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ABSTRACT
1. Habitat-forming seaweeds are vital components of marine ecosystems, supporting 

immense diversity and providing ecosystem services.  Reports of major changes in the 

distribution and abundance of large brown seaweeds in the North-east Atlantic are an 

increasing cause for concern, but a lack of consistent monitoring over time is a key 

impediment in obtaining reliable evidence of change.  There is an urgent need to recognize 

change rapidly and efficiently in marine communities which are increasingly impacted by 

pressures of human population growth, climate change and ocean acidification. 

2. Here, the potential for remote monitoring of seaweed habitats is investigated using freely 

available, high resolution aerial and satellite imagery.  Three sources of imagery were used: i)

Channel Coastal Observatory (CCO) aerial imagery, ii) Aerial images from the Bing webmap 

server, and iii) RapidEye multispectral satellite data.  

3. The study area, the Thanet Coast, is an area of chalk outcrop in South-east England of high

conservation status and includes three Marine Conservation Zones. Eight habitat classes, 

including brown, red and green algal zones, were recognized based on ground-truthing 

surveys. 

4. A multi-class classification model was developed to predict habitat classes based on the 

chromatic signature derived from the aerial images.  The model based on the high resolution 

CCO imagery gave the best outcome (kappa value 0.89).  

5. Comparing predictions for images in 2001 and 2013 revealed habitat changes, but it is 

unclear as to what extent these are natural variability or real trends.  This study demonstrates 

the potential value for long term monitoring with remote sensing data. Repeated, standardised

coastal aerial imaging surveys, such as performed by CCO, permit rapid assessment and re-

assessment of habitat extent and change. This is of value to the conservation management of 



protected areas, particularly those defined by the presence or extent of specific habitats.
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INTRODUCTION

Seaweed habitats have great economic value and provide ecosystem services globally worth 

billions of pounds annually (Beaumont, Austen, Mangi & Townsend, 2008; Smale et al., 

2013). Large brown seaweeds (Phaeophyceae) are habitat-forming components of the littoral 

(fucoids – Fucales) and the shallow sub-littoral (kelps – Laminariales) of marine ecosystems 

(Smale et al., 2013; Steneck et al., 2002).  These seaweeds are highly productive primary 

producers and important for carbon capture and transfer in coastal communities (Brodie, 

Wilbraham, Pottas & Guiry, 2014; Golléty, Migné & Davoult, 2008). They also protect 

shorelines by buffering currents and waves, and provide shelter for many other organisms 

(Yesson et al., 2015a). Canopy-forming macroalgae, such as kelp and fucoids, can increase 

the habitable surface area fourfold (Boaden 1996; Jueterbock et al., 2013), creating 

conditions for diverse understorey communities of flora and fauna (Golléty, Migné & 

Davoult, 2008).

There are many threats to these important and economically valuable seaweed habitats, but 



predominantly from human impacts including rising CO2 levels and associated warming 

(Brodie, Wilbraham, Pottas & Guiry, 2014).  Already there are a number of documented cases

of kelp and fucoid species decline in abundance or loss attributed to ocean warming and a 

combination of other stressors (Brodie et al., 2014; Yesson et al., 2015b). Climate change can 

also facilitate  the introduction of invasive species and there is evidence of an increasing rate 

of introductions of non-native algae in the north-east Atlantic (Brodie et al., 2016; Sorte et al.,

2010). Despite the importance of seaweed communities, they have been afforded very little 

protection through statutory conservation measures (Brodie, John, Tittley, Holmes & 

Williamson, 2007;  Brodie, Andersen, Kawachi & Millar, 2009). Although Marine Protected 

Areas (MPAs) cover around 23% of UK waters  (as of December 2017 

http://jncc.defra.gov.uk/default.aspx?page_4549 ), only a small proportion of these 

encompass seaweed communities, and the protection provided is highly variable and may 

have no bearing on seaweed communities.  

