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Abstract 
 
A theoretical foundation for pre-detection fusion of sensors is needed if the United 

States Air Force is to ever field a system of distributed and layered sensors that 

can detect and perform parameter estimation of complex, extended targets in 

difficult interference environments, without human intervention, in near real-time. 

This research is relevant to the United States Air Force within its layered sensing 

and cognitive radar/sensor initiatives. The asymmetric threat of the twenty-first 

century introduces stressing sensing conditions that may exceed the ability of 

traditional monostatic sensing systems to perform their required intelligence, 

surveillance and reconnaissance missions.  In particular, there is growing interest 

within the United States Air Force to move beyond single sensor sensing systems, 

and instead begin fielding and leveraging distributed sensing systems to overcome 

the inherent challenges imposed by the modern threat space.   

 This thesis seeks to analyze the impact of integrating target echoes in the 

angular domain, to determine if better detection and ranking performance is 

achieved through the use of a distributed sensor network. Bespoke algorithms are 

introduced for detection and ranking ISR missions leveraging a distributed network 

of radio-frequency sensors: the first set of bespoke algorithms area based upon a 

depth-based nonparametric detection algorithm, which is to shown to enhance the 

recovery of targets under lower signal-to-noise ratios than an equivalent 

monostatic radar system; the second set of bespoke algorithms are based upon 

random matrix theoretic and concentration of measure mathematics, and 

demonstrated to outperform the depth-based nonparametric approach.  This latter 

approach shall be shown to be effective across a broad range of signal-to-noise 

ratios, both positive and negative.  
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𝜌   Shrinkage coefficient 

ρOAS   OAS convergence  

𝚺OAS  Estimated OAS covariance matrix 
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σ ⋯ ↓  Ordered in descending order 

≺Ê   Mathematical symbol for weakly majorized 

𝐁OAS  General form of the estimated oracle of the measured time-reversal 

operator 

𝐖OAS  General form of the estimated oracle measurement additive noise 

matrix 

𝐀OAS   General form of the estimated oracle signal time-reversal operator 

𝐁  General form of the estimated measured time-reversal operator 

𝐖  General form of the estimated measurement additive noise matrix 

𝐀   General form of the estimated signal time-reversal operator 

𝐶𝕄𝑴   𝑀	×	𝑀 matrix comprised of complex-valued entries 

ℝÍ   Positive random variables 

𝛾 ¡¢£¤¡¥¦§ detection threshold variable 
𝑑F ⋯   Diagonal elements of matrix ⋯  

λF ⋯    Eigenvalues of matrix ⋯  

𝛾 ¡¢£¤¡¥¦§ Estimated threshold statistic 

𝜇Ï  Estimated mean of the estimated threshold statistic 

𝜎Ï  Estimated standard deviation of the estimated threshold statistic 

𝑘Q­  Desired false alarm rate 

𝑃¬  Probability of detection 

𝑃Q­  Probability of false alarm 

𝛾 ¡¢£¤¡¥¦§Ð:Ò Detection threshold statistic for the 𝑖h� singular value 

𝛾 ¡¢£¤¡¥¦§Ð:Ò Estimated detection threshold statistic for the 𝑖h� singular value 

𝜇Ï;F:R Estimated mean of the estimated threshold statistic for the 𝑖h� 

singular value 
𝜎Ï;F:R Estimated standard deviation of the estimated threshold statistic for 

the 𝑖h� singular value 

𝜇Ó  Dielectric relative permittivity 
𝜖Ó  Dielectric relative permeability 

𝑔  rank of 𝑩 matrix 
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1 Introduction 
 

1.1 Thesis Introduction 
The impetus for this thesis came forth from a discussion between the author and 

his co-advisor, Dr. Michael Wicks.  The subject of the discussion was 

heterogeneous sensor heterogeneous data fusion; wherein non-similar sensors 

attempt to fuse inherently dissimilar data. In attempting to scale the problems 

associated with fusing heterogeneous data, six major research areas were 

discussed, investigated, and eventually became the subjects of Chapters 4 and 6.   

One item that was agreed upon, was the topic of distributed sensing, and its 

paramount importance to the future of United States Air Force intelligence, 

sensing, and reconnaissance (ISR) missions.  Indeed, numerous efforts to realize 

Distributed and Layered Sensing were well underway within the United State Air 

Force, and of great interest as far back as the early 1990’s.   In keeping focused 

on distributed sensing, we settled on shelving the topic of heterogeneous sensor 

fusion for a more simplified investigation into the realm of non-parametric 

algorithms for the detection of targets.  Our logic was, and still is, that target 

detection is the ultimate goal of ISR sensors, and a non-parametric framework for 

target detection is central to the understanding, and ultimately the development of, 

a methodology for fusing heterogeneous data sources; since the underlying nature 

of the fused data is not as critical under a non-parametric framework-ie data is 

data, regardless of sensor origin.  This initial investigation became the subject of 

Chapter 4. 

 Following our initial discussions on non-parametric detection algorithms, we 

realized we were missing a key benefit of having numerous sensors focusing their 

resources on a common target set, and that was the fact we were exploiting 

diversity in the angular domain to achieve target detection, versus traditional 

monostatic sensors that rely on time domain integration of multiple target echoes 

to bring the signal-to-noise ratio above the noise floor to achieve detection with 

thresholding.  This inspired us to build upon the concept of a non-parametric 

detection algorithm, and push the bounds of the possible by exploring the concept 

of integration of target echoes in the angular domain as opposed to the time 

domain, to investigate whether distributed sensing increases the ability to recover 

targets from a background noise environment.  In reality, the goal of this 
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investigation was to determine if the recovery of so-called weak targets in a 

background environment comprised of noise, clutter, or clutter and noise, could be 

improved upon in comparison to a traditional monostatic sensor.  Whilst the 

contribution of Chapter 4 is the introduction of a method of non-parametric 

algorithm for target detection with a distributed network of sensors, the contribution 

of Chapter 6 is the realization of a framework for the exploitation of angular domain 

diversity for target detection.   

 In summary, this thesis focuses on six challenges introduced through the 

use of a distributed network of radio-frequency (RF) sensors for target detection 

and ranking: 

1. Development of a pre-detection fusion algorithm that coalesces the received 

signals from each RF sensor in the network into a unified time-reversal 

operator, thereby simplify subsequent processing algorithms [Chapter 3]. 

2. Detection of range-extended target without requirements for knowing the target 

covariance function a priori [Chapters 4 and 6]. 

3. Ranking of a range-extended target to determine effective number of scattering 

centers comprising the target body, without knowing the nature of the extended 

target a priori [Chapters 4 and 6]. 

4. Development of detection threshold criterion that is non-parametric and does 

not require a priori knowledge of the background interference environment; to 

include noise and/or clutter [Chapters 4]. 

5. Detection and ranking in signal-to-noise ratio regimes that are weaker than 

typically required for monostatic radar system detection algorithms [Chapters 4 

and 6].   

6. Detection and ranking that is independent of sensor network density, and is 

able to operate under both sparse and dense sensor density regimes [Chapters 

6].  

A common thread that found in all three major thesis chapter themes is if you have 

a number of sensors distributed around a target of interest, do you gain any 

increase in detection performance versus a standard monostatic sensor?   More 

importantly, how does the use of multiple sensors-regardless of configuration- lead 

to anything other than a variation of standard detection methodologies?  This 

progression of thought led to the concept of a distributed network of radio-

frequency sensors surrounding a target in the angular domain, and the necessity 

of breaking from the paradigm of post-detection fusion or time-domain pulse 
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integration, and exploring the realm of the possible in pre-detection fusion or 

angular-domain integration.  Pre-detection fusion would be necessary, as the 

distributed sensor network is exploiting angular diversity, and post-detection fusion 

would be nothing more than a variation on standard monostatic time-domain 

detection methodologies.  

Further expanding angular diversity concept, the third research topic 

focused on the detection of targets that were non-isotropic in the angular domain.  

Non-uniform target reflectivity exists in the angular domain, complicating the 

previously developed pre-detection fusion algorithm.  One possible implication of 

this third research focus, is that if a target has a salient scattering feature that is 

only observable from certain angular ambits, a distributed sensor network should 

perform better at detecting the angularly selective target than a traditional 

monostatic sensor.  This ability to exploit angular diversity is a unique contribution 

and consequence of the pre-detection fusion algorithms introduced in Chapter 3.   

Upon discussing the nature of real-world targets, and scattering 

phenomenology, it was decided that for all three research topics, the target under 

consideration should be range-extended (multiple adjacent scattering centers), 

and be comprised of isotropic dielectric scattering spheres with real-valued 

permittivity, and unity permeability.  This later point has major implications for the 

nature of the detection algorithms, and is discussed more in Chapter 3.  Also, using 

a more realistic target body provides yet another unique contribution of this these 

for detecting real-world target objects, in that most detection algorithms focus on 

detecting a single point-type target and not a target comprised of multiple scattering 

features.  

One additional benefit of using a range-extended target for the development 

of the various detection algorithms in Chapters 4 and 6, is that having more than 

one target allows for the inclusion of statistical ranking via a recursive process.  

Statistical ranking is a method of determining the number of statistically significant 

values in a set, and serves the purpose of permitting the recovery of all salient 

scattering features of the range-extended target body present within the 

observational area of the distributed sensing network.  For the pre-detection fusion 

algorithm, statistical ranking allows for the inclusion of a rudimentary cognitive 

intelligence, wherein the algorithm determines if, and how many, targets are 

present in the background interference environment.  This is of great interest to 

those investigating sensor network fusion, as it reduces the necessity of human-
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in-the-loop interactions, and allows the analysis of post-detected and ranked data 

to be presented to an analyst, reducing the overall workload on a (hypothetical) 

distributed sensor network operator. 

As with any detection algorithm, the choice of threshold detection statistic is 

paramount to the development of the statistical binary hypothesis test, and to that 

end, the associated Neyman-Pearson criterion are developed and demonstrated 

for each of the detection algorithms introduced in Chapters 4 and 6.  In particular, 

Neyman-Pearson criterion are derived non-parametrically in Chapter 4 using a 

differential dispersion determination, as well as a Chebyshev inequality statistic to 

determine the presence of statistical outlier which is considered significant, and 

therefore indicative of a target present.  A statistical ranking algorithm is then 

introduced to recover the number of target scattering features from the observed 

background environment using am extension of the same Neyman-Pearson 

criteria introduced earlier. 

  In Chapter 6, we depart from a strict emphasis on the requirement for 

deriving detection and ranking algorithms via non-parametric statistical maths, and 

instead investigate the leading edge of mathematical developments in free-

probability and concentration of measures.  This investigation is undertaken with 

the aim of increasing the ability of our detection and ranking algorithms to operate 

in domains wherein the target of interest may not be particularly distinguishable 

from the background environment.  These so named weak signal-to-noise ratio 

domains are stressing for traditional detection algorithms and demonstrate the 

ability of a distributed sensing network to outperform current monostatic sensing 

modalities through the clever application of bespoke detection algorithms.  

Neyman-Pearson criteria is derived from an innovations process based upon the 

concept of the trace functional.  System performance is demonstrated to exceed 

the non-parametric algorithms of Chapter 4.  

For cases in which the background environment is benign, or permits the 

application of non-parametric detection and ranking methodologies, the bespoke 

algorithms introduced in Chapter 4 are germane.  However, under more stressing 

ISR conditions, or for those target bodies that exhibit non-isotropic reflectivity 

profiles, the bespoke detection and ranking algorithms of Chapter 6 are more 

applicable.  In all instances, the distributed sensing network is shown to increase 

detection performance over its equivalent monostatic counterpart.    
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1.2 Thesis Goals and Aims 
A theoretical foundation for pre-detection fusion of heterogeneous sensors is 

needed if the US Air Force is to ever field a system of distributed and layered 

sensors that can detect and perform declaration of complex, extended targets in 

difficult interference environments, without human intervention, in near real-time. 

Numerous studies have fused homogeneous and heterogeneous sensors using 

post detection and track data. The fusion of independent sensor processing chains 

after detection will not lend itself to emulating sensor fusion comparable to that of 

a human.  

The ambition of this thesis is the development of detection and ranking 

algorithms for the recovery of extended target structures under weak signal, low 

signal-to-noise ratio, regimes. This thesis proposes to formulate a mathematical 

paradigm that will utilize the fusion of signal returns of multiple sensors in the pre-

target declaration stage. Algorithms will detect and estimate the rank of an 

extended target (number of targets present) without the necessity for human 

interaction. Legacy work in the area of low-energy coherence is used to build a 

foundation for the development of a mathematical paradigm that realizes 

distributed sensor fusion.  Low-energy coherence relies on the existence of a 

known target covariance function in order to condition the associated receiver 

matched filter inner product space to emphasize the received target received 

energy, over that of the interfering environment.  This requirement to know the 

target and associated target covariance function is a limiting factor in the real-world 

implementation of a low-energy coherence receiver. 

Further, this work seeks to analyze the impact of integrating target echoes in 

the distributed domain (angular domain) when the target covariance function is not 

known a priori, to determine if better detection performance is achieved through 

the use of a distributed sensor network, under low-energy condition-i.e. weak 

signal-to-noise ratio detection regimes. Two bespoke algorithms are introduced for 

distributed sensor networks: the first is based upon a depth-based nonparametric 

detection algorithm, which is  shown to enhance the recovery of targets under lower 

signal-to-noise ratios than an equivalent monostatic radar system; the second is 

based upon random matrix theoretic and concentration of measure maths, and 

demonstrated to outperform the depth-based nonparametric approach.  This latter 

approach shall be shown to be effective across a broad range of signal-to-noise 

ratios, both positive and negative.  
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Figure 1: Roadmap to Heterogeneous Sensor Fusion 

1.3 Contributions of this Thesis 
Throughout this work, an effort has been made to increase the body of knowledge 

on mathematical paradigms for distributed radio-frequency (RF) sensor networks 

to enable both pre-detection fusion of the sensor network, and detection under 

weak signal-i.e. low signal-to-noise ratio regimes.  Whilst each chapter goes into 

exacting detail regarding significant results, the following list attempts to capture 

the salient and bespoke contributions of this thesis for the reader interested in 

understanding the bottom line up front; and to that end, this thesis focuses on the 

development of mathematical paradigms for distributed radio-frequency (RF) 

sensor networks to enable: 

1. Development of a pre-detection fusion algorithm that coalesces the 

received signals from each RF sensor in the network into a unified time-

reversal operator, thereby simplify subsequent processing algorithms 

[Chapter 3]. 

2. Detection of range-extended target without requirements for knowing the 

target time-reversal operator a priori [Chapters 4 and 6]. 

3. Ranking of a range-extended target to determine effective number of 

scattering centers comprising the target body, without knowing the nature 

of the extended target a priori [Chapters 4 and 6]. 

4. Development of detection threshold criterion that is non-parametric and 

does not require a priori knowledge of the background interference 

environment; to include noise and/or clutter [Chapter 4]. 
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5. Detection and ranking in signal-to-noise ratio regimes that are weaker than 

typically required for monostatic radar system detection algorithms.  

[Chapters 4 and 6]. 

6. Detection and ranking that is independent of sensor network density, and 

is able to operate under both sparse and dense sensor density regimes 

[Chapter 6]. 

Within the subsequent chapters, the author attempts to develop a mathematical 

framework for distributed sensor network pre-detection fusion, target detection and 

ranking for extended target structures. This framework will serve as the basis for 

analyzing distributed sensor network densities, establish detection thresholds and 

assess system performances. 

 

1.4 Structure of Thesis 
Chapter 2 focuses on a literature review of the current state of the art. Emphasis 

is placed on detection from the perspective of legacy radar system topologies.  

Detection via mono- and bi-static, and netted radar systems is reviewed, along with 

adaptive signal processing strategies for various bistatic and netted radar network 

topologies.  Target models are discussed, as well as the concept of extended target 

bodies.  A discussion on the distributed sensor network topology used for this work 

is introduced next, along with a roadmap of where this work fits into the overall 

future of USAF ISR sensing, see figure 1.   

 Chapter 3 introduces the reader to radar target detection and the basics of 

statistical decision theory.  An overview of low energy coherence (LEC) receiver, 

as well as extensions of the original mathematical formulation to multiple sensors, 

is covered in some detail.  As the basis for many of the concepts that are introduced 

in this work, and proposed for future work in Chapter 8, the LEC receiver paradigm 

is discussed in great detail; as are its associated shortcomings.  Finally, the pre-

detection fusion algorithm is introduced and derived from first principles.  The pre-

detection fusion process is a critical component of each of the bespoke detection 

and ranking algorithms introduced in Chapters 4 and 6, and as such, is the final 

theoretical concept covered in Chapter 3.  A summary provides the motivation to 

move beyond the LEC, and into the realm of distributed sensing for targets whose 

covariance function is not known a priori. 

In Chapter 4, a novel nonparametric depth-based method for the range-

extended target detection, and scattering center ranking problem in noisy 
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environments under nominal signal-to-noise ratios, is considered. An algorithm is 

introduced for the determination of the presence of single or multiple isotropic 

scattering centers in a background medium defined by an additive corruptive noise 

process.  The detection performance versus signal-to-noise ratio is developed for 

a given false alarm rate, incorporating the Neyman-Pearson Criterion, and 

detection performance compared to a typical single-pulse and envelope 

monostatic sensor detection approach.  The statistical field of ranking is 

introduced, and the nonparametric detector is extended for the sensing of range-

extended target structures.   Of interest is that in [1], the actual signal-to-noise ratio 

that delineates the weak target from a nominal target is not defined, and left to the 

reader to interpret.  Therefore, whilst the particular signal-to-noise ratios in Chapter 

4 are more equivalent to a nominal value, they represent an improvement over the 

standard monostatic single-pulse and envelope detectors-therefore represent a 

relevant application of a pre-detection fusion algorithm that is nonparametric in 

formulation, and is therefore more conducive to the realization of our goal of a 

heterogeneous sensor heterogeneous data fusion algorithm.  This latter goal is the 

overarching reason for exploring non-parametric pre-detection fusion algorithms in 

Chapter 4.  

However, whilst the bespoke non-parametric detection algorithm for our pre-

detection fusion process allows for a realization of a heterogeneous sensor 

heterogeneous data fusion process, the detection performance does not greatly 

exceed that of traditional monostatic radio-frequency sensor systems.  In Chapter 

6, a new bespoke random matrix theoretic detection algorithm is developed that 

greatly increases the sensitivity that our distributed radio-frequency sensor network 

is able to detect targets, both singular and over-resolved; simulation results show 

efficacy across a broad range of signal-to-noise ratios, spanning from positive to 

negative.   

Chapter 6 takes a slightly different look at the detection problem for a target 

that is weak in every given observational sensor; the concept of weakness is 

attributed to the translation of the signal-to-noise ratio from the positive to the 

negative.  The weak reflector detection problem is analyzed and impacts to the 

performance bounds of the distributed radio-frequency sensor network are 

investigated.  Methods for ranking under weak reflectivity scenarios are considered 

for a target comprised of multiple scattering centers, which represents an 

improvement over the bespoke non-parametric detection algorithm introduced in 
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Chapter 4. Simulation results show efficacy across a broad range of signal-to-noise 

ratios, spanning from positive to negative.   

Chapter 7 contains a summary of results from Chapters 4 and 6.  Emphasis 

is placed on the contribution of each chapter, and on the contributions of this work 

as a whole. 

Chapter 8 focuses on the large number of selected open problems that 

spawned from this thesis; which include research areas the author intends to 

investigate in the near term, along with those problems which are more suitable to 

PhD topics and ending with a future work section that is showcases the long-range 

vision for this research work.  
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2 Background 
 

2.1 Literature Review of Current State of the Art 
The purpose of this chapter is to induce the reader to current state of the art in 

radar target detection, and then to relate this background primer to open problems 

that are being addressed within this work.  In reviewing the current state of the art, 

we typically focus on the detection of targets that have a large dynamic range at 

the sensor receiver in order to be able to more readily separate the signal from 

competing clutter, noise, and/or interference-a ratio, called the signal-to-noise ratio 

(SNR). Additionally, typical radio frequency (RF) sensors in operation today rely on 

the coherent integration of multiple return pulses, plus the destructive behavior of 

the statistically independent background interference environment, and the 

constructive behavior of the signal of interest to effectively increase the signal-to-

noise ratio.  This may require the sensor to observe the target for an extended 

period of time in order to effectively capture a sufficient number of pulses to 

integrate the target returns above the background interference environment.   

The penultimate goal for this work is the development of mathematical tools 

and algorithms to realize distributed sensor data fusion.  Initially considered in this 

thesis are pre-detection fusion algorithms for a distributed radio-frequency 

network, as well as bespoke algorithms for the detection and ranking of over-

resolved targets.  Another secondary goal of this thesis is to deduce target 

phenomenology that is not readily captured by a single sensor in the traditional 

SNR sense.   This may be due to the fact that the partial coherent track of a target 

is less than that required to integrate the signal above the noise floor (under sample 

support constrained scenario), or this may be due to the fact the signal is weak in 

the case of an extended target with respect to the surrounding environment-

thereby inhibiting the sensor from detecting the presence of the extended target. 

This will result in the target phenomenology being hidden.   

For the case of a weak extended target, the use of multiple distributed radio-

frequency sensors, will result in more data being captured, with each of these 

particular distributed sensors looking at an extended target structure from multiple 

unique look and target pose angles, and fusing the resultant collected data in an 

intelligent adaptive manner.  In the case of an extended target that is weak in any 

one observational sensor, the resultant eigendecompositon of the pre-detection 
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fusion process will reveal non-dominant eigenvalue behavior, thereby providing an 

indication that the actual signal is spread out amongst all the available imperfect 

basis functions [1] and [2].  The formation of appropriate detection and ranking 

algorithms for distributed sensing networks should permit the target to be 

recovered, even with the signal not being dominant compared to the environmental 

clutter plus noise [1]-the so called weak target case.   

This thesis seeks to analyze the impact of integrating target echoes in the 

angular domain, to determine if better detection and ranking performance is 

achieved through the use of a distributed sensor network.  

 

2.2 Detailed Literature Review Overview and Relevancy to the United 
States Air Force 

The following detailed literature review focuses on several salient research areas 

within the more general field of remote sensing.  An effort has been made by the 

author to provide as complete an overview as necessary for the reader to become 

familiar with previous research topics and subsequent results, as befitting the new 

contributions presented in this thesis.  Whilst, by no means exhaustive, the 

proceeding sections provide an abbreviated account of the author’s journey from 

an understanding of the current state-of-the-art, and to the identification of potential 

shortfalls within published results that are germane to the research addressed 

within this thesis.  

 Initially, we turn our focus towards the general problem of target detection 

using mono- and bi-static, and netted radar systems.  The foundation of radar 

signal processing is the detection of a target and, deducing from time-delay, the 

distance to that detection target.  As target detection for a network is the focus of 

this research, this background primer is considered required background material.  

Next, attention is given to the concept of extended target objects.  In addition 

to detection of a target, the detection of a target comprised of multiple scattering 

centers is another area of focus for this thesis.  In fact, extended target objects give 

rise to the development of the various recursive ranking algorithms that are 

introduced within this thesis. 

However, up to this point, all current state-of-the-art is still focused primary 

on problems encountered by monostatic radar systems-i.e. those sensors that 

detect single targets with the same transmit and receiver aperture, see figure 2 

[81].  However, as our focus is on the detection of range-extended targets via a 
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distributed sensor network, a review of the foundations of bistatic radar (a single 

transmitter and single receiver that are no longer co-located in space-time),  

	
Figure	2:	Monostatic	vs	Bistatic	Radar 

and netted radar (a method of multilateration leveraging more than one transmitter 

and more than one receiver, often non-collocated) is considered essential source 

material for the algorithms developed in Chapters 4 and 6, see figure 3 [82].   

	
Figure	3:	Netted	Radar	Example 

The aim of this work is to provide a mathematical framework and initial roadmap 

into the future of the distributed and layered sensing paradigm.  This roadmap is 

one developed by the author based upon observations and the ever-changing 

landscape of USAF ISR initiatives.  More importantly, this roadmap serves as a 

outline of a research and development guide to allow the interested reader to 

discover and make their own contribution to the future of distributed and layered 

sensing, and potentially those priorities of the USAF.  To that end, the following 
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figure also helps to guide our discussion as to where this work fits into the larger 

aim of current autonomy and cognitive sensing initiative, leading to the eventual 

goal of contextual sensing and dynamic/predictive sensing. Shifting the reader 

from traditional monostatic sensing to sensing involving a multitude of sensors 

eases the technical transition to the concepts of distributed sensor networks, which 

form the basis for the detection and ranking algorithms developed within this thesis.  

	
Figure	4:		Roadmap	to	the	Future	of	Autonomous	and	Cognitive	Sensing 

Following the discussion on past and present radar system topologies, a 

primer on adaptive signal processing serves to round out current state-of-the-art 

by introducing to the reader to methods researchers have developed to increase 

the detection performance of mono- and bi-static sensor, in terms of its detection 

performance.  This review of adaptive signal processing methods also shows the 

extent to which previous generations of sensor and sensor systems have been 

enhanced to overcome their architectural limitations, and permits a fairer 

comparison of newly introduced algorithms of Chapters 4 and 6, with adaptive 

signal processing algorithms more familiar to the average reader of this work. 

Having covered sensor topologies and adaptive processing schemes, there 

is a brief introduction to the concept of target and target modeling, as well as a 

more in-depth description of the target model used throughout this work to test the 

efficacy of the proposed detection and associated ranking algorithms.  Attention is 

paid to common assumptions made to develop target models, and what 
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assumptions were chosen to develop the target model of this work.  Finally, we 

cover the proposed distributed sensor network topology, as well as its associated 

communications topology, and the role of the fusion center as it pertains to the 

processing of data from the distributed sensing network.  The need to move beyond 

the requirement for a priori knowledge of the target provides the necessary impetus 

for this work, and its relevancy to the current needs of the United States Air Force.  

 

2.2.1 Single Target Detection 
Current paradigms in receiver design and target detection are based upon the long-

standing requirement for a single target signal to exceed the surrounding 

environment [see 3 and 4 and the references therein].  Emphasis is placed on the 

detection performance of radar systems, wherein the detection algorithms of 

targets are modeled as point-source targets.  Particular bounds on the ambiguity 

of range-Doppler measurements for sensors systems with respect to point-source 

targets, are described in the vernacular by variations of Woodward’s ambiguity 

function [5].  Suitable attention has been paid to the point target case, but not to 

the case in which the target is best described by a set of scattering sources; the 

so-called extended target case.  This limitation on requirement for point-source 

targets causes information decimation on over-resolved targets by collapsing the 

detected phenomenology into a single singular value.  An attempt has been made 

in this work to demonstrate the utility and benefit of detecting and ranking an over-

resolved target, but showing the successful recovery of multiple scattering centers; 

whose recovery could be leveraged by subsequent algorithms for parameter 

estimation or target identification algorithms. 

 

2.2.2 Detection of Extended or Over-Resolved Targets 
Traditional signal processing methodologies seek to reconcile the apparent 

disparity in reflectivity profiles of scene clutter and target reverberations, thereby 

exploiting variations in the signal-to-clutter plus noise-ratio (SCNR) to determine 

target detections and parameter estimation.  However, not all targets of interest 

are best described as a point-source target.  For the case of a system possessing 

a high-resolution sensor, the illuminated target under observation may more aptly 

be described as an extended target structure.  Extended target structures are going 

to occupy multiple adjacent range bins in a sensor receiver.  For this case, the 
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extended target may possess spectral characteristics that are similar to the 

illuminated scene clutter, foiling the ability of current adaptive signal processing 

algorithms to detect or estimate target parameters.    In [6] a method is proposed 

for the scattering center extraction of extended targets using a linear 

autoregressive-model, assuming the complex reflectivity profile of the extended 

target structure is known; leading to a unique method of formulating reduced-noise 

target models with application to automatic target recognition (ATR).  In [7] a 

method is proposed to deduce a detection and subsequent angle estimation 

process for an extended target structure, including a derivation of the maximum 

likelihood estimate for the direction-of-arrival information of the over-resolved 

target structure presented.  Both [6] and [7] assumed that some level of a priori 

information was available for the over-resolved target under observation.  In [8] the 

adaptive detection problem for an extended target structure embedded in 

Gaussian noise is presented with the covariance matrix being unknown; although, 

secondary target-free training data was assumed, the resulting detector relies on 

a formulation of the generalized-likelihood ratio test (GLRT), with the constant false 

alarm rate (CFAR) property being preserved, with respect to the unknown 

quantities.  Vespe, et. al. in [9] utilize a combination of multi-frequency (MF) and 

multi-perspective (MP) to determine the role of frequency and look-angle for target 

information content; in MF, a large bandwidth waveform is transmitted at a target 

over the range of 1-40GHz to analyze the variation in target information content 

versus frequency diversity, whilst the information content of a target is analyzed 

with the sensor illuminating the target under observation from various azimuthal 

directions.  The conclusion drawn in reference [9] states the information content of 

a target under the MF scenario is more robust than that of the MP case, a result 

that is both intuitive and satisfactory (see [10]).  Therefore, the use of a MF target 

classifier for automatic target recognition guarantees acceptable performance with 

a coherently reconstructed reflectivity profile since the center frequency of the 

transmitted high bandwidth waveform can be chosen randomly.  However, the use 

of MP within a classifier requires a priori knowledge of target kinematics in order to 

be robust, and thus, is more generally useful for the purpose of providing 

independence of target information to a classifier algorithm.   

 In this work; however, we seek to formulate a pre-detection fusion process 

in combination with non-parametric and concentration of measure detection and 

ranking algorithms, that do not require a priori knowledge of the extended target.  
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Further, the detection and ranking algorithms based upon concentration of 

measure maths are shown to be robust to non-isotropic over-resolved target 

reflectivities, as well as weak targets with negative signal-to-noise ratios at the 

detector.  In this regard, this work improves over state-of-the-art by allowing the 

distributed sensing network to achieve detection performance in challenging 

signal-to-noise ratio regimes in which no prior knowledge may be available on the 

targets, or the surrounding environment in which they operate. 

 

2.2.3 Detection Using Bistatic and Netted Radar Systems 
Starting with his seminal work in [11] and [12], Willis and Griffiths reintroduced to 

the radar community the concept of bistatic radar and applications (both past and 

present).  In [12] bistatic radar is introduced as being a radar with two antennas, at 

geographically disparate locations, in which one is for transmission and the second 

antenna is for reception.  In general, bistatic radar could be generalized to the case 

of multistatic radar, in which N transmitters are located in geographically separate 

locations from M receivers.  Bistatic and multistatic radar systems can be used for 

target states estimation-target position, velocity, and acceleration, to name a few-

utilizing multilateration, or the simultaneous use of range-Doppler data from the 

spatially overlapping areas of coverage for the multistatic radar system.  Bistatic 

radar can be thought of as both active and passive; in active form the transmitter 

is dedicated and all parameters of the transmit waveform are controlled and known 

a priori, whereas in passive bistatic radar, the signal captured by the receiver can 

be any radiator of opportunity.  Another consideration for passive bistatic radar is 

the imperfect a priori information regarding the transmitter of opportunity, which 

leads to a further complication during target detection and parameter estimation of 

the illuminated target structure.   A few salient points of discussion regarding the 

efficacy in using bistatic radar configurations for target detection and parameter 

extraction [13] rely on fundamental advantages posed by the bistatic configuration: 

bistatic cross-section, receiver immunity from jamming threats, interferometric 

methods between the transmitter and receiver antennas results in high azimuthal 

discrimination.  To highlight a few of those points presented in [13], the bistatic 

radar cross-section (RCS) of a target is generally larger, due to the inherent bistatic 

configuration illuminating a given target pose-angle and receiving from a different 

look-angle than the transmitter.  Thus, bistatic radar has the potential to perform 

better in the presence of low-RCS targets, aiding target detection; however, this 
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assumption is valid as the monostatic RCS is assumed low, while a bistatic target 

RCS is assumed larger.  Parameters that are commonly extracted from a given 

target skin return are those of range, velocity (Doppler), and direction of arrival 

(DOA); by using the receiving and transmitting as an interferometer, accurate 

azimuthal DOA of a target under illumination is possible.  Also highlighted in [13] 

is the role of transmitter waveform selection in determining the role of bistatic radar 

system performance.  To this end, a series of work funded by the Rome Research 

Laboratory are surveyed to determine the role of the ambiguity function in 

determining system bistatic radar performance.  In [14], germane to the topic of 

target detection is the determination of the correct reference point in which the 

calculations for target range and velocity are based; in this respect, the bistatic 

ambiguity function is unique for each point of reference of the bistatic radar system.  

Further, the bistatic configuration has a drastic effect on both the resultant bistatic 

ambiguity function (BAMBF) and parameter extraction.  Reference [15] presents a 

more detailed mathematical framework for the derivation of the BAMBF, with a new 

result indicating that for certain bistatic geometries, delay and Doppler parameters 

may fall within the ambiguity function’s null regions.  For [15], the waveform utilized 

had a Gaussian pulse envelope, indicating that even with a simple waveform class, 

the BAMBF is a challenge to derive and only unique for a given bistatic 

configuration and given reference point.  Greco et. al. in [16] took the derivation of 

the BAMBF further, utilizing a linear-frequency modulated (LFM) waveform and 

formulated the Cramer-Rao lower bound (CRLB) for the target delay and velocity 

parameters; the results indicated that the CRLB for the bistatic radar scenario is 

nearly always higher than for the monostatic radar case.  Typically, the clutter 

environments for a bistatic radar appear nonstationary, complicating the 

requirements on an adaptive radar receiver processor to detect and estimate 

parameters of a target under illumination.  This issue is addressed in [17], where 

the issue of reducing the clutter-to-noise (CNR) ratio of a bistatic radar system is 

considered via space-time adaptive processing (STAP).  Generally, the estimation 

of the clutter covariance matrix determines the effective system response in STAP, 

since the clutter is nonstationary for the bistatic radar system, a localized method 

of estimating the clutter covariance was proposed and shown to increase system 

performance by increasing the signal-to-noise ratio (SNR).   

In this work, every sensor in the distributed network is a transceiver, and as 

such, observes the angle from a multitude of angular ambits that are well in excess 
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of a standard bistatic, or even netted radar system.  This increase in angular 

diversity permits a large cross-section of angular radar cross section 

measurements to be taken of the target under observation, increasing the 

likelihood that a larger RCS reflection is captured by one of the many receiver 

nodes comprising the distributed sensor network.  Another aim of this work is to 

remove the requirement to engage in waveform optimization on transmit, for any 

particular sensor node within the distributed sensing network. In fact, only a single 

tone is transmitted and received by any one transmitter within the distributed 

sensing network.  This push to narrowband RF operation permits the dual benefit 

of a simpler transceiver architecture, as well as reducing the computational 

complexity of the associated radio-frequency hardware. 

 

2.2.4 Adaptive Signal Processing as a Means to Increase Performance of 
Legacy Mono- and Bi-Static Radar Systems. 

In [17] the role of adaptive signal processing in suppressing clutter and increasing 

the effective signal-to-noise ratio was considered.  There is a rich body of literature 

in the area of adaptive signal processing, with particular applications in the 

following discussion on radar adaptive signal processing and space-time adaptive 

processing (see [18] for an excellent tutorial on STAP).   

Adaptive signal processing is defined with respect to the transmitter or the 

receiver, where transmitter adaptivity involves varying the transmit waveform, and 

hence is more commonly referred to in the vernacular as waveform diversity; 

conversely, receiver adaptivity involves methodologies for processing incident 

signal energy impinging upon the receiver for use in target detection and parameter 

estimation algorithms.  For waveform diversity, [19] discusses a method of space-

time interference suppression for a distributed radar system possessing frequency 

diverse transmit waveforms, with the result that fine spatial resolution can be 

achieved if sufficient clutter suppression is achieved. Melvin, et. al. [20] describe 

recent advances in the field of adaptive signal processing to show how STAP could 

be implemented on an operational sensor, providing a more robust framework for 

implementation of STAP algorithms than those provided by the seminal results of 

Brennan, et. al. [21 and 22].  Exploiting mathematical theory to aid in developing 

solution sets to common radar problems (steering vector mismatches, sidelobe 

interfering signals, and signal detection in colored Gaussian noise), [23] proposes 

a canonical technique for adaptive radar detection using conic rejection.  The basic 
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premise of [23] is that by reformulating the radar detection problem in the form of 

conic sets, the desired detector can be derived as a variation of the generalized 

likelihood ratio test (GLRT), and since the problem formulation simplifies to conic 

sets, the detector is invariant to minor mismatch errors in the receiver.  Recently, 

there has been interest in using Bayesian methods to solve the radar detection 

problem; one of which is presented in [24] where a Bayesian two-step GLRT 

(B2SGLRT) detector is formulated based upon the need to detect a target in a 

Gaussian disturbance with unknown spectral properties.  This B2SGLRT performs 

better in the presence of heterogeneous clutter than conventional radar detectors, 

especially for data starved scenarios.  

A natural progression for adaptive signal processing is to move beyond the 

naïve receiver architecture and assume there is some a priori knowledge on the 

scene under illumination.  This knowledge-based (KB) signal processing paradigm 

received a great deal of attention in recent years and is shown in a seminal work 

[25] to perform better, especially in challenging heterogeneous clutter scenarios.  

By exploiting knowledge of the scene under observation, even the B2SGLRT 

detector of the previous section is shown to have performance increases, 

achieving results that are close to the optimal detector, which assumes perfect 

knowledge of the clutter covariance matrix.  In [26] a series of examples in which 

knowledge-aided (KA) signal processing strategies would be beneficial is 

surveyed; the need for KA/KB adaptive signal processing strategies would help to 

ensure more optimal performance in the heterogeneous operational environments 

in which sensors operate.  Fusing the previous literature survey, [27] demonstrates 

the derivation of a KA signal processor for coherent radar detection of targets 

embedded in non-homogeneous environments; with the obvious result that the 

detector performs well for the case of target detection in dense heterogeneous 

environments. 

Previously, the benefits of using a bistatic radar system for target detection 

and parameter estimation was discussed in some detail, with the generalized case 

of the bistatic radar-multistatic radar-being comprised of N transmitters and M 

geographically separate receivers.  Germane to parameter estimation of an 

illuminated target is the detection of said target, [28] introduces a binary detector 

for a distributed system of sensors with [29] introducing a refined method of data 

fusion to increase the resolution of a multistatic radar system.  In [30] the concept 

of netted radar sensitivity is addressed with the role of radar parameters, numbers, 
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locations, and specification of the transmit/receive nodes on system performance.  

The netted radar ambiguity function (AMBF) is discussed in [30] and the 

importance of sensor placement and target location are shown to affect the 

ambiguity regimes of the netted radar system.  In order to minimize the ambiguities 

faced by a multistatic radar system, the transmitted waveforms need to be 

optimized; [31] describes waveform selection strategies for a multistatic radar 

system, with respect to the resultant AMBF.  Finally, in [32] a more direct 

discussion on the role of waveform diversity in distributed radar systems is 

discussed, with a clear requirement for a cognitive sensor necessary to the 

success of a future distributed radar system. 

The fusion of data emanating from so many disparate and heterogeneous 

systems, sensors, and data is critical to the success of any multistatic radar 

system, [33] discusses sensor fusion algorithms for use with heterogeneous 

sensor data.   

Each of the previous sections deals with variations upon a theme: target 

detection and parameter estimation for a point-source target or over-

resolved/extended target structure.  However, there are two interesting cases to 

consider that inspired this thesis, and the eventual mathematical foundations of 

pre-detection fusion, and the bespoke detection and ranking algorithms of 

Chapters 4 and 6. The first of these two cases is that of the generalized inner 

product (GIP), which inspired the non-parametric algorithms of Chapter 4.  Second, 

the concept of the low-energy coherence (LEC) optimum receiver, which inspired 

the algorithm development of Chapter 6, that results in the ability to detect targets 

at negative signal-to-noise ratios.  These previous efforts have led to the results of 

this thesis, and aided in laying the foundational underpinnings of a mathematical 

framework that will serve to analyze heterogeneous sensor networks, develop pre-

detection fusion rules, establish detection thresholds and assess system 

performances. To that end, the concepts of both LEC and the generalized inner-

product (GIP) will be introduced.  

In the seminal work by Hotelling [34], the concept of a generalization of the 

Student’s T-test was introduced, which eventually was applied to the radar 

detection problem and became known as the GIP.  The GIP improves the 

performance of a radar detector in the presence of non-homogeneous clutter.  In 

[35] the GIP-based processing coherently combines the multiple returns from the 

doubly spread targets and adaptively rejects interference; thereby improving 
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performance and target parameter estimation.  Previous works on the application 

of the GIP for extended targets can be found in [36] and [37].  Germane to each of 

these papers is the application of the GIP to detect an extended target structure by 

application of a shape template, versus the traditional route of target detection by 

range-Doppler bin.  This approach to target detection is more effective, since the 

extended target will appear in range-Doppler bins to possess similar characteristics 

to the surround clutter. 

An even more interesting case of target detection is discussed in [1], in which 

the target illuminated is captured by the receiver system, and a target covariance 

function is formed from either an imperfect basis or target signal energy that is 

below the noise threshold.  This results in the signal energy being spread across 

the signal subspace (the eigen-decomposition of the maximum likelihood estimate 

of the target covariance matrix).  Since the eigenvalue of the signal is less than, in 

all instances, the noise threshold, the optimal manner in which to recover the signal 

is to form the LEC receiver.  An early work by Bucklew [21] looked at the detection 

of a point-source target under LEC conditions, however, for the operational 

environment, sensor systems comprising a distributed layered sensing paradigm 

will be engaging extended target structures possessing both unknown location and 

kinematics.  The GIP has been shown [35-37] to be effective, even for the case of 

a mismatched target template.  For a sensor system to be considered robust, the 

target detection will need to be invariant with respect to both the target covariance 

function (i.e.-both known and unknown target covariance) and the noise 

environment (i.e.-both white and colored Gaussian noise).    

In an attempt to push the boundary on current state-of-the art, this thesis 

focuses on the pre-detection fusion process in combination with non-parametric 

detection and ranking algorithms to develop the mathematical foundation for both: 

heterogeneous sensor heterogeneous data fusion; and post-parametric signal 

processing.  This latter point is extremely important for heterogeneous sensor 

heterogeneous data fusion, as each sensor and data type may have its own unique 

set of corruptive noise and clutter distributions that would have to be accounted for 

in current sensor fusion schemas.  Under our non-parametric detection and ranking 

algorithms, developed within Chapter 4, there is no requirement to understand, or 

even have a priori information on the underlying corruptive processes present in 

the system or environment. 
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2.3 Of	Targets	and	Target	Models	

The target backscatter is assumed to be comprised of the primary components: (1) 

noise; (2) clutter; (3) and target.  There are also higher-order effects that are 

typically not assumed, though multipath is generally one that has been considered 

previously, and factors heavily in the formulation of bistatic radar problems [80,92] 

Each component of the received signal is captured by the receiver and is the result 

of direct excitation by the transmit beam or the thermal noise of the radar hardware 

and radar/target environment. Now, the clutter and target echoes-radar is 

essentially an echolocation device-are the result of spurious emissions, assumed 

negligible, and direct excitation by the impinging electromagnetic energy on the 

target and its surrounding environment.  The impinging electromagnetic radiation 

energizes the clutter environment and target structure inducing surface currents on 

the observational environment.  This radio-frequency (RF) energy propagates 

across the target and clutter environment and is dissipated and reflected.  

Dissipation occurs when the material has a complex refractive index value, as do 

most real-world objects.  Some dielectrics, especially those that are crystalline (i.e.-

sapphire) or amorphous (i.e.-glass), generally possess only a real refractive index 

value and cause a refraction and reflection.  The imaginary component of the 

complex index of refraction causes absorption and loss of energy.  When the 

electromagnetic energy encounters a discontinuity, or induces a resonant behavior 

a portion of the RF energy is reflected.  Since this reflection of energy is dependent 

upon the scene under illumination by the sensor, or network of sensors, there is 

some level-no matter how small-that is reflected in all directions, with some portion 

of that being directed to the sensor receiver(s).  One interpretation of this 

phenomenon is to consider the illuminated scene of interest as being a virtual 

three-dimensional antenna, comprised of heterogeneous elements from dielectric-

to-metallic.  Since perfect electrical conductors (PECs) are just hypothetical 

constructs, the illuminated scene will always reflect less energy to the receiver than 

that which impinges upon it, and the surrounding environment, from the transmit 

sensor(s)-ie a conservation of energy problem. 

For this work, the target is considered weak when compared to the noise 

and clutter environment in which the target exists.  This target may be considered 

a small-sized finite object that occupies a single bin, or a large in the respect that 

the object occupies several adjacent range bins.  Further, we will only consider 

targets that are stationary, removing the Doppler component from the reflected 
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target echoes.  Now, a target that is small relative to the size of a range bin is 

considered, theoretically, as a point-target; typically modeled, or assumed, to be 

an infinitely small sphere of some finite radar cross section (RCS) that may be 

constant, statistically varying, angularly selective, and/or frequency selective (i.e.-

dispersive).  Should the point target assumption be violated, we can consider the 

case of a target that occupies more than one adjacent range bin.  We refer to this 

as a range-spread, or as in [1] singly-spread, case.  

 The implications for a target that violates the point target assumption cannot 

be overlooked. First, the major cornerstone of radar target detection, analysis, and 

mathematical foundation are considered from the standpoint of a point-target-a 

theoretical construct consisting of an infinitesimally small sphere of finite sized 

reflectivity.  Indeed, to have a target that is a continuum is a challenge for the radar 

designer.  How a large hard-body target is typically modeled at present is under 

another assumption referred to as the salient feature analogy.  In this case, the 

salient feature is considered to be a point of stationary phase on the target body 

that is persistent for some viewing angle.  This salient feature is typically modeled 

as a point in Cartesian coordinates with a given value of reflectivity from near-zero 

(an RF absorbent material) to infinity (a PEC).  Additionally, for a modern radar 

system, the higher the signal power is when compared to the surrounding 

environment and noise, the easier the declaration of target present is to achieve.  

This is true as most methods of target detection that are in use presently are based 

upon a threshold test, wherein a null hypothesis is referenced to power level that 

is sans-target, whist the alternative hypothesis is referenced to a power level that 

exceeds the null hypothesis power level. 

𝐻": 𝑛 𝑡       (2.1a)	

𝐻#: 𝑠 𝑡 + 𝑛 𝑡      (2.1b) 

Practically speaking, this threshold is represented by a threshold statistic, 𝛾, which 

represents the statistical test, 𝛾 ≶×Ø
×N .  Now, should the target actually occupy 

multiple range bins, one method to extract a point approximation of a target is to 

make use of the salient features of the target.  These salient features are also 

typically the strongest, most dominate, scattering centers of the extended target 

object.  Each scattering center is defined by a Cartesian coordinate and a complex 

amplitude corresponding to the associated reflectivity of that location on the given 

target structure.  For the remainder of this work, the target considered is comprised 

of a trio of spheres that have an assigned Cartesian location and associated 
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reflectivity.  The value of the reflectivity is arbitrary, and constitutes a method by 

the author to force a condition on the bespoke detection and ranking algorithms to 

determine the presence of a stronger to weaker reflector comprising the modeled 

extended target body.  Extensions of this work will replace the arbitrary spherical 

point targets with dielectric spheres to assess the impact on detection and ranking 

efficacy.  Below is a table of the target scattering centers and their associated 

reflectivity, and an associated plot of their generalized locations with respect to the 

sensor network considered in Chapters 4 and 6 is shown in Figure 4. 
Table 1: Scattering Center Parameters 

Scattering Center Reflectivity Coefficient 𝝆  Scattering Center Location 

𝒙, 𝒚  

1 𝜌 = 2.00 5, 0  

2 𝜌 = 1.75 −2.5, 4.33  

3 𝜌 = 1.50 −2.5, −4.33  

 

	
Figure	5:	Generalized	Distributed	Sensor	Network	Topology 

We have discussed previously the need to move beyond the requirement to have 

a priori knowledge of the target covariance in order to achieve detection 

performance at low-SNR levels in Section 2.2.4. Continuing on that theme, the 

target model considered for this work is comprised of a trio of spatially separated 

dielectric non-magnetic spheres; the aim of which is to simulate salient scattering 

features of an extended target body.  This canonical target model also serves to 
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limit ambiguous detection results, to allow for the assessment of efficacy of 

proposed distributed sensor network detection algorithms.  Typical target models 

are assumed metallic, so as to minimize the complexity of the electromagnetic 

waveform interaction to the surface boundary conditions.  This permits ready first-

order effects to be simplified into a reflective amplitude scaling of the incident 

electromagnetic wave in the direction of the transmitted receiver, for a spherical or 

flat-plat target model.  Whilst not considered within this work, research has been 

conducted with Generalized Method of Moments code to analyze the higher order 

interactions of a dielectric spherical body and an impinging electromagnetic 

wavefront; resulting in multiple scattering and reflection phenomenologies that 

greatly increase the complexity beyond the surface boundary layer of the target 

body.  This higher order interaction is more necessary for imaging (via 

backprojection algorithms) and target material composition (estimating the 

permittivity and permeability to estimate the type of dielectric present), whilst 

impacts on detection performance are still under investigation to date.  

 

2.3.1 Moving Beyond the Requirement for a priori  Knowledge 
The aim of this work is to develop a pre-detection fusion process for a distributed 

sensor network topology, and to enable the recovery of targets that are considered 

to have low signal-to-noise ratios(SNR)-or as introduced in Chapter 6, weak SNRs; 

to that end, we seek to build upon prior work on netted radar, the low energy 

coherence (LEC) receiver paradigm [1], and aspects of adaptive signal processing.  

Further, the penultimate goal of this work is to lay the mathematical foundation for 

the realization of an algorithm for the fusion of heterogeneous data from 

heterogeneous sensors, [see Chapter 8 for further details].  We begin by 

considering a generalized distributed sensor network topology, epitomized by 

Figure 5, and build upon this architecture to realize the pre-detection fusion 

algorithm, introduced in Chapter 3.  The sensor network topology of Figure 4 is that 

of a ring node structure, commonly used in telecommunications.  The role of the 

apparent fusion center is twofold: (1) conceptually, the fusion center serves as the 

processor of the bespoke detection and ranking algorithms of Chapters 4 and 6; 

(2) practically, it serves to lower the required complexity of the sensor nodes 

comprising the distributed sensor network.   

 In this work, each sensor node is little more than a radio-frequency 

transceiver operating on a single tonal frequency.  This serves to introduce some 
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realism behind the rationale for using large numbers of sensors to accomplish a 

germane detection and ranking process.  Additionally, a tonal transceiver is easy 

and low-cost, which allows for the realization of this concept with attritable 

unmanned aerial systems (UAS), loosely coordinating with one another through a 

standard telecommunications network topology.   In fact, multiple programs within 

the United States Department of Defense are investigating the potential utility of 

large scale, low-cost, attritable sensor systems to achieve a multitude of critical 

intelligence, surveillance, and reconnaissance (ISR) roles, normally reserved for 

more capital manned and unmanned systems.  This work seeks to add another 

use case to the role of distributed sensor networks for the United States Air Force 

ISR mission. 

 Finally, the aim of this work is to build upon the concept of the LEC receiver 

concept, by enabling detection without the requirement to know the target 

covariance function a priori.  Central to the role of any sensor network topology, 

single or otherwise, is the need to find, fix, and track targets of interest in a wide-

variety of real-world environments; many of which contact potential targets of 

interest that are not characterized a priori and may require further investigation by 

a trained analyst.  The LEC receiver concept is intriguing and germane to many 

USAF ISR mission sets, but the requirement to know the target covariance runs 

counter to practicality of that paradigm.  Algorithms introduced in Chapter 4 and 6 

for the detection and ranking of targets that are considered low SNR, or weak as 

defined in Chapter 5, permit the recovery and ranking of those targets with no 

requirement for a priori knowledge of the target objects.  The efficacy of those 

algorithms, and their mathematical formulation lends their use to nearly all USAF 

mission sets, particularly those ISR scenarios in which the target(s) are challenging 

to find with currently fielded sensor technologies and architectures. 

	

2.4 Relevancy of Thesis to the United States Air Force 
This research is relevant to the United States Air Force within its layered sensing 

and cognitive radar/sensor initiatives. The asymmetric threat of the twenty-first 

century introduces stressing sensing conditions that may exceed the ability of 

traditional monostatic sensing systems to perform their required intelligence, 

surveillance and reconnaissance missions.  In particular, there is growing interest 

within the United States Air Force to move beyond single sensor sensing systems, 
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and instead begin fielding and leveraging distributed sensing systems to overcome 

the inherent challenges imposed by the modern threat space.   

The intended applications of this thesis research are relevant to the Air 

Force within its layered sensing and cognitive radar/sensor initiatives. The 

asymmetric threat of the twenty-first century places real-time constraints of 

seconds and not hours to detect and declare targets whether they are in space, air 

or on the ground. Images and human involvement are too slow and not feasible 

given our deployment on many fronts combined with the needs for space 

surveillance, our border patrols, home land security, and law enforcement needs.    
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3 Introduction	to	Target	Detection	from	Monostatic	Radar	to	
Distributed	Sensor	Networks		

	

3.1 Introduction	

Having explored the beginnings of this work, and grounding in recent realities, it is 

now time to build the foundational theory necessary to understand the contents of 

Chapters 4 and 6.  In particular, we start with the basics of radar detection theory, 

expanding to include how that changes when the target is no longer represented 

by a single isotropic-point source, and ending with an examination of Van Trees’ 

low-energy coherence receiver paradigm; which strongly motivated the 

development of the low-signal-to-noise ratio detection and ranking algorithms of 

Chapters 4 and 6.  The hope is that by leading the reader through familiar basics, 

and adding to that body of knowledge with other related mathematical principles, 

the bespoke algorithms of Chapters 4 and 6 are more intimately understood.  In no 

way is this an extensive and comprehensive background theory section, but the 

rudiments presented henceforth should provide an adequate baseline for the 

interested reader to dive deeper, should they wish to, by following the trail of 

references throughout this section.   

 

3.2 Radar	Detection	

Radar uses radio waves in the form of echo-location to detect the range of an 

illuminated object.  The illuminated object may be a target of interest, a diverse 

clutter background, or some combination of both.  There are number of references 

that cover the subject of target detection, see [1,3 and 38-41]. For most cases, the 

target detection problem is best described by a binary hypothesis test, which is 

shown below for completeness.  The null hypothesis, 𝐻"  represents the case 

where the received signal is comprised of noise.  An alternative hypothesis, 𝐻# 

represents the case where the received signal is comprised of a signal plus noise.  

The role of the radar receiver is to determine if a signal is present, or not.  This is 

equivalent to the receiver making a decision as to whether the null or alternative 

hypothesis is true, based upon observation of some number of samples at the 

receiver. 

𝐻" ∶= 𝑛 𝑡        (3.1a)	

𝐻# ∶= 𝑠 𝑡 + 𝑛 𝑡       (3.1b) 
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The simplest detection problem is that of the single-point target in a single range 

cell, see Figure 6, using the binary hypothesis criterion in Equations (3.1a) and 

(3.1b).  This also corresponds to the simple non-fluctuating, or Swerling 0 case, 

useful for describing the target reflectivity.  

 

 
Figure 6: Single Point-Scatterer in a Single Range Bin 

Traditional signal processing methodologies seek to reconcile the apparent 

disparity in reflectivity profiles of scene clutter and target reverberations, thereby 

exploiting variations in the signal-to-clutter plus noise-ratio (SCNR) to determine a 

target detection.  However, not all targets of interest are best described as a point-

source target.  For the case of a system possessing a high-resolution sensor, the 

illuminated target under observation may more aptly be described as an extended 

target structure.  Extended target structures occupy multiple adjacent range bins, 

see Figure 7.   

 
Figure 7: Range-Spread Target (Target with Multiple Scattering Centers)  
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In this case, the standard radar problem is understood to be one of a statistical 

decision-making process: a received signal is compared to some threshold with 

the goal to declare the presence when the threshold is exceeded, and to do the 

antithesis when the target is absent.  From this vantage point, our detection and 

ranking algorithms introduced in Chapters 4 and 6 are still bounded by this 

fundamental statistical process.  Let us re-examine the statistical decision theory 

behind the radar detection problem formulation.  

 

3.3 Basics	of	Statistical	Decision	Theory	

One method of approaching the detection problem is from a probabilistic 

framework that utilizes elements of statistical inference to make a decision as to 

whether a signal is present in the received signal or not. The theory of statistical 

inference is based on hypothesis testing. Recognizing that real-world data is 

corrupted to some degree by noise, hypothesis testing was improved by the 

incorporation of decision theory. The objective of statistical decision theory is to 

formulate a detection rule that operates on the received data to aid in the decision 

of which hypothesis is the best choice, based upon the received signal. 

 
Figure 8: Statistical Decision Theory Diagram 

The decision problem is best illustrated by Figure 8 shown above. The received 

signal arriving at the radar is the result of an echo from the environment that can 

be assumed to be comprised of noise and possibly a signal. The signal can be 

assumed to be a point in a signal space, Ω, composed of the class of all possible 

signal echoes, with each point in this space representing a waveform of a particular 
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combination of amplitude, phase, and frequency-shifting. When possible, a 

probability distribution, 𝜎 𝒔 	is assigned to a signal in Ω. Similarly, the noise space 

can be defined as being composed of a number of points, n, that describe all 

possible realizations of a noise process. Statistical properties of the noise are then 

captured by a probability distribution	𝑝 n , much the same as in the case of the 

signal space. 

The observed received signal, or echo, can be described by another space-

dubbed the observation space, Γ-whose points v represent all possibly joint 

probability distributions of signal and noise echoes within a given period of 

observation. The conditional probability, 𝑝 v|s , is used to describe the frequency 

of occurrence of each of the members of the observation space. This can be shown 

graphically to be the equivalent of describing the traditional radar detection 

problem.  

 
Figure 9: Traditional Radar Detection Problem 

Following the observation space is the decision rule. The decision rule is a operator 

that maps a point in the observation space into the decision space. This operator 

is analytically shown to only be a function of the observed waveform, v, and the 

possible set of decisions, d. There is no explicit assumption of the signal, s. The 

decision rule, 𝐷 d|v , could be random or nonrandom decision rule; in most 

instances, the decision rule, or mapping operator is nonrandom. 

After mapping the observation, v, from Γ into the decision space, ∆, the 

possible set of decisions is denoted by the variable d. Should the decision rule be 

viewed as a probability, the decision rule, 𝐷 d|v , describes the probability density 

of each point in ∆ for each possible observed waveform v. In Figure, 9, the decision 

space essentially describes whether the observed waveform v is above rf below a 

threshold. For the detection problem, the decision space contains only two possible 
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points: signal present or no signal present. For the case where there may be 

multiple signals of interest, this decision problem can be generalized for any 

number, N, of signals of interest. 

The fundamental issue for the decision problem is to determine an optimal   

operator to map the observation space, Ω, to the decision space, ∆. So, for the 

detection problem, the real challenge lies in determining some optimal decision 

rule, 𝐷 d|v . 

In the remainder of this section, various aspects of the statistical decision 

theory problem are introduced. As the breadth of detection theory is quite 

considerable, only salient highlights are discussed. 

3.3.1 Binary Detection 
Binary detection is the most basic form of detection problem in which one of the 

two possible outcomes are possible:  target present or target absent.  From the 

previous section, there is assumed to be a signal space, Ω, and a noise space.  

The mapping operator for the observational space, Γ, is the hypothesis test given 

by the null hypothesis 𝐻" and the alternate hypothesis 𝐻#, 

𝐻":= s ∈ Ω"      (3.2a)  

𝐻#:= s ∈ Ω#      (3.2b) 

Where the operator maps the observation space into two non-overlappoing 

decision space regions.  From Equations (3.2a) and (3.2b), the two decision 

regions are spanned by Ω" where s = 0, and Ω# where s ≠0.  By defining the a 

priori probabilities of the observed signal, v, to be p for signal present and q for 

signal absent, the probability density function for the signal, 𝜎 s  is defined as 

𝜎 s = 𝒒𝛿 s − 0 + 𝒑𝑤 s     (3.3) 

Now, there are four possible outcomes for a binary hypothesis test, a correct 

decision for signal present or signal absent, and an incorrect decision regarding 

the presence or absence of a signal. Declaring a signal present when the signal is 

absent is referred to as a false alarm, and is denoted by the symbol 𝛼. Deciding 

there is no signal present when there is a signal present is called a missed 

detection and is denoted by the symbol 𝛽 . Referring to the binary detection 

problem from a cost function perspective, the costs of correct decisions are 

  𝐶#=> = 𝐶 s𝜖Ω";jN      (3.4a) 

𝐶#=? = 𝐶 s𝜖Ω#;jØ       (3.4b) 

The cost function analysis of the binary detection problem is akin to creating a 
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decision rule operator that minimizes a cost function, which corresponds to 

minimizing the number of false alarms and missed detections. In this respect, the 

cost of a correct decision is 

𝐶#=> = 𝐶#=? = 0     (3.5) 

The cost function for the binary detection problem is referred to as the loss function, 

and the goal for creating an optimal decision rule is to minimize the loss function. 

The loss function is found to be [42] 

𝐿 𝐷, 𝜎 = 𝐿ç 𝐷|s 𝜎 s 𝑑sx      (3.6) 

where the function 𝐿ç is the conditional loss function for all possible decisions d for 

any given s and decision rule D. Mathematically, the conditional loss function can 

be shown to be [42] 

𝐿𝑐	(𝐷|s) 	= 	𝐸𝒅|𝒔	[𝐶	(s,	d)]     (3.7)  

which can be expanded in terms of conditional probabilities such that [42] 

𝐿ç	(𝐷|s) 	= 	 𝑝	(v|s)	𝑑vì 	𝐶	(s,	d)	𝐷	(d|v)	𝑑d∆ 	  (3.8)  

The loss function for the binary detection problem is given by the expression [16] 

𝐿	(𝐷, 𝜎) 	= 	𝒒𝛼𝐶𝛼	 + 	𝒑𝛽𝐶𝛽     (3.9) 

where 𝛼 is the Type I error 

∝= 𝑝 v|0ì 𝐷 𝑑#|v 𝑑v     (3.10) 

and 𝛽 is the Type II error 

𝛽 = 𝑝 v|s sì 𝐷 𝑑"|v 𝑑v     (3.11) 

From Equation (3.11) the type II error probability is averaged with respect to the a 

priori distribution of the signal. 

 

3.3.2 Bayes’	Decision	Criterion	

Bayes’ decision criterion results from the minimization of 𝐿	(𝐷, 𝜎) and is best known 

for the likelihood ratio that results from the formulation of the decision rule. This 

likelihood ratio decision rule is nonrandom and can be written in the form of a 

generalized likelihood ratio 

ℓ v = p� v|s 𝒔
q� v|"

     (3.12)  

Since the decision space, ∆ , contains only two regions, the minimization of 

𝐿	(𝐷, 𝜎)	for the signal absent decision is 

𝐷𝜷	(𝑑"|v) 	= 	1	    (3.13a)  



	

	

62	
𝐷?	(𝑑#|v) 	= 	0     (3.13b) 

The inequality resulting from this condition is [42] 

p𝐶?𝑝(𝒗|𝒔)s 	< 	q𝐶>𝑝(v|0)     (3.14)  

The minimization of L(D, sigma) for the signal present decision is 

𝐷?	(𝑑"|v) 	= 	1     (3.15a)  

𝐷?	(𝑑#|v) 	= 	0     (3.15b) 

with the associated inequality being [42] 

p𝐶?𝑝(v|s)s 	> 	q𝐶>𝑝(v|0)	    (3.16)  

The threshold for the Bayes decision criterion in the decision space equates to 

𝛾 = çñ
çò

      (3.17) 

 

3.4 Where	It	All	Started:	Low-Energy	Coherence	Receiver	

The concept of the low-energy coherence (LEC) receiver was first proposed by 

[43-45] in regards to the signal detection problem and [46-47] for use in radar 

astronomy.  At first glance, the low-energy coherence case may seem 

uninteresting or of limited utility, but there are a number of scenarios in radio-

frequency sensing that give rise to low-energy coherence cases; ranging from 

radio-astronomy, to sonar, and many salient detection problems in radar and 

remote sensing.  In [38] the LEC receiver is developed for the case of a point and 

extended target, under white Gaussian noise conditions for a monostatic sensor. 

We propose to develop a mathematical framework for heterogeneous sensor 

fusion, target detection and parameter estimation that is based on the Low-Energy 

Coherence (LEC) optimum receiver design. This framework will serve to analyze 

heterogeneous sensor networks, develop pre-detection fusion rules, establish 

detection thresholds and assess system performances.  

The low-energy coherence scenario is best understood from the standpoint 

of the signal subspace of the received target echo.  The target detection problem 

is based upon a simple binary hypotheses test 

𝐻": 𝒓 𝑡 = 𝒏 𝑡       (3.18a)	

𝐻#: 𝒓 𝑡 = 𝒔 𝑡 + 𝒏 𝑡      (3.18b) 

Initially, an unbiased maximum likelihood estimate of the target covariance is 

formed from a set of received signals from a monostatic sensor, such that the target 

covariance is found from 
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𝑪 𝑟 = #
õ=#

𝒙F − 𝑥 𝒙F − 𝑥 öõ
F÷#     (3.19) 

where 𝑥F is the i-th observation of the k-dimensional random (vector) variable and 

𝑥 is found from 

𝑥 =
𝑥#
⋮
𝑥õ

= #
õ

𝑥Fõ
F÷#       (3.20) 

and is the sample mean.  Taking the singular value decomposition of Equation 

(3.18a) and (3.18b), the matrix, 𝑪 𝑟  can be factorized into the form 

𝑪 𝑟 = 𝑼𝚺𝑽∗       (3.21) 

where 𝑼 is a 𝑘	×	𝑘 unitary matrix, 𝚺 is a 𝑘	×	𝑘 diagonal matrix with non-negative 

real numbers on the diagonal, and 𝑽∗ is a 𝑘	×	𝑘 complex transpose unitary matrix.  

The diagonal elements of 𝚺 are known as the singular values and are analogous, 

under certain conditions, to the eigenvalues found from the eigendecomposition of 

a covariance matrix, see [2] for more details.  For the LEC condition to be true, 

each singular value along the diagonal of 𝚺 must be small, compared to the noise 

level.  This condition is given below 

𝜆FO ≪
4N
O
,			𝑖 = 1, 2, … , 𝑘    (3.22) 

 
Figure 10: Eigenvalues for Positive Signal-to-Noise Ratio 

 
Figure 11: Eigenvalues for Negative Signal-to-Noise Ratio 
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Having considered the target detection problem for more classical cases where the 

signal is assumed larger than the noise in the observation space, attention is now 

focused to the detection of signals in the signal space that are weaker than the 

noise space variables.  This additional constraint on the decision rule formulation 

was illustrated previously via Figure 11.  Here the assumption is made that once 

the threshold statistic is determined, the probability of false alarm and the 

probability of missed detection are easily found from the following expressions 

𝑃Q ≃ 𝑃Q
# ≜ 𝑒

𝝁 W =W𝝁Íû
ü𝝁 ý
ü erfc* 𝑠 𝜇 𝑠     (3.23) 

and 

𝑃R ≃ 𝑃R
# ≜ 𝑒

𝝁 W Í #=W 𝝁 W Í Øþý ü

ü 𝝁 W
erfc∗ 1 − 𝑠 𝝁 𝑠   (3.24) 

The function for the error function compliment, erfc∗ 𝑥  is given as 

erfc∗ 𝑋 ⋍ #
O!
𝑒=

"ü

ü ,			𝑋 ≥ 2     (3.25) 

The low-energy coherence case starts with the basic binary detection problem 

𝐻": 𝒓F 𝑡 = 𝒏 𝑡       (3.26a)	

𝐻#: 𝒓 𝑡 = 𝒔 𝑡 + 𝒏 𝑡      (3.26b) 

Noise, 𝒏 𝑡 , is assumed to be a white, zero-mean Gaussian process with spectral 

height, 4N
O

, and the signal is assumed to be a zero-mean Gaussian process.  The 

covariance function of the signal is found from 

𝑲W 𝑡, 𝑢 = 𝜆FW𝝓F 𝑡 𝝓F 𝑢 ,			𝑇F ≤ 𝑡, 𝑢 ≤ 𝑇'(
F÷#    (3.27) 

The eigenvalues, 𝜆FW, are the mean-square values of the 𝑖h� coefficient.  Should the 

signal energy be spread across a large number of coordinates, and each of these 

eigenvalues are small when compared to the spectral height of the noise process, 

then this case is referred to as the low-energy coherence (LEC) case 

𝜆FW ≪
4N
O
,			𝑖 = 1,2, …      (3.28) 

From [38], the general decision rule gives the test 
#
O

O
4N

O
𝒓 𝑟 𝑲W 𝑡, 𝑢 𝒓 𝑢 d𝑡d𝑢 ≷×N

×Ø 	𝛾ö*
öÐ

    (3.29) 

From the previous expression, the threshold function for the LEC case can be 

found to be, from [1] 

𝝁 𝑠 ≃ − W #=W
O

#
O

O
4N

𝑲W
OöÐ

ö+
𝑡, 𝑢 d𝑡d𝑢 ≜ 𝝁LEC 𝑠   (3.30) 

The bracketed term in equation (3.30) can be shown, under certain assumptions, 

to be the signal-to-noise ratio [1] and is defined by 
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𝑑O ≜
, -.

Ø ×Ø =, -.
Ø ×N

ü

Var -.
Ø ×N

     (3.31) 

where 𝑙]
#  is found from 

𝑙]
# = #

O
O
4N

O
𝜆FW𝑟FO =

#
O

O
4N

O
𝒓 𝑡 𝑲W 𝑡, 𝑢 𝒓 𝑢 d𝑡d𝑢ö*

öÐ
(
F÷#   (3.32) 

The resultant error functions are 

𝑃Q ≃ erfc∗
j
O
+ Ï

j
    (3.33)	

𝑃R ≃ erfc∗
j
O
− Ï

j
     (3.34) 

The receiver operator characteristics are easily found by varying the threshold 

parameter, 𝛾. 

3.4.1 Range-Spread	Target	Model	

For this scenario, the target is composed of point scatterers assumed to occupy a 

number of adjacent range cells.  This corresponds to an apparent spreading of the 

target returns over a number of adjacent range cells in our receiver.  Under Van 

Trees’ [1] low-energy coherence (LEC) receiver concept, a new formulation of 

Equation (3.35) is required to account for this range-spreading, necessitating the 

need for a unique implementation of the target covariance function. We begin by 

defining the range-spread target signal echo 

𝒔 𝑡 = 𝐸h 𝒇(
=( 𝑡 − 𝜆 𝑺] 𝜆 𝒇∗ 𝑢 − 𝜆 d𝜆   (3.35) 

where 𝒃] is a random variable describing the spatial sample function for the range-

spread target, and 𝒇 𝑡 − 𝜆  is the time-shifted complex envelope function of the 

signal.  Solving for the covariance function for the signal echo 

𝑲𝒔 𝑡, 𝑢 = 𝐸h 𝒇 𝑡 − 𝜆 𝑺] 𝜆(
=( 𝒇∗ 𝑢 − 𝜆 d𝜆   (3.36) 

with 𝑺] ≜ 𝐸 𝒃] 𝜆
O  is the target scattering function.  From [1], the optimal 

receiver structure is shown in Figure 12. 

 
Figure 12: Optimal Receiver for Range-Spread Target 
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The corresponding likelihood ratio test for the range-spread target is, again from 

[38] 

ℓ = #
4N

𝒓* 𝑡 𝒉 𝑡, 𝑢 𝒓 𝑢 d𝑡d𝑢(
=( 	≷×N

×Ø 	𝛾    (3.37) 

with, 𝛾, being the threshold for the decision space.  Now, under the low-energy 

coherence condition, the function 𝒉 𝑡, 𝑢  is replaced with the range-spread target 

covariance [38] 

𝒉 𝑡, 𝑢 = #
4N
𝑲𝒔 𝑡, 𝑢      (3.38) 

Substitution of Equation (3.37) into (3.26) gives the corresponding likelihood ratio 

test under the low-energy coherence conditions, corresponding to the optimal 

receiver shown in Figure 12 

ℓ = ,4
,N

𝒓∗ 𝑡 𝒇(
=( 𝑡 − 𝜆 𝑺𝑹 𝜆 𝒇∗ 𝑢 − 𝜆 𝒓 𝑢 d𝑡d𝑢d𝜆	 ≷×N

×Ø 	𝛾  (3.39) 

Van Trees’ [1] low-energy coherence receiver is inherently limited to 

implementations and scenarios that are monostatic in nature.  There is however; a 

strong desire to depart from monostatic modalities, and embrace multi-sensor 

configurations to better realize performance gains inherent in multistatic radar 

networks.  In the next section, reasons for moving beyond monostatic radar 

sensors are discussed, along with introducing differing topologies of multistatic 

radar networks and their associated system performance improvements.  

 

3.5 LEC	Revisited	in	the	Context	of	Standard	Detection	Approaches	

To illustrate our motivation for an LEC based approach let us first consider a 

classical single radio-frequency (RF) radar system where a coherent processing 

interval consists of a single pulse 𝑠 𝑡  given as 

     𝑠 𝑡 = 2𝐸Re 𝑓 𝑡 𝑒efgh ,				0 ≤ 𝑡 ≤ 𝑇j               (3.40) 

where Re ∙  denotes the real part operator, 𝑓 𝑡 is the complex envelope of the 

transmitted pulse, 𝐸 and 𝑇j	are the energy and duration of the pulse, respectively, 

and 𝜔A = 2𝜋𝑓A is the carrier frequency. Let the complex envelope of the receiver 

input be denoted by 𝒓 𝑡 .  According to whether a target is absent  𝐻" or present 

𝐻#, the two hypotheses are presented by 

𝐻": 𝒓 𝑡 = 𝒏 𝑡       (3.42a) 

𝐻#: 𝒓 𝑡 = 𝑎𝒔 𝑡 − 𝜏 𝑒ef6h + 𝒏 𝑡     (3.42b) 

where 𝑎 is a complex gain which accounts for propagation and scattering effects 

of the target and along the path between the transmitter, target and the receiver, 𝜏 
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and 𝜔¬ denote total time delay and Doppler shift experienced by the transmitted 

signal, respectively, and 𝒏 𝑡  denotes the complex envelope of the additive noise 

present at the receiver input. Let us assume additionally that the envelope 𝒏 𝑡  is 

a complex Gaussian random process with zero-mean and white in quadrature 

components with power spectral density 4N
O

. To simplify the notation we drop the 

symbol for complex envelope and rewrite the previous equation as 

𝐻": 𝒓 𝑡 = 𝒏 𝑡    (3.43a) 

𝐻#: 𝒓 𝑡 = 𝑎𝝓 𝑡 + 𝒏 𝑡 ,			𝑇F ≤ 𝑡 ≤ 𝑇'    (3.43b) 

where 𝒔 𝑡 − 𝜏 𝑒ef6h → 𝝓 𝑡  and 𝑇j = 𝑇' − 𝑇F.  This is a well-known problem where 

the optimal band-pass receiver consists of a matched filter 𝝓* 𝑇j − 𝑡   followed by 

a sampler.  Let us now go beyond this simple single radar system with a point 

target case and extend it in several directions. 

3.5.1 Multiple	Heterogeneous	RF	Sensors	with	a	Point	Target	

Let us consider a scenario with N RF sensors that utilize orthogonal waveforms. If 

we linearly fuse the receiver input signals to form a composite signal 𝒓 𝑡 =

𝒓F 𝑡4
F÷# , our two hypotheses, assuming a point target, become 

𝐻": 𝑟 𝑡 = 𝒏 𝑡       (3.44a) 

𝐻#: 𝑟 𝑡 = 𝑎F𝝓F 𝑡 + 𝒏 𝑡4
F÷# ,			𝑇F ≤ 𝑡 ≤ 𝑇'  (3.44b) 

For large N and under a few additional assumptions, the above formulated case 

becomes a LEC case. In particular, let 𝑲 𝑡, 𝑢  be the covariance function of our 

composite signal in the absence of noise. It can be written as a series 

𝑲 𝑡, 𝑢 = 𝜆F4
F÷# 𝝓F 𝑡 𝝓F 𝑢 ,			𝑇F ≤ 𝑡 ≤ 𝑇'   (3.45) 

Thus, the energy of our composite signal is distributed along N coordinates.  

𝜆 ≪ 4N
O
,			𝑖 = 1,2, … , 𝑁    (3.46) 

If we are approaching the LEC case and the optimal receiver design can be based 

on the LEC theory (note that even when LEC conditions are not fully met, a LEC 

based receiver can be an adequate near-optimal receiver).  

 

3.5.2 Over-resolved	Targets	

Processing becomes more challenging in the case of over-resolved targets. 

Namely, the target return signal does not have the form 𝑎𝒔 𝑡 − τ 𝑒ef6h and the 

return signal now becomes 
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𝒓 𝑡 = 𝒔 𝑡 − 𝜏 𝒃 𝜏 𝑑𝜏8Ø
8N

+ 𝒏 𝑡 ,			𝑇F ≤ 𝑡 ≤ 𝑇  (3.49)      

where 𝒃 𝜏  denotes the target’s impulse response and 𝐿 = 𝐿# − 𝐿"  denotes the 

target range (delay) spread. 

More generally, in the case of multiple homogeneous sensors the two 

hypotheses become: 

𝐻": 𝒓 𝑡 = 𝒏 𝑡       (3.50a) 

𝐻#: 𝒓 𝑡 = 𝒔 𝑡 − 𝜏 𝒃 𝜏 𝑑𝜏 + 𝒏 𝑡8Ø,Ð
8N,Ð

4
F÷# ,			𝑇F ≤ 𝑡 ≤ 𝑇'  (3.50b) 

The hypothesis still distills down into the traditional problem of detecting a signal 

(obtained by fusing multiple homogeneous sensors) in the presence of interfering 

white Gaussian noise. Although the corresponding signal covariance matrix 𝑲 𝑡, 𝑢  

will now have a more complicated structure, the LEC based approach can still 

apply under certain conditions.  

3.5.3 Multiple	Heterogeneous	Sensors	

Let us now consider a scenario with N heterogeneous sensors. This time the 

received signals 𝒓𝒊 𝑡 = 1,2,3, … , 𝑁, and the form of the composite signal is 

𝒓 𝑡 = 𝜇F𝒓F 𝑡4
F÷#       (3.51) 

where 𝜇F coefficients are responsible for adequate scaling of time domain signals 

of a different nature.  The new covariance matrix 𝑲 𝑡, 𝑢  will possess a complex 

structure that will have to be ascertained based upon the observational sensors 

utilized and the nature of the target. However, once the sensors and target are 

chosen, the LEC based findings regarding the (sub)optimal receiver design can be 

utilized. It can be shown that the optimal LEC receiver, assuming that all conditions 

are perfectly met, has the implementation as shown in Figure 13.  

	
Figure	13:	Optimal	LEC	Receiver 

In Figure 13, 𝑺 𝜔  denotes the power spectral density of the signal of interest whilst 

g  denotes the detection threshold. Thus, it is a relatively simple structure that 

consists of a filter, followed by a square-law operation and an integrator. The 

challenge in this effort is to investigate the implications that different sensor 
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densities and extended target bodies have on 𝑺 𝜔  and the receiver structure 

shown above. 

 

3.5.4 Clutter	Considerations	

So far, we have assumed the received signal is comprised of the signal of interest 

(target return) and white Gaussian noise at the sensor receiver. When considering 

the use of the LEC approach, this results in a fairly benign covariance function. 

When only the signal and white Gaussian noise are present at the receiver, the 

covariance of the received signal equals: 

    𝑹 𝑡, 𝑢 = 𝑲 𝑡, 𝑢 + 4N
O
𝜹 𝑡 − 𝑢                                (3.52) 

In most practical situations, surface clutter (terrain or sea) and noise are present 

at the receiver(s). As a consequence, the covariance matrix of the received signal 

thus becomes: 

     𝑹 𝑡, 𝑢 = 𝑲 𝑡, 𝑢 + 𝑹A 𝑡, 𝑢                                    (3.53) 

where 𝑹A 𝑡, 𝑢  denotes the covariance of the received signal in the absence of 

target. In order to follow the LEC based approach one has to adequately pre-

process the received signal so that its covariance has the form as in Equation 

(3.52). This is typically accomplished by pre-whitening. In the case when 𝑹A 𝑡, 𝑢  

is known, the pre-whitening leads to a processed signal with the covariance:   

    𝑹′ 𝑡, 𝑢 = 𝑹A=#𝑲 𝑡, 𝑢 + 𝜹 𝑡, 𝑢                                   (3.54) 

In a more realistic case when the noise plus clutter covariance has to be estimated, 

after the whitening we obtain: 

𝑹′ 𝑡, 𝑢 = 𝑹A=#𝑲 𝑡, 𝑢 + 𝑹A=#𝑹A 𝑡, 𝑢                             (3.55) 

where 𝑹A is the estimate of 𝑹A so that 𝑹A=#𝑹A ≈ 𝜹 𝑡, 𝑢 . Thus, in the presence of 

clutter the corresponding LEC based receiver has the general form as shown in 

Figure 14 where 𝒉Ê 𝑡, 𝑢  is the multi-dimensional pre-whitening filter and 𝑺Ê 𝜔  is 

the power spectral density of the pre-whitened signal of interest, that is the 

processed signal with the covariance 𝑹A=#𝑲 𝑡, 𝑢 . 

 

Figure	14:	Optimal	LEC	Receiver	with	Pre-Whitening	Filter	
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3.6 Moving	Beyond	the	LEC	

In the previous section the low-energy coherence (LEC) receiver concept was 

detailed for single and multiple sensors.  One point of consideration that was not 

adequately addressed was the requirement for the LEC to have a priori knowledge 

of the observed target covariance in order for the receiver conditions to be satisfied.  

This is not a point of triviality, this is the sell for the LEC receiver as a method for 

detecting objects that are weak, or have extremely low signal-to-noise ratios 

(SNRs) at the receiver front-end.  However, for most practical consideration of the 

United States Air Force, the nature of the target is not always known a priori; in 

fact, in most instances, the role of the radars and networks of sensors is to find, 

fix, and track objects of interest.  This entails detection and passing valid detection 

reports to a tracker.  The purpose of a tracker is to maintain cognizance of the 

target of interest and minimize false alarm reports, or so-called Type II statistical 

errors.  Indeed, for this work, the focus is on the ability of a distributed sensing 

network to engage in the detection of a target body without the requirement for a 

priori knowledge of its accompanying covariance function. To that end, we focus 

primarily on the detection algorithms and leave the role of false alarm reduction to 

a follow-on, or associated, tracker algorithm. 

Further, the role of our detection algorithms is to deduce the presence of a 

target, as well as how many are present. This later point is referred utilizes 

statistical ranking to appropriately determine the total salient scattering features 

that are present on the target body. Recall, that for this work, the target is 

considered extended, which refers to the fact that the target is comprised of 

multiple scattering centers. As the target body is a contrived example comprised 

of a trio of dielectric spheres arranged in Cartesian space, we appropriately refer 

to each canonical scattering center, as a salient scattering feature. 

Before we move forward with this work, we need to derive the mathematical 

formulation of our pre-detection fusion process that forms the basis of our bespoke 

depth-based and weak SNR detection algorithms of Chapters 4 and 6, 

respectively.   
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3.7 Introduction	to	the	Pre-Detection	Fusion	Process	

The purpose of this section is to introduce the reader to the basic concepts of pre-

detection fusion. More generally, we focus on the development and processing 

methodology for a distributed radio-frequency (RF) sensor network comprised of 

multiple transceivers that transmit and process a single tone on receive.  Following 

a mathematical time-reversal operation, the data is sent to a single radar sensor-

fusion node that is capable of implementing a pre-detection fusion algorithm from 

data transmitted by the multiple radio-frequency sensors comprising the distributed 

sensing network; we call this sensor-fusion node, the fusion center.  The role of 

the fusion center is as simple, or as complex, as the system of systems sensing 

architecture demands.  For example, the fusion center may apply a pre-detection 

fusion algorithm and re-transmit that data to a secondary network, or the data may 

be further processed onboard for near-real time or real-time purposes.  For the 

duration of this chapter, it is assumed that the data is processed on board a single 

fusion center, with no real-world constraints being placed on the form of this 

sensor.  In fact, for the remainder of this work, the development and application of 

algorithms are assumed to take place within the fusion center itself.  Individual 

sensors comprising the distributed network are assumed capable of processing 

and transmitting their received information, but are not investigated further beyond 

this level; primary focus is on the pre-detection fusion and post-fusion algorithms 

and associated performance characteristics.  Investigations into the 

phenomenology of the target are slowly introduced from a simple Born 

approximation to an extended target body comprised of multiple dielectric 

scattering centers.   

 

3.7.1 Time-Reversal	Operator	for	Isotropic	Target	Scattering	Centers	

In this section, the concept of the pre-detection fusion process is derived, starting 

with the scalar wave equation.  The time-reversal operator that is produced by the 

pre-detection fusion process is utilized throughout the remainder of this work.  We 

start with the simple case of point-type targets; those targets that are assumed to 

possess a finite reflectivity, but are volumetrically infinitesimally small. For the 

following simulation, the transmitters and receivers are assumed to be equally 

distributed on a circle surrounding the multiple scattering centers of a range-

extended target body.  The point targets are assumed to be in the far-field and be 

positioned multiple wavelengths apart-i.e. 𝑑 ≫ 𝜆 .  
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Let us begin by considering the propagation of some number of scalar 

waves in the presence of 𝑟 target scattering centers (reflectors) localized within a 

finite-sized spatial-domain-or more simply, multiple targets in a bounded spatial 

domain.  The local variation of the speed of propagation induced by the 𝑟h� 

reflector at a particular location in the Cartesian coordinate system, denoted by 𝒙𝒋, 

is  

𝑣e 𝒙 = 𝜂e𝟏xy 𝒙 − 𝒙e     (3.56) 

where Ωe  is a compactly supported spatial-domain with volume lj, and 𝟏xy	 is a 

characteristic function of Ωe, and 𝜂e is the dielectric contrast (which is equivalent to 

the strength of the target reflector reflectivity at 𝒙e).  The corresponding speed of 

propagation, for the scalar wave, is then shown to be of the form 
#

Aü 𝒙
= #

ANü
1 + 𝑉e 𝒙Ó

e÷#     (3.57) 

with 𝑐" denoting the known propagation speed (3×10> 	𝑚 𝑠 in a vacuum), which 

corresponds to the local variation in the speed of light constant.  Let's also assume 

that a time-harmonic point source acts at the location 𝒛 with frequency .  The 

resulting field in the presence of the 𝑟  target reflectors is the solution to the 

following transmission problem 𝑢 ⋅, 𝒛   

△𝒙 𝑢 +
fü

Aü 𝒙
𝑢 = −𝛿𝒛 𝒙     (3.58) 

with the radiation condition imposed on 𝑢.  The transmitter array of 𝑀 sources and 

the receiver array of 𝑁 elements are located at (all in relation to the Cartesian 

coordinate system) 

𝑀 ∶= 𝒛#, … , 𝒛R     (3.59a)	

𝑁 ∶= 𝒚#, … , 𝒚4     (3.59b) 

The field received by the 𝑛h� receiving element (radar receiver) 𝐲~ when the wave 

is emitted from the 𝑚h� transmitter element (radar transmitter) 𝐳𝒎 is 𝑢 𝒚4, 𝒛R .  If 

the incident field is removed, then the 𝑛,𝑚 h� entry of the corresponding time-

reversal operator is obtained 

A~� = 𝑢 𝒚~, 𝒛� − 𝐺 𝜔, 𝒚~, 𝒛�     (3.60) 

The incident field is the homogeneous Green's function given by 𝐺 𝜔, 𝒙, 𝒚  of the 

wave equation, which for two-dimensions is given by 

𝐺 𝜔, 𝒙, 𝒚 = F
D
𝐻"

# f
AN
𝒚 − 𝒙    (3.61) 

with 𝐻"
#  representing a Hankel function of the first-kind, zeroth-order.  For the 

remainder of this work, the focus is on a planar Cartesian coordinate system, a 

ω
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limitation that is readily moved to three-dimensional space via utilization of an 

alternate form of the Green's function. 

In the Born approximation, the volume for Ωe, 𝑗 = 1,… , 𝑟 goes to zero, and 

the measured field is approximated by the expression 

𝑢 𝒚~, 𝒛� = 𝐺 𝜔, 𝒚~, 𝒛� + 𝜌eÓ
e÷# 𝐺 𝜔, 𝒚~, 𝒙e 𝐺 𝜔, 𝒙e, 𝒛�  (3.62) 

for all transmitter and receiver locations 𝒚4  and 𝒛R .  The coefficient 𝜌e  is the 

reflection coefficient for a given target body and is defined by the quantity 

𝜌e =
fü

ANü
𝜂e𝑙eO      (3.63) 

We determine the singular value from the expression 

𝜎e ∶= 𝜌e 𝐺 𝜔, 𝒙e, 𝒚~
O4

~÷#

Ø
ü 𝐺 𝜔, 𝒙e, 𝒛�R

�÷#

Ø
ü  (3.64) 

where 𝐺 𝜔, 𝒙e, 𝒚~  is the general form of the radar sensor receiver array Green's 

functions and 𝐺 𝜔, 𝒙e, 𝒛�  is the general form of the radar sensor transmitter array 

Green's functions.  To formulate the time-reversal operator, it is also necessary to 

calculate the normalized vector of Green's functions for the radar sensor 

transmitter and receiver array. The normalized vector of Green's functions for the 

receiver array to the reflector point specified by 𝒙 is given by 

𝒖 𝒙 ∶= #

E f,𝒙,𝒚F üG
FHØ

Ø
ü
𝐺 𝜔, 𝒙, 𝒚~

~÷#,…4
  (3.65) 

The normalized vector of Green's functions for the radar sensor transmitter array 

from the reflector point specified by 𝒙 is given by 

𝒗 𝒙 ∶= #

E f,𝒙,𝒛F üÒ
FHØ

𝟏
𝟐
𝐺 𝜔, 𝒙, 𝒛~

�÷#,…,R
  (3.66) 

Having solved for the target reflector singular value and the normalized 

vector of Green's functions for the radar sensor transmitter and receiver array, the 

associated time-reversal operator is determined from the following 

A = 𝜎e𝒖 𝒙e 𝒗 𝒙e
∗Ó

e÷#      (3.67) 

We note that Equation (3.67) is of rank 𝑟 and positive semidefinite. This latter point 

is of critical importance as we venture from positive-to-negative signal-to-noise 

ratios, see Chapter 5 for further details. Equation (3.67) is the ultimate form of our 

pre-detection fusion process, resulting in the formation of the target time-reversal 

operator.  Finally, the idea of using the time-reversal operator to preserve our target 

data in a higher dimensional space-an outer product space-is a unique contribution 

of this data fusion process, and one that contributes to the efficacy of the detection 

and ranking algorithms presented in Chapters 4 and 6. 
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3.7.2 Inclusion of Additive Measurement Noise 
It is assumed that all measurements contain some element of additive noise (ie-

receiver thermal noise, environmental, etc), represented by W, which is considered 

a matrix of independent and identically distributed complex entries with Gaussian 

statistics, WF,e ∈ 𝐶𝒩 0, 𝜎O . The resultant measured time-reversal operator is then 

B = A+ #
R

W    (3.68) 

Equation (3.67) is valid for the non-trivial asymptotic regimes in the limit 𝑀 → ∞, 

where the scaling factor #
R

 is appropriate.  The challenge is to first detect the 

presence of a signal, then rank the number of signals, to determine the ultimate 

number of target reflectors-ie target scattering centers-within the scene of interest. 

For most detection algorithms, a single target is assumed present, resulting in a 

singular metric for the determination of target present/absent.  In stark contrast, 

range-extended targets, possessing multiple-scattering centers, result in a non-

singular metric for determination of target present/absent-necessitating the 

requirement for an iterative detection methodology.  This iterative detection 

methodology, in the form of statistical ranking, is developed and demonstrated for 

each detection algorithm present in this thesis.  

 

3.7.3 Clutter Considerations 
Corruption noise is assumed comprised of environment noise and clutter, as well 

as thermal receiver noise from each radar sensor forming the distributed radio-

frequency sensor network.  In order to keep the number of variables to a minimum, 

clutter is not presently considered, only receiver thermal and environmental noise 

processes are considered.  Following the completion of this initial investigation, 

challenges associated with the incorporation of clutter will be considered; however, 

at this stage in algorithm development, clutter introduces an additional variable that 

is manifest as a secondary bounded perturbation on the time-reversal operator; 

above and beyond that of the bounded rank perturbation from the target objects 

within the scene under illumination by our multistatic radar sensor network.  The 

challenges associated with separating the clutter rank from the signal rank are well 

known, as are effective mathematics for minimizing its deleterious impact on radar 

sensor network detection performance [48-49].  Should a desire exist to 
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incorporate clutter into the performance predictions for the depth-based detector, 

the process is rather straightforward; though, clutter models would be excessively 

complicated by the dimensionality of the multistatic radar sensor geometries-

particularly for three-dimensional cases!  Assume, no matter how simplistic this 

view is in reality, that clutter is an additive corruptive process.  Further, assume 

this clutter corruptive process is characterized by a series of measurements that is 

unique to each radar sensor, and to each point in the observational space of the 

multistatic network.  Finally, without particular concern for the naivety of the 

following assumption, assume the clutter corruptive process is complex, and 

comprised of a unique complex valued reflectivity that may-or may not-conform to 

any of the known uni-, bi-, or multi-variate random processes.  The clutter 

corruptive process is now found in much the same manner as the time-reversal 

operator comprised of range-extended target reflectivity information.  Of note, is 

the fact that the formulation of the clutter time-reversal operator is very much in 

keeping with the process of determining the target time-reversal operator for a 

partially-coherent target-or a target that is has an angular dependence on the 

observed target reflectivity. In Chapter 5, the partially-coherent range-extended 

target structure is composed of multiple scattering centers with each scatterer 

having a reflectivity value that is based upon the observational angle of the radar 

sensor.   

Start by considering the apparent clutter reflectivity observed by each radar 

sensor comprising the multistatic network.   

𝜓 = fü

ANü
𝜂𝑙O      (3.69) 

Next, extend the monostatic observation into a general observed clutter reflectivity 

variable 

  𝜓e =
fü

ANü
𝜂e𝑙eO,			𝑗 ∈ 1,2, … 𝑟    (3.70) 

Now, assuming the clutter variable conforms to a complex distribution (uni-, bi-, 

multi-variate), 𝒫, the general form of the clutter additive corruptive noise process 

is PF,e ∈ ℂ𝒫 𝜇e, 𝜎eO, … ; where the notation, … , refers to higher order moments of 

the general clutter distribution, 𝒫.  Solving for the respective time-reversal operator 

of the observed clutter reflectivity singular values, we have 

Ψe ∶= 𝜓e 𝐺 𝜔, 𝒙e, 𝒚~
O4

~÷#

Ø
ü 𝐺 𝜔, 𝒙e, 𝒛�R

�÷#

Ø
ü  (3.71) 
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The respective time-reversal operator of the observed clutter reflectivity, and again 

ignoring the naivety of the additive assumption, we have general form of the clutter 

corruptive noise process  

P = Ψe𝒖 𝒙e 𝒗 𝒙e
∗Ó

e÷#    (3.72) 

Again, whilst the study of clutter and associated impacts on radar performance 

(mono-, bi-, or multistatic) is of ongoing importance to the radar community, clutter 

considerations are a bit beyond the scope of this work, though is an active area of 

investigation, see Chapter 7 for further discussion. 

 

3.8 Summary	

In this section, we have introduced the rudiments of radar detection, statistical 

decision theory, and the low-energy coherence (LEC) receiver.  We then walked 

through the derivation of the LEC receiver paradigm from a monostatic to 

multistatic formulation.  In each instance of the LEC receiver construct, there is a 

requirement to know the target covariance a priori.  This is indeed the underlying 

assumption required for use of the LEC under varying noise and clutter conditions.  

However, the goal of this work is to permit distributed sensor network detection 

algorithms to be implemented under two conditions: the first is that the data 

collected from each sensor is fused prior to detection, our so-called pre-detection 

fusion process; and second, that the fused data is then processed through a 

detection, and later ranking, algorithm that does not require any a priori knowledge 

of the target or target covariance.  To that end, we conclude this section with an 

overview of the pre-detection fusion process that serves as the basis for the 

bespoke detection, and ranking, algorithms of Chapters 4 and 6.  The pre-detection 

fusion process is derived from first principles, and extended to include corruptive 

noise and clutter processes.  Going forward, corruptive clutter is left to follow-on 

work, see Chapter 8, whilst the emphasis for Chapters 4 and 6 is the recovery of 

targets via additive corruptive noise.  This serves to deepen the understanding, 

and permit comparison, of the bespoke detection and ranking algorithms of 

Chapters 4 and 6 with each other, and those commonly used in academia and 

industry. 

 In the next chapter, the basis of the nonparametric detection and ranking 

algorithm is introduced for a distributed radio-frequency sensor network.   
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4 Nonparametric Detection and Ranking for a 
Distributed Radio-Frequency Sensor Network 

 

4.1 Overview 
In this Chapter, we introduce a novel non-parametric depth-based method for the 

target detection and ranking problem in noisy environments under nominal signal-

to-noise ratios. Specifically, a distributed sensor network comprised of multiple 

transceivers is considered. Each sensor is able to transmit and receive a single 

tone; which is passed to a fusion center where the data is formed into a time-

reversal operator via a pre-detection fusion algorithm. An algorithm is introduced 

for the determination of the presence of a target(s) in the background medium. The 

detection performance versus signal-to-noise ratio is developed for a given false 

alarm rate and compared to a typical monostatic sensor. After detection, a critical 

challenge in sensing is determining the number of targets present in the scene of 

interest. With this challenge in mind, an algorithm is introduced to determine the 

effective rank of the time-reversal operator; this algorithm is developed via depth-

based methods and is shown to be robust when the PD is above 90%. 

 

4.2 Introduction Non-Parametric Detection via Statistical Data Depth 
One challenge in formulating predicted detection performance for a multi-sensor 

system, especially one incorporating waveform diversity, is that traditional 

assumptions of Gaussianity are no longer valid. During the 1940’s British 

mathematicians were able to show with a continuous wave radar that the 

measurements did indeed follow a Normal distribution (were Gaussian); or 

Rayleigh in the case of a magnitude detector. However, since those early days of 

radar, a plethora of waveforms have been developed, proposed, and implemented; 

not all of these waveforms have been shown-mathematically-to conform to the 

normality assumption.  

Further, when the underlying corruptive noise processes begin to stray from 

mono- and bivariate populations, classical approaches begin to break down, 

leading to uncertainty of the detection process. When coupled with the desire for 

sensor systems to operate in evermore challenging environments, we begin to 

appreciate the requirement for nonparametric methods for multivariate populations 
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of corruptive noise. Any proposed nonparametric detection algorithm should also 

perform amicably under bivariate populations of corruptive noise processes-i.e. 

those that are readily characterized through second-moment methods, such as the 

covariance matrix. In this work, a novel non-parametric depth-based method for 

detecting an object in a background medium comprised of noise emanating from 

either a bi-or multi-variate population is presented.  A distributed sensor network 

comprised of multiple transceivers is specifically considered. Each sensor, or node, 

is able to transmit and receive a single tone; with the output of the receiver from 

each node feeding into a central fusion center. This fusion center applies a pre-

detection fusion algorithm to the received data to form a common time-reversal 

operator, upon which a variety of processing tasks may be accomplished. In 

particular, an algorithm is introduced for determining the presence of a bounded 

rank perturbation of the resultant time-reversal operator. The detection 

performance is further enhanced by the inclusion of the Neyman-Pearson criterion 

for the depth-based detector. The detection performance versus signal-to-noise 

ratio (SNR) is compared to that of a single pulse and envelop detector, as well as 

a newer random matrix theoretic detection statistics introduced in [50]. We 

demonstrate, for the case in which the noise is assumed Gaussian, the 

performance of the depth-based detector is significantly better than the single 

pulse and envelope detector. 

Further, we introduce a method of statistical ranking, whereby the overall 

rank of the perturbation to determine the effective number of signals present in our 

time-reversal operator is quantified. The ability to introduce statistical ranking into 

our detection algorithm greatly increased the overall utility of this proposed 

nonparametric approach.  

When the bounded rank perturbation is greater than unity, the depth-based 

detection algorithm is able to account for the presence or absence of a target(s), 

but not the number of targets present. We next introduce a ranking algorithm to 

permit the estimation of the effective rank of the perturbation. The ability to 

introduce statistical ranking into our detection algorithm greatly increases the 

overall utility of this proposed nonparametric depth-based approach for detection. 

This allows the distributed sensor network to both detect and estimate the number 

objects within the scene under illumination. A series of Monte Carlo simulations 

are considered for a variety of signal-to-noise ratios, and the robustness of the 

ranking algorithm is determined in reference to set the probability of detection.  
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Due to the nonparametric foundation of our detection and ranking 

algorithms, we are unable to directly compare the anticipated performance once 

the underlying corruptive noise process is multivariate. In an effort to show efficacy, 

we compare the performance of the depth-based detector against a general class 

of monostatic detector. In an effort to quantify the lower-bound of detectability with 

our depth-based detector, we also consider the multivariate corruptive noise 

process to be initially known a priori-the clairvoyant case-which permits the 

detection threshold to be characterized through a Monte Carlo simulation to great 

precision; we follow this with the case in which a second multivariate process- the 

unknown case-is used to estimate the detection threshold under limited sample 

support; the results for both cases are compared. Due to the underlying uncertainty 

surrounding general classes of multivariate processes, especially those that are 

not completely characterized a priori, our depth-based detector performance, while 

applicable to any corruptive noise process, will have a detection performance that 

varies from multivariate population to multivariate population. Owing to the better 

detection performance versus classical detection schemas, we anticipate the 

benefits of utilizing the depth-based detector for challenging corruptive noise 

processes will outweigh any performance uncertainty that may come from 

detection and ranking under multivariate conditions with regards to the false alarm 

rate versus probability of detection.  

The detection performance versus signal-to-noise ratio is developed and 

compared to that of a typical monostatic radar. To control the effective false-alarm 

rate of the detection statistic, the depth-based detection algorithm is formulated as 

a Neyman-Pearson detector, so that the false-alarm rate can be set to a constant 

value while determining the probability of detection versus signal-to-noise ratio.  

 

4.2.1 Introduction to Half-Space Depth and Associated Properties 

Given 𝑘  multivariate populations 𝜋F = 𝜋 𝑃F  on ℝj, 𝑑 > 1 , with absolutely 

continuous distributions 𝑃F , defined on random variables 𝑋F  for 𝑖 = 1,2, … , 𝑘  we 

propose a procedure for selecting the "most dispersed" member from a group 𝑘 

populations.  We define our measure of dispersion in terms of the depth-based 

scale curve introduced by Liu, et al. in [51].  The scale curves if 𝒫 is the collection 

of probability distributions, we may consider a depth function to be any bounded, 

nonnegative mapping 𝐷 ⋅;⋅ : ℝj×𝒫⟶ ℝ that provides a probability based center-
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outward ordering of points in ℝj.  For the center-outward ranking, we will make 

use of Tukey's Half-Space Depth [52-53] 

𝐷 𝑥; 𝑃 = inf 𝑃 𝐻 𝑥 ∈ 𝐻,𝐻 is a closed half-space  (1.1) 

where 𝑥 ∈ ℝ.  This half-space depth has four primary properties that provide insight 

into the power and utility of depth-based measures, these properties were 

proposed in [54] 

1. 𝐷 𝐴𝑥 + 𝑏;  𝑃­°ÍL = 𝐷 𝑥; 𝑃°  for any random vector 𝑋 ∈ ℝj, and 𝑑	×	𝑥 

nonsingular matrix 𝐴, and any 𝑑	×	1 vector 𝑏. 

2. For any 𝑃 ∈ 𝒫 with center Θ, then 𝐷 Θ; 𝑃 = 𝑠𝑢𝑝° 𝑥; 𝑃 . 

3. If Θ is the deepest point for any 𝑃 ∈ 𝒫, then 𝐷 𝑥; 𝑃 ≤ 𝐷 Θ + 𝛼 𝑥 − Θ ; 𝑃  

for 𝛼 ∈ 0,1 . 

4. 𝐷 𝑥; 𝑃 → 0 as 𝑥 → ∞ for any 𝑃	×	𝒫. 

 

4.2.2 Depth-Regions and Measures of Dispersion 
Application of property (1) allows for the definition of 𝛼-trimmed depth-regions of 

𝑃,  

𝐷> 𝑃 = 𝑥 ∈ ℝj 𝐷 𝑥; 𝑃 ≥ 𝛼    (4.2) 

If we solve for the volume of a particular 𝛼-trimmed depth-regions, we have de 

facto solved for the dispersion of that same region.  In order to compare the 

dispersion of one population with that of a second population, we introduce the 

concept of a scale curve.  The scale curve is the volume, or dispersion, and is 

defined as 

𝑉� = inf Volume 𝐷> 𝑃 𝑃 𝐷> 𝑃 ≥ 𝑝, 0 < 𝛼 < 𝛼∗   (4.3) 

with 𝑝 ∈ 0,1  and where 𝛼∗ = 𝑠𝑢𝑝°∈ℝM𝐷 𝑥; 𝑃 . 

 

Definition 1. For 𝑝 ∈ 0,1 , we say that 𝜋F  is more dispersed, or more 

concentrated, than 𝜋e (at level 𝑝), if 𝑉F
� ≥ 𝑉e

� is the volume from the population 𝜋F. 

 

If 𝑃 is absolutely continuous, according to [54], the collections of 𝐷∝ 𝑃  based on 

the half-space depth are affine equivariant, nested, connected, and compact for 

𝑝 ∈ 0,1 . 
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4.2.3 Empirical Distribution 
For any given set of data, let 𝑋F,#, 𝑋F,O, … , 𝑋F,~ be a random sample from 𝑃F  for a 

random variable 𝑋F, and 𝐵 be a Borel set, the empirical distribution is defined as 

𝑃F,~ 𝐵 = #
~

𝐼� 𝑋F,e~
e÷#     (4.4) 

with 𝐼� 𝑥  being an indicator function for 𝐵.   

 

4.2.4 Depth-Based Detection 
In order to formulate the hypothesis test, we need to first define the two populations 

that are to be compared. The first population is that of a general class of arbitrary 

distribution, representative of the background medium-i.e. Gaussian noise.  The 

second population is a measured time-reversal operator consisting of a bounded 

rank signal perturbation with additive noise; in which the noise is scaled to simulate 

a set of signal-to-noise sample values.  From these two populations, we define a 

new depth-based detection statistic, but first let us revisit the binary hypothesis test 

utilized for our example. 

𝐻" ∶= 𝒏 𝑡      (4.5a)	

𝐻# ∶= 𝒔 𝑡 + 𝒏 𝑡     (4.5b) 

Typically, we measure a component of the received signal and compare this value 

to a pre-determined, or adaptive, threshold that allows us to transform equation 

(4.5a) and (4.5b) into 

𝛿ThresholdN×Ø
O×N      (4.6) 

with the null hypothesis indicating the absence of a signal.  The depth-based 

detection method is also based on a threshold statistic, determined from a ratio of 

two dispersion values  
P Ð

P Threshold
= 𝛿     (4.7) 

in which 𝑉F  and 𝑉Threshold  are the differential dispersion values for the populations 

of the measured time-reversal operator and noise matrix with arbitrary distribution, 

respectively.  Differential dispersion values are derived from the difference of two 

dispersion values, as shown below 

𝑉Threshold = 𝑉Threshold
? − 𝑉Threshold

�    (4.8) 

The differential dispersion is the difference between the volume defined by the 

contour 𝛽, and that of the volume of a second contour 𝑝.  Typically, we define 𝛽 ≃

1, to ensure we incorporate all of the population values in our depth functional; the 
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second dispersion is found from a smaller contour defined by 𝑝 ∈ 0,1 .  In this 

instance, we have defined 𝑝 = 0.5,0.75,0.9 .  The difference between these two 

contours defines the volume of an annular region, 𝑉Threshold ; with an increase in 

the annular region being attributed to the presence of a signal.  We compare the 

differential dispersion of the assume noise threshold, with that of the measured 

data.  In this manner, the second differential dispersion value in the threshold 

statistic is given as 

𝑉F = 𝑉F
? − 𝑉F

�     (4.9) 

The depth-based detection binary hypothesis test is now akin to 

𝛿N×Ø
O×N𝛿Threshold     (4.10) 

where the 𝛿Threshold is determined for a given class of measurement noise.  For the 

purpose of this thesis, the threshold is found empirically through a Monte Carlo 

simulation; a large number of noise realizations were created, for two population 

groups of white Gaussian noise comprised of 124 singular values, to determine the 

empirical volume of the annular region bounded by the contour 𝐷� and 𝐷?; this 

Monte Carlo simulation was repeated several times to ensure a consistent 

estimator for the empirical mean 𝜇 and standard deviation 𝜎.  For each instance, 

the empirical volume is calculated for the annulus by subtracting the volume of the 

𝑝 = 0.5,0.75,0.9  contours from the 𝑝max = 1 contour.   The mean and variance for 

the volume of the annular region is listed in Table 2 
Table 2: Empirical Thresholds 

𝑽𝒑𝒕𝒉 Annulus 𝝁 𝝈 𝑽Empirical 

𝟗𝟎% 0.0016 3.2𝑒=D 𝜇 + 𝑘𝜎 

𝟕𝟓% 0.0011 3.2𝑒=D 𝜇 + 𝑘𝜎 

𝟓𝟎% 4.3𝑒=D 2.3𝑒=D 𝜇 + 𝑘𝜎 

 

From Chebyshev's Inequality, we know that for any distribution in which the 

standard deviation is defined, the variables that fall within a certain number of 

standard deviations from the defined mean, 𝑘𝜎, is at least as much as [55] 
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Table 3: Empirical Threshold Table 

Minimum Population 
from the Mean 

Number of Standard Deviations  
k 

50% 2 

75% 2 

89% 3 

94% 4 

96% 5 

97% 6 

𝟏 −
𝟏
𝒌𝟐

 
k 

 

From Table 3, we see that for an empirical false alarm rate of 6%, we would require 

the 𝑉ö�Ó[W�\-j, 𝜇 + 𝑘𝜎, to be equivalent to 𝜇 + 4𝜎; likewise, for an empirical false 

alarm rate of 4%  and 3% , we require the 𝑉ö�Ó[W�\-j  to be 𝜇 + 5𝜎	and 𝜇 + 6𝜎 , 

respectively.   Further, the dispersion resulting from the addition of a signal in the 

measured noise is manifest from the outlying nature of the signal singular values, 

when compared to the body of the measured noise plus a priori noise distribution 

data depth functional [56]; which is true for nominal signal-to-noise ratios (SNR).  

This is due to the fact that the singular values associated with the signal exhibit a 

level of eigenvalue repulsion, allowing them to be separate from the body of the 

data depth functional, see Figure 15.  As the SNR decreases, this 'eigenvalue' 

repulsive force becomes weaker and the signal singular values become distributed 

on the outer contour of the data depth functional.  From this vantage point, we are 

not seeking the point of deepest depth for signal detection, but the values for which 

the singular values are most outlying, and result in an increase in volume for a 

given annular contour bounded by 𝑝h� ∈ 𝑝, 1 .  Since we have defined the metric 

as the ratio of scale curves, and the false alarm rate is controlled by the empirical 

𝑉ö�Ó[W�\-j, in this manner the threshold is actually equivalent to unity, 𝛿ö�Ó[W�\-j =

1.  The Chebyshev Inequality represents a more severe constraint on the detection 

statistic, and should be more robust, though may result in lower 𝑃¬ versus SNR for 

a given 𝑃Q­.  

Having introduced the depth-based detection algorithm, a summary of the 

procedures for implementing the algorithm are listed in the table below for 

Algorithm 4.1. 
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Algorithm 4.1: Depth-Based Detection Algorithm 

1a: Calculate 𝑵 Versions of the target-free time-reversal operator from target-free training data, 

B𝑵;Threshold 

1b: Calculate the time-reversal operator under test, B 

2: Set the desired values for contour 𝑫𝜷 and 𝑫𝒑 

3a: Calculate the differential volumes from the annulus of each of the 𝑵 target-free time-

reversal operator formed by the contours of 𝑫𝜷 and 𝑫𝒑  

𝑽𝑵;Threshold = 𝑽𝑵;Threshold
𝜷 − 𝑽𝑵;Threshold

𝒑  

3b: Calculate the differential volumes from the annulus of the time-reversal operator under test 

formed by the contours of 𝑫𝜷 and 𝑫𝒑 

𝑽𝒊 = 𝑽𝒊
𝜷 − 𝑽𝒊

𝒑 

4a: Calculate the mean, 𝝁, and standard deviation, 𝝈 of the target-free differential volumes, 

𝑽Threshold 

4b: Set the desired false alarm rate, 𝒌, to form 𝑽Threshold = 𝝁 + 𝒌𝝈 

4c: Calculate the nonparametric threshold value for the binary hypothesis test 

𝛿Threshold =
𝑽𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅;	𝝁a𝒌𝝈
𝑽𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅;	𝝁a𝒌𝝈

 = 1 

5: Calculate the ratio of differential volumes for the threshold and time-reversal operator under 

test 

𝛿 =
𝑉b

𝑉ö�Ó[W�\-j
 

6: Determine the outcome of the binary hypothesis test 

𝛿N×Ø
O×N𝛿Threshold 

 

Having determined the empirical threshold statistic for the hypothesis testing, the 

proceeding section is dedicated to a demonstration of efficacy of the depth-based 

detection algorithm for a range-spread target comprised of three scattering centers 

corrupted by measurement noise. 

 

4.3 Depth-Based Detection Examples 
In this example, there are three isotropic scattering centers comprising an over-

resolved (ie-range-extended) target that are within the scene under illumination by 

the distributed sensor network.  Since the Born approximation was utilized to 

develop the time-reversal operator, the reflectivity of the target scattering centers 

are fixed, with an associated volume of zero.  The surrounding background medium 

is assumed to be that of a standard Gaussian noise type.  We further approximate 

the form of the noise to be white Gaussian noise, 𝒩 0, 𝜎O , with the variance fixed 
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at a value of unity.  The signal-to-noise ratio is varied from −3𝑑𝐵 to 10	𝑑𝐵 in order 

to capture a broad range of conditions resulting from the sensor network pre-

detection fusion process.  The resulting signal subspace rank is then three, with all 

other rank components being associated with the random noise process.  As the 

noise is increased, the eigenvalue repulsion between the noise and signal 

weakens; this weakening results in missed detections and the potential for false 

alarms.  This later statement implies a fundamental limit of efficacy for the depth-

based detection algorithm for a given range of signal-to-noise ratio values, that is 

addressed and overcome in Chapter 6. 

Fundamentally, there is no set constraint on the underlying statistical 

distribution for either the signal or the noise; white Gaussian noise was chosen so 

that the results of this novel depth-based detection method are readily comparable 

against traditional monostatic receiver operating characteristics-ie single pulse and 

envelope detectors. 

 
Figure 15: Data Depth Functional Annular Volume Comparison for Noise Only vs Signal+Noise 

	

4.3.1 Depth-Based Detector Performance: Non-Parametric Case 
In order to develop an adequate probability of detection curve, a Monte Carlo 

simulation was performed at each signal-to-noise ratio (SNR) sample.  The number 

of Monte Carlo runs per SNR increment was large enough to ensure a 

representative sample point was captured that would be free from spurious 

statistical anomalies arising from the random noise process.  At present, the depth-

based detector is not optimized to run on a parallel processing computing 

architecture, so is single-threaded, and computationally inefficient.  As 

computational efficiency was not an initial goal of this effort, this was an acceptable 

trade for initial demonstration of efficacy of the depth-based methods for detection 
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and ranking.  Thus, the number of Monte Carlo simulations were kept to a 

statistically significant value, but not increased to a number that would effectively 

smooth the generated receiver operating characteristic figures. For the remainder 

of this section, oscillations and/or jitters present in the receiver operating 

characteristic figures should be attributed to smaller number of effective Monte 

Carlo simulations run for each example.  A follow-on effort is underway to 

investigate computationally efficient implementations for depth-based methods, to 

make them more relevant for real-time sensing systems.  A detection was recorded 

if, and only if, the annular volume increased sufficiently to exceed the detection 

threshold.  For each 𝑝h� = 0.5 contour, the probability of detection was recorded 

for false alarm rates of 6% through 0.01%.  The role of any detection algorithm is 

to ensure a sufficient balance is struck between suppressing Type I and Type II 

statistical errors within the detection hypothesis test to warrant their use; the role 

of the associated tracking algorithm-should one be utilized-is to drive the false 

alarm rate as low as possible. 

 
Figure 16: Probability of Detection vs SNR for Depth-Based Detection Statistic 

From Figure 16 the receiver operating characteristic (ROC) curves only appear for 

false alarm values of, 𝑃Q­ = 6% to 𝑃Q­ = 0.01%, owing to the restrictive form of the 

Type I error control used in the depth-based detector.  For comparison, if we 

assume a standard form of a radar detector, as found in [39], a performance 

comparison is possible for a single-pulse detector (no integration within the 
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receiver) for noise corruption described by a normal Gaussian distribution.  The 

form of the detector is shown below 

𝑃¬ =
#
O
−Φ 𝑥 − 2×SNR     (4.11) 

where x is the detection threshold (ie-3 times the noise power) and 𝜙 is the error 

function.  The performance of the depth-based detector does indeed outperform 

the classical single-pulse detector, as shown in Table 4, particularly as the 

probability of false alarm decreases.  
Table 4: Probability of Detection Comparison with Chebyshev Inequality 

PFA x Required SNR 
for Classical 

Detector 

Required SNR 
for Depth-

Based Detector 

Improvement 
Factor of 

Depth-Based 
Detector 

6% 1.88 3.2 dB 3.6 dB -0.4 dB 

4% 2.05 4.2 dB 3.7 dB +0.7 dB 

3% 2.17 4.5 dB 3.8 dB +1.3 dB 

1% 2.33 5.1 dB 4.5 dB +0.6 dB 

0.1% 3.08 7.7 dB 4.6 dB +3.1 dB 

0.01% 3.62 10 dB 6.0 dB +4.0 dB 

 

4.3.2 Knowledge-Aided Depth-Based Detector 
The Chebyshev Inequality is a more restrictive detection criterion; which was 

deliberately chosen to ensure the depth-based detection algorithm is general for 

any given class of distribution-both known and unknown.  We would expect the 

detection probabilities are less than that of Equation (4.11), in which the function 

is derived from a normal Gaussian noise process assumption.  In our example, the 

corruptive noise distribution is also assumed to be normal Gaussian; so, if we 

choose to re-run the same simulation by assuming our depth-function has 

complete a priori knowledge of the corruptive noise distribution, then the following 

false-alarm rates in Table 5 are more appropriate, and are found from the error 

function.  We note, that owing to the conservative nature of the Chebyshev 

Inequality, the equivalent false-alarm rate-assuming Gaussian noise-for values 

greater than 𝑃Q­ ≥ 10=O are significantly better than those shown in Table 5, but 

are purposefully kept to 𝑃Q­ = 10=d  and 𝑥 = 6.23  for more relative 

comparisons of performance. 
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Table 5: Probability of False Alarm for Knowledge-Aided Depth-Based Detector vs Classical Detector 

Chebyshev’s 
Inequality, PFA 

𝒌𝝈 x Equivalent PFA 
for Gaussian 

Noise 

6% 4𝜎 3.62 10-4 

4% 5𝜎 4.75 10-6 

3% 6𝜎 5.61 10-8 

1% 9𝜎 𝑥 ≫ 6.23 𝑃Q­ ≪ 10=d 

0.1% 10𝜎 𝑥 ≫ 6.23 𝑃Q­ ≪ 10=d 

0.01% 32𝜎 𝑥 ≫ 6.23 𝑃Q­ ≪ 10=d 

 

For reliable detection performance, the probability of detection was set to 𝑃¬ = 0.9.  

The Knowledge-Aided Depth-Based (KA-DB) detector in comparison with the 

classical single-pulse detector of Equation (4.11) is given in Table 6; which does 

show significantly better performance; especially when the false alarm rate is low-

i.e. 𝑃Q­ ≤ 10=D. 
Table 6: Probability of Detection Comparison for Knowledge-Aided Depth-Based Detector vs 

Classical Detector 

𝒌𝝈 Required SNR 
for Classical 

Detector 

Required SNR 
for Depth-Based 

Detector 

Improvement 
Factor of Depth-
Based Detector 

𝟑𝝈 10 dB 3.6 dB +6.4 dB 

𝟒𝝈 15.6 dB 3.7 dB +11.9 dB 

𝟔𝝈 20.8 dB 3.8 dB +17.0 dB 

𝟗𝝈 𝑆𝑁𝑅 ≫ 25	𝑑𝐵 4.5 dB <+20.5 dB 

𝟏𝟎𝝈 𝑆𝑁𝑅 ≫ 25	𝑑𝐵 4.6 dB <+20.4 dB 

𝟑𝟐𝝈 𝑆𝑁𝑅 ≫ 25	𝑑𝐵 6.0 dB <+19.0 dB 

 

4.3.3 Depth-Based and Knowledge-Aided Depth-Based Detector 
Performance vs. Envelop Detector 

More realistically, a radar sensor utilizes the envelope of the received signal to 

perform a binary hypothesis test.  If we assume a general form of the envelope 

detector [39] 

SNR = A+ 0.12AB+ 1.7B    (4.12) 

with A = ln ".hO
5+i

 and	B = ln 56
#=56

, then the depth-based and knowledge-aided 

depth-based detector performance is found in table Table 7 and 8, respectively. 

When knowledge of the underlying noise distribution was assumed, the depth-
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based methods were shown to improve on the classical single-pulse magnitude 

threshold detector and classical envelope detector by a factor of up to > +20𝑑𝐵 

for the case of a 𝑃Q­ of less than 1%. 
Table 7: Probability of Detection Comparison for Depth-Based Detector vs Envelope Detector 

PFA Required SNR 
for Envelope 

Detector 

Required SNR 
for Depth-Based 

Detector 

Improvement 
Factor of Depth-
Based Detector 

6% 6.7 dB 3.6 dB +3.1 dB 

4% 7.2 dB 3.7 dB +3.5 dB 

3% 7.6 dB 3.8 dB +3.8 dB 

1% 9.0 dB 4.5 dB +4.5 dB 

0.1% 11.9 dB 4.6 dB +7.3 dB 

0.01% 14.8 dB 6.0 dB +8.8 dB 

 
Table 8: Probability of Detection Comparison for Knowledge-Aided Depth-Based Detector vs 

Envelope Detector 

𝒌𝝈 Required SNR for 
Envelope Detector 

Required SNR for 
Depth-Based 

Detector 

Improvement Factor 
of Depth-Based 

Detector 

𝟒𝝈 12.5 dB 3.6 dB +8.9 dB 

𝟓𝝈 17.9 dB 3.7 dB +14.2 dB 

𝟔𝝈 23.3 dB 3.8 dB +19.5 dB 

𝟗𝝈 𝑆𝑁𝑅 ≫ 26.0	𝑑𝐵 4.5 dB >+21.5 dB 

𝟏𝟎𝝈 𝑆𝑁𝑅 ≫ 26.0	𝑑𝐵 4.6 dB >+21.4 dB 

𝟑𝟐𝝈 𝑆𝑁𝑅 ≫ 26.0	𝑑𝐵 6.0 dB >+20.0 dB 

 

One benefit of the depth-based detector is the basis of its nonparametric  

formulation, which does not rely on the underlying corruptive noise process to 

conform to a univariate or bivariate distribution; in fact, the depth-based detector 

should be more optimal for cases in which the underlying noise process is 

multivariate and not adequately described by a second-order moment method.  

 

4.4 Introduction to Depth-Based Ranking 
In the previous formulation of the depth-based detector, knowledge-based or 

otherwise, there is no due consideration given to the fact there may be more than 

one scattering center present in the scene under illumination by the distributed 

sensor network.  This is actually a rather glaring omission, as the example clearly 
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dictated the inclusion of multiple scattering centers.  Now, in an effort to correct 

this omission, a ranking algorithm is introduced to permit the sensor network to 

determine the effective number of scattering centers within any given observational 

scene of interest.  Second only to detection, is the germane process of determining 

the number of scattering centers in the background medium.  In [57] the authors 

made use of a ranking and selection algorithm to select the number of components 

in principal components analysis via the defining of a preference zone based on 

the ratios of two some of eigenvalues.  A series of publications by Chen, [11, 58-

60] detailed methods for determining the effective number of signals (ie-scattering 

centers) based on an asymptotic approach via a confidence interval of the number 

of principal components.  Since the perturbations to the time-reversal operator 

resulting from the scattering centers are finite and bounded, we propose the use 

of a confidence interval for the selection and ranking of the measured time-reversal 

operator.  This confidence interval has previously been introduced as the method 

for minimizing Type I errors in the nonparametric depth-based detector.  Applying 

this minimization of the Type I error recursively allows for the establishment of the 

confidence interval and ability to apply a statistical selection and ranking algorithm 

for the determination of the number of signals (ie-scattering centers) present.  

Recall previously that the false-alarm control was developed for the depth-based 

detector to be both nonparametric and defined for any statistical probability in 

which the mean and standard deviation is defined.  

From the depth-based detector, singular values lower than the effective rank 

of the time-reversal operator cause the annulus to collapse; signifying only noise 

is present.  Since the Type I error control forms the basis of the confidence 

interface, the confidence interval can be selected based upon the desired level of 

minimization of the false alarm rate.  This allows for both a conservative and liberal 

confidence interval bound to be determined.  Recall that the annulus collapses 

when the signal rank is exceeded.  In this manner, as successive signal singular 

values are removed from the depth-based ranking algorithm via a recursive 

detection procedure, which incorporates a Type I error control, the proper selection 

and ranking of the perturbation signals to be recovered is accomplished in a 

nonparametric fashion.  
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4.4.1 Depth-Based Ranking Approach 
We begin by considering two populations: one comprised of white Gaussian noise, 

𝒩 0, 𝜎O , with variance equivalent to unity; and a second population consisting of 

a bounded rank perturbation with additive white Gaussian noise, in which the 

measurement noise is assumed statistically similar to the noise population. To fully 

develop the depth-based ranking algorithm, initially the standard binary hypothesis 

test is considered 

𝐻" ∶= 𝑛 𝑡      (4.13a)	

𝐻# ∶= 𝑠 𝑡 + 𝑛 𝑡     (4.13b) 

However, Equations (4.13a) and (4.13b) do not properly account for the iterative 

testing that is to be accomplished via the ranking algorithm; specifically, the binary 

hypothesis test is more properly written as 

𝐻"
e ≔ 𝑛 𝑡      (4.14a)	

𝐻#
e ∶= 𝑠e 𝑡 + 𝑛 𝑡     (4.14b) 

where the superscript 𝑗 denotes the rank value of the time-reversal operator under 

test, and is chosen from the sequence of real numbers formed by, 𝑗 = 1,2,3, … , 𝑛 , 

and is assumed for all further instances of the superscript 𝑗  in this chapter.    

Traditionally, the selection of the null or alternative hypothesis is chosen based 

upon a pre-determined, or adaptive, threshold that transforms Equation (4.14a) 

and (4.14b) into 

𝛿Threshold
e ⋚

×Ø
y

×N
y

     (4.15) 

which requires a threshold.  Previously we showed this to be a non-parametrically 

derived quantity represented by a volume in n-dimensional space.  This quantity 

may be determined with training data or empirically as is the case with this work.  

This quantity is then used as the approximate of the noise bounds on the time-

reversal operator.  Each scattering center manifests as a bounded perturbation on 

the target covariance function, and owing to its localized phenomenology, is 

isolated to a single and unique singular value; this stands in stark contrast to 

thermal/environmental noise that is always full-rank, indicating a diffuse statistical 

process; and clutter that is never tightly bound, but partial or full-rank, indicative of 

a simple or complex statistical process, respectively.  This bounded 

phenomenology is the principal reason detection and ranking is possible.  Rather 

than attempting to determine which selection procedure could choose the correct 

partial-to-full rank of a clutter or noise process, the selection algorithm only has to 
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contend with one or more finite bounded perturbations isolated to a single singular 

value.  Now, admittedly our object model is a collection of finite-sized target 

scattering centers, but even complex extended targets are modeled as collections 

of scattering centers; and more importantly phenomenologically appear as discrete 

or diffuse collection of point-scatterers (point-scatterer clouds).   

Differential dispersion values are determined from the difference of the 

volume defined by the contour, 𝐷?y, and that of the volume of a second contour, 

𝐷�.  Previously, 𝛽, was defined as unity, and that definition holds true here, where 

we are attempting to ascertain the effective rank of the target time-reversal 

operator function non-parametrically.  The value of unity for contour, 𝐷?y , 

encompasses all population values for an assumed rank of our target time-reversal 

operator, in our depth functional.  The value of contour, 𝐷�, is between the values 

of 𝑝 ∈ 0,1 , and constitutes the inner radius of the annulus that is comprised of 

our annular volumetric parameter used for our recursive binary hypothesis test.  

For this case, whilst the value of 𝑝  has previously been defined as, 𝑝 ∈

0.5,0.75,0.5 , we initially fix the value at 𝑝 = 0.5; thus, maximizing the possible 

annular volume of our depth functional, and ensures the collapse of this annular 

volume is due to the absence of a signal; as the singular values for our corruptive 

noise process is, 𝒩 0, 𝜎O , with 𝜎O = 1; thereby ensuring a clustering of noise 

singular values that are far removed from signal singular values. 

As our example consists of a finite number of dielectric scattering centers of 

the singly-spread target-or rather, the range-extended target, as there is no 

assumed motion smearing the resultant echoed received signal-the ranking 

algorithm does not need to run any longer than the computational time required to 

find the effective rank of the corruptive noise process; defined as the rank value at 

which point the binary hypothesis test choose 𝐻".  For each step in our recursive 

algorithm, the contours, 𝐷?y and 𝐷� are defined.  Each contour is effectively the 

boundary for a value for our depth functional 𝐷?y ∶= 𝑉?y  and 𝐷� ∶= 𝑉� .  Having 

defined the depth function values, the differential dispersion is calculated from 

𝑉F
e = 𝑉F

?y − 𝑉F
�     (4.16) 

The threshold value is derived from signal-free training data comprised of only the 

underlying corruptive noise process.  Similarly, we calculate the annular volume of 

the corruptive noise process by choosing 𝛽 = 1 and 𝑝 = 0.5. 

𝑉Threshold
e = 𝑉Threshold

?y − 𝑉Threshold
�    (4.17) 
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where the normalized threshold statistic is found from 

𝛿Threshold
e = PThreshold

y

PThreshold
y     (4.18) 

In this manner, regardless of the actual measurement noise, the threshold for 

determination of the binary hypothesis test is non-parametrically derived.  Before 

we can jump into ranking, a method of false alarm control is required.  As was the 

case for depth-based detection, the Chebyshev Inequality is applied to our 

nonparametric threshold annular region, in an effort to minimize Type II errors.  A 

number of 𝑉Threshold
e  values are calculated based on target-free training data, and 

the mean and standard deviation of the vectorized quantities are determined.  The 

Chebyshev Inequality is valid for any population, provided a mean and standard 

deviation exist.  We choose the false alarm rate by varying a single parameter, 𝑘 

in the expression 

𝑉Threshold
e = 𝜇e + 𝑘𝜎e    (4.19) 

where 𝜇e  and 𝜎e  were previously derived from training data. 𝑘  is the effective 

number of standard deviations that are required to encompass a minimum 

population mean of 1 − #
õü

.  In our case, for a desired false alarm rate of 6%, 𝑘 is 

required to be set at 𝑘 = 4; whereas for a desired false alarm rate of 4% or 3%, 𝑘 

is 5 and 6 respectively.  The threshold for the binary hypothesis test is equivalent 

to 

𝛿Threshold
e =

P
Threshold;	lyamny
y

P
Threshold;	lyamny
y ⇒ 1   (4.20) 

which is to say, unity.  This is a nonparametrically derived quantity that ensures 

the applicability of the binary hypothesis test over a wide-range of corruptive noise 

processes, without compromising the integrity of the depth-based detector.    

Determination of the confidence interval is based on the estimate of the 

annular volume between the 𝑉? and 𝑉�; as the annulus region contracts with each 

recursive contraction of contour, 𝑉?y, there is a point at which the annulus of the 

signal-free is volumetrically equivalent to the annulus of the time-reversal operator 

under test.  It is important to note that whilst noise-thermal, environmental or 

otherwise-is full-rank, there is a bounded perturbation resulting from the presence 

of scattering center reflection(s) that is manifest as a localized singular value(s) in 

the time-reversal operator; this offset has previously been described as arising 

from Newton's Third Law, but is more colloquially referred to as eigenvalue 
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repulsion.  Now, one the rank of the echoing scattering center(s) is exceeded, the 

singular values of the time-reversal operator under test collapses to values that are 

essentially equivalent to the signal-free time-reversal operator, derived from signal-

free training data.  Since the values under test differ only in statistical variability, 

the Chebyshev inequality derived threshold value, 𝛿Threshold  should eclipse the 

volumetric bounds of noise-on-noise annular volumes, and result in a null 

hypothesis being chosen for the binary hypothesis test, see Equation (4.13a) and 

(4.13b).  In this manner, the differential volume serves as the confidence bounds 

for our depth-based ranking algorithm. To conclude the depth-based ranking 

algorithm, the final binary hypothesis test is then 

𝛿e ⋚
×Ø
y

×N
y

	 𝛿Threshold
e     (4.21) 

where 𝑗  has previously been defined as the rank value under test, and is a 

sequence of real numbers formed by, 𝑗 = 1,2,3, … , 𝑛 .  The value of 𝑗 , or the 

effective rank of the time-reversal response matrix under test, for which the test 

last hypothesis determines alternative hypothesis, 𝐻#, is true also determines the 

final rank value of the matrix; thus, the first value at which 𝐻" is determined true, 

terminates the recursive depth-based ranking algorithm, and also indicates the 

point at which the annular region of the differential volume collapses, and only 

contains noisy singular values.   

In this section, a bespoke depth-based ranking algorithm was introduced, 

along with a method for controlling the Type II error of the nonparametric binary 

hypothesis test.  For the succeeding section, a series of examples are presented, 

focused on a common scenario, and the results of the depth-based ranking 

algorithm are determined based upon a receiver-operating characteristic curve 

(ROC). 

 

4.4.2 Depth-Based Ranking Examples 
Whereas the Section 4.3 focused on demonstrating the efficacy of the depth-based 

detector, this section is primarily focused on the development of receiver-operating 

characteristic (ROC) curves that highlight the virtue of the depth-based ranking 

algorithm of Section 4.4.  In an effort to maintain consistency between Section 4.3, 

each of the three scattering centers considered for demonstration of the depth-

based ranking algorithm has a discrete reflectivity and location within the scene of 

under observation by the distributed network.  Thus, allowing for each of the three 
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scattering centers to be uniquely detected, ensuring there is no potential ambiguity 

in the ranking results.  Below is a table highlighting the specific parameters 

assigned to each scattering center using for the subsequent examples. 
Table 9: Scattering Center Parameters 

Scattering Center Dielectric Coefficient 𝝆  Scattering Center Location 

𝒙, 𝒚  

1 𝜌 = 2.00 5, 0  

2 𝜌 = 1.75 −2.5, 4.33  

3 𝜌 = 1.50 −2.5, 4.33  

 

Each of the three scattering centers is placed approximately equidistant from the 

origin of the scene under illumination.  Further, the location of each scattering 

center is chosen to maximize the distance between each remaining scattering 

center, creating an equilateral triangle, ensuring no two scattering centers overlap. 

Whilst the Born approximation does not allow for a particular dielectric property to 

be characterized, the reflectivity values are chosen, such that, their values are 

approximations of dielectric permittivities equivalent to dielectric spheres of finite 

size-in this case, variations of glass and crystalline materials.  This last point is 

nuance, and does not drastically alter the results, other than to prepare the reader 

for a discussion on reflectivity recovery-post-detection and post-ranking-see 

Chapter 8 for further discussion.   

Initially, the results are seemingly a repeat of Section 4.3, in that we are 

concerned principally with the results for the ranking algorithm with an assumed 

initial rank of unity; not very interesting, to be sure, but a necessary first step when 

Equation (4.21)-the iterative binary ranking hypothesis test-is utilized.  When the 

term rank is applied to a sensing problem, the point is not to rank, in any particular 

order, the scattering centers within the illuminated scene, but to place a confidence 

bound on the actual number of scattering centers present.  Whilst this previous 

statement may, again, feel like the origins of a semantic argument, ranking is more 

of a bounding operation, as opposed to a mathematical treatment to determine the 

particular location and makings of the scattering centers within the distributed 

sensor network’s area of concern.  Enough of nuance and semantics, let us now 

consider the outcome of Equation (4.21) for the case in which the rank is initially 

considered to be unity.  For all results in this section, the assumed required 

probability of detection is, 𝑃¬ = 0.9, with the false alarm rates of concern fixed to 

𝑃Q­ ∈ 6%, 4%, 3%, 1%, 0.1%, 0.01% .   
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As previous discussed in Section 4.3.1, the performance of any receiver 

operating characteristic curve needs to be compared to a baseline in order to have 

any relative meaning.  Considered in isolation, results are easily analyzed, but 

there is no weight to the results without a suitable comparison.  For this section, 

the depth-based ranking algorithm results are compared against a very traditional 

sensor receiver architecture-that of the envelope detector, see Equation (4.12).  

Now, Equation (4.12) is not concerned in any manner with the concept of allowing 

a confidence bound to be formed for the purposes of ranking, but rather for the 

simple purpose of determining a simple binary output: scattering center present, or 

scattering center absent.   

 
Figure 17: Probability of Detection vs SNR for Depth-Based Rank (j = 1) 

Thus, any attempt to compare the results of the depth-based ranking 

algorithm should be approached from the considered stand-point that we are 

attempting to determine if the ranking algorithm enhances the quality of information 

gleaned following post-depth-based detection.  Under this framework, the depth-

based ranking algorithm should produce ROC curves that perform on par, or 

exceed the performance of the envelope detector, and demonstrate equivalent 

performance to the depth-based detector.  Having described the desired outcome 

from the proceeding examples, depth-based ranking receiver-operating 

characteristic curve for a unity rank approximation is shown in Figure 17. 
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Table 10: Unity Rank Comparison for Depth-Based Ranking Algorithm vs Envelope Detector 

𝑷𝑭𝑨 Required SNR for 
Envelope Detector 

Required SNR for 
Depth Based 

Detector 𝒋 = 𝟏  

Improvement Factor 

6% 6.7 dB 3.6 dB +3.1 dB 

4% 7.2 dB 3.7 dB +3.5 dB 

3% 7.6 dB 3.8 dB +3.8 dB 

1% 9.0 dB 4.5 dB +4.5 dB 

0.1% 11.9 dB 4.6 dB +7.3 dB 

0.01% 14.8 dB 6.0 dB +8.8 dB 

 

As expected, the results track closely with those of the standard depth-based 

detector approach.  Further, the results are typically an average of +3𝑑𝐵 better 

than the standard envelope detector.  That is all well and good, however, the 

relative merit of the depth-based ranking algorithm is a bit lost for a unity rank time-

reversal operator.  Now initially, the problem considered the presence of 3 target 

scattering centers; thus, allowing for more in-depth investigation and 

demonstration of the efficacy of the depth-based ranking approach.  Having 

exhausted discussion on the unity rank binary hypothesis test, let us move the 

depth-based ranking test to an assumed rank 2 time-reversal operator, see figure 

18. 

 
Figure 18: Probability of Detection vs SNR for Depth-Based Ranking (j=2) 
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Most noticeable in Figure 6 and Figure 7 is the trend towards higher required 

signal-to-noise ratio in order to determine the outcome of the Equation (4.21) for 

𝑗 = 2 . Just how much is shown in table Table 11, though for all intents and 

purposes, the results track closely with those of receiver operating characteristic 

curves of the unity rank test, 𝑗 = 1 for Equation (4.21).  What exactly does this 

mean?  More precisely, does this trend towards higher signal-to-noise result in a 

detriment or enhancement to our post-depth-based detection depth-based ranking 

algorithm?  Realistically speaking, small variations in required signal-to-noise are 

not a detriment, but a consequence of any data processing approach dealing with 

simulated-or real-data; thus, we do not consider any fluctuation resulting in an 

improvement over the classical single-pulse envelope detector to result in 

detrimental performance.  In fact, even though the results in table Table 11 are 

similarly as impressive as the unity rank test in table Table 10, there is but a small 

variation in resultant average performance of −0.1𝑑𝐵, in which the improvement 

factor is around +2.9𝑑𝐵 for the rank 𝑗 = 2 for equation (4.21).    
Table 11: Rank (j=2) Comparison for Depth-Based Ranking Algorithm vs Envelope Detector 

𝑷𝑭𝑨 Required SNR for 
Envelope Detector 

Required SNR for 
Depth-Based 

Detector (𝒋 = 𝟐) 

Improvement Factor 

6% 6.7 dB 3.8 dB +2.9 dB 

4% 7.2 dB 4.3 dB +2.9 dB 

3% 7.6 dB 4.3 dB +3.3 dB 

1% 9.0 dB 4.4 dB +4.6 dB 

0.1% 11.9 dB 4.5 dB +7.4 dB 

0.01% 14.8 dB 6.2 dB +8.6 dB 

 

Thusly, the value for the depth-based ranking test moves from 𝑗 = 2 to 𝑗 =

3, and the receiver operating characteristic curves generated for the outcome of 

ranking binary hypothesis test for a variety of signal-to-noise ratios from −3𝑑𝐵 to 

10𝑑𝐵 .  For the cases in this section, the detection performance is assumed 

acceptable for 𝑃¬ = 0.9 , with the false alarm rates of concern being, 𝑃Q­ ∈

6%, 4%, 3%, 1%, 0.1%, 0.01% .  The results for the depth-based ranking algorithm 

for 𝑗 = 3 are shown below in Figure 19 
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Figure 19: Probability of Detection vs SNR for Depth-Based Ranking (j=3) 

Again, the particular values for the required signal-to-noise ratios to determine the 

presence of a rank 3 signal in the target time-reversal operator is not the primary 

concern, as long as the signal-to-noise ratio exceeds the performance of the single-

pulse envelope detector, and is approximately equivalent to the depth-based 

detector; wherein the results are stated to exhibit an enhancement in information 

post-depth based detection, by providing new information on the confidence bound 

of the rank of the signal embedded within the target time-reversal operator.  Indeed, 

even for an assumed rank of 𝑗 = 3, the results are quite telling-see Table 12-and 

further demonstrate the efficacy of the depth-based ranking algorithm for their 

determination of the number of scattering centers within a scene of interest under 

illumination by the distributed sensor network. 
Table 12: Rank (j=3) Comparison for Depth-Based Ranking Algorithm vs Envelope Detector 

𝑷𝑭𝑨 Required SNR for 
Envelope Detector 

Required SNR for 
Depth-Based 

Ranking 𝒋 = 𝟑  

Improvement Factor 

6% 6.7 dB 3.2 dB +3.5 dB 

4% 7.2 dB 3.3 dB +3.9 dB 

3% 7.6 dB 3.4 dB +4.2 dB 

1% 9.0 dB 3.7 dB +5.3 dB 

0.1% 11.9 dB 3.7 dB +8.2 dB 

0.01% 14.8 dB 4.5 dB +10.3 dB 
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In summary, this particular section showcased the results for the post-depth-

based detector depth-based ranking algorithm.  The results for the depth-based 

detector were compared to those of a classical single-pulse envelope detector; 

wherein the performance of the envelope detector was assumed as the minimum 

floor of performance in which the depth-based detector is declared an 

enhancement to, or the detriment of, the information gleaned post-depth-based 

detector.  In each of the three cases considered: 𝑗 ∈ 1,2,3 , the results tabulated 

in Table 10, Table 11, and Table 12 demonstrated the performance improvement 

was on the order of +3.0	𝑑𝐵  better than the classical single-pulse envelope 

detector; the significance of which is that the depth-based ranking algorithm was 

declared a value-added enhancement to the depth-based detector, by providing a 

confidence bound of the effective rank of the measured target time-reversal 

operator.  

 

4.5 Summary 
In this chapter, we have introduced a depth-based method for range-extended 

target scattering center detection in noisy environments, based on a pre-detection 

fusion algorithm.  The performance of the detector was determined for differing 

levels of noise and compared to a classical single-pulse detector.  The results 

demonstrated the benefits of utilizing a distributed sensor network and depth-

based algorithms for the detection of a target scattering center obfuscated by a 

noisy measurement environment.  When knowledge of the underlying noise 

distribution was assumed, the depth-based methods were shown to improve on 

the classical single pulse magnitude threshold detector and a classical envelope 

detector by a factor of over +20.0	𝑑𝐵.  Additionally, the depth-based detector is 

nonparametric, and does not rely on the underlying corruptive noise process to 

conform to a univariate or bivariate distribution-as is the case with traditional 

parametric detectors. 

Future efforts are focused on the extension of this depth-based detector to 

broader classes of corruptive noise distribution; including those distributions that 

are not adequately described by second-order moment methods.  The real benefit 

of this depth-based approach is that no form of the underlying corruptive noise is 

required to be known a priori, and the very fact that the depth-based detection and 
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depth-based ranking algorithms are nonparametric, means they are applicable to 

broad ranges of distributions-both characterized and unknown. 

 

4.6 Conclusion 
Depth-based methods lie at the intersection of mathematical statistics and 

computational geometry and have emerged over the past decade as a promising 

candidate for dealing with high-dimensionality nonparametric multivariate data.  

Whilst there have been several publications detailing depth-based methods and 

applications, there are currently no publications that focus on sensing related 

challenges that could benefit from the incorporation of the depth-based algorithms.  

In this chapter, the author demonstrated the more salient task of a sensing system-

detection-and the detection improvement afforded by the tandem use of a 

distributed sensor network and a depth-based detection algorithm.  A broad range 

of sensing modalities are currently being explored that would benefit from this 

emerging field of mathematical statistics and anticipate further examples of depth-

based methodologies to emerge as part of this broader research effort. 
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5 Introduction to Weak Signal-to-Noise Ratio Regimes: 
Using a Distributed Sensor Network to Overcome 
Traditional Barriers to Sensing 

 
 

5.1 Motivation 
Previously, we introduced a novel non-parametric depth-based method for the 

target detection and ranking problem in noisy environments under nominal signal-

to-noise ratios.  In this chapter, we seek to expand our performance bounds, and 

introduce detection and ranking in the negative signal-to-noise ratio (SNR) regime. 

There are many ways to look at the extreme bounds of performance, and there are 

most assuredly many more than could possibly be covered in this work; instead we 

look at the overall theoretical performance bound from the microcosm of the 

detection threshold.  Without detailing specifics of any particular distributed sensor 

system, modality, and associated waveforms and parametrics, we seek to 

understand at what point the maximum efficiency for detection performance is 

achieved.  An interesting set of publications [48-49, 61-62], explored the problem 

via summations of individual radar monostatic sensor estimated covariance 

matrices.  Theoretical detection performance was achieved with signal-to-noise 

ratios (SNR) as low as −34𝑑𝐵 [48, 61], and approximately −30𝑑𝐵 signal-to-clutter-

plus-noise ratios (SCNR) [49, 62].  How is this possible?   

The answer lies at the intersection of big data and distributed sensor 

networks.  More importantly, the ability to achieving practical detection 

performance in the negative SNR regime is due to the generalization of classical 

communicative probability to non-communicative probability.  From communicative 

probability, random variables are typically called observations and denoted by the 

variable 𝑥 which is found from a probability distribution 𝑃 𝑥 , and the expectation 

is called the first moment or mean and represented by the symbol, 𝑓 𝑥 or 

𝐸 𝑓 𝑥 , and is found from 

𝑓 𝑥 = 𝑓 𝑥 𝑃 𝑥°     (5.1) 

or more generally, 

𝐸 𝑥 = 𝑥#𝑝# + 𝑥O𝑝O + ⋯+ 𝑥~𝑝~   (5.2) 

with the sum of 𝑝# + ⋯+ 𝑝~ = 1.  In non-communicative probability, matrices or 

operators take the place of scalar random variables and the trace function serves 

as the expectation.  Non-communicative probability is a generalization of classical 
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probability-as discussed previously is possible due to free-probability. This serves 

two fundamental purposes, one of which has already been mentioned twice: 

1. Quantities build from the algebra of random variables and their associated 

expectations, such as the trace of a, 𝑛	×	𝑛, random matrices are typically 

very stable in the large 𝑛 limit; this is in spite of the fact the associated 

sample space and event space may vary with 𝑛 [63]. 

2. Free-probability is an abstract formalism, which allows the generalization of 

classical commutative theory of probability to the theory of non-commutative 

probability, which does not have any associated sample or event space. 

More importantly, non-commutative probability has as special cases (see [63]) 

1. Classical probability 

2. Spectral theory, where matrices or operators take on the role of random 

variables and the trace function assumes the role of the expectation of 

random variables 

3. Random matrix theory, which is viewed as a combination of classical 

probability with spectrum theory 

4. Quantum mechanics, where the physical observables are the random 

variables and the expectation is the expected value on a given observable 

being in a particular state 

In free-probability, the goal is to have the algebra serve as the basis of the theory, 

as opposed to foundations built upon sets, categories, etc.  Whilst free-probability 

is the enabling theorem upon which this chapter is based (the algebra is the 

foundation), the particular phenomenon that is responsible for the ability of a 

distributed sensor network to make observations and detections in negative signal-

to-noise ratio regimes is called concentration of measure.  In the next section, the 

theoretical foundation for sensing in negative SNR regimes under big data 

scenarios is introduced. 

5.2 Concentration of Measure 
Typically, detection algorithms seek to reduce the dimensionality of the collected 

data to enable a single variable to be manipulated for the purpose making of a 

binary decision versus a threshold variable.  In this thesis, the concept of big data 

has been discussed and shown to benefit salient modalities of sensing-such as 

detection.  The so-called curse of dimensionality, is actually a blessing: increases 

in dimensionality often aid in mathematical analysis, see references [48-49], and 

[61-62] for examples.  In particular, reference [61] details a method to reduce 
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interference from clutter sources on the sample covariance matrix through the use 

of reproducing kernel Hilbert spaces; which increased the dimensionality of the 

sample covariance matrix, and reduced the impact of clutter interference by 

spreading the corruptive clutter energy over a larger number of basis functions. 

The blessing of dimensionality is the subject of this chapter, and is studied from 

the vantage point of concentration of measure-as examined through Talagrand's 

inequality.  Many complicated and high-dimensional quantities are more readily 

analyzed by assuming they exhibit behaviour that is consist with Lipschitz 

functions, which are smoothly varying functions and are handled within the 

framework of Talagrand's inequality.   

Talagrand stated, one probabilistic aspect of measure of concentration, that a 

random variable that depends-in a smooth way-on the influence of many 

independent variables is essentially constant [64].  Therefore, due to concentration 

of measure, a Lipschitz function is nearly constant.  The resultant tail bounds 

behave, no worse than, a scalar Gaussian random variable with absolutely 

controlled mean and variance [63].  One key differentiator of convex optimization 

problems and those characterized by concentration of measure under Talagrand's 

inequality is convex optimization assumed the following conditions are true:  

1. Linearity 

2. Convexity 

To move from standard probabilistic views on probability inequalities, especially 

those relying on law of large numbers theorems, to the probabilistic concentration 

of measure phenomenon the following is assumed true: 

1. Convexity 

2. Lipschitz 

From [63], the theory of concentration inequality tries to determine from a random 

vector, 𝒙, from a measurable space, 𝝌, and a measurable map, 𝑓 ∶ 	𝜒 → ℝ, what is 

the explicit bound on ℙ 𝑓 𝒙 − E 𝑓 𝒙 | 	≥ 	𝑡 .  In this chapter, the application of 

concentration of measure is on matrices, not random vectors-which is due to free-

probability.  However, under free-probability, the emphasis is on a probability 

based upon a foundation of algebra not spaces.  So, with that thought in mind, let 

us explore an example of the application of concentration of measure to a 

sequence of random variables.  Let 𝑋#, 𝑋O, …𝑋~  be a sequence of independent 

random variables assuming the values of ±1 with equal probability, or 𝑝",# = 0.5.   

𝑆~ = 𝑋# +⋯+ 𝑋~     (5.3)	
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The law of large numbers, under classical probability theory, would state that the 

quantity 𝑆~  is essentially constant and equal to zero.  Under the central limit 

theorem, the fluctuations of 𝑆~ would be 𝑛 , which is not equal to zero. Now, 

from [64], as the value of 𝑛  in 𝑆~  increases and approaches ∞ , that is the 

appropriate value at which 𝑆~ should be measured.  Following the approach by 

Ledoux in [64], we find from the concentration of measure the classical exponential 

bound 

ℙ tu
~
≥ 𝑡 ≤ 2𝑒

þüu4ü

ü , 𝑡 ≥ 0   (5.4) 

which is equivalent to tu
~
≃ 0.  Concentration of measure is readily generalized by 

[63] 

1. Replacing linear functionals, such as sums of random variables, by Lipschitz 

functions of the samples 

2. Considering measures that are not of product form 

By replacing the sums of random variables with sums of random matrices, we 

arrive at the application of concentration of measure to free-probability, and the 

fundamental mathematical foundation for detection under low signal-to-noise ratio 

regimes by a distributed sensor network. 

 

5.3 Concentration of Measure for Eigenvalues 
In the previous section, the phenomenon of concentration of measure was briefly 

introduced.  For the interested reader, [64] is an excellent exposition on the topic.  

In this section, the concept of concentration of measure is extended to eigenvalues 

of random matrices, or more importantly sums of random matrices.  In order to 

extend concentration of measure, eigenvalues and their associated functionals 

should be shown to be Lipschitz functions, so that Talagrand's inequality is 

applicable.  For this chapter, only those concentration inequalities for relevant 

random variables are discussed; recall in free-probability, random variables are 

matrices. For the remainder of this section, the extension of concentration of 

measure to eigenvalues and their functionals closely follows portions of Chapter 4 

of [63], whose contents were motivated by the research funding provided by the 

Air Force Office of Scientific Research under grant FA8650-11-RY-09COR and 

was co-authored by thesis advisor Dr. Michael Wicks. 

Application of concentration of measure to eigenvalues is focused on two 

core connections: Lipschitz mappings of eigenvalues, and smoothness and 
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convexity of the eigenvalues of a matrix and traces of matrices.   The latter is 

particularly important, as the trace function is a linear functional, greatly simplifying 

the mathematics involving multiple complex random matrices.   Once the 

eigenvalues and functionals are shown to be Lipschitz and convex, theoretical tail 

bounds are found for Wigner random matrices and compared to those of the 

sample covariance matrix for a traditional monostatic radar system.   

 

5.3.1 Lipschitz Mappings of Eigenvalues 
From [65], let 𝐺 denote the Gaussian distribution on ℝ~ with density 

jQ 𝒙
j𝒙

= #
O!vü u 𝑒

= 𝒙 ü

ünü     (5.5)	

and 𝒙 O = 𝑥#O + 𝑥OO + ⋯+ 𝑥~O  is the Euclidean norm of 𝒙 .  For a 𝐾 -Lipschitz 

function 𝐹 ∶ 	ℝ~ → ℝ, we have 

 

𝐹 𝒙 − 𝐹 𝒚 ≤ 𝐾 𝒙 − 𝒚 , 𝒙, 𝒚 ∈ ℝ𝒏   (5.6) 

for a positive Lipschitz function 𝐾.  Now, for any positive number 𝑡, it can be shown 

that 

𝐺 𝒙 ∈ ℝ~ ∶ 	 𝐹 𝒙 − 𝐹 𝒚 > 𝑡 ≤ 2𝑒 = g4ü

wünü   (5.7) 

with 𝔼 𝐹 𝒙 = 𝐹 𝒙 𝑑𝐺 𝒙ℝu , and 𝑐 = O
!ü

.  In [66] the 𝜎 = 1 case is proven.  More 

generally, the mapping 𝒙 ⟼ 𝜎𝒙 ∶ 	ℝ~ ⟼ ℝ, the resultant composed function 𝒙 ⟼

𝐹 𝜎𝒙  satisfies a Lipschitz condition with constant 𝐾𝜎, [63].  Having shown the 

Lipschitz mapping of eigenvalues for a random matrix comprised of independent 

identically distributed entries, the next step is showing the smoothness and 

convexity of eigenvalues and traces of matrices. 

 

5.3.2 Smoothness and Convexity of the Eigenvalues of a Matrix and Traces 
of Matrices 

There were two conditions that must be met in order to move from the classical 

probabilistic framework to a probabilistic concentration of measure phenomena: 

Lipschitz and convexity.  In the previous section, the Lipschitz mapping of 

eigenvalues was shown.  The second and final step in ensuring the probabilistic 

framework provided by the concentration of measure phenomenon is to 

demonstrate the convexity of eigenvalues.  For this section, we closely follow the 

exposition of [63].  Recall that 
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Tr 𝑓 A = 𝑓 𝜆F A~

F÷#     (5.8) 

with 𝜆F A  being the eigenvalues of matrix A.  Now, consider a Hermitian 𝑛	×	𝑛 

matrix A.  Let 𝑓 be a real-valued function on ℝ, and the function of the Hermitian 

matrix be 𝑓 A .  If we assume the matrix decomposition of A is A = UDU∗, and 𝑫 

is a diagonal real matrix denoted by D = diag 𝜆#, 𝜆O, … , 𝜆~ , and U is a unitary 

matrix, then 

𝑓 A = U𝑓 D U∗     (5.9) 

with 𝑓 D  being a diagonal matrix with entries 𝑓 𝜆# , 𝑓 𝜆O , … , 𝑓 𝜆~ and ∗ denotes 

the conjugate transpose operation.  In order to show the convexity and 

smoothness, we rely on the following Lemma [67] 

 
Lemma 5.1, (Guionnet and Zeitoumi 2000)  

1. If 𝑓  is a real-valued convex function on ℝ , it holds that Tr 𝑓 A =

𝑓 𝜆F A 	~
F÷# is convex. 

2. If 𝑓 is a Lipschitz function on ℝ, A ⟼ Tr 𝑓 A  is a Lipschitz function on 

ℝ~ü with Lipschitz constant bounded by 𝑛 𝑓 ℓ 

 

with 𝑓 ℓ being the Lipschitz constant and defined by 
 

𝑓 ℓ = sup ' 𝒙 =' 𝒚
𝒙=𝒚

     (5.10) 

where 	∙	 denotes the Euclidean norm on ℝõ.  From Lemma 5.1.1 we find that the 

trace of a Hermitian square matrix is indeed convex, which is expected as the trace 

functional is linear.  We also require that the function on the Hermitian matrix or 

eigenvalues be monotonically increasing, see [61] for a novel method of limiting 

the impact of clutter on the detection algorithm via monotonically increasing 

functions and kernel trick methods.  Further, we show the smoothness criterion 

through Lemma 5.1.2 with the Lipschitz constant, 𝑓 ℓ , being finite, smoothly 

varying, and bounded.   

Having showed the eigenvalues of a matrix and traces of matrices-

particularly Hermitian matrices-are Lipschitz and convex, we now demonstrate the 

tail bounds for salient forms of matrices that will serve as the basis for the examples 

of this chapter, and as a comparison to conventional radar signal processing.  We 

start by examining the sample covariance matrix, which serves as the foundation 

of modern statistical signal processing. 
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5.3.3 Concentration of Measure for Sample Covariance Matrices 
Nearly all modern detection algorithms rely on variations of detection with sample 

covariance estimates, whether they be from  

ℙ A ≥ 2 𝑛 1 + 𝑡 ≤ 𝐶𝑒
=u

y
ü

z    (5.11) 

where A  represents the Euclidean norm.  One immediate observation from 

Equation (5.11) is that the sample covariance matrix is slow to converge to a 

constant value, and requires a very large number of observations, 𝑛 to achieve this 

stability.  This is why many sample covariance matrix based algorithms attempt to 

achieve homogeneity in sample observations, either through whitening (see [2-3]), 

adaptive matched filtering (see [68-69]), or non-homogeneity detection (see [70]).  

The ability to choose random variables from a similar probability distribution is akin 

to selecting 𝑛  observations from a sample space or event space that is well-

behaved-a difficult and impractical task for most sensing applications, hence the 

reason the signal-to-noise ratio must be positive to achieve acceptable detection 

performance. 

 

5.3.4 Concentration of Measure for Wigner Random Matrices 

A Wigner matrix is any 𝑛	×	𝑛 matrix H= ℎFe #OFOeO~
, such that 

ℎFe =
#
~
𝑥Fe + 𝑦Fe 	∀	1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛    (5.12) 

where 𝑥Fe, 𝑦Fe  are real independent, identically distributed (IID) random variables, 

with an expectation, E 𝑥Fe = 0, and variance, Var 𝑥Fe = E 𝑥FeO − E 𝑥Fe
O = #

O
.  

Alternatively, the Wigner matrix may also be defined as 

ℎFF =
#
~
𝑥FF	∀	1 ≤ 𝑖 ≤ 𝑛    (5.13) 

where 𝑥FF  are assumed to be real, IID random variables, with the first moment 

E 𝑥FF = 0 and second moment E 𝑥FF − E 𝑥FF O = 1.  Typically, the entries of the 

Wigner matrix, ℍ, will scale with the dimensionality, to ensure in the limit, 𝑛 → ∞, 

all eigenvalues of H remain bounded.  An example is shown below; recall that the 

trace function is linear, and we are attempting to show the bounded nature of the 

eigenvalues in the asymptotic limit 

E 𝜆õO = E 𝑇𝑟𝑯O~
õ÷# = E ℎFF O = 𝑛OE ℎFF O~

F÷#
~
F÷#   (5.14) 

where 𝜆õ are the eigenvalues of H.  Obvious from Equation (5.14) is the implicit 

assumption that the trace of the eigenvalues is not infinite as 𝑛 → ∞; this implies 
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that E TrH2 ≃ 𝑛, and hence E ℎFF O ≃ #
~
.  Free probability and concentration of 

measure are the reason detection in the negative signal-to-noise ratio is possible.  

Whilst not necessarily apparent just yet, but as this section progresses, the 

conceptual theory for why this is true-in comparison to sample covariance matrix 

based methods-will become apparent quite soon.  First, let us introduce the 

following theorem from [67] 

 
Theorem 5.1. Suppose that the laws of the entries x~�, y~�, x~~  satisfies the 

logarithmic Sobolev inequality with constant c > 0.  Then, for any Lipschitz 

function f ∶ 	ℝ → ℂ, with Lipschitz constant f ℓ and t > 0, we have that 

ℙ #
h
Tr𝑓 H − E #

~
Tr𝑓 H ≥ 𝑡 ≤ 2e

= uü4ü

�g * F
ü  (5.15) 

where f ℓO represents the Lipschitz constant.   

 

From the concentration of measure inequality, a remarkable difference 

between Equations (5.15) and (5.11) is noticeable-the bound on the concentration 

of measure exponent converges significantly faster for Equation (5.15), that of the 

sample covariance matrix exponent in Equation (5.11)!  This is one of the most 

significant theorems and comparison that differentiates conventional statistical 

signal processing form this new foundation built upon the theories of free 

probability and concentration of measure. First, in order to prove Theorem 5.1, we 

need to introduce the following theorem from Herbst, see [71] 

 

Theorem 5.2.  Suppose that ℙ satisfies the log-Sobolev inequalities on ℝ~ with 

constant 𝑐.  Let 𝑔 ∶ ℝ~ → ℝ be a Lipschitz function with constant 𝐺 ℓ.  Then, for 

every 𝑡 > 0, 

ℙ 𝑔 𝒙 − E 𝑔 𝒙 ≥ 𝑡 ≤ 2𝑒=
4ü

üg � ℓ   (5.16) 

 

This observation from Herbst shows that Lipschitz functions of random 

matrices satisfy the log-Sobolev inequality and exhibit Gaussian concentration, 

[71].  

 
Proof of Theorem 451.  Let 𝑿 = 𝑥Fe, 𝑦Fe, 𝑥FF ∈ ℝ~ü.  Let 𝐺 𝕏 = Tr𝑓 H X .  

Then the matrix function 𝐺 is Lipschitz with constant 2 𝑓 ℓ. By Theorem 5.2, it 

can be shown that 
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ℙ #
~

Tr𝑓 H − E #
~

Tr𝑓 H ≥ 𝑡 ≤ 2𝑒=
uü4ü

�g * ℓ  (5.17) 
 
 

Examining the proof of Theorem 5.1, there is an explicit focus on the use of 

the linear trace functional.  There is a reason the trace function is so utilized under 

our proposed mathematical framework for the low signal-to-noise ratio detection 

algorithm, and that is due to both the linearity of the trace functional-as discussed 

previously-and the fact that relying on eigenvalues yields a less sharp 

concentration of measure inequality, as shown in the next example, from 

 
Example 5.1. We start by considering the following inequality of Hoffman and 

Wielandt, see [72]. Let A,	B be 𝑛	×	𝑛 matrices with eigenvalues 

𝜆F A − 𝜆F B O ≤ Tr 𝑨− 𝑩 O~
F÷#    (5.18) 

This simple inequality can then be used to show the concentration of measure 

inequality for eigenvalues, as opposed to the trace functional, as is shown below 

ℙ 𝑓 𝜆õ − E 𝑓 𝜆õ ≥ 𝑡 ≤ 2𝑒
= u4ü

�g * ℓ
ü   (5.19) 

where the matrix function, 𝐺 𝒙 = 𝑓 𝜆õ , with the Lipschitz constant, O
~
𝑓 ℓ.   

 

The bound for the trace functional converges with the square of the order of 

the square matrix, 𝑛, whereas the use of eigenvalues is marginally better than the 

current state-of-the-art in statistical signal processing-the sample covariance 

matrix.   

 

5.3.5 Applications to Distributed Sensor Networks 
In [62] a Wishart matrix is used to achieve detection of weak signals, under signal-

to-noise ratios as low as −34𝑑𝐵.  Now, in the previous section, the concentration 

of moment inequality showed a tailbound of 2𝑒
= uü4ü

�g * ℓ
ü for a Wigner matrix; however, 

it can be shown that for a Wishart matrix, the tailbound is 2𝑒=
uü4ü

�g , which is 

equivalent to the Wigner matrix in which the Lipschitz function has a value of unity.  

In many ways, the right-hand side of the concentration of measure inequality can 

be viewed as a Gaussian tail, with the power of the exponent representing the 

effective variance.  In slightly clearer context, the exponential power for the 𝑘h� 

eigenvalue has a variance of 𝜎O = OA
~

, whilst that of the trace function has a 
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variance of 𝜎O = OA
~ü

.  For example, assuming a square Wishart matrix of size 𝑛 =

100 , the variance of the normalized trace function is 0.01  that of the 𝑘h� 

eigenvalue.  To put this in context, for a square Wishart matrix of size 𝑛 = 100, the 

normalized trace function-which is viewed as a statistical average of 𝑛 

eigenvalues-has a reduction in variance of 20𝑑𝐵  over the 𝑘h�  eigenvalue 

tailbound.  This aids in the understanding of how detection is achievable under 

weak signal-to-noise ratios (see Figure 20). 

In most typical application of a detection metric, a threshold value is chosen 

based upon some criteria, and compared to a value that is based upon measured 

data.  Since the threshold value is fixed, the measured data value varies over the 

sample period.  Methods of dimensionality reduction (see [2], [68-69]) attempt to 

reduce the sample covariance matrix to a single eigenvalue for the statistic metric.  

However, the sample covariance matrix still has a higher variance than the 𝑘h� 

eigenvalue statistic metric, and is much more than that tailbound on the variance 

of the normalized trace function statistics metric (see Figure 21).   

 
Figure 20: Concentration of Measure for Sample Covariance vs Wishart Matrix 
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Figure 21: Eigenvalue vs Trace Function Variance 

 
From [62], the normalized trace function was shown to be optimal, in that the 

detection performance at weak signal-to-noise ratios was consistent and clearly 

outperformed any modern statistical signal processing approach.  The prime 

motivation for the development of this chapter was to thread the story that wove 

the various and disparate lemmas, theories and proofs that were instrumental in 

explaining how and why weak-signal-to-noise ratio detection algorithms work, and 

are based upon a strong foundation of recent mathematical results.  The framework 

provided by free probability, concentration of measure, and the normalized trace 

function are a new mathematical foundation for the development of an entire class 

of innovative signal processing algorithms, that take detection and detection 

performance into the 21Wh century.  It is the belief of the author that in the coming 

years, this new framework developed will usher in a new era of signal processing 

possibilities, which are only now just being explored with this initial foray into weak 

signal detection. 

In the previous chapter, the metric used for detection involves the use of a 

nonparametric hypothesis test, based upon the volume of an annular data depth 

contour.  This was shown to be quite effective at low, but positive signal-to-noise 

ratios.  For the weak SNR case, the variance variability of the threshold statistic 

needs to be controlled, and ensured to be of sufficient utility that hypothesis testing 

yields favorable probabilities of detection, for a set false alarm rate (Neyman-
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Pearson criterion).  For the remainder of this chapter, the statistical metric used for 

the hypothesis testing is found from the normalized trace function.  Further, the 

detection performance-under free probability-is compared for a single random 

variable (ie-the time-reversal operator, see Chapter 4) and for a sum of random 

variables.  Finally, the detection performance versus various types of corruptive 

noise processes is considered, and compared to that of Gaussian IID noise.  

Implicit in any detection performance results is the ability of the multistatic radar 

network to conduct weak scatterer detection for both a single point-type targets 

and extended targets comprised of multiple scattering centers. 

 

5.4 Weak-SNR Regimes 
What is meant when we say: weak-SNR?  In [1], the low-energy coherence 

receiver is developed to aid in the detection of targets that were both spread 

(multiple scattering centers in Range-Doppler space) and weak; however, this 

terminology is not explicitly defined, leaving the signal-to-noise ratio (SNR) regime 

that constitutes weak up to the interpretation of the interested reader.  The 

particular meaning of the term weak is the question that is answered in this section. 

In an effort to define the limit in which weak signal-to-noise ratio is reached, let us 

start with an informal proposition, based upon the non-parametric depth-based 

detector introduced in Chapter 3. 

 

Proposition 5.1-Lower-Bound of Detectability. For nominal, positive, SNRs, 

Newton's Third law leads to a natural repulsion between the signal eigenvalues 

and the noise eigenvalues of the target time-reversal operator; leading to ready 

detectability of the signal, or more specifically, to better selection of the signal 

rankings.  As the SNR begins to decrease, this natural eigenvalue repulsion begins 

to weaken, to the point that the signal eigenvalues become entangled in the outer 

convex hull of the data depth functional; however, in keeping with the third law, the 

signal eigenvalues are still repelled by the bulk of the noise eigenvalues in the data 

depth functional.  Further, whilst the positive SNR leads to particular signal only 

regions that isolated from the noise eigenvalues, when the SNR decreases 

towards the negative, the signal eigenvalues are thrown about over the outer 

convex hull of the data depth functional.  Thus, in order to conduct adequate 

ranking and selection to a suitable false alarm rate, in keeping with Neyman-

Pearson criterion, we are forced to ascertain methods that can distinguish, in the 
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outlying regions of the data depth functional, those eigenvalues that are associated 

with the noise, and those that are associated with the signal.  In this limit, the lower-

bound of detectability is the point at which the signal becomes entangled in the 

annulus of the 0.9	𝑝h� contour; to the point at which there is no currently deduced 

method for formulating a ranking and selection criteria that will have meaningful 

probability of detection performance.  This phenomenon, is the currently assumed 

limit for weak-SNR detection utilizing data depth functionals for a distributed sensor 

network. 

 In Figure 22, we demonstrate this phenomena by examining the data depth 

functional for a network of 60 sensors.  The convex hull for a rank 3 time-reversal 

operator is shown below.  Note how the rank of the data depth functional is readily 

visualized, and indicates the outlying nature of the high-SNR eigenvalues on the 

formation of the data depth functional using the convex hulling method. 

 
Figure 22: Data Depth Functional for 60 Sensor Network (High-SNR) 

In Figure 23, the SNR is decreased, sufficiently enough that the apparent rank of 

the data depth functional is 2.  One of the signal eigenvalues has become weak 

enough that it becomes entangled in the outer convex hull of the 0.9	𝑝h� contour.  

This becomes a demonstration of a moderate-SNR, one in which the highest SNR 

eignevalues are readily recovered, but not those eigenvalues that begin to 

equivalent to the noise eigenvalues. 
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Figure 23: Data Depth Functional for 60 Sensor Network (Moderate SNR) 

Our final example of the data depth functional for a network of 60 sensors 

demonstrates the phenomena of weak-SNR, see Figure 24.  Thereby, each target 

eigenvalue is low enough that they are approximately equivalent to the largest 

noise eigenvalues.  The rank of the data depth functional is not apparent, and 

represents visually, the concept of the weak-SNR regime. 

 

 
Figure 24: Data Depth Functional for 60 Sensor Network (Weak-SNR) 
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5.4.1 A More Formal Definition 
Whilst Proposition 5.1 is a good first step in defining the low signal-to-noise ratio 

regime, a more formal definition that will determine the bounds at which our low-

SNR detection algorithm is implemented is required.  The depth-based method has 

fundamental limits at which the detection performance is acceptable, meaning has 

a high probability of detection with a defined low false-alarm rate. 

 

Theorem-Matrix Congruency. Let A,	B be operators on a Hilbert Space ℋ.  We 

say that A is congurent to B, and write A~B, if there exists an invertible operator 

X on ℋ such that B = X∗AX.  Congruence is an equivalence relation on a linear 

operator of a Hilbert space, represented by ℒ ℋ .  If X is unitary, we say A is 

unitarily equivalent to B, and write A ≃ B. 

 

The previous theorem describes a fairly broad methodology for determine 

the congruency of two matrices on a Hilbert space, but does not necessarily give 

us a readily quantifiable metric for declaring two matrices congruent.  This leads to 

a difficult inverse problem, in which the form of the operator needs to be deduced 

from matrices A and B.  In an effort to reduce this computation, we use a more 

explicit form of the definition for matrix congruency, which relies on the concept of 

matrix inertia.  One important point to note, is whilst we are making use of formal 

definitions for matrices as we develop a working definition for the weak-SNR 

regime, we are not necessarily limited to only those matrix types.  Now, with that 

caveat in mind, let us press forward with a more practical definition of matrix inertia. 

 

Definition 5.1- Matrix Inertia. If A is Hermetian, the inertia of A is the triple of 

non-negative integers  

In A = 𝜋 A , 𝜁 A , 𝜈 A     (5.20)	

where 𝜋 A , 𝜁 A , 𝜈 A  are the numbers of positive, zero, and negative 

eigenvalues of A, counted with multiplicity.  Since the concept of matrix inertia 

leaves us with three very tangible variables, this leads to our accepted definition 

for matrix congruency, which is readily found for any matrix 

 

Theorem 5.3-Sylvester's Law of Inertia. Assume that In A  is a complete 

invariant for congruence on the set of Hermetian matrices; this could be phrased 

as two Hermetian matrices are congruent iff they have the same inertia 
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A ≃ B,	iff In A = In B      (5.21) 

 

This leads to a more formal proposition that form the basis of our boundary 

for determining the signal-to-noise ratio that serves as the transition point from 

nominal to weak signal-to-noise ratio regimes 

 

Proposition 5.2-Observation on Congruency: Let A ∈ ℝ~ be the time-reversal 

operator whose rank is much less than 𝑛, rank A ≪ 𝑛, and the elements of WFe ∈

𝒩 0, 𝜎O  be the measurement noise time-reversal operator, comprised of normal 

Gaussian noise.  If we assume that the observed measured time-reversal operator 

is B = A+ 𝑐~W, with 0 < 𝑐~ < ∞ , and further assume that Tr B > Tr W , and 

B < A then as 𝑐~ → ∞ 

In 𝜋 B , 𝜁 B , 𝜈 B ≃In 𝜋 W , 𝜁 W , 𝜈 W    (5.22)	

 

Thus, the measured time-reversal operator, B, is said to be congruent to the 

measurement noise time-reversal operator, W.  The point at which this weak-SNR 

cross-over occurs is shown in Figure 26. 

 
Figure 25: Low-SNR Cross-Over point: Inertia Values vs SNR  

Figure 25 was generated using a simulation averaging the inertia values for the 

noise and measured time-reversal operators using 100 sensor nodes and 10,000 

Monte Carlo trials.  The values were re-run for distributed sensor networks 

comprised of 20,40, 60, 80, 120, 140, 160, and 180 sensor nodes to determine the 

impact on sensor density with the cross-over point for the inertia values into the 

weak-SNR regime.  Those results are tabulated below and demonstrate the 
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variability of the weak-SNR cross-over point with respect to the density of the 

distributed sensor network.  In Figure 26, the trend shows the weak-SNR cross-

over point moving lower as the density of the sensor network is increased.  There 

is clear ~12𝑑𝐵 separation from a sparse network of 4 sensor nodes, to that of a 

dense sensor network with over 100 nodes.  An asymptotic lower limit of ~1𝑑𝐵 is 

observed as the density of the sensor network increases past 200 nodes. 

 
Figure 26: Sensor Network Density vs Weak-SNR Cross-Over Point 

Interestingly, Figure 26 also shows a general trend for the benefit of higher 

dimensional sensor networks, under the proposed fusion framework; particularly, 

there is a clear connection between a standard monostatic benchmark of ~13𝑑𝐵 

for a single-pulse detection threshold value [39].  As the density of the sensor 

network decreases, the single-pulse time-reversal operator tends to show a weak 

signal-to-noise (SNR) cross-over point of approximately ~6𝑑𝐵  above the 

monostatic benchmark single-pulse detection SNR of 13𝑑𝐵.    More importantly, 

Figure 26 could be used as a graphical method for optimizing the design of a 

sensor network to meet a required SNR for detection, or vice-a-versa. 

This definition of the weak signal-to-noise cross-over point leads to an 

important topic of consideration: how do we recover a scatterer in the weak signal-

to-noise ratio regime?  Since we have assumed the definition for the weak signal-

to-noise ratio regime is matrix congruency between the measured and noise time-

reversal operator, it would seem there is little chance of ascertaining a suitable 

hypothesis test for detection-let alone ranking, should an extended object be 

present; this is actually not an accurate assertion.  The matrix inertia simply allows 

us to define the transition point between the nominal and weak-signal-to-noise ratio 
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regimes, permitting us to switch detection algorithms without the need for an 

excessively complicated adaptive process.  In this manner, three variables dictate 

the algorithm choice between the nominal depth-based detector and the weak-

SNR variant-to be introduced shortly.  However, to solve for the inertia of the time-

reversal operator, we require a noise and signal-plus-noise measured time-

reversal operator.  Since both matrices look the same under weak-SNR conditions, 

we need to formulate a method of recovering the inertia from a sample limited time-

reversal operator.  This problem is shared with modern statistical signal processing 

approaches, which rely on the formation of the sample covariance matrix, and is 

greatly complicated by limited sample-support; as evidenced by the concentration 

of measure tailbounds for the sample covariance matrix. 

 

5.5 Summary 
In this chapter, we introduced an extension of the mathematical basis of the 

bespoke depth-based detector in classical communicative probability, to that of 

non-communicative probability.  More importantly, concentration of measure was 

discussed and its role in determining the tailbounds for our pre-detection fusion 

time-reversal operator.  The trace functional was introduced and suggested as 

suitable threshold metric for use in a detection algorithm.  Finally, the concept of 

weak signal-to-noise ratio regimes was discussed, as well as an empirical cross-

over point from nominal to weak-signal-to-noise ratio (SNR) regimes.  This later 

point serves as the mathematical transition point upon which a given fusion center 

would move from applying the depth-based detector of Chapter 4, to that of the 

low-SNR detector, which is introduced in the subsequent chapter.  

 

5.6 Conclusion 
Leveraging the intersection of big data and distributed sensor networks, we have 

introduced mathematical concepts for assessing practical detection performance 

in weak-SNR regimes.  The generalization of classical communicative probability 

to non-communicative probability was shown the be a critical mathematical 

concept to understanding the SNR boundary point between nominal and low-SNR 

regimes. The algorithms of Chapter 4 and 6 play an important part in permitting 

detection performance beyond traditional sensing domains. 
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6 Detection and Ranking Under Weak-Signal-to-Noise-
Ratio Conditions for a Distributed Sensor Network 

 

6.1 Introduction 
Previously we showed the theoretical bounds of performance for the distributed 

sensor network; it is actually a function of the number of radio-frequency sensors, 

a mathematical framework based upon free probability and concentration of 

measure; and was shown to quite readily outperform its contemporary statistical 

signal processing-based sample covariance matrices approaches.  Until now, 

noise limited detection scenarios have proved vexing, and many interesting signal 

processing tricks have been formulated to increase the bounds of detectability; 

however, they all suffer from a fundamental limit that is beyond the control of the 

system or associated algorithms, see Equation (5.11).  The variance on the 

tailbound was previously shown to be most well behaved when using the 

normalized trace function, per Equation (5.15).  In this section, the application of 

the normalized trace function is on the detection of point and extended object 

structures under weak signal-to-noise ratios (SNR).  The SNR considered for this 

section onward is primarily negative and focuses on a lower-bound of detectability, 

which is found from a series of Monte Carlo simulations.    

 

6.2 Declaration of Scattering Centers Under Weak-SNR Conditions	
We begin by considering the standard binary hypothesis test shown below 

𝐻" ∶= 𝑁      (6.1a)	

𝐻# ∶= 𝑆 + 𝑁     (6.1b)	

In (6.1a,b) the noise, 𝑁 , and signal, 𝑆 , variables are replaced by operators 

(matrices) W and A, respectively.  In instances where the measured operator is a 

mixture of signal-plus-noise, the notation B is used.  A general operator is typically 

denoted by 𝜌 and satisfies the following: 

1. 𝜌 has trace equal to one, or Tr𝜌 = 1. 

2. Positivity: 𝜌 is a positive operator, or 𝜌 ≥ 0. 

In this section, the Tr𝜌 is assumed positive (not necessarily equal to 1), whilst the 

positivity requirement is satisfied through the assumption that each operator is 

semi-definite positive (SDP); which are convex [73].  From (Chapter 3), the pre-

detection fusion time-reversal operator satisfies the above requirements.  Going 
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forward, the notation for the 𝜌 is relaxed a bit, with the operator described as 

positive definite (PD).  Expanding Equation (6.1a,b) to include the proper operator 

notation, the revised hypothesis test for this chapter is now 

𝐻" ∶=W     (6.2a) 
𝐻# ∶= B     (6.2b) 

Recall that under free-probability, each matrix is now assumed a random variable.  

Convexity assures the uniqueness of the hypothesis testing results, whilst the use 

of the trace functional ensures linearity and enables the mathematics for the weak-

SNR detection to be more readily implemented in a processor; as in the matrix 

mathematics simplifies to a set of adders and multipliers.  In the next section, the 

trivial weak signal-to-noise detection algorithm is introduced for the known noise 

time-reversal operator.  This initial algorithm serves as a motivational example for 

the unknown noise case.  A ranking algorithm is introduced for the determination 

of the number of scattering centers present for a given range-extended target.  

Moving to the unknown corruptive noise time-reversal operator, an algorithm is 

introduced for the determination of a range-extended target comprised of multiple 

scattering centers; which is based upon an estimate of the asymptotic form of the 

finite-sample target time-reversal operator 

    

6.2.1 The Time-Reversal Operator for Weak-SNR Regimes 
For the trivial case in which the statistical form of the noise time-reversal operator 

is known a priori, the weak signal-to-noise detection algorithm is found from the 

following expression 

A = u xe v xe
∗Ó

F÷#     (6.3) 

which is the familiar form of the pre-detection fusion process introduced in Chapter 

3.  Of particular note in Equation (6.3) is the fact the target time-reversal operator 

is an outer product of the tensor product of the transmit vector, v, and receive 

vector, u.  This expression could also be written as a special case of the Kronecker 

product 

A= u xe ⨂v 𝒙eÓ
F÷#      (6.4)	

For the case in which the scene under illumination has a single scattering center 

present, 𝑟 = 1, and  

A = 𝜎#u x# ⨂v x#      (6.5)	
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For this work, the concept is broadened to range-extended targets, which are 

comprised of a multiple scatterers; this results in the form of the target time-reversal 

operator introduced in Chapter 3 

A = 𝜎e⨀u xe ⨂v xeÓ
e÷#     (6.6)	

where the dot product, ⨀, is used to denote the mathematical relationship between 

the individual scatterers comprising the compound extended object, and the time-

reversal operator.  Immediately obvious, is the fact that the target time-reversal 

operator is a unique product of the individual scatterers and their associated 

material properties.  Eigenvalue repulsion ensures each scatterer is recoverable 

from the underlying additive corruptive noise process.  Recall from Chapter 3 that 

the scatterer target time-reversal operator was denoted by, A, the corruptive noise 

process by, W, and the measured time-reversal operator by, B.  For the remainder 

of this chapter, the focus is on the development of a detection algorithm that 

permits recovery of the range-extended target in weak signal-to-noise ratio 

regimes, and hence the previous formal definition of the measurement time-

reversal operator changes from B = A+ #
R

W , to B = A+ Au
R

W ; which is 

appropriate considering the SNR regime is weak (possibly negative) and the noise 

is dominant, but bounded by 𝑐~ ∈ 0,∞ . The scaling of the noise in the negative 

signal-to-noise ratio regime is appropriate, as the signal time-reversal operator is 

always assumed to be dominated by the much stronger measurement noise time-

reversal operator.  In this case, we initially consider the case in which the signal 

(target) time-reversal operator, A is majorized by W; this point is revisited shortly 

in the context of the proposed detection algorithm. 

𝜎F A ≺ 𝜎F W ,∀	𝑗 = 1,2, … , 𝑘   (6.7) 

In Equation (6.7), the expression denotes that the singular values of the signal 

time-reversal operator are majorized by the corruptive noise time-reversal 

operator; and as the rank of the noise time-reversal operator is full, this statement 

is true for all singular values comprising both A and W. 

 

6.3 Weak-SNR Detection Algorithm 
Many modern statistical signal processing detection problems rely on the formation 

of the sample covariance matrix as crucial to the success of the adaptive algorithm 

[2, 69].  Likewise, the proper convergence for the time-reversal operator, or time-

reversal operator random variable (under free-probability) is critical to the success 
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of our weak-SNR detection algorithm.  For both previous instances cited, sample 

support limitations can cause serious issues and lead to detectors of limited 

operational utility. To address this issue for sample covariance matrices, a method 

for estimating the asymptotic form of the sample covariance matrix, based upon a 

shrinkage algorithm, was introduced in [74-75].  The point of introducing this 

algorithm is to demonstrate our method for recovering the signal time-reversal 

operator from the weak-signal-to-noise ratio measured time-reversal operator; 

which is dominated by the measurement environmental noise, and congruent with 

the actual receiver thermal noise-assumed Gaussian in both instances of the 

purpose of this work.  In [74] a covariance estimation approach, based upon 

minimum mean-squared error (MMSE) for Gaussian samples under finite sample 

support is considered.  A shrinkage method is introduced to aid in the recovery of 

the high-dimensional covariance matrix, under limited sample support scenarios.  

In particular in [75], the estimation algorithm was extended for elliptical 

distributions, which are also known as spherically invariant random vector models 

(SIRV).  Since SIRV models encompasses heavy-tailed distributions, such as k-

distributed, this algorithm has wide-ranging application in statistical signal 

processing.   

The oracle approximation shrinkage (OAS) estimator seeks to find the 

asymptotic form-or oracle-of a finite-sample covariance matrix.  For this section, 

we make use of the oracle estimator found in [74] to derive the asymptotic form of 

the covariance matrix, based upon a nonrandom coefficient that minimizes the 

mean-square error.   For the OAS estimator, 𝚺, uses a nonrandom coefficient to 

minimize the mean-square error, which is the solution to the following expression 

min�E 𝚺 − R° F
O s.t. 𝚺 = 1 − 𝜌 R° + 𝜌F  (6.8) 

where R° ∈ ℝ~ is the sample covariance matrix.  The matrix F is referred to as the 

shrinkage target, defined as 

F = Tr Rû
8

I     (6.9) 

where I is a 𝐿-dimensional unitary matrix.  The shrinkage coefficient 𝜌 ∈ 0,1  in 

ℝ~ and is used to minimize the mean square error. 

The OAS initializes the estimator iteration with an initial guess of R°.  The 

iteration procedure is continued until a convergence is reach, which is defined by 

𝜌eÍ# =
#=ü� Tr 𝚺yRû ÍTrü 𝚺y

4Í#=ü� Tr 𝚺yRû Í #=G� Trü 𝚺y
    (6.10) 
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The initial guess 𝚺"  could be the sample covariance matrix R° , with the initial 

guess of being bounded by 0 < 𝜌" < 1 .  When the iteration convergences, the 

value of 𝜌OAS can be shown to be of the form 

𝜌OAS = min
#=ü� Tr Rû

ü
ÍTrü Rû

4Í#=ü� Tr R"
ü
=Trü Rû

�

, 1    (6.11) 

After using 𝜌OAS  to substitute for 𝜌  in 6.10, we can get the estimated 

covariance matrix as 

𝚺OAS = 1 − 𝜌OAS R° + 𝜌OASF   (6.12) 

 

Proposition 6.1-OAS Inequality. The OAS inequality states that the estimate of 

the oracle is almost surely (a.s.) weakly majorized by the singular values of the 

original finite-sample covariance matrix used for the OAS estimate. 

 

Let B ∈ ℝ~ be the observed measured time-reversal operator, and 𝚺OAS ∈

ℝ~ be the estimated asymptotic form of B.  We first order the singular values of B 

and 𝚺OAS in descending order, as follows 

𝜎 𝚺OAS
↓ ∶= 𝜎#↓, 𝜎O↓, … , 𝜎~↓     (6.13a)	

𝜎 𝑩 ↓ ∶= 𝜎#↓, 𝜎O↓, … , 𝜎~↓     (6.13b) 

Then for 𝑗 ∈ 1, 𝑘  and 𝑘 ≤ 𝑛, we have 

𝜎 𝚺OAS e
↓ ≺Ê 𝜎 𝑩 e

↓,∀	1 ≤ 𝑘 ≤ 𝑛   (6.14) 

The observed low-SNR noisy time-reversal operator B is thus used to estimate the 

oracle of BOAS, where B is originally said to be congruent with W.  Majorization of 

BOAS is important and plays a pivotal role in the development of our weak-SNR 

detection algorithm. 

 

6.3.1 Weak-SNR Detection for Known Noise Time-Reversal Operator 
Under the clairvoyant case, the measured time-reversal operator and 

measurement additive corruptive noise time-reversal operator is assumed known.  

Whilst not practical for any real-use cases, it does serve as a suitable starting point 

and benchmarking exercise to determine the underlying efficacy of the proposed 

approach for weak signal-to-noise detection.   

Now, assume A,B ∈ 𝐶𝕄R  whose elements are contained in AFe ∈ ℝÍ .  

Further, assume that B = A+ 𝑐~W , where W ∈ 𝐶𝕄R  and whose elements are 
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independent and identically distributed (IID) and are WFe ∈ 𝐶𝒩 0, 𝜎O , and the 

scaling factor 𝑐~ ∈ ℝÍ and is bounded by 0 < 𝑐~ < ∞.  Let A represent the known 

scattering center noise-free time-reversal operator for the scene under illumination, 

and let B  represent the noisy measurement time-reversal operator, described 

previously.   

For a known noisy measurement time-reversal operator Tr B > Tr W , 

assuming the scaling factor is non-infinite, 𝑐~ ≪ ∞.  As the variable 𝑐~ → ∞, then 

Tr B ≃ Tr W . Now, by making use of the oracle approximation shrinkage (OAS) 

algorithm-or making use of a priori knowledge-we can determine the signal and 

noise time-reversal operators, AOAS and WOAS, from the noisy measurement time-

reversal operator, B, we can represent the trivial weak-SNR detection inequality 

as 
Tr AOASÍWOAS

ü

Tr AOASÍWOAS
≤ Tr AOAS

ü

Tr AOAS
+ Tr WOAS

ü

Tr WOAS
   (6.15) 

Implicit in Equation (6.15) is value of the threshold for declaration via binary 

hypothesis testing.  To more explicitly denote the weak-SNR algorithm, the 

notation is altered to directly state the threshold value that is used for detection 

declaration, 𝛾Threshold 

𝛾Threshold =
Tr 𝑨�i�Í𝑾�i�

ü

Tr AOASÍWOAS
    (6.16) 

The right side of Equation (6.16) is the quantity that must exceed the threshold in 

order for detection to be declared; however, the threshold value is currently defined 

in terms of a signal and noise measurement time-reversal operator.  This is 

incorrect and needs to be rectified.  In order to correct the threshold value, the 

signal time-reversal operator is removed, making the threshold a value defined by 

the noise time-reversal operator, hence, the weak-SNR threshold value is more 

properly written as 

𝛾Threshold =
Tr WOAS

O

Tr WOAS
 

Having properly defined the value of the threshold and pegged the determination 

of this value with the measurement noise time-reversal operator, the weak-SNR 

detection algorithm is defined as 

𝛾ThresholdN×N
O×Ø Tr AOAS

ü

Tr AOAS
+  ¢ WOAS

ü

Tr WOAS
   (6.17) 

Equation (6.16) represents the trivial weak-SNR detection algorithm, and is 

technically only limited in its ability to discriminate noise from a signal+noise by the 

precision of the detector (64-bit for the case of computer simulation, and 12 or more 
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bits for an actual radar signal processor analog-to-digital converter (ADC)).  This 

does pose a rather vexing problem, in that the ability of this algorithm to work is 

only based upon the quantization level resolution of the detector, hence the ability 

of Equation (6.17) to work at SNR values as low as -30dB of more (when measured 

as vØ
vu

).  The values for the oracle approximation estimation are more realistically 

based upon a noisy measurement time-reversal operator, of	B, whilst that of the 

threshold is found from an estimate of the noise measurement time-reversal 

operator, W.  Further, from Figure 21 we see the variance on the trace function 

decreases as the number of samples increase.  This gives credence to the use of 

training data for the estimation of the noise time-reversal operator, W, and for a 

more refined estimate of the noisy measurement time-reversal operator, giving rise 

to the following corrections in the low-SNR detection algorithm in (6.18): 

𝛾Threshold =
Tr WG

uHØ
ü

Tr WG
uHØ

    (6.18) 

where 𝑁 is the total number of samples to be integrated to minimize the variance 

on the trace estimate.  Minimizing the variance on the trace function is critical for 

practical implementation of the weak-SNR detection algorithm outside of a 

controlled simulation environment (and within such an environment for the 

purposes of Monte Carlo).  Excess variance leads to too much variability in the 

results of the algorithm, and inconclusive results.  As with the estimate of the noise 

time-reversal operator, the variance of the trace function must also be controlled 

for the noisy measurement time-reversal operator as well; which is accomplished 

through integration of multiple samples of the same signal over time; akin to 

integration of a low-probability-of-intercept signal to increase the signal-to-noise 

ratio, see [76].  Unlike standard pulse integration for a radar system, the intent is 

not to increase the power of the correlated signal over time, whilst allowing for 

destructive interference of uncorrelated measurement noise, but rather to integrate 

in an effort to minimize the value of the variance on the trace function to prevent 

fluctuations of noise values from negating the benefit of the low-SNR detection 

algorithm.  As with the threshold value, multiple noisy measurement time-reversal 

operators are captured, B, and each one passed through the oracle approximation 

estimation algorithm to determine the effective signal and noise time-reversal 

operators, AOAS  and WOAS  respectively.  Hence, the new trivial weak-SNR 

detection algorithm is expressed as 
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𝛾ThresholdN×N
O×Ø Tr AOAS

G
uHØ

ü

Tr AOAS
G
uHØ

+
Tr WOAS

G
uHØ

ü

Tr 𝑾�i�
G
uHØ

  (6.19) 

Equation (6.19) implies that the number of samples to be integrated does 

not need to be consistent amongst the estimate of the noise and the noisy 

measurement time-reversal operators.  This is true, and an open area for 

investigation and for optimization.  For the purpose of the examples to follow; 

however, the value of 𝑁 and 𝑀 are assumed the same; which is due to the fact we 

want to minimize the trace function variance to the same precision to minimize 

ambiguities in the simulated Monte Carlo results. 

Now, another manner of expressing the inequality of Equation (6.15) is to 

analyze the singular values along the trace of the noise and noisy measurement 

time-reversal operators.  Specifically, if AOAS, WOAS, W, B ∈ 𝐶𝕄𝑴 and comprised 

of complex elements, and if 𝐖OAS and W are comprised of 𝑚-length vectors of 

Gaussian elements, WOASÐy  and W ∈ 𝐶𝒩 0, 𝜎O , then for any A�­t + 𝑐~W�­t , 

where 𝑐~ ∈ 0,∞ , or more generally, 𝑐~ ∈ ℝÍ 

𝜎F AOAS +WOAS ≺Ê 𝜎F 𝐴OAS + 𝜎F WOAS ,∀	𝑖 = 1,2, … , 𝑘  (6.20) 

where 𝑘 < 𝑀 .  Essentially, Equation (6.20) is stating that the eigenvalues 

comprising the threshold value of Equation (6.18) is weakly majorized by the 

eigenvalues on the right-hand side of Equation (6.15); which is true for all 

eigenvalues of the trace, or the so-called 𝑘h�-eigenvalue.   

𝑑F A ≺Ê 𝜎F A ,∀	𝑖 = 1,2, … , 𝑘   (6.21) 

𝑑F refers to the diagonal elements of target time-reversal operator A.  Equation 

(6.21) is more typically written in terms of the eigenvalues (singular values, in our 

case) as 

𝜆F A ≺Ê 𝜎F A , 𝑘 ≪ 𝑀     (6.22) 

which is true, as typically the signal rank of target time-reversal operator A is much 

less than that of the full rank of time-reversal operator B.  Alternatively, we could 

express Equation (6.21) in shorthand as 

𝜆F A ≺Ê 𝜎F A       (6.23) 

where again, 𝑘 < 𝑛. 

In summary, assuming the measurement time-reversal operator has been 

generated by the fusion center pre-detection algorithm, the oracle approximation 

of the signal and corruptive noise time-reversal operators exists, and there is an 

estimate of the noise environment-operators B , AOAS , WOAS , and W  exist-the 
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trivial weak-SNR detection algorithm is now formulated based upon a simple multi-

step process: 
Algorithm 6.1: Trivial Weak-SNR Binary Hypothesis Test 
Fusion Center Weak-SNR Detection Algorithm 

1a: Form the Target Time-Reversal Operator: 

A = 𝝈𝒋𝝁 x𝒋
𝒓

𝒋÷𝟏
𝝊 𝒙𝒋

∗ 

1b: Form the Corruptive Measurement Noise Time-Reversal Operator: 

W=
𝟏
𝑴

𝑪𝕄𝑴 ∈ 𝑪𝓝 𝟎,𝝈𝟐  

1c: Generate the Measured Time-Reversal Operator: 

B= A+𝒄𝒏W
𝑵

𝒏÷𝟏
 

2: Calculate the OAS Estimate, 𝚺OAS, of B 

3: Determine AOAS and WOAS 

4: Calculate the Corruptive Noise Measurement Time-Reversal Operator: 

W =
𝒄𝒏
𝑴

𝑪𝕄𝑴 ∈ 𝑪𝓝 𝟎,𝝈𝟐
𝑵

𝒏÷𝟏
 

5: Determine the threshold statistic, 𝜸, from Tr W
𝟐

Tr W
 

6: Determine the Outcome of the Binary Hypothesis Test: 
𝜸

Threshold⋚𝑯𝟎
𝑯𝟏Tr AOAS

𝟐

Tr AOAS
Í

Tr WOAS
𝟐

Tr WOAS

 

 

6.3.2 Weak-SNR Detection: Real-World Case 
The challenge for the weak-signal-to-noise ration (SNR) detection algorithm is in 

determining an effective mechanism for estimating the measurement noise time-

reversal operator, W , from prior measurements.  Typically, we could look to 

adjacent range bins, for traditional monostatic radar for an acceptable estimate of 

the measurement noise, see [39]. A more appropriate form of training data is found 

from target-free time-reversal operators, which are formed on a regular interval by 

the distributed sensor network.  Assuming the use of a non-homogeneity detector, 

[77], for preservation of similar state training data, we would expect, under free-

probability, approximately four or more measurement noise time-reversal 

operators would be required for a sufficient estimate of W-assuming relatively 

homogeneous, and target-free data; as opposed to the sample-covariance, which 

would optimally require on the order of 120  or more samples to generate a 

statistically-significant approximation to the interference matrix, see Figure 20.  

Under free-probability, the training data requirements are shown to be less, owing 
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to the square value for 𝑛  in the exponential of the concentration of measure 

function from Proof (5.15).  Figure 26 demonstrates a possible implementation of 

the fusion center FIFO buffer for the collection of training data.   

 
Figure 27: Concept for Fusion Center Training Data FIFO Buffer 

We assume in Figure 27 that there is a total of a nine sample delay required for 

the FIFO buffer to contain adequate data for the formation of the real-use case 

measurement noise time-reversal operator; implicit in this assumption is the fact 

that the training data is homogeneous; though this is not a set requirement, and 

may require the incorporation of a non-homogeneity detector (NHD) to rectify, see 

[70] for further details.  Each grey block in Figure 27 labeled Training Data 

Required constitutes two homogeneous sample measured time-reversal operators 

within the fusion center FIFO buffer.  Notice the training data is temporally adjacent 

to the Measured Time-Reversal Operator Under Test; this is purposefully done to 

ensure an adequate training data set is chosen to minimize statistical-temporal 

anomalies in the measurement noise time-reversal operator.   

In the initial weak-SNR detection Algorithm 6.1, the threshold value was 

chosen based upon an estimate of the measurement noise time-reversal operator, 

and a sufficient number of integration samples to reduce the trace function variance 

to some pre-determined value, see Figure 21.  What is suspiciously absent; 

however, is a method of controlling the false alarm rate of the weak-SNR detector, 

the so-called Neyman-Pearson Criterion.  This lack of false alarm control means a 

detection is just as likely to be a false alarm as an indicator of a signal present, or 

a Type I statistical error.  In an effort to include the Neyman-Pearson criterion, the 

proceeding section introduces a modified weak-SNR detection algorithm to limit 

Type I errors based upon an alteration to the threshold value of Equation (6.22). 

 

6.3.3 Weak-SNR Detection Algorithm Corrected for Incorporation of 
Neyman-Pearson Criterion 

The weak-SNR detection algorithm was previously introduced and demonstrated 

for a clairvoyant detection case, for which the noise and measured time reversal 

operator was known a priori.  The detection performance was demonstrated based 

upon Monte Carlo simulations, showing initial promise and efficacy of the proposed 
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algorithm.  However, conspicuously missing from the weak-SNR detection 

algorithm was a method of false alarm control, or what is typically referred to as 

the Neyman-Pearson criterion.  The lack of false-alarm control means that any 

results did not control for Type I statistical errors, and were idealized and not 

representative of a practical detection mechanism for weak-SNR regimes.  In this 

section, a method of false-alarm control is introduced, which allows for the 

formation of a proper receiver operating characteristics or ROC curves, allowing a 

false-alarm value to be fixed, and the detection performance analyzed in better 

context.  Again, we make use of Chebyshev's Inequality from [55] to formulate the 

threshold for the binary detection hypothesis test.  From Chebyshev’s Inequality, 

we know that for any distribution in which the standard deviation is defined, the 

variables that fall within a certain number of standard deviations from the defined 

mean, 𝑘𝜎, is at least as much as [55]. 
Table 13: Empirical Threshold Table 

Minimum Population from the Mean Number of Standard Deviations (k) 

𝟓𝟎% 2 

𝟕𝟓% 2 

𝟖𝟗% 3 

𝟗𝟒% 4 

𝟗𝟔% 5 

𝟗𝟕% 6 

𝟏 −
𝟏
𝒌𝟐
% k 

 

From Table 13, we see that for an empirical false alarm rate of 6% we would 

require the 𝛾Threshold, 𝜎, to be equivalent to 𝜇 + 4𝜎; likewise, for an empirical false 

alarm rate of 4%  and 3% , we require the 𝛾Threshold  to be 𝜇 + 5𝜎  and 𝜇 + 6𝜎 , 

respectively. For more standard values of false alarm, ranging from 10=O, 10=�, 

10=D, 10=�, 10=h, 10=�, and 10=>, we would require the value of 𝑘 to be 10, 32, 

100, 317, 1000, 3155, 9760, respectively.   

In order to determine the actual numerical value for the detection threshold 

based upon the Chebyshev Inequality, initially, refer to Figure 27.  In Figure 27, the 

training data is temporally separated, and the corruptive noise process is assumed 

homogeneous.  Now, in order to make use of the Chebyshev Inequality, there 

needs to be both a mean value of the threshold and a standard deviation on that 

same threshold.  Let us start by defining the threshold from Equation (6.19) 
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𝛾Threshold =
Tr WG

uHØ
ü

Tr WG
uHØ

     (6.24) 

Which is the threshold based on an estimate of the corruptive noise time-reversal 

operator trace functional.  In order to solve for the mean of the threshold trace 

functional, we require a vector of 	𝛾Threshold values to be calculated.  We do so by 

rewriting Equation (6.19) as 

𝛾Threshold =
Tr W1

G
uHØ

ü

Tr WØ
G
uHØ

, Tr Wü
G
uHØ

ü

Tr Wü
G
uHØ

, … , Tr Wm
G
uHØ

ü

Tr Wm
G
uHØ

   (6.25) 

The above expression is more simply represented as a vector of threshold values, 

where the variable 𝑘 denotes the vector length. 

𝛾Threshold = 𝛾ThresholdØ, 𝛾Thresholdü, … , 𝛾Thresholdm     (6.26) 

Having defined the trace functional vector of threshold values, we are now able to 

better calculate the mean of 𝛾Thresholdm as follows 

𝜇õ =
#
�

𝛾Thresholdm
�
õ÷#      (6.27) 

The standard deviation is found from the square root of the second central moment, 

or the square root of the sample variance 

𝜎Ï =
#
�

𝛾Thresholdm − 𝜇ÏO
�
õ÷#    (6.28) 

Recall that the left side of Equation (6.27) is the basis for the weak-SNR threshold 

of (6.20), and the Monte Carlo simulation is attempting to ascertain the threshold 

value based upon an estimate of the corruptive noise time-reversal operator, based 

upon presumed homogeneous training data.  One important note, as with [79], the 

threshold value is going to be dependent upon the underlying corruptive noise 

process.  If we knew some fundamental aspect of the measurement noise, then 

we would have a knowledge-aided weak-SNR detector; if the measurement noise 

is known exactly, then we have a knowledge-based weak-SNR detector.  In order 

to have a truly non-parametric weak-SNR detector, the threshold values of Table 

13 need to be employed to ensure algorithm compatibility with any corruptive noise 

process in which the mean and standard deviation can be determined.  Results of 

the Monte Carlo simulation are shown for standard Gaussian and non-Gaussian 

corruptive noise processes in Table 14. 

Evident in Table 14 is the variety of threshold values for different standard 

non-Gaussian distributions.  Whilst this may appear to make real-world application 

challenging, the point of tabulating a variety of common threshold variables is 

motivational, to demonstrate the inherent power in non-parametric detection 

algorithms to encompass such a broad-array of corruptive noise processes.  In 
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Table 14 the Gaussian distribution is indicative of a standard thermal background 

measurement noise processes, whilst the remaining distributions are 

representative of standard ground clutter models.  Rayleigh distributions are 

typically assumed when a large number of randomly located independent uniform 

scatterers are illuminated; whilst the Log-Normal distribution is more likely to be 

used when the resolution cell and the grazing angle are small, potentially resulting 

in a higher-tailed probability distribution; Weibull distributions are a two-parameter 

family that can be altered to fit clutter models that lie between Rayleigh and Log-

Normal, with the Rayleigh distribution being a special case of the Weibull 

distribution 𝛼 = 2.0  [80].  
Table 14: Empirical Thresholds 

Distribution 𝝁 𝝈 𝜸Threshold 

Gaussian 0.00 1.4141 𝜇 + 𝑘𝜎 

Weibull 𝜶 = 𝟎.𝟓𝟓  28.27 4.49 𝜇 + 𝑘𝜎 

Rayleigh 𝜶 = 𝟐.𝟎  50.12 1.84 𝜇 + 𝑘𝜎 

Log-Normal 𝒔 = 𝟏.𝟓  61.58 12.57 𝜇 + 𝑘𝜎 

 

 Figure 28 plots the values of Table 14 logarithmically.   

 
Figure 28: Weak-SNR Threshold vs False Alarm Rate 

  

Again, it is worth mentioning that in [79], the Neyman-Pearson criterion for the 

knowledge-aided detector can be drastically different, resulting in greatly enhanced 

detection performance.  For comparison, when the underlying noise processed is 
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known to be Gaussian, we can correlate the Chebyshev Inequality 𝑃Q­  to an 

equivalent Gaussian noise 𝑃Q­, as shown in the Table 15. 

 
Algorithm 6.2: Weak-SNR Binary Hypothesis Test with False Alarm Control 

Fusion Center Weak-SNR Detection Algorithm 

1a: Form the Target Time-Reversal Operator: 

A = 𝝈𝒋𝝁 x𝒋
𝒓

𝒋÷𝟏
𝝊 𝒙𝒋

∗ 

1b: Form the Corruptive Noise Time-Reversal Operator: 

W=
𝟏
𝑵
𝑪𝕄𝑵 ∈𝓝 𝟎,𝝈𝟐  

1c: Generate the Measured Time-Reversal Operator: 

B= A+𝒄𝒏W
𝑴

𝒎÷𝟏
 

2: Calculate the OAS Estimate, 𝚺OAS, of B 

3: Determine AOAS and WOAS 

4: Calculate the Corruptive Noise Time-Reversal Operator: 

W =
𝒄𝒏
𝒏
𝑪𝕄𝑵 ∈ 𝑪𝓝 𝟎,𝝈𝟐

𝑴

𝒎÷𝟏
 

5a: Determine the threshold statistic, 𝜸, from:  

𝜸Threshold𝒌 = 𝜸Threshold𝟏 ,𝜸Threshold𝟐 , … ,𝜸Threshold𝒌  

5b: Calculate the mean and standard deviation of 𝜸Threshold𝒌: 

𝝁𝜸 =
𝟏
𝑲

𝜸Threshold𝒌

𝑲

𝒌÷𝟏
	

𝝈𝜸 =
𝟏
𝑲

𝜸Threshold𝒌 − 𝝁𝜸
𝟐

𝑲

𝒌÷𝟏
 

5c: Calculate Threshold Statistic Based Upon Desired False Alarm Rate, 𝒌𝑭𝑨: 
𝜸Threshold = 𝝁𝜸 + 𝒌𝑭𝑨𝝈𝜸,	where 𝒌 ∈ 𝟒,𝟓,𝟔,𝟗,𝟏𝟎,𝟑𝟐  

6: Determine the Outcome of the Binary Hypothesis Test: 

𝜸
Threshold⋚𝑯𝟎

𝑯𝟏Tr AOAS
𝟐

Tr AOAS
Í

Tr WOAS
𝟐

Tr WOAS

 

 

 From Table 15 the restrictive nature of the Chebyshev inequality is evident, 

as is the benefit of having a priori knowledge on the underlying corruptive noise 

process.  In either instance, the Type I errors are minimized whilst ensuring the 

probability of detection values have merit.  For the general use case, the 

nonparametric nature of the Chebyshev Inequality for the Neyman-Pearson 

criterion.   
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Table 15: Probability of False Alarm for Chebyshev Inequality vs Knowledge-Aided Detector Under 

Gaussian Noise Assumption 

Chebyshev’s 

Inequality, 𝑷𝑭𝑨 
𝒌𝝈 𝒙 Equivalent 𝑷𝑭𝑨 for Gaussian 

Noise 

𝟔% 4𝜎 3.62 𝑃Q­ = 10=D 

𝟒% 5𝜎 4.75 𝑃Q­ = 10=� 

𝟑% 6𝜎 5.61 𝑃Q­ = 10=h 

𝟏% 10𝜎 𝑥 ≫ 6.23 𝑃Q­ ≫ 10=d 

𝟎.𝟏% 32𝜎 𝑥 ≫ 6.23 𝑃Q­ ≫ 10=d 

𝟎.𝟎𝟏% 100𝜎 𝑥 ≫ 6.23 𝑃Q­ ≫ 10=d 

 
 

6.4 Weak-SNR Detection without Oracle Approximation Shrinkage 
For the sake of determining the baseline effectiveness of the weak-signal-to-noise 

ratio (SNR) detection algorithms, we reduce the complexity of the algorithm and 

assume both the target and noise time-reversal operators, A and W respectively, 

are known a priori.  In the subsequent section, this case is not assumed, and 

results are derived based on the oracle approximation shrinkage (OAS) estimates 

of A and W.  Recall that the OAS algorithm determines the asymptotic form of the 

time-reversal operator, and should result in better weak-SNR performance, at the 

expense of greater computational complexity.  The modified algorithm used in this 

section is simply Algorithm 6.2, skipping steps (1𝑐), (2) and (3). 

Whilst an exhaustive set of simulations were run against sensor network 

densities of 6, 10, 20, 40, 60, 80 and 100; only those results from simulations 

involving sensor network densities at 6  and 100  are shown for brevity.  

Additionally, for each variable sensor density considered, training data lengths 

were chosen at three distinct values, 4, 14 and 44; which correspond to a decrease 

in the trace functional variance from 0.1, to 0.01 and 0.001.  Since the detection 

performance desired is in the weak-SNR regime, minimizing the trace functional 

variance should result in greater detection performance, at the expense of greater 

training data requirements and computational complexity.  A tabulated set of 

results is shown in Table 17 for all 21 simulation runs.  We start by considering a 

dense sensor network comprised of 100 sensor nodes and a training data length 

of 4.  The object is assumed to consist of 3 point reflectors with the following 

parameters shown in Table 16. 
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Table 16: Scattering Center Parametrics 

Scattering Center Dielectric Coefficient 𝝆  Scattering Center Location 

𝒙, 𝒚  

1 𝜌 = 2.0 5,0  

2 𝜌 = 1.75 −2.5, 4.33  

3 𝜌 = 1.5 −2.5, −4.33  

 

Each of the scattering centers has a discrete dielectric reflectivity and location 

within the scene of interest.  This should allow for each of the three point reflectors 

to be uniquely detected.  The training length value of 4 is consistent with a trace 

function variance of 0.10 per Figure 21.   

The blue vertical line represents a SNR of 13𝑑𝐵, consistent with a standard 

single pulse detector required SNR value.  A red line indicates the weak-SNR 

cross-over point, or the point of matrix congruency between the noise and 

measured time-reversal operators, see Equation (5.20).  Graphically, these weak-

SNR cross-over point values versus radar network density were plotted empirically 

in Figure 25.  As Figure 26 shows, the weak-SNR cross-over point is a SNR of 

5𝑑𝐵, and with a probability of detection set at 90%, and probability of false alarm 

set to 1%, we require a minimum SNR of −2.2𝑑𝐵 for the weak-SNR detection 

algorithm to work.  

 
Figure 29: Algorithm 6.2-100 Sensors with Training Data Length of 4 Samples 
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Now, again, the Neyman-Pearson criterion is set with a rather stringent Chebyshev 

Inequality parameter that makes lower values of false alarm very difficult to 

achieve; later, we will relax these conditions with the knowledge-aided weak-SNR 

detection algorithm to show better performance under knowledge based scenarios. 

False alarm rates from 6% to 0.01% are also plotted, showing the sensitivity of this 

algorithm to the Neyman-Pearson criterion condition imposed on the threshold 

statistic.   

As was discussed previously, the trace functional variance will decrease 

rapidly as the length of the training data increases.  In the next example, the 

number of training matrices was chosen to be 14 , which reduces the trace 

functional variance to 0.01. 

 
Figure 30: Algorithm 6.2-100 Sensors with Training Data Length of 14 Samples 

Again, the blue vertical line represents the single pulse detector SNR requirement 

of 13𝑑𝐵, whilst the red vertical line represents the weak-SNR cross-over point of 

5𝑑𝐵.  Fixing the probability of detection to 90% with a probability of false alarm of 

1%, we find the SNR required for the weak-SNR detection algorithm decreases to 

−4.8𝑑𝐵.  Due to the weak-SNR, any variation in the variance of the trace functional 

has the ability to adversely affect the detection algorithm.  For the purposes of 

these examples, any value lower than the blue vertical line is assumed to be the 

net gain in performance from utilizing the weak-SNR detection algorithm.  Further, 
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any detection performance to the left of the red vertical line indicates detection 

performance in the weak SNR regime.   

For the next example, the trace functional variance is reduced to 0.001, 

which requires 44 samples in order to achieve.  The sensor network density is kept 

to 100, and training data length is increased to 44, and the results are shown on 

Figure 31. 

 
Figure 31: Algorithm 6.2-100 Sensors with Training Data Length of 44 Samples 

Immediately evident, is the fact that the receiver operating characteristics (ROC) 

curves are trending leftward, indicative of an increase in performance at lower-

SNR as the training data length increases.  Not overall a surprise, as this is true 

for monostatic radar systems incorporating coherent integration; though technically 

each time-reversal operator is integrated without concern for coherency, as phase 

is not a component of the time-reversal operator formulation across operators.  

Recall from Chapter 5 that our operators under free-probability are now being 

treated as variables.  After the training data is increased to 44, the SNR required 

for the weak-SNR detector to function for a probability of detection of 90%, with a 

false alarm fixed at 1%  is −8.5𝑑𝐵 ; which is a marked improvement over the 

traditional single-pulse detector SNR requirement of 13𝑑𝐵 and 13.5𝑑𝐵 below the 

weak-SNR cross-over value of 5𝑑𝐵 .  Obviously, as the false alarm rate is 

decreased, performance tapers off; and that is an accepted trade-off with any 

detection schema.  However, the density of the distributed sensor network is also 
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a primary factor in the performance of the weak-SNR detection algorithm as will be 

shown next. 

In the following set of examples, the SNR requirement for the weak-SNR 

cross-over point is empirically found to be 13𝑑𝐵, which is on par with the traditional 

monostatic detection algorithm.  Again, we demonstrate the value of training data 

with respect to the detection performance, starting with a training length 

requirement of 4; in keeping with the variance on the trace functional equaling 0.1. 

 
Figure 32: Algorithm 6.2-6 Sensors with Training Data Length of 4 Samples 

Focusing on a probability of detection of 90% and a false alarm rate of 1%, we see 

the SNR required for detection is −4.6𝑑𝐵 , or 17.6𝑑𝐵  less than the weak-SNR 

cross-over point of 13𝑑𝐵.  Obvious from Figure 32 is that the less dense sensor 

network has a threshold for detection on par with a traditional monostatic radar 

detector, but achieves similar detection performance under weak-SNR conditions 

as the denser radio-frequency sensor network of Figure 29.  One takeaway from 

this observation is that the denser a sensor network, the more sensitive it is to 

detection at weaker SNR values, but detection performance is limited by the 

higher-rank of the measurement noise time-reversal operator.  If this is true, as we 

progress through the examples, the less dense distributed sensor network should 

surpass the detection performance of the denser sensor network.  Our next 

example reduces the trace functional variance to 0.01 by utilizing a training data 

length of 14. 



	

	

139	

 
Figure 33: Algorithm 6.2-6 Sensors with Training Data Length of 14 Samples 

In keeping with previous examples, 𝑃¬ = 90%, whilst 𝑃Q­ = 1%, which puts the 

required SNR for detection at −7.8𝑑𝐵, which is a decrease of 20.8𝑑𝐵 from the 

weak-SNR cross-over point, and a −3𝑑𝐵  difference from the radar network 

comprised of 100 sensors.    

 
Figure 34: Algorithm 6.2-6 Sensors with Training Data Length of 44 Samples 
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To determine if this trend continues, the training data length is increased to 44 to 

keep the trace functional variance at 0.001 , and the receiver operating 

characteristics are plotted for 6 sensors in the figure below. 

From Figure 34 the required SNR for detections is approximately −11.2𝑑𝐵, 

which indicates an improvement of nearly −2.7𝑑𝐵  from the sensor network 

comprised of 100 sensors, and an improvement of −24.2𝑑𝐵 over the single pulse 

detector.  So, the original hypothesis that the detection performance at weak-SNR 

is noise-limited is probable, particularly when the rank of the noise time-reversal 

operator is much greater than the signal rank time-reversal operator, A ≪ W. 

To summarize, initial results for the weak-SNR detection algorithm run 

under ideal, and rather unrealistic, conditions in which the signal and measured 

time-reversal operator are known, and the threshold statistic is determined from 

training data, demonstrate the ability of this algorithm to detect the presence of a 

signal at SNR values that are weak.  Specifically, as the training data length is 

increased, corresponding to a lower variance value on the trace functional, the 

detection performance increases, allowing detection of signals at lower SNR 

values-even negative SNR values!  In the case where the distributed sensor 

network density is high-e.g. 100 sensor nodes-detection performance increases by 

a factor of 6𝑑𝐵 as the training data length is increased from 4 to 44.  For a sparse 

sensor network of 6 nodes, the detection performance also increases by ~6𝑑𝐵 as 

the training data length is increased from 4 to 44.  The discrepancy between the 

dense and sparse radar networks merits further investigation, but for this particular 

set of simulation results, the difference is assumed to be manifest from the 

increased number of noise eigenvalues incorporated into the trace functional; 

however, this is only assumed true if the discrepancy is consistent once the oracle 

approximation shrinkage simulation results are analyzed. 

Table 17 lists the results from each simulation run, and shows the weak-

SNR cross-over point, see Figure 26, as a point of reference.  Recall, that the 

weak-SNR cross-over value is the point at which the matrix inertia (see definition 

1 from Equation (6.15)) of the measured time-reversal operator, B is equivalent to 

the noise time-reversal operator W; which is assumed to be the point at which we 

shift to the weak-SNR regime.  A weak signal does not imply negative SNR, but 

the point at which the singular values of the measured and noise time-reversal 

operators appear mathematically equivalent.  Algorithm 6.2 is an attempt to allow 

for the detection of signals at weak-SNR regimes; however, this algorithm also 
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works at higher-ie nominal-SNR values as well.  One benefit of using Algorithm 

6.2, is that recovery of signals at negative SNR regimes is possible and 

demonstrated clearly in the results of Table 17; with the proviso that detection 

performance is very much tightly coupled to the required false-alarm rate; in which 

case, the values of Table 17 trend rightward in SNR as the false alarm rate is 

increased.  However, since traditional detection algorithms do not typically function 

at SNR values that are negative, the relaxation of the false alarm rate requirement 

results in increased detection performance using Algorithm 6.2.   
Table 17: Probability of Detection vs Sensor Network Density vs Training Data Length 

Sensor Network 

Density 

Weak-Signal 

Cross-Over Point 

Training Data 

Length 𝑵 

Probability of Detection  

𝑷𝑫 = 𝟗𝟎%, 𝑷𝑭𝑨 = 𝟏% 

𝟔 13𝑑𝐵 𝑁 = 4,14,44  −4.6𝑑𝐵,−7.8𝑑𝐵,−11.2𝑑𝐵  

𝟏𝟎 11𝑑𝐵 𝑁 = 4,14,44  −4.4𝑑𝐵, −7.5𝑑𝐵, −10.7𝑑𝐵  

𝟐𝟎 9𝑑𝐵 𝑁 = 4,14,44  −2.7𝑑𝐵, −5.8𝑑𝐵,−9.2𝑑𝐵  

𝟒𝟎 8𝑑𝐵 𝑁 = 4,14,44  −2.5𝑑𝐵, −4.8𝑑𝐵,−8.5𝑑𝐵  

60	 7𝑑𝐵 𝑁 = 4,14,44  −2.3𝑑𝐵, −4.8𝑑𝐵,−8.5𝑑𝐵  

80	 6𝑑𝐵 𝑁 = 4,14,44  −2.3𝑑𝐵, −4.8𝑑𝐵,−8.5𝐵  

100	 5𝑑𝐵 𝑁 = 4,14,44  −2.3𝑑𝐵, −4.8𝑑𝐵,−8.5𝐵  

 

Evident from Table 17 is the unexpected asymptotic slope of performance 

increases versus sensor network density.  It would seem that sensor network 

performance peaks at a sparse sensor network density value of 6, and diminishes 

with any increase in sensor network density of 40-60 nodes.  If the results are 

compared versus the weak-signal cross-over point, performance obviously 

degrades with increasing number of sensor nodes.  In every instance, the empirical 

weak signal-to-noise ratio value is in excess of the probability of detection metric, 

demonstrating the efficacy of the proposed low-SNR detection Algorithm 6.1.  

Future tabulated results will truncate at a sensor network density of 40 nodes, to 

minimize the number of duplicate entries from node densities of 60-100.  

In the next section, the oracle approximation shrinkage (OAS) algorithm is 

included, which increases the computational complexity of the weak-SNR 

detection Algorithm in 6.2 with the added benefit that the only required inputs to 

the algorithm are now the measured time-reversal operator and the estimated 

corruptive noise time-reversal operator, B  and W  respectively.  Since the 

asymptotic form of the measured time-reversal operator is used, based on the use 

of the OAS algorithm, detection performance improvements are realized; which 
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further demonstrates the flexibility and utility of Algorithm 6.2 for the recovery of 

signals under weak-SNR conditions. 

 

6.5 Weak-SNR Detection with Oracle Approximation Shrinkage 
In an effort to better understand whether the underlying mathematics used in 

Algorithm 6.2 were sound, elements of the algorithm were relaxed to more quickly 

demonstrate typical results in scenarios where the target and measured time-

reversal operators were assumed known a priori.  From Table 17, detection 

performance was demonstrated and serves as our baseline for the results 

presented in this section.  Most notable was the omission of the OAS in the 

previous section; however, for this section the entirety of Algorithm 6.2 is used.  

The scenario under which the subsequent simulations will be performed, is shown 

below and each scattering center is assumed to be an isotropic point source with 

set material properties and location. 
Table 18: Scattering Center Parametrics 

Scattering Center Dielectric Coefficient 𝝆  Scattering Center Location 

𝒙, 𝒚  

1 𝜌 = 2.0 5,0  

2 𝜌 = 1.75 −2.5, 4.33  

3 𝜌 = 1.5 −2.5, −4.33  

 

Since the only noticeable change in the application of Algorithm 6.2 is the inclusion 

of the OAS algorithm, any variations in the results from Section 6.4 are solely due 

to the use of the asymptotic approximation form of the time-reversal operators.  No 

other simulation parameters have been changed; making this section as much a 

reflection upon Algorithm 6.2, as its intended real-use case within the distributed 

sensor network fusion center.  As before, training data lengths are varied to explore 

the impact of the trace functional variance on the results. In a reversal from Section 

6.4, the results are presented starting with the lower density sensor network 

configuration; recall this demonstrated improved performance against the dense 

sensor network, presumably from a reduction in the number of significant noise 

elements in the trace functional.  Another aim of this section is to determine 

whether the density of the sensor network, when asymptotic forms of the time-

reversal operators are utilized, significantly impacts detection performance.  

Results are presented for the same two scenarios that were described in Section 

6.4, with a summary table presenting the exhaustive results from all simulation 
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trials.  In keeping with the general flow from the previous section, each set of 

receiver operating characteristics (ROC) curves is described and discussed, with 

a concluding summary section. 

Our first set of receiver operating characteristic (ROC) curves is from a 

sparse sensor network comprised of 6 sensor nodes.  The training data length is 

kept to a value of 4, in keeping with a trace functional variance value of 0.1, see 

Figure 26. 

 
Figure 35: Algorithm 4.2-6 Sensors with Training Data Length of 4 Samples 

Again, for the purposes of continuity, a probability of detection value of 90% and a 

false alarm rate of 1% are assumed.  From Figure 35, an immediately obvious 

change from Figure 32 is the leftward trending of the ROC curves.  In fact, this is 

most noticeable for the lower values of the false alarm rate.  However, the point 

we are most interested in is the value of −0.8𝑑𝐵, that is the intersection of the ROC 

curve for the false alarm rate of 1% at a probability of detection of 90%.   This result 

is an improvement of approximately 14𝑑𝐵  when compared to the single pulse 

detector, but arguably represents a 3𝑑𝐵 decrease in performance in comparison 

to Section 6.4 for the same example.  This comparison is, admittedly unfair, as the 

target and noise time-reversal operators, A and W, are now estimated from the 

measured time-reversal operator, B are not known a priori.   

In the next example, the training data length is increased to 14, which 

corresponds to a trace functional variance of 0.01.  The sparse sensor network is 
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kept at 6  nodes, and simulation results are shown for the receiver operating 

characteristic curves below. 

 
Figure 36: Algorithm 4.2-6 Sensors with Training Data Length of 14 Samples 

Assuming a 𝑃¬ = 90%, and a 𝑃Q­ = 1%, the required signal-to-noise ratio required 

for detection is – 3.2𝑑𝐵, which is again 3𝑑𝐵 less than that of Figure 33.  What has 

changed is the shape of the ROC curve indicates better behavior in the weaker-

SNR regimes, but is otherwise represents a consistent performance degradation 

over the a priori use cases of Section 6.4.  In this regard, the results show efficacy, 

and that Algorithm 6.2 is applicable and useful in scenarios under which there is 

little, or no, a prior information. 

Our final sparse sensor network set of ROC curves keeps the number of 

sensor nodes to 6, but increases the training data length to 44, reducing the trace 

functional variance to 0.001. From Figure 37, the detection performance seems 

consistent with the previous case in which the target and noise time-reversal 

operators were known.   What is most notable with bespoke Algorithm 6.2, is the 

fact that the efficacy of the algorithm is consistent whether the target and noise 

time-reversal operators are known a priori, or unknown and estimated from 

collected data; this demonstrates an incredible flexibility that instills confidence for 

real-world use cases to accurately reflect simulation trials. 
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Figure 37: Algorithm 4.2-6 Sensors with Training Data Length of 44 Samples 

From Table 19, the trend is indicative of detection performance being closely tied 

to the length of the training data, as well as the density of the sensor network. Since 

the time-reversal operators used are approximations of the same operators 

comprised of an infinite number of samples, there should be minimal outliers 

present in the trace functional, which would be expected should the sample size of 

the time-reversal operators be finite.  The use of the oracle approximation 

shrinkage could also be viewed as a smoothing function, which has the same effect 

as the minimization of outliers, but with the same intended improvement in results.   
Table 19: Algorithm 6.2-Probability of Detection vs Sensor Network Density vs Training Data Length 

Sensor Network 

Density 

Weak-Signal 

Cross-Over Point 

Training Data 

Length 𝑵 

Probability of Detection  

𝑷𝑫 = 𝟗𝟎%, 𝑷𝑭𝑨 = 𝟏% 

𝟔 13𝑑𝐵 𝑁 = 4,14,44  −0.8𝑑𝐵,−3.2𝑑𝐵, −6.2𝑑𝐵  

𝟏𝟎 11𝑑𝐵 𝑁 = 4,14,44  0.0𝑑𝐵, −3.2𝑑𝐵, −6.2𝑑𝐵  

𝟐𝟎 9𝑑𝐵 𝑁 = 4,14,44  0.9𝑑𝐵,−1.6𝑑𝐵,−4.6𝑑𝐵  

𝟒𝟎 8𝑑𝐵 𝑁 = 4,14,44  1.5𝑑𝐵, 1.0𝑑𝐵, −3.1𝑑𝐵  

 
 

6.6 Weak-SNR Subspace Rank Estimation 
Following the application of Algorithm 6.2 to determine the presence of a target, 

the next task is to determine exactly how many scattering centers are present via 

a process called ranking.  Detection and rank estimation are two of the most 
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germane sensing tasks that the fusion center would accomplish via the distributed 

sensor network.  In Sections 6.4 and 6.5, detection performance results were 

demonstrated in the form of receiver operating characteristics, or ROC curves.   

To determine the rank of B, where B∈ℂ�°~, and can be decomposed into 

AOAS + 𝑐~WOAS, with 𝑐~ ∈ 0,∞  in ℝ~ , and AOAS ∈ ℂ�°~  whose rank is 𝑘 ≪ 𝑀 , 

and WOAS ∈ ℂ�°~ , whose elements are independent identically distributed (IID) 

and WOASÐy ∈ 𝐶𝒩 0, 𝜎O .  We start by rewriting the basic weak-signal-to-noise ratio 

(SNR) hypothesis test of from Algorithm 6.2 

𝛾Threshold ⋚×N
×Ø Tr AOAS

ü

Tr AOAS
+ Tr WOAS

ü

Tr WOAS
    (6.29) 

We re-label the previous Equation as (6.29), which shows the binary hypothesis 

detection test for the case in which we are purely interested in the presence of a 

signal, or reflection from a reflective scattering center on a target body.  Multiple 

scattering centers may be present for a given range-extended target, and in fact 

there are three for our range-extended target, see Table 16; which is information 

not reflected in the outcome of Equation (6.29).  In order to deduce the presence 

of multiple scattering centers, we need to incorporate the ability to test for rank in 

the hypothesis test of Equation (6.29).  By slightly changing the method in which 

the binary hypothesis test is performed, the effective rank of the target time-

reversal operator is readily found 

𝛾ö�Ó[W�\-jÐ:Ò ⋚×N
×Ø Tr AOAS

ü

Tr AOAS
+ Tr WOAS

ü

Tr WOAS
,∀	𝑖 = 1,2, … , 𝑔  (6.30) 

Where the values for 𝑖 indicate the starting singular value passed to the trace 

function, and 𝑀 is the maximum rank of the associated measured time-reversal 

operator.  Now, we assume the rank of B is 𝑔 ≪ 𝑀, but in some of our simulations, 

the rank is more akin to 𝑔 < 𝑀; all of which is relative with respect to the sensor 

network density.  In order to determine the threshold statistic, 𝛾Threshold, we need to 

account for the change in the inputs to the trace functional, and resolve for the 

threshold value thusly 

𝛾ö�Ó[W�\-jÐ:Ò = Tr WØ;	Ð:Ò
G
uHØ

ü

Tr WØ;	Ð:Ò
G
uHØ

, Tr Wü;Ð:Ò
G
uHØ

ü

Tr Wü;Ð:Ò
G
uHØ

, … , Tr Wm;Ð:Ò
G
uHØ

ü

Tr Wm;Ð:Ò
G
uHØ

  (6.31) 

where 𝑛 is the length of the training data, and 𝑘 denotes length of the vector of 

threshold values, and we have noted the change in the estimated threshold statistic 

for ranking with the subscript, 𝛾ThresholdÐ:Ò.   

𝛾ThresholdÐ:Ò = 𝛾ThresholdØ;Ð:Ò, 𝛾Thresholdü;Ð:Ò, … , 𝛾Thresholdm;Ð:Ò  (6.32) 
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Having defined the ranking trace functional vector of threshold values, we are now 

able to determine the mean of 𝛾ThresholdÐ:Ò as follows 

𝜇Ï;F:R = #
�

𝛾Thresholdm;Ð:Ò
�
õ÷#      (6.33) 

The standard deviation is found from the square root of the second central moment, 

or the square root of the sample variance of the ranking trace functional vector of 

threshold values 

𝜎Ï;F:R = #
�

𝛾Thresholdm;Ð:Ò − 𝜇Ï;F:R
O�

õ÷#    (6.34) 

Now that the final ranking threshold statistic is found from the desired false-alarm 

rate, 𝑘Q­, as follows 

𝛾ThresholdÐ:Ò = 𝜇Ï;F:R + 𝑘Q­𝜎Ï;F:R    (6.35) 

Algorithm 6.3 is the designation for the weak-SNR ranking binary hypothesis test, 

with false-alarm control.  This algorithm is processed by the fusion center, and can 

be run in serial or parallel depending on the processing resources available to the 

fusion center platform.  
Algorithm 6.3: Weak-SNR Ranking Binary Hypothesis Test with False Alarm Control 

Fusion Center Weak-SNR Ranking Algorithm 

1a: Form the Target Time-Reversal Operator: 

A = 𝝈𝒋𝝁 𝒙𝒋 𝝂 𝒙𝒋
∗𝒓

𝒋÷𝟏
 

1b: Form the Corruptive Noise Time-Reversal Operator: 

𝑾 =
𝟏
𝑵
𝑪𝕄𝑵 ∈ 𝑪𝓝 𝟎,𝝈𝟐  

1c: Generate the Measured Time-Reversal Operator: 

B = A + 𝒄𝒏WOAS

𝑴

𝒎÷𝟏
 

2: Calculate the OAS estimate, 𝚺OAS, of B 

3: Determine AOAS and WOAS 

4: Calculate the Corruptive Noise Time-Reversal Operator: 

W =
𝒄𝒏
𝒏
ℂ𝑚𝑥𝑛 ∈ 𝑪𝓝 𝟎,𝝈𝟐

𝑴

𝒎÷𝟏
 

5a: Determine the Vector of Threshold Statistics, from 

𝜸Threshold𝒊:𝑴 = 𝜸Threshold𝟏;𝒊:𝑴,𝜸Threshold𝟐;𝒊:𝑴, … ,𝜸Threshold𝒌;𝒊:𝑴  

5b: Calculate the Mean and Standard Deviation of 𝜸Threshold𝒌;𝒊:𝑴 

𝝁𝜸;𝒊:𝑴 =
𝟏
𝑲

𝜸Threshold𝒌;𝒊:𝑴

𝑲

𝒌÷𝟏
 

𝝈𝜸;𝒊:𝑴 =
𝟏
𝑲

𝜸Threshold𝒌;𝒊:𝑴 − 𝝁𝜸;𝒊:𝑴
𝟐

𝑲

𝒌÷𝟏
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5c: Calculate Threshold Statistics Based Upon Desired False Alarm Rate, 𝒌𝑭𝑨 

𝜸Threshold𝒊:𝑴 = 𝝁𝜸;𝒊:𝑴 + 𝒌𝑭𝑨𝝈𝜸;𝒊:𝑴,	where 𝒌 ∈ 𝟒,𝟓,𝟔,𝟗,𝟏𝟎,𝟑𝟐  

6: Determine the Outcome of the Binary Hypothesis Test: 

𝒋Rank = 𝟎	

for 𝒈 = 𝟏:𝒌	

if	𝜸𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅;𝒊:𝑴 <
Tr AOAS;𝒊:𝑴

𝟐

Tr AOAS;𝒊:𝑴
+

Tr WOAS;𝒊:𝑴
𝟐

Tr WOAS;𝒊:𝑴
	

𝒋Rank = 𝒋𝑹𝒂𝒏𝒌 + 𝟏	

else 
Rank=𝒋Rank	

end 

end 

 

6.7 Weak-SNR Rank Estimation without Oracle Approximation 
Shrinkage 

With both the ranking Algorithm 6.3 , and the definition of the revised ranking 

threshold statistic, Equation (6.35), we are at liberty to begin exercising through 

simulation.  As in Section 6.4 we assume for the initial demonstration of Algorithm 

6.3 we know both the target and the measured time-reversal operators.  Per the 

results of Section 6.5, we also know the results for the oracle approximation 

shrinkage (OAS) estimate closely track those of the known signal and noise time-

reversal operator, see Table 17 and Table 19.  Following a now familiar format, we 

assume the scenario consists of 3 point reflectors situated on a 2-D plane, with 

these defined parameters 
Table 20: Scattering Center Parameters 

Scattering Center Dielectric Coefficient 𝝆  Scattering Center Location 

𝒙, 𝒚  

1 𝜌 = 2.0 5,0  

2 𝜌 = 1.75 −2.5, 4.33  

3 𝜌 = 1.5 −2.5, −4.33  

 

Simulations are run with network densities varying from 6 to 40 sensor nodes, and 

with training data lengths from 4  to 44 ; which is required to reduce the trace 

functional variance, see Figure 21.  In a departure from previous results sections, 

there is a new variable that is changed across simulations, which involves 

modifying the effective rank variable, 𝑗.  Receiver operating characteristic (ROC) 

curves are the outcome of each simulation run, with the required SNR for detection 
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of a rank 𝑖 reflector discussed, and ultimately tabulated at the conclusion of this 

section. Previously, results were shown for an assumed 𝑗 = 1, with no regard given 

to the number of target scattering centers present; having already tabulated results 

with and without the use of the oracle approximation shrinkage algorithm, there is 

little need to repeat results for 𝑗 = 1 within this ranking section.   

Starting with a sparse sensor network, comprised of 6 nodes, and a training 

data length of 4, we run Algorithm 6.3; however, we neglect to include steps 2 and 

3 for this initial use case.  Recalling we previously ran this simulation assuming a 

rank 1 signal, see Figure 32, we push the value of 𝑗 = 2; corresponding to a rank 

2 signal. 

 
Figure 38: Algorithm 4.3-6 Sensors with Training Data Length of 4 Samples 

The results for this section are receiver operating characteristic (ROC) curves, 

indicating the required signal-to-noise ratio (SNR) for detection of the rank 2 signal.  

So, from Figure 38, the required SNR for detection, assuming a 𝑃¬ = 90% and 

𝑃Q­ = 1%, is −4𝑑𝐵.   Reducing the trace functional variance to a value of 0.01, the 

training data length is increased to 14, we find the required SNR for detection is 

−11𝑑𝐵. 
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Figure 39: Algorithm 4.3-6 Radar Sensors with Training Data Length of 14 Samples 

Continuing on to a training data length of 44, the required SNR for detection with a 

trace functional variance of 0.001 is −19𝑑𝐵.  Thus far, the results are tracking 

closely with Table 17.   

 
Figure 40: Algorithm 4.3-6 Sensors with Training Data Length of 44 Samples 

In summary, the determination of rank is not an insurmountable problem, and 

actually requires only a slight modification of the low-SNR Algorithm 6.2 to achieve 
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acceptable receiver operating characteristic curves for a multitude of scenarios.  

More importantly, from Table 17, the tabulated results for this section-for both rank 

2 and 3 signals-closely follows the required SNR for an assumed rank 1 signal, 

see Table 21.  As was the case with Section 6.4 however, we have made the rather 

conscious decision to assume that both the target and noise time-reversal 

operators were known a priori, and that only the noise time-reversal operator, W, 
needed to be estimated. In the proceeding section, this assumption is not made; 

instead, the entirety of Algorithm 6.3 is exercised with the oracle approximation 

shrinkage (OAS) algorithm, to show the efficacy of the ranking approach under 

low-SNR conditions. 
Table 21: Algorithm 4.3-Probability of Detection vs Radar Network Density vs Training Data Length 

Sensor Network 

Density 

Weak-SNR Cross-

Over Point 

Training Data 

Length 𝑵 

Probability of Detection for 

Rank = 2 

 𝑷𝑫 = 𝟗𝟎%	and	𝑷𝑭𝑨 = 𝟏% 

𝟔 13𝑑𝐵 4,14,44  1𝑑𝐵,−3.1𝑑𝐵, −6.5𝑑𝐵  

𝟏𝟎 11𝑑𝐵 4,14,44  1.5𝑑𝐵, −2.9𝑑𝐵,−6.2𝑑𝐵  

𝟐𝟎 9𝑑𝐵 4,14,44  2.5𝑑𝐵, 1.2𝑑𝐵, −4.5𝑑𝐵  

𝟒𝟎 8𝑑𝐵 4,14,44  2.8𝑑𝐵,−1𝑑𝐵,−3𝑑𝐵  

 
Table 22: Algorithm 4.3-Probability of Detection vs Sensor Network Density vs Training Data Length 

Sensor Network 

Density 

Weak-SNR Cross-

Over Point 

Training Data 

Length 𝑵 

Probability of Detection for 

Rank = 3 

 𝑷𝑫 = 𝟗𝟎%	and	𝑷𝑭𝑨 = 𝟏% 

𝟔 13𝑑𝐵 4,14,44  −3𝑑𝐵,−10𝑑𝐵,−6.2𝑑𝐵  

𝟏𝟎 11𝑑𝐵 4,14,44  −3𝑑𝐵,−11𝑑𝐵,−6.2𝑑𝐵  

𝟐𝟎 9𝑑𝐵 4,14,44  −2𝑑𝐵,−8𝑑𝐵,−3.5𝑑𝐵  

𝟒𝟎 8𝑑𝐵 4,14,44  −2𝑑𝐵,−8𝑑𝐵,−15𝑑𝐵  

 

6.8 Weak-SNR Rank Estimation Using the Oracle Approximation 
Estimation 

Previously in Section 6.5, the target and corruptive noise time-reversal operators 

were recovered with the assistance of the oracle approximation shrinkage (OAS) 

estimator from the measured time-reversal operator, B , and detection results 

making use of this approach were detailed algorithmically, and demonstrated using 

modeling and simulation.  Using Algorithm 6.3 in its entirety, this section 

demonstrates the efficacy of ranking at low-signal-to-noise ratios (SNR).  Owing to 

the increase in complexity of making use of the OAS estimator, we will not 
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exhaustively discuss results unless those results differ drastically between Section 

6.5 and the present section, however, Table 24 and Table 25 include the 

comprehensive set of results for both rank 2 and 3 detection SNR requirements.   

From Section 6.5 we discussed the purpose of the OAS estimator was to 

determine an asymptotic form of the measured time-reversal operator, B.  Since 

under Algorithm 6.2, we do not presume to know the form of the target time-

reversal operator, A, this must be determined or estimated from available data; the 

process for doing so comprise steps 2 and 3 of Algorithm 6.3.  Previous results 

showed good agreement between the OAS estimator approach and the a priori 

approach in which both the target and noise measurement time-reversal operators 

were known, A and W respectively.  

Now, let us begin by starting with a sparse sensor network comprised of 6 

nodes.  The test scenario is the now familiar table, see below 
Table 23: Scattering-Center Parameters 

Scattering Center Dielectric Coefficient 𝝆  Scattering Center Location 

𝒙, 𝒚  

1 𝜌 = 2.0 5,0  

2 𝜌 = 1.75 −2.5, 4.33  

3 𝜌 = 1.5 −2.5, −4.33  

 

Simulation results utilizing the oracle approximation shrinkage estimator algorithm 

rely on only two inputs: the estimated noise time-reversal operator, W; and the 

measured time-reversal operator, B.  Steps 2 and 3 of Algorithm 6.3 provide the 

necessary estimated target and noise time-reversal operators, AOAS  and WOAS 

respectively, providing the necessary inputs for the trace functionals that comprise 

the binary hypothesis test.  Initially, the focus is on a sparse sensor network 

comprised of 6 nodes, with a training data length of 44 samples.  This should 

provide the highest required SNR for detection as previously seen in Tables 24 

and 25.  Setting the required probability of detection, 𝑃¬ = 90%, and the required 

probability of false alarm, 𝑃Q­ = 1%, the required SNR for detection of a rank 2 

signal is −6.2𝑑𝐵, which is −19.2𝑑𝐵 lower than the low-SNR cross-over point of 

13𝑑𝐵.  
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Figure 41: Algorithm 4.3-6 Sensors with Training Data Length of 4 Samples 

Figure 41 shows the detection performance using the OAS estimator is nearly 

identical to that of Section 6.4 in which the signal and noise measurement 

operators, A and W were known a priori.   
Table 24: Algorithm 4.3-Probability of Detection vs Sensor Network Density vs Training Data Length 

Sensor Network 

Density 

Weak-SNR Cross-

Over Point 

Training Data 

Length 𝑵 

Probability of Detection for 

Rank = 2  

𝑷𝑫 = 𝟗𝟎%	and	𝑷𝑭𝑨 = 𝟏% 

6 13𝑑𝐵 4,14,44  −1.5𝑑𝐵, −4.5𝐵, −6.2𝐵  

10 11𝑑𝐵 4,14,44  0.5𝑑𝐵, −3.1𝑑𝐵, −4.6𝑑𝐵  

20 9𝑑𝐵 4,14,44  1.2𝑑𝐵, −1.5𝐵, −3.2𝑑𝐵  

40 8𝑑𝐵 4,14,44  1.3𝑑𝐵, −1.2𝑑𝐵, −3.2𝑑𝐵  

 
Table 25: Algorithm 4.3-Probability of Detection vs Sensor Network Density vs Training Data Length 

Sensor Network 

Density 

Weak-SNR Cross-

Over Point 

Training Data 

Length 𝑵 

Probability of Detection for 

Rank = 3 	

𝑷𝑫 = 𝟗𝟎%	and	𝑷𝑭𝑨 = 𝟏% 

6 13𝑑𝐵 4,14,44  0.5𝑑𝐵, −3.2𝑑𝐵, −4.6𝑑𝐵  

10 11𝑑𝐵 4,14,44  1.0𝐵, −3.2𝑑𝐵, −4.6𝑑𝐵  

20 9𝑑𝐵 4,14,44  1.4𝑑𝐵, −3.2𝑑𝐵, −4.6𝐵  

40 8𝑑𝐵 4,14,44  2.7𝑑𝑑𝐵, −0.5	𝑑𝐵, −3.1𝑑𝐵  
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6.9 Summary 
Whether a signal is strong or weak, there is always a push by the sensor designer 

to extend the useful bounds of detection performance; thereby increasing the 

seeming utility of the product, and potentially carving out new potential markets for 

their system.  Whilst the detection of objects against a background of noise is fairly 

well explored for positive signal-to-noise ratio regimes; the motivation for studying 

detection and ranking in low signal-to-noise ratio regimes stems from this desire to 

advance the boundaries of current sensing modalities into regimes that have 

traditionally remained off-limits to modern radar systems.  In this chapter, a 

mathematical foundation was presented that introduced the concept of 

concentration of measure; this theory was extended to encompass the 

concentration of measure for eigenvalues, and presented the trace functional as a 

potentially mathematical useful quantity for use in detection algorithms.  

Boundaries for the low-signal-to-noise ratio were presented and mathematically 

defined as being the point at which the measured response matrix had a matrix 

inertia equivalent to the noise time-reversal operator; this quantity was dubbed the 

weak-signal-to-noise ratio cross-over point.  Detection and ranking algorithms were 

introduced that allowed for the recovery of isotropic scattering centers with signal-

to-noise ratio values less than those of the weak-signal-to-noise cross-over point.  

 

6.10 Conclusion 
In this chapter, the concept of the weak signal-to-noise ratio regime was 

introduced, along with definitions for determining the weak signal-to-noise ratio 

cross-over point for a distributed sensor network.  Further, algorithms were 

introduced for the case in which the underlying corruptive noise process was 

assumed known a prior, and those cases in which the underlying corruptive noise 

process was unknown.  Detection performance versus a variety of sensor network 

configurations was discussed, along with the relative performance differences 

between the known and unknown noise cases.  Finally, a ranking algorithm 

permitted a confidence bound determination of the effective perturbation of the 

measured time-reversal operators for both the known and unknown corruptive 

noise scenarios. Follow-on efforts are underway to investigate whether further 

performance may be gained from the use of adaptive and/or cognitive intelligent 

thresholding formulations of the low-SNR detection and ranking algorithms of this 

section.    
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7 Summary 
 
Motivated to develop an algorithm that allows for heterogeneous sensor 

heterogeneous data fusion, this work sought to develop the algorithmic framework 

for pre-detection fusion of a distributed RF sensor network such that the 

requirement for any a-priori target information is eliminated. This pre-detection 

fusion process is unique, in that it makes use of an outer product formulation in 

order to preserve the data in a higher-dimensional space; which runs counter to 

traditional matched filter approaches used by fielded radar sensor systems, that 

make use of more conventional inner product space for their formulations. Through 

the application of various non-parametric statistical mathematics, a bespoke depth-

based detector was introduced for a distributed radio-frequency sensor network.  

This particular detector required no prior knowledge of the target to be known, and 

is applicable across a range of background corruptive noise processes-owning to 

its non-parametrical underpinnings.  Performance was deemed acceptable in 

instances where the target signal-to-noise ratio (SNR) was favorable and above 

unity, but performance was lacking when the SNR strayed lower.  In Chapter 6, a 

bespoke algorithm was introduced based upon the mathematics of concentration 

of measure.  Whilst decidedly less non-parametric in nature than Chapter 4, the 

threshold statistic was kept non-parametric, to allow application of this algorithm 

across a broad spectrum of corruptive noise process-both known and unknown.  

The bespoke algorithm of Chapter 6 required no knowledge of the target a priori, 

and performance was acceptable across a range of SNR values-including 

negative!  Chapter 6 explored the boundaries of performance for a network that 

exploits target reflectivity coherence in the angular-domain versus a traditional 

monostatic radar that seeks to enhance detection performance through coherent 

integration in the time-domain. 

Throughout this thesis, the range-extended/over-resolved target-or a target 

that is comprised of multiple-scattering centers in close proximity to one another-

is repeatedly referenced.  In order to detect each scattering center of the over-

resolved target, a ranking algorithm is introduced for each respective detector 

introduced in Chapters 4 and 6.  The concept of statistical ranking allows us to 

determine the effective number of targets in a background of additive corruptive 

noise (to include parametric and non-parametrically derived additive corruptive 

noise processes-including heavy-tailed distributions like the k-distribution).  The 
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incorporation of bespoke statistical ranking algorithm allows us to determine the 

exact number of scattering centers comprising each range-extended target. 

Previous efforts to assess the lower-bound of detection performance were 

discussed by Sadowsky and Bucklew [83] in the context of the low-energy 

coherence receiver; however still required explicit knowledge of the target 

covariance function in order to be applicable.  The author investigated detection 

performance in the context of the generalized inner product (GIP) in [35-37], where 

the GIP still required knowledge of the target structure in order for the proposed 

detection algorithm to have any merit; though for small variations in the target 

template, a limited amount of information could be gained from investigation of the 

template mis-match errors.  Further investigations into low-SNR detection were 

investigated by the author in [48-49] and [61-62].  In each instance, the detection 

algorithm formulations were more explicit in their requirement, and were 

specifically developed to address a particular problem space.  Whilst these 

previous efforts may have limitations, in terms of applicability, they reinforce the 

results presented in Chapter 6, and corroborate the ability of sensing systems to 

detection targets-and, if applicable, associated target structures-in the low-SNR 

domains. 

 In summary, this thesis focuses on the development of mathematical 

paradigms for distributed radio-frequency sensor network to enable: 

1. Development of a pre-detection fusion algorithm that coalesces the received 

signals from each RF sensor in the network into a unified time-reversal 

operator, thereby simplify subsequent processing algorithms 

2. Detection of range-extended target without requirements for knowing the target 

operator function a priori  

3. Ranking of a range-extended target to determine effective number of scattering 

centers comprising the target body, without knowing the nature of the extended 

target a priori 

4. Development of detection threshold criterion that is non-parametric and does 

not require a priori knowledge of the background interference environment; to 

include noise and/or clutter 

5. Detection and ranking in signal-to-noise ratio regimes that are weaker than 

typically required for monostatic radar system detection algorithms.   

6. Detection and ranking that is independent of sensor network density, and is 

able to operate under both sparse and dense sensor density regimes  
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8 Open Problems 
 

8.1 Introduction 
This chapter is focused on identifying research problems that have arisen as part 

of this thesis, and are potential areas of future exploration.    For each potential 

follow-on research topic, an effort has been made to identify the research topic and 

provide a synopsis of work to be completed, followed by important sub-tasks within 

each topic to be addressed.  

 

8.1.1 Threshold that Accounts for Target Partial Coherence 
We want to analyze the impact of adjusting the detection threshold based upon the 

presumed partial coherence of the target.  By accounting for the fact, the detection 

performance is lower for a partially coherent target (PCT), we can augment the 

detection performance based upon the optimization of the detection threshold. 

We may also want to link this method with the method suggested in Section 

8.1.2.  

1. Fully-Coherence: no change in threshold value 

2. Fully-Incoherent: threshold will be low, but increases the corresponding 

False Alarm rate 

3. High-Partial Coherence: minor medication of the threshold 

4. Moderate-Partial Coherence: 

5. Low-Partial Coherence: similar to Fully-Incoherent case, results in a lower 

threshold with higher corresponding false-alarm rate 

The question becomes: can exploiting the degree of coherence that a particular 

over-resolved target exhibits, allow us to modify our detection and ranking 

algorithm thresholds, in such a manner, as to increase our results over those 

introduced in Chapter 6? 

 

8.1.2 Optimal Integration of Sensors Comprising the Distributed Network 
We seek to integrate the angular ambits in an optimal manner that results in a 

higher gain than just randomly integrating over all the available angular ambits.  

The ability to pick the proper angular sectors to integrate could be based upon 

1. Integration over similar complex domain distributions in the angular-domain 

2. Peak amplitude values (real-valued) 
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3. Peak amplitude values that coincide with similar complex domain 

distributions in the angular-domain 

4. Removing the low peak amplitude values (real-valued) 

5. Removing complex domain values that exceed a defined variance from the 

population mean 

The question to be answered is: are there more optimal methods and/or processes 

that enhance the detection and ranking performance of those algorithms 

introduced in Chapter 6? 

 

8.1.3 Random Failure of Sensor Nodes 
In this case, we want to examine the case in which there is a failure of sensor(s) 

under the following assumptions 

1. Random radio-frequency sensor locations within the distributed sensing 

network 

2. A complete angular ambit fails to report to the central fusion center across 

multiple adjacent sensors within the distributed network 

The question to be answered is simply: does the failure of one or more sensor 

nodes compromise the declaration performance of the distributed sensing 

network? 

 

8.1.4 Faulty Radar Sensor Information 
We seek to understand the impact of a sensor(s) that capture faulty information, 

such as noise or random information that would be deleterious if integrated in the 

response matrix.  More importantly, we seek to answer the germane question of 

whether the algorithms are robust to sensor nodes passing along corrupt data?  To 

what degree are our algorithms from Chapters 4 and 6 sensitive to corrupted 

sensor node data, and should there be a supervisory algorithmic function for 

parsing and excising this potential corrupted data-ie a pre-detection fusion input 

data culling function? 

 

8.1.5 Sensor Network Trust 
What is the impact of a compromised sensor(s)?  We could assume that 

information is flowing in to the network that is compromised in some manner, such 

that the overall impact the sensor network is negative.  We seek to determine the 
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optimal method to establish trust among the sensors comprising the network, such 

that we can adaptively remove those sensors that fail to establish trust in the 

network.  This couples with Sections 8.1.3 and 8.1.4. 

 This question is rather important from a practical implementation concern: 

does spoofed, jammed, falsified, hacked, or altered data corrupt our results from 

utilizing the algorithms introduced in Chapters 4 and 6?  To what degree are our 

algorithms sensitive to non-trustworthy data?  Does the inclusion of a fusion center 

trust algorithm warrant the additional complexity and time-delays necessary to 

ensure our declaration results are valid-ie how do we ensure “trusted data” is being 

received for any given sensor node? 

 

8.1.6 Experimental Data 
We need to collect a great deal of data on a variety of target models to determine 

the existence of target partial coherence for a wide variety of target types: bi-

spheres, tri-spheres, aggregates of spheres, cubes, boxes, complex models of 

vehicles and commercial airliners.  The challenge is really determining the optimal 

subset of tests that will prove the basic concept.  More importantly, can the 

existence of target partial coherence be exploited to develop better, more 

optimal/robust detection and target identification algorithms?  To what extent is 

target partial coherence unique to a given target, class of targets, or any targets in 

general? 

 

8.1.7 Bounds of Performance 
Bounds on the number of sensors required for our bespoke detection and ranking 

algorithms to be applicable under real-world scenarios should be an area of further 

investigation. These bounds are, at present, established based upon the assumed 

rank of the time-reversal operator.  Whilst there is a benefit to incorporating an 

infinite number of sensors, what concerns us most is keeping the effective 

dimensionality of the problem low-enough to ensure optimal processing of the 

received data.  This problem will be compounded when clutter is considered.  The 

question to ponder is simply: what is the lowest sensor node density to ensure 

adequate receiver-operating characteristics, based upon the environmental 

corruptive processes, and for the particular sensing mission set?  Is there an 

algorithm that would allow us to modify the sensor node locations to more optimally 
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“sense” and “learn” about a given declared target?  What is the role of target partial 

coherence in determining performance bounds or sensor node placement and 

density?   

 

8.1.8 Recovery of Reflectivity Estimates for Point-Type Isotropic Scattering 
Centers 

Thus far no algorithm is discussed for the recovery of point-type reflector reflectivity 

recovery.  This is not an oversight, but a method to ensure a cogent document that 

focuses primarily on detection and ranking algorithms, rather than muddle the 

conversation with post-detection algorithmic considerations.  Methods for the 

automated recovery of reflectivity parameters for point-type reflectors exist and are 

a relatively straightforward way in which to expand the utility of this document 

beyond detection and ranking considerations.  Does our declaration algorithm 

benefit from recovering reflectivity estimates on the detected and ranked target 

scattering centers?  More importantly, does this information lead to better 

discrimination of false targets, allowing for an adjunct algorithm to be developed 

that will increase the receiver operating characteristics, based upon an analysis of 

detected and ranking target scattering centers reflectivity properties? 

 

8.1.9 Recovery of Permittivity and Permeability for Finite-Sized Target 
Scattering Centers 

Methods for the establishment of algorithms for the recovery of permittivity and 

permeability estimates for finite-sized inclusions, to include-but not limited-to: 

isotropic medium permittivity and permeability estimates; anisotropic material 

permittivity and permeability estimation; permittivity and permeability associated 

for a given inclusion; method and procedure for automated recovery of permittivity 

and permeability under low-SNR and partially-coherent conditions. 

Does our declaration algorithm benefit from recovering permittivity and 

permeability estimates on the detected and ranked target scattering centers?  More 

importantly, does this information lead to better discrimination of false targets, 

allowing for an adjunct algorithm to be developed that will increase the receiver 

operating characteristics, based upon an analysis of detected and ranking target 

scattering centers dielectric material properties? 
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8.1.10 Optimal Methods for Determining the Material Composition of a Finite-

Sized Target Scattering Center 
Put simply: for a fully coherent target, the material properties can easily be 

determined from a single tone.  Now, if the target is not fully coherent, then we 

have a problem: the permeability and permittivity are based upon the determination 

of the target singular value.  So, if the singular value is perturbed based upon target 

partial coherence, the material properties are not so easily estimated; no matter, 

we can still accomplish this goal, albeit with a bit more work and some inevitable 

ambiguity.  How will we accomplish the material property estimation?  We start by 

considering the response of a material over a band of frequencies.  The material 

will exhibit a variety of changes that are easily mapped from the response domain 

to a function domain.  The function domain will take the multidimensional data and 

reduce the dimensionality to two-dimensions.  We need to go out on a bit of a limb 

now, and assume the dispersive properties of the target are stable over a range of 

frequencies (we are not transitioning from dielectric to conductor for example), 

such that the reflectivity of the target is only a function of frequency and the 

response allows for the easy parameterization of the reflectivity over a number of 

probing tones. 

We now will assume the reflectivity is simply scaled by some variable A 𝑓e , 

such that we can normalize the response of the object over a continuum of 

frequencies and compare with the normalized response from a set of frequency 

tones.  We assume we have a family of normalized responses from a variety of 

materials, we then compare which response most closely matches that captured 

by the sensor network.  This should permit the effective estimation of the 

permeability and permittivity. 

One issue not discussed, but is always assumed is the nature of the material 

comprising the reflector.  In this case, we have assumed an isotropic material, 

thereby negating the necessity of determining the polarization tensor matrix for the 

reflector.  If we have to incorporate the polarization tensor matrix, then the problem 

becomes a bit easier, in that the initial family of normalized responses can be 

parsed by polarization iso- versus anisotropy. 

Ultimately, the question becomes: is the added computational and system 

complexity worth the additional information to be gleaned from knowing what 

material comprises each detected and ranked target scattering center?  I would 

argue, simply, yes!    
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8.2 Follow-On PhD Topics 
The following is a list of proposed PhD topics that expand upon the concepts 

introduced within this thesis.  Each topic presented embodies an entire work unto 

itself and would suffice as a self-contained PhD thesis.  No attempt has been made 

to exhaustively explore each particular research thrust area, but a cursory 

explanation is included as a first-attempt at quantifying the general question that 

would be addressed in the associated thesis document.   

 

8.2.1 Incorporation of Bandwidth into Detection Algorithms 
Here we need to be concerned with the time-reversal operator from a target over 

a number of angular sectors, and for a number of frequencies in which the 

bandwidth may lead to a frequency-dependent dispersive response.  What 

changes are required to the bespoke algorithms introduced in Chapters 4 and 6? 

 

8.2.2 Computationally Efficient Methods for Data Depth Functional 
Processing 

Data Depth is an extremely versatile and useful field of statistical mathematics and 

computational geometry that holds the power to fundamentally transform the field 

of sensor processing for multivariate data in d>2.  However, the challenge in 

determining the data depth functional is not mathematical-its computational.  The 

problem is compounded as the 

 Whilst this is an active area for computer scientists studying data depth, 

there is little published work in the area of computationally efficient methods for 

data depth processing, and remains an open area of investigation.    

 

8.2.3 Contextual Classifier 
Contextual data processing permits high dimensional data to be processed into 

actionable bits of data that are appropriate for a subset of end users.  Taking this 

one step further, if we know we are only interested in a few bits of data-ie location 

and the direction of a moving object, or the materials that comprise that object-we 

can begin to make a contextual data processor that takes high dimensional data, 

and returns a low-dimensionality subset of data that meets the end-users 

requirements.  The information of interest is easy to state (Order n) and the data 

processing requirements are modest to implement (order np).  An order n problem 
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has a definite answer-our analyst needs a few well-defined values from the sensing 

network; whereas the data processing requirement for our contextual data 

processor is order np-there could be an answer, but not always.  Contextual data 

processing can handle ambiguities, as can our analyst, but our analyst has a 

requirement that can be better met by removing ambiguities prior to turning raw 

data into information. 
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