average length estimates, although 

the improvement in the BEA’s performance is not as significant as in the case of the MSE metric. 
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With regard to the training subsets, it is observed that the quality of predictions of the mean depends, 

as expected, on the size of the training subsets. In particular, the performance of the BEA and the cloud 

models becomes less accurate as the training subset size reduces. However, the same observations 

discussed above are also present in all instances of reduced training subsets, i.e. the BEA shows 

improved performance with respect to cloud. 

In some cases, it is observed that the BEA can generate predictions that better capture the mean and 

maintain the same level of accuracy as the cloud method, but requiring a smaller training subset size. 

For example, though to a lesser extent, when BEA is trained with a large subset of the Special-Code 

data set, it provides better MSE estimates, while matching the level of accuracy resulting from using 

the cloud method with the full training set (e.g. Figure 5 top panels, Table A.1). This reduction in 25% 

of the required NLTHAs translates into significant savings in computational time.  

Similar benefits of BEA over the cloud method are also seen in the case of the Pre-Code building, but 

are not presented here for brevity. 

5.2 Sensitivity to analysis fidelity level 

The tests presented in Section 5.1 show that the BEA performs well for high fidelity data, at times 

outperforming the cloud approach. In this section, the BEA is tested for its performance when low 

fidelity analysis data are used. The use of low fidelity data for fragility analysis is appealing as it 

significantly reduces the analysis time. However, this is at the expense of accuracy when compared to 

the high fidelity data set. Figure 6 and Table A.2 are generated following the same procedures discussed 

in the Section 5.1.  

Similar observations to those made for the high fidelity analysis case are made. The coverage closely 

matches the 95% threshold, (±1.9%, see Table A.2). Improvement of MSE estimates is observed when 

the BEA is employed compared to cloud, especially for “pseudo-realities 2 and 3”. In the case of 

Special-Code building, this improvement can be translated to BEA MSE estimates reduced up to 

21.65% and 30.68% for “pseudo-realities 2 and 3”, respectively. A substantial reduction of average 

length is also observed when comparing BEA and cloud estimates. This reduction ranges between 

4.73% to 8.37%, for “pseudo-realities 2 and 3” for the case of Special-Code building, as shown in the 

Figure 6 top panels. The aforementioned cases also show the capability of the BEA, under certain 

conditions, to provide predictions that significantly reduce MSE and average length estimates, even 

when utilizing smaller training sample sizes. With regard to “pseudo-reality 1”, BEA again produces 

similar estimates to the cloud, which is the optimal method for this scenario. Improvements can be also 

observed in the case of the Pre-Code building, however, as in the case of the high fidelity sample, the 

benefits are less. It is noteworthy, that BEA always outperforms cloud in terms of the MSE and average 

length estimates when using medium training subsets. However, it is known from previous studies, that 

cloud method is not recommended to be used with small data sets. 
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 1 

Figure 5 - Comparison of BEA and Cloud method predictions in terms of Mean Squared Error (left y-axis of each graph) and Average Length (right y-axis of each graph) using 2 
different sample sizes. Each column represents the different “pseudo-realities”, and each row the tested building types: Special-Code (top panels) and Pre-Code (bottom panels). 3 
In this test-case high fidelity analysis is used alongside with advanced IM INp and stratified sampling process. 4 

  5 
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 1 

Figure 6 - Comparison of BEA and Cloud method predictions in terms of Mean Squared Error (left y-axis of each graph) and Average Length (right y-axis of each graph) using 2 
different sample sizes. Each column represents the different “pseudo-realities”, and each row the tested building types: Special-Code (top panels) and Pre-Code (bottom panels). 3 
In this test-case low fidelity analysis is used alongside with advanced IM INp and stratified sampling process. 4 
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5.3 Sensitivity to selection of IM 1 

Previous studies have shown that advanced IMs (such as INp) appear to be better correlated to displacement-2 

based EDPs [25,29] resulting in EDP|IM data sets that have less scatter. In this test-case, the performance 3 

of the BEA is investigated when trained with a more scattered input data set, due to the use of the 4 

conventional IM, Sa(T1), for both high and low fidelity analysis data. 5 

The outcomes of this test can be visually inspected in Figure 7, while a detailed summary of results is 6 

provided in Table A.3. For the sake of brevity, only the results for the Special-Code case-building are 7 

shown here. However, the same process is applied to the Pre-Code building and similar trends are observed 8 

but are seen to be less significant than for the Special-code.  9 

As before, both approaches satisfy the coverage check. A close observation of the results reveals that the 10 

superiority of the BEA over cloud method in capturing the mean (i.e. considerable reduction of the BEA 11 

MSE estimates as shown in Table A.3) for both high and low fidelity inputs, even when Sa(T1), is used. 12 

The only exceptions are seen to be the cases of the medium sized high and low fidelity samples for “pseudo-13 

reality 2” (Figure 7, middle panels), where cloud MSE predictions are better than those of BEA. The 14 

average length obtained from the BEA is always narrower, excluding the case mentioned above. 15 

Furthermore, BEA appears to perform significantly better when trained with low fidelity inputs, for 16 

“pseudo-realities 2 and 3”. 17 

5.4 Sensitivity to the sampling approach 18 

In this section a random sampling procedure is used to train both BEA and cloud models. The motivation 19 

for doing this is to explore whether the choice of a less sophisticated sampling approach has any effect in 20 

the predictions of BEA. This is a preliminary step towards the development of an optimal experimental 21 

design for the BEA method. 22 

The same case study arrangement as in Section 5.3 is used here in order to investigate the effect the random 23 

sampling procedure. Following a visual inspection of Figure 8, it can be concluded that the observations 24 

between the BEA and cloud estimates are essentially consistent with what it is shown in Section 5.3. 25 

Nevertheless, it is interesting to evaluate directly the sensitivity of predictions when using random sampling 26 

instead of stratified sampling.  27 

The results presented in Table A.3 and Table A.4 reveal that BEA predictions (as well as cloud predictions) 28 

show some improvement in both MSE and average length when random sampling is used instead of 29 

stratified sampling. Regarding the comparison of BEA and cloud performance metrics, it is observed that 30 

the choice of sampling does not have significant effects on capturing the mean function, resulting in similar 31 

differences for all fidelity levels and “pseudo-realities”. The BEA with random sampling, maintains its 32 

superiority over cloud method even for the low fidelity cases using medium sample sizes. Moreover, 33 

random sampling shows slight improvement in terms of average length metric, resulting narrower lengths 34 

comparing to ones calculated using stratified sampling.  35 

In theory, one would expect stratified sampling to perform better than random sampling, as the former 36 

approach ensures that all parts of the IM range are sampled reasonably well and hence to capture local-37 

scale features in the predicted EDP|IM curves if present. In our pseudo-realities however, there are no such 38 

prominent local features so, at first sight, it appears that stratified sampling has few advantages. However, 39 

stratified sampling does have an additional advantage that is not quantified by the metrics described above. 40 

Specifically, we find that stratified sampling ensures monotonicity of the predicted EDP|IM curve in the 41 

vast majority of the cases. In contrast, random sampling is more likely to provide a non-monotonically 42 

increasing predicted EDP|IM curve, especially for the cases where reduced training samples are utilized. 43 

The proportion of non-monotonically increasing predicted EDP|IM curves obtained from random sampling 44 

can reach up to 15%, for the case of reduced samples (i.e. large and medium) expressed in terms of INp. 45 

This is high compared to the proportion for stratified sampling, which is less than 4%.  46 



18 

 

 1 

Figure 7 - Comparison of BEA and cloud method predictions in terms of Mean Squared Error (left y-axis of each graph) and Average Length (right y-axis of each graph) using 2 
different sample sizes. Each column represents the different “pseudo-realities”, and each row the level of analysis fidelity: High Fidelity (top panels) and Low Fidelity (bottom 3 
panels). In this test-case Special-Code building is used alongside with the IM Sa(T1) and stratified sampling process.  4 

  5 
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 1 

 2 

Figure 8 - Comparison of BEA and cloud method predictions in terms of Mean Squared Error (left y-axis of each graph) and Average Length (right y-axis of each graph) using 3 
different sample sizes. Each column represents the different “pseudo-realities”, and each row the level of analysis fidelity: High Fidelity (top panels) and Low Fidelity (bottom 4 
panels). In this test-case Special-Code building is used alongside with the IM Sa(T1) and random sampling process. 5 

  6 
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5.5 Sensitivity of BEA to the selection of covariance model 1 

The last test conducted as part of the BEA evaluation process is to investigate the sensitivity of BEA to 2 

the selection of the covariance model. It is reminded that the Gaussian covariance model is used to 3 

produce the “pseudo-realities 2 and 3”, however, the user does not know this in practice when choosing 4 

the covariance model for BEA. Thus, this test is partly designed to explore the effect of choosing a 5 

wrong covariance model. For the sake of consistency, the Special-Code building is used here alongside 6 

with the IM INp, high fidelity analysis and stratified sampling approach.  7 

The Gaussian model is the default choice ensuring the EDP|IM curves are very smooth (infinitely 8 

differentiable). A number of commonly used parametric models are studied here to explore the 9 

performance of the BEA when the wrong covariance model is used. Specifically, the 9 covariance 10 

models tested herein are listed below: 11 

- Gaussian  - Cubic  - Gneiting  

- Matérn  - Exponential  - Circular  

- Spherical  - Cauchy  - Pure-nugget 

The above mentioned models, which are available within the cov.spatial function of the geoR package, 12 

are described in detail in its documentation [18]. 13 

Figure 9 shows as a bar chart the BEA’s predictions when using the various covariance models assessed 14 

in terms of the MSE and the average length metrics (left and right panel respectively) for different 15 

sample subsets. The associated predictions for the cloud method, illustrated as dashed lines, are also 16 

provided as a point reference. A detailed summary of the results is presented in Table A.5. The coverage 17 

probability for all tested covariance structures exceeds matches or slightly exceed the nominal coverage 18 

probability. 19 

Close inspection of Figure 9 reveals that irrespective of the choice of the covariance model, the BEA 20 

always outperforms the cloud in both MSE (significant improvements) and average length (slight 21 

improvements). Regarding the average length predictions (Figure 9, right panel), it is observed that 22 

Matérn and Exponential models perform better than remaining models, especially for the full and large 23 

sample cases. Gaussian, Spherical, Cubic, Gneiting, Circular and Pure nugget models perform 24 

effectively in a consistent manner, regardless of the subset size. The worst performance is recorded for 25 

the Cauchy model, where the resultant predictions are similar to the cloud’s predictions.  26 

The most favorable models for reducing the average length, namely Matérn and Exponential, are also 27 

seen to be the two best options for estimating the MSE (Figure 9, left panel) for all training subsets. 28 

Circular, Cauchy and Gneiting models using medium subset are characterized by poor performance. 29 

The rest of the tested models perform well in reducing the MSE under all sampling sizes, showing small 30 

differences between them. 31 

This test shows that the BEA predictions are sensitive to the selection of different covariance models.  32 

Matérn and Exponential models result in significant reductions in the estimates of both MSE and 33 

average length. Gaussian and the remaining models are a good compromise in improving both MSE 34 

and average length estimates. Cauchy and Pure Nugget covariance models are not recommended.   35 

However, another consideration when choosing a covariance model is that the resultant mean estimate 36 

curve should be monotonically increasing in order to have a physical meaning. To this aim, an 37 

illustrative example is presented in Figure 10, where BEA mean estimates are obtained using three 38 

different covariance structures, namely Gaussian, Matérn and Cubic models. For this example, each 39 

version BEA is trained using a large training subset as obtained from the Special-Code building 40 

analyzed at low fidelity level.  41 

The results obtained from this example are in a good agreement with the tests presented in Figure 9, 42 

where Matérn and Cubic covariance structures contribute to a significant reduction of both the MSE 43 
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and the average length estimates comparing to the cloud method. However, Figure 10 also reveals the 1 

oversensitivity of the latter covariance structures at locations where training data are sparse, i.e. middle 2 

range of IMs.  3 

This oversensitivity is translated into a ‘jump’ of the curves (also present in the case of Gaussian model) 4 

followed by a substantial ‘drop’ (Figure 10, middle and right panels), resulting in mean estimates that 5 

are no longer monotonically increasing. This limitation suggests that the Gaussian model is the most 6 

appropriate to describe the covariance structures for problems of this nature. Further investigation is 7 

required to explore the applicability of the different covariance structures.  8 

Table 2 illustrates the sensitivity of BEA predictions to the choice of the covariance structure, and how 9 

these compare to the cloud predictions.  10 

 11 

Figure 9 - Sensitivity of BEA predictions when using different covariance models and comparison with cloud 12 
method predictions, in terms of  mean squared error (left panel) and average length (right panel). 13 

 14 

 15 

Figure 10 - BEA mean estimates using Gaussian (left panel), Matérn (middle panel) and Cubic covariance models 16 
(right panel) 17 
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The results obtained from this example are in a good agreement with the tests presented in Figure 9, 1 

where Matérn and Cubic covariance structures contribute to a significant reduction of both the MSE 2 

and the average length estimates comparing to the cloud method. However, Figure 10 also reveals the 3 

oversensitivity of the latter covariance structures at locations where training data are sparse, i.e. middle 4 

range of IMs.  5 

This oversensitivity is translated into a ‘jump’ of the curves (also present in the case of Gaussian model) 6 

followed by a substantial ‘drop’ (Figure 10, middle and right panels), resulting in mean estimates that 7 

are no longer monotonically increasing. This limitation suggests that the Gaussian model is the most 8 

appropriate to describe the covariance structures for problems of this nature. Further investigation is 9 

required to explore the applicability of the different covariance structures.  10 

Table 2 - Predictions of BEA for different covariance structures and comparison with cloud method predictions 11 
in terms of MSE, Average Length and Coverage probability, for the case of a single case-study building. In this 12 
test-case Special-Code building is used alongside with the IM INp and stratified sampling process. 13 

Covariance 

Model 

MSE 

BEA (Cloud) 

Difference 

(%) 

Average Length 

BEA (Cloud) 

Difference 

(%) 

Coverage (%) 

BEA 

Coverage (%) 

Cloud 

Gaussian 0.039 (0.044) 10.42 0.814 (0.828) 1.71 98.41 98.41 

Matérn 0.042 (0.044) 4.17 0.756 (0.828) 8.70 100 98.41 

Cubic 0.040 (0.044) 8.81 0.783 (0.828) 5.41 100 98.41 

 14 

5.6 Discussion - Case-study example utilizing original analysis data set 15 

The results reported in Sections 5.1 to 5.5 were averaged over 1000 simulation data sets, however, it is 16 

important to illustrate what those average performance measures mean in practice for a single data set. 17 

To this aim, the case study introduced in Section 5.5 is studied in detail to benchmark the capability of 18 

the BEA to estimate the mean and the associated variance, for the conditional distribution of EDP|IM 19 

relationship.  20 

The Gaussian model is employed to describe the covariance structure of the BEA. The resultant data 21 

outputs are then used to train both the BEA and cloud approach, in order to predict the “pseudo-reality 22 

3”. For the sake of brevity, only one sampling-case is shown per sample size. The reason for choosing 23 

this case-study example is because it depicts some of the capabilities of the BEA, and its superiority 24 

over the cloud method, following the observations discussed in Sections 5.1-5.5. However, consistent 25 

observations arise when testing alternative case studies.  26 

Figure 11 shows the mean estimates and the 95% confidence intervals for both the BEA and the cloud, 27 

when employing three different sampling sizes. Table 3 shows the sample size, the metrics used to 28 

assess the performance of the BEA and the cloud approach as well as the respective differences, for the 29 

three different sample sizes investigated. The coverage probability for both the BEA and the cloud 30 

approach is always exceeding the nominal coverage probability. 31 

A visual inspection of Figure 11 reveals the capability of the BEA to identify the ‘jump’ occurring in 32 

the mid-range of the “pseudo-reality”. This “jump” cannot be captured by the cloud method due to the 33 

fixed mathematical model used by the latter approach. The flexibility of the BEA is also highlighted by 34 

the reduction in MSE, which ranges between 5.7-10.4%, depending on the training subset used. 35 

Regarding, the average length metric, small improvements are also observed when using the BEA, and 36 

can be translated to 0.7-2.7% difference comparing to cloud’s average length. 37 

Table 3 - Comparison of BEA and cloud method predictions in terms of Mean Squared Error, Average Length 38 
and Coverage probability, for the case of a single case-study building. In this test-case Special-Code building is 39 
used alongside with the IM INp and stratified sampling process. 40 

Sample 

Size 

MSE 

BEA (Cloud) 

Difference 

(%) 

Average Length 

BEA (Cloud) 

Difference 

(%) 

Coverage (%) 

BEA 

Coverage (%) 

Cloud 
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Full 0.039 (0.042) 7.14 0.743 (0.748) 0.67 98.41 95.24 

Large 0.039 (0.044) 10.42 0.814 (0.828) 1.71 98.41 98.41 

Medium 0.051 (0.055) 5.74 0.922 (0.948) 2.74 98.41 98.41 

 1 

The observations shown in this section are in most cases in agreement with the conclusion drawn before. 2 

Nevertheless, it cannot be ignored that at this section only one individual case is presented. As a result, 3 

one should look at previous sections to get a complete picture of the overall performance of the BEA, 4 

when the tests are carried out for 1000 sets of artificially generated data. 5 

 6 

7 

8 

9 
Figure 11 - Mean estimations and associated 95% confidence interval of BEA approach (left panels) and the cloud 10 

method for full (top row), large (mid row) and medium sample size (bottom row). Case study building: Special-11 
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Code; Analysis fidelity: Low; Reality: 3; IM: INp; Sampling method: Stratified sampling; Covariance model: 1 
Gaussian. 2 

5.7 Fragility analysis using BEA 3 

In this section, the process for deriving fragility functions using BEA is presented. A fragility function 4 

represents the probability that a EDP will exceed a certain level of capacity damage state iDS  given 5 

an earthquake intensity IM . For a traditional cloud analysis this probability is usually derived under 6 

the assumption that EDP  is a lognormal variable, and the parameters of its distribution are fixed at the 7 

best estimates obtained from the predicted EDP|IM curves (e.g. [30]): 8 

 
|

ln |

ln ln
( | ) 1

i EDP IM

i

EDP IM

DS
P EDP DS IM





 
   

 
 

 (8) 

where  is the standardized Gaussian CDF, |EDP IM  and ln |EDP IM are the estimated median and the 9 

standard deviation of ln( )EDP  given IM . The BEA can improve upon this, however, both in its more 10 

flexible representation of the predicted EDP|IM curve itself and in its ability to account for parameter 11 

uncertainty. As described in Section 4, in the Bayesian setting the fragility for a given IM is just the 12 

posterior predictive probability of exceeding iDS , and can be obtained directly from the output of the 13 

krige.bayes() function using the geoR package.  14 

The case-study introduced in Section 5.5 is used as an illustrative example for the comparison of BEA 15 

and cloud method at the fragility level. Table 4 shows the descriptions and the thresholds associated 16 

with each damage state, which are used for the derivation of the fragility curves. This damage scale is 17 

based on the re-interpretation of the Homogenized Reinforced Concrete (HRC) damage scale proposed 18 

by [31] and that in [32]. More details on the adjustments of this damage scale to the case-study buildings 19 

can be found in [7]. 20 

Table 4 - Description of damage states and damage state thresholds used in this study. 21 

HRC Damage State 
DS1 

Moderate 

DS2 

Extensive 

DS3 

Partial Collapse 

Observed Damage 

Cracking in most beams  

and columns. Some 

yielding in a limited 

number. Limited 

concrete spalling 

Ultimate strength is  

reached in some  

elements 

Failure of some  

columns or impending 

 soft-story failure 

Response Characteristics 

(Threshold defined by 

the first occurrence of 

any of these) 

Global yield  

displacement, as 

obtained by the  

idealized curve. 

Maximum moment  

capacity of a supporting  

column is reached. 

- There is a drop in 

strength to 80% of the 

maximum global 

capacity; 

- Shear failure of one 

element; 

- The rotation capacity 

of a critical column is 

reached. 

MIDR Threshold Pre-

Code structure (%) 
0.49 1.53 3.00 

MIDR Threshold 

Special-Code structure 

(%) 

0.95 2.11 5.62 

 22 

In consistency with the process described in Section 4, a large number of EDPs is simulated (1000 23 

simulations) at the given locations of IM, using the same mean and standard deviation values as 24 

computed for each “pseudo-reality”. The suite of the 1000 fragility functions is then generated for both 25 
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BEA and cloud method (median and 16-84th percentiles), and compared to the median “real fragility” 1 

as shown in Figure 12. Note that for this example the large sample is used to generate BEA fragility 2 

curves, while full sample is utilized for the case of cloud. 3 

In Figure 12 an apparent superiority of BEA over the cloud method in predicting the fragility is 4 

observed. Specifically, the median predictions of BEA match almost perfectly the “real fragility” for 5 

both damage states, even when 25% fewer analyses are used to train BEA (large and full samples are 6 

used for BEA and cloud respectively). This practically means that BEA not only improves the accuracy  7 

 8 

 9 

Figure 12 - A suite of 1000 fragility curves (median and 16-84th percentile) generated from sets of simulated 10 
analyses, for BEA (left panels) and cloud method (right panels), and comparison with median “real fragility”, 11 
utilizing: full sample size (top panels) and large sample size (bottom panels). 12 

captures the variability of the fragility curves, showing varied widths in the 16th and 84th percentile 13 

bounds across the IM range, as illustrated in Figure 12. It is highlighted that the third damage state is 14 

not reached for the Special-Code building using the chosen suite of ground motions. 15 

Similar observations are essentially obtained for “pseudo-realities 2 and 3” of all tested case-studies, 16 

while both BEA and cloud manage to predict well the “real fragility” in all the scenarios related to 17 

“pseudo-reality 1”. 18 

6. Conclusions  19 

This paper presents a new Bayesian emulation approach, which is a version of kriging, for estimating 20 

the mean and the associated variance of the conditional distribution of EDP|IM relationship, accounting 21 

for the uncertainty of the BEA model’s input parameters. The capabilities of this new approach, which 22 
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overcomes some of the limitations of existing approaches, are investigated when trying to predict 1 

different “pseudo-realities” and the results are compared against standard cloud analysis.  2 

Two RC mid-rise building representing the Special- and Pre-Code vulnerability classes of the Italian 3 

building stock are used as case-study structures. These structures are analyzed at two levels of fidelity, 4 

namely high and low fidelity, and their seismic performance is expressed as a function of standard and 5 

advanced IMs, i.e. Sa(T1) and INp respectively. Three “pseudo-realities” (based on different 6 

mathematical models) are fitted to each of the resultant 8 data sets, and are then used as a target to 7 

evaluate the performance of new emulation-based approach. Next, 1000 artificial sets of EDPs are 8 

generated at given IM levels utilizing each “pseudo-reality” as a mean function and the standard 9 

deviation as calculated from the sample of real analysis data. MSE, average length and coverage 10 

probability are the metrics used to assess the performance of the BEA. 11 

A number of tests are conducted to highlight the sensitivity of the proposed emulation-based method to 12 

several input assumptions and show how this method compares to the cloud approach. The main 13 

conclusions of this study can be summarized as follows: 14 

The BEA has this ability to better capture the mean function of each “pseudo-reality” for all tested case 15 

studies. This observation is clearly reflected in the MSE predictions of the BEA, which are smaller than 16 

those of the cloud analysis for all tested cases. A reduction of the average length also results when the 17 

BEA is used compared to the cloud method. This minor reduction, can be translated as a reduction of 18 

the uncertainty of the resultant predictions. BEA outperforms cloud for both metrics in the vast majority 19 

of cases. However, more significant improvements are obtained for the “pseudo-realities 2 and 3”. 20 

Regarding, “pseudo-reality 1”, the cloud method is known to be optimal, and therefore the results 21 

presented here suggest that BEA is indistinguishable from the optimal method in this situation. 22 

The BEA can essentially result in more accurate mean predictions than cloud method with less 23 

uncertainty. The best estimates of the BEA are attained when combined with Special-Code vulnerability 24 

class, low fidelity analysis and advanced IM INp. 25 

Under certain conditions, the BEA can reduce the overall computation time by decreasing the analysis 26 

inputs required for training. In particular, the BEA can generate predictions that better capture the mean 27 

function, closely matching the level of accuracy as in the cloud method, but requiring a smaller number 28 

of training inputs. This capability of the BEA is mainly observed when a large training subset is 29 

combined with the favorable inputs mentioned above (namely Special-Code vulnerability class, low 30 

fidelity analysis and advanced IM INp). 31 

The estimates of both the BEA and the cloud approach are, as expected sensitive to the size of the 32 

training subsets. Smaller training subsets, result in worse estimates for both MSE and average length 33 

metrics. The use of medium subset resulted in some cases non reliable outputs, therefore it is not 34 

recommended to be used for the training of the BEA. 35 

The choice of sampling approach does not yield significant differences in the resultant MSE and average 36 

length metrics, however, stratified sampling is a more suitable sampling method, comparing to random 37 

sampling, for the experimental design of the BEA. This is because stratified sampling is better able to 38 

capture local features in the predicted EDP|IM curve, and is also better able to preserve important global 39 

features such as monotonicity. 40 

Some sensitivity is witnessed when different parametric models are used to describe the covariance 41 

structure of BEA. Gaussian model constitutes a good all-around choice for improving both MSE and 42 

average length estimates but also it ensures the smoothness of the GP realizations, which is essential 43 

for the nature of this problem. Finally, BEA drastically improves the prediction of the median fragility 44 

for all damage states, matching perfectly the “real fragility” in most cases, and also capturing 45 

realistically the variability of the fragility curves at a smaller computational expense. 46 
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Overall, although BEA is more complex as compared to the cloud method, it presents significant 1 

advantages over the latter for predicting nonlinear realities and for representing uncertainty. It is 2 

observed to perform well when high fidelity analysis and larger data samples are used. However, it also 3 

outperforms the cloud method when predicting nonlinear realities with smaller data samples. The cloud 4 

method remains a suitable option when predicting a linear EDP|IM relationship (linear reality). 5 
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Appendix 1 

 2 

Table A.1 - Comparison of BEA and cloud method predictions in terms of Mean Squared Error, Average Length 3 
and Coverage probability. In this test-case high fidelity analysis is used alongside with advanced IM INp and 4 
stratified sampling process. 5 

Case  

Study 

Building 

Reality 
Sample 

Size 

MSE 

BEA 

(Cloud) 

Difference 

(%) 

Average Length 

BEA 

(Cloud) 

Difference 

(%) 

Coverage 

(%) 

BEA 

Coverage 

(%) 

Cloud 

S
p
ec

ia
l-

C
o
d
e 

1 

Full 
0.269  

(0.283) 
4.72 

1.702 

(1.710) 
0.43 95.84 95.60 

Large 
0.271 

(0.282) 
3.87 

1.730 

(1.741) 
0.65 95.75 95.60 

Medium 
0.306 

(0.304) 
-0.57 

1.760 

(1.777) 
0.92 95.52 95.68 

2 

Full 
0.277 

(0.299) 
7.08 

1.738 

(1.759) 
1.19 95.84 95.43 

Large 
0.283 

(0.297) 
4.99 

1.758 

(1.779) 
1.13 95.90 95.71 

Medium 
0.319 

(0.323) 
1.19 

1.801 

(1.837) 
1.98 95.59 95.56 

3 

Full 
0.299 

(0.329) 
9.01 

1.699 

(1.725) 
1.50 96.06 95.49 

Large 
0.307 

(0.327) 
6.15 

1.723 

(1.741) 
1.06 95.81 95.54 

Medium 
0.361 

(0.363) 
0.60 

1.773 

(1.807) 
1.89 95.54 95.57 

P
re

-C
o
d
e 

1 

Full 
0.390 

(0.396) 
1.54 

2.203 

(2.208) 
0.24 95.87 95.86 

Large 
0.387 

(0.398) 
2.74 

2.237 

(2.248) 
0.46 96.10 96.07 

Medium 
0.418 

(0.420) 
0.46 

2.297 

(2.309) 
0.52 95.82 95.87 

2 

Full 
0.473 

(0.479) 
1.33 

2.403 

(2.411) 
0.30 95.98 95.96 

Large 
0.473 

(0.483) 
1.98 

2.438 

(2.453) 
0.60 96.05 96.13 

Medium 
0.511 

(0.510) 
-0.2 

2.517 

(2.529) 
0.50 95.88 95.89 

3 

Full 
0.386 

(0.392) 
1.61 

2.186 

(2.192) 
0.28 95.89 95.88 

Large 
0.386 

(0.395) 
2.31 

2.221 

(2.231) 
0.44 96.08 96.08 

Medium 
0.415 

(0.416) 
0.19 

2.283 

(2.294) 
0.50 95.86 95.87 

 6 

  7 
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Table A.2 - Comparison of BEA and cloud method predictions in terms of Mean Squared Error, Average Length 1 
and Coverage probability. In this test-case low fidelity analysis is used alongside with advanced IM INp and 2 
stratified sampling process. 3 

Case  

Study 

Building 

Reality 
Sample 

Size 

MSE 

BEA 

(Cloud) 

Difference 

(%) 

Average Length 

BEA 

(Cloud) 

Difference 

(%) 

Coverage 

(%) 

BEA 

Coverage 

(%) 

Cloud 

S
p
ec

ia
l-

C
o
d
e 

1 

Full 
0.049 

(0.052) 
5.96 

0.712 

(0.716) 
0.58 95.48 95.02 

Large 
0.049 

(0.052) 
5.48 

0.726 

(0.732) 
0.79 95.48 95.25 

Medium 
0.057 

(0.056) 
-0.79 

0.726 

(0.734) 
1.13 94.98 95.00 

2 

Full 
0.050 

(0.064) 
21.65 

0.741 

(0.782) 
5.22 96.21 95.25 

Large 
0.052 

(0.062) 
16.23 

0.755 

(0.792) 
4.73 96.03 95.51 

Medium 
0.065 

(0.069) 
5.37 

0.759 

(0.807) 
6.00 94.97 95.14 

3 

Full 
0.048 

(0.069) 
30.68 

0.695 

(0.758) 
8.37 96.90 95.54 

Large 
0.051 

(0.066) 
23.28 

0.716 

(0.764) 
6.26 96.41 95.68 

Medium 
0.070 

(0.078) 
10.16 

0.728 

(0.776) 
6.09 95.21 95.11 

P
re

-C
o
d
e 

1 

Full 
0.583 

(0.632) 
7.80 

1.756 

(1.761) 
0.28 95.06 94.77 

Large 
0.547 

(0.625) 
12.58 

1.782 

(1.801) 
1.04 94.91 94.80 

Medium 
0.640 

(0.714) 
10.38 

1.793 

(1.787) 
-0.35 94.15 94.10 

2 

Full 
0.668 

(0.779) 
14.28 

1.972 

(1.996) 
1.20 95.05 94.90 

Large 
0.658 

(0.772) 
14.83 

2.000 

(2.041) 
2.00 94.98 94.93 

Medium 
0.799 

(0.894) 
10.64 

2.015 

(2.039) 
1.19 94.00 94.08 

3 

Full 
0.503 

(0.545) 
7.69 

1.723 

(1.744) 
1.19 95.07 94.9 

Large 
0.492 

(0.541) 
9.04 

1.752 

(1.785) 
1.85 95.12 94.98 

Medium 
0.603 

(0.627) 
3.85 

1.765 

(1.782) 
0.92 94.11 94.02 

 4 

  5 
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Table A.3 - Comparison of BEA and cloud method predictions in terms of Mean Squared Error, Average Length 1 
and Coverage probability. In this test-case Special-Code building is used alongside with the IM Sa(T1) and 2 
stratified sampling process. 3 

Fidelity Reality 
Sample 

Size 

MSE 

BEA 

(Cloud) 

Difference 

(%) 

Average Length 

BEA 

(Cloud) 

Difference 

(%) 

Coverage 

(%) 

BEA 

Coverage 

(%) 

Cloud 

H
ig

h
 f

id
el

it
y

 

1 

Full 
0.323 

(0.336) 
3.76 

2.041 

(2.052) 
0.56 95.90 95.58 

Large 
0.335 

(0.341) 
1.83 

2.070 

(2.082) 
0.59 95.80 95.57 

Medium 
0.349 

(0.354) 
1.41 

2.090 

(2.106) 
0.75 95.47 95.55 

2 

Full 
0.344 

(0.367) 
6.24 

2.053 

(2.074) 
1.02 95.97 95.67 

Large 
0.363 

(0.372) 
2.64 

2.092 

(2.110) 
0.84 95.67 95.47 

Medium 
0.388 

(0.387) 
-0.26 

2.130 

(2.146) 
0.75 95.42 95.75 

3 

Full 
0.406 

(0.439) 
7.51 

2.059 

(2.082) 
1.11 96.03 95.67 

Large 
0.433 

(0.448) 
3.49 

2.107 

(2.129) 
1.05 95.75 95.58 

Medium 
0.458 

(0.470) 
2.44 

2.141 

(2.158) 
0.78 95.44 95.60 

L
o
w

 f
id

el
it

y
 

1 

Full 
0.074 

(0.078) 
5.66 

0.954 

(0.960) 
0.64 95.58 95.30 

Large 
0.078 

(0.080) 
2.23 

0.968 

(0.973) 
0.46 95.58 95.25 

Medium 
0.082 

(0.083) 
1.00 

0.968 

(0.976) 
0.80 94.97 95.13 

2 

Full 
0.082 

(0.095) 
13.89 

0.973 

(0.996) 
2.29 95.92 95.28 

Large 
0.092 

(0.097) 
5.53 

0.997 

(1.011) 
1.41 95.62 95.28 

Medium 
0.103 

(0.101) 
-1.94 

1.013 

(1.023) 
0.98 95.07 95.15 

3 

Full 
0.083 

(0.102) 
19.20 

0.919 

(0.953) 
3.60 96.30 95.42 

Large 
0.096 

(0.105) 
9.27 

0.951 

(0.975) 
2.50 95.80 95.32 

Medium 
0.109 

(0.111) 
1.16 

0.956 

(0.975) 
1.90 95.00 95.02 

 4 

  5 
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Table A.4 - Comparison of BEA and cloud method predictions in terms of Mean Squared Error, Average Length 1 
and Coverage probability. In this test-case Special-Code building is used alongside with the IM Sa(T1) and random 2 
sampling process. Full sample cases are not shown here as they coincide with the corresponding entries in Table 3 
4.  4 

Fidelity Reality 
Sample 

Size 

MSE 

BEA 

(Cloud) 

Difference 

(%) 

Average Length 

BEA 

(Cloud) 

Difference 

(%) 

Coverage 

(%) 

BEA 

Coverage 

(%) 

Cloud 

H
ig

h
 f

id
el

it
y

 

1 
Large 

0.320 

(0.337) 
5.07 

2.081 

(2.101) 
0.95 96.12 96.05 

Medium 
0.326 

(0.345) 
5.51 

2.120 

(2.152) 
1.48 95.70 95.62 

2 
Large 

0.347 

(0.370) 
6.18 

2.083 

(2.108) 
1.22 96.07 95.87 

Medium 
0.360 

(0.379) 
4.92 

2.115 

(2.143) 
1.29 95.70 95.58 

3 
Large 

0.411 

(0.442) 
7.07 

2.079 

(2.099) 
0.94 96.12 95.82 

Medium 
0.424 

(0.452) 
6.00 

2.105 

(2.132) 
1.24 95.65 95.48 

L
o
w

 f
id

el
it

y
 

1 
Large 

0.074 

(0.079) 
6.41 

0.973 

(0.984) 
1.11 96.05 95.85 

Medium 
0.075 

(0.081) 
6.91 

0.975 

(0.996) 
2.13 95.50 95.27 

2 
Large 

0.084 

(0.096) 
12.51 

0.987 

(1.011) 
2.32 96.07 95.50 

Medium 
0.090 

(0.099) 
8.80 

0.988 

(1.010) 
2.11 95.28 94.82 

3 
Large 

0.086 

(0.103) 
16.52 

0.928 

(0.953) 
2.65 96.10 95.32 

Medium 
0.093 

(0.105) 
11.85 

0.930 

(0.954) 
2.50 95.32 94.77 

 5 

  6 



34 

 

Table A.5 - Sensitivity of BEA predictions when using different covariance models and estimation of the percent 1 
differences to the associated cloud results. Case study building: Special-Code; Analysis fidelity: High; Reality: 3; 2 
IM: Sa(T1); Sampling method: Stratified sampling.  3 

Sample 

Size 

Covariance 

Model 
MSE 

Difference 

(%) 

Average 

Length 

Difference 

(%) 

Coverage 

(%) 
F

u
ll

 

Gaussian 0.406 7.51 2.059 1.11 96.03 

Matérn 0.357 18.78 1.880 9.69 96.48 

Spherical 0.365 16.82 2.034 2.32 96.62 

Cubic 0.386 12.15 2.049 1.60 96.37 

Exponential 0.357 18.78 1.880 9.69 96.48 

Cauchy 0.409 6.98 2.064 0.87 95.95 

Gneiting 0.406 7.51 2.059 1.08 96.03 

Circular 0.381 13.17 2.045 1.77 96.55 

P. Nugget 0.432 1.58 2.073 0.45 95.83 

L
ar

g
e 

Gaussian 0.433 3.49 2.107 1.05 95.75 

Matérn 0.429 4.31 2.058 3.34 95.79 

Spherical 0.422 5.85 2.096 1.56 95.95 

Cubic 0.423 5.68 2.102 1.28 95.97 

Exponential 0.429 4.31 2.058 3.34 95.79 

Cauchy 0.435 2.96 2.124 0.27 95.71 

Gneiting 0.432 3.56 2.108 1.00 95.77 

Circular 0.423 5.54 2.099 1.41 96.18 

P. Nugget 0.444 0.94 2.117 0.58 95.63 

M
ed

iu
m

 

Gaussian 0.458 2.44 2.141 0.78 95.44 

Matérn 0.460 2.16 2.101 2.63 95.03 

Spherical 0.472 -0.53 2.106 2.41 95.30 

Cubic 0.462 1.71 2.124 1.59 95.50 

Exponential 0.460 2.16 2.101 2.63 95.03 

Cauchy 0.471 -0.23 2.151 0.31 95.43 

Gneiting 0.475 -1.04 2.142 0.75 95.50 

Circular 0.459 2.21 2.117 1.91 95.17 

P. Nugget 0.469 0.11 2.140 0.86 95.48 

 4 