A lack of knowledge of the distribution and abundance of seaweed habitats is a major 

impediment to understanding the impact of threats such as climate change. Fundamental 

information on species ranges, kelp forest biodiversity, and species interactions are included 

in this lack of knowledge (Harley et al., 2012; Smale et al., 2013). A limiting factor here is 

the difficulty of assessing seaweed-dominated areas. Many locations are remote or 

submerged, making sampling difficult and even dangerous. Scientific diving has been the 

traditional method for assessing and monitoring submerged macroalgal communities, but this 

can be logistically problematic and often impractical due to large time requirements as well 

as the expense of training, personnel and equipment  (Pauly & De Clerck, 2010; Smale et al., 

2013). 



Remote Sensing

An alternative approach to direct, in-person surveys for documenting change in marine 

benthic habitats is the use of remote sensing.  Images of the coastline taken from aeroplanes, 

drones or satellites can provide an overview of coastal habitats suitable for broad-scale 

habitat assessments and monitoring. This approach can be less time consuming, generally 

more cost-effective and requires less manpower than undertaking comprehensive shore work 

(Pauly & DeClerck, 2010).  Quantitative analysis of coastal seaweed habitats also allows for 

an encompassing view of the area and provides clearer evidence for environmental change 

(Kuster et al., 2006).  

Despite the wide range of remote sensing options, research using these techniques in the 

marine and coastal field lags far behind that for the terrestrial environment, and few 

published studies have used remote sensing to examine seaweed communities (Pauly & 

DeClerck, 2010).  Nevertheless, a range of satellite imagery tools have been applied for 

mapping spatial and temporal distributions of macrolgae and associated habitats (Hoang, 

O'Leary & Fotedar, 2016 and references therein). 

Mapping of three submerged macroalgal species was attempted in the Baltic Sea (Kutser 

Vahtmäe, & Martin, 2006) although they encountered difficulties with sensor penetration 

through the water column.  A study to compare image-based and spectral library methods 

undertaken to classify shallow water habitats in the Baltic concluded that image-based 

methods were better (Vahtmäe & Kutser, 2013).  Remote sensing was used in NW Spain to 

try to detect benthic macroalgae at the species level using the hyperspectral sensor CASI-2 

(Casal, Kutser, Domínguez-Gómez, Sánchez-Carnero, & Freire, 2013) but only a few species 

were discernible.  However, the authors reported that it was possible to discriminate between 

red, green and brown taxonomic groups in shallow water.  Landsat images were used to 



assess spatial and temporal changes in seagrass-dominated submerged vegetation in Zanzibar 

(Gullström et al., 2006).  Documenting temporal change in Caribbean coastal zones was 

undertaken using multispectral Landsat Thematic Mapper satellite data (Michalek, Wagner, 

Luczkovich, & Stoffle, 1993), although ground-truthing was required for verification of 

specific habitat changes.  Mapping macroalgal communities in NW Spain was undertaken by 

Casal, Kutser, Domínguez-Gómez, Sánchez-Carnero & Freire (2011) using CHRIS-PROBA 

which gave good results for maximum likelihood classification, but mixed results for Spectral

Angle Mapper where brown and red algae were not clearly distinguishable.  Herkül, Kotta, 

Kutser & Vahtmäe, (2013) applied the spectral variation hypothesis in the Baltic Sea to 

successfully make biodiversity assessments.  Identification and quantification of landscape 

scale algal populations were undertaken around Helgoland by Uhl et al., (2013) although they

could not distinguish between species of the same genus or family due to strong spectral 

analogies.  Uhl et al., (2016), who used hyperspectral data from AisaEAGLE to detect 

submerged kelp, developed a fully automated simple feature detection processor which was 

successful until a depth of 6 m.  

Hennig, Cogan & Bartsch, (2007), who specifically focused on the intertidal zone, analysed 

hyperspectral imagery from the rocky intertidal of Helgoland.  Their classification based on a 

spectral library allowed them to map the dominant intertidal macrophyte vegetation and 

general intertidal structures but found the separation of mixed vegetation types was limited.

Floating vegetation is challenging to classify because such rafts alter the spectral properties 

of the sea surface.  In one of the first studies of its kind, Dierssen, Chlus & Russell, (2015) 

were able to discriminate spatial distribution of the floating macroalga Sargassum and 

seagrass mats in Greater Florida Bay, USA, using spectral measurements from the Portable 

Remote Sensing imaging Spectrophotometer (PRISM) imagery in conjunction with spectral 



measurements from experimental mesocosms, They were also able to discriminate the age of 

the wrack based on an increase in reflectance with time.  Hoang, O'Leary & Fotedar, (2016), 

who were also working on Sargassum beds, achieved a highly accurate classification 

outcome using a combination of high spatial resolution WorldView-2 imagery and in-field 

observations around Rottnest Island, Western Australia.   

Aims 

A study was undertaken to determine whether intertidal seaweed habitats can be 

differentiated using (freely available) remote sensing images.  

METHODS

Study area

The Thanet coast was chosen for this study because it is an area of chalk outcrop of high 

conservation importance in Kent, in the south-east of England. The Thanet Coast was 

designated a Marine Conservation Zone (MCZ – a statutory Marine Protected Area) in 2013, 

and Dover to Deal and Dover to Folkestone in 2016 

(https://www.gov.uk/government/publications/marine-conservation-zones) under the UK’s 

Marine and Coastal Access Act 2009 (www.jncc.gov).  The Thanet coast was already 

afforded Special Area of Conservation (SAC) and Site of Special Scientific Interest (SSSI) 

status due to its chalk sea-caves and reefs (Tittley et al., 1998, 1999). The boundary of the 

MCZ runs from the east of Herne Bay around Thanet to the northern wall of Ramsgate 

harbour and the site protects an area of approx. 64 km2 (Figure 1).  The shores are gently 

sloping, uneven chalk reef incised by channels, with c. 100-140 m exposed at low tide.  The 

upper shore consists of bare chalk, boulders and sand over chalk and supports green seaweeds

consisting mainly of Ulva species. The middle and lower shore is chalk reef.  The middle 

http://www.jncc.gov/
https://www.gov.uk/government/publications/marine-conservation-zones


shore consists of a zone of large brown algae dominated by Fucus vesiculosus (predominantly

higher up) and F. serratus (predominantly lower down).  The lower shore consists of a zone 

of predominantly red algae, including Corallina officinalis, Gelidium spp., Palmaria palmata

and Rhodothamniella floridula.

Remote sensing data

Image data were collected for North and East Kent, stretching from Herne Bay to Folkestone 

(Figure 1).  Imagery came from three sources, ranging from high resolution aerial surveys, to 

lower resolution, multi-spectral satellite data:  I) The Southeast Strategic Regional Coastal 

Monitoring Programme is one of six regional programmes that form the National Network of 

Regional Coastal Monitoring Programmes of England. This Network collects coastal 

monitoring data, including aerial and LiDAR surveys, to inform shoreline management plans.

Data, metadata and survey reports are freely available to download from the Channel Coast 

Observatory website (www.channelcoast.org). The Channel Coastal Observatory 

(http://www.channelcoast.org/) is an England-wide project to collect coastal monitoring data, 

including regular aerial surveys (from twice yearly to every few years, depending on the 

region) conducted at low tides (Pixel resolution either 0.1x0.1m or 0.2x0.2m), data used in 

this study dates from May 2001 and May 2013. The 2001 CCO imagery was collected using 

a WILD RC 30 camera with 153.64 mm focal length at an average altitude of 762 metres. 

The 2013 imagery was collected using a Vexcel Ultracam Xp digital camera with a focal 

length of 100.5 mm at an average altitude of 1645 metres,  II) Bing maps 

(http://www.bing.com/maps/) provide free access to aerial image data (resolution 0.6x0.6m) 

collected by Digital Globe via their representational state transfer (REST) interface 

(https://msdn.microsoft.com/en-us/library/ff701713.aspx), surveyed July-October 2011 

(Walcher et al., 2012), and  III) The RapidEye satellite data provides five spectral bands 

(blue, green, red, red edge, near infra-red) at 5 m x 5 m resolution, surveyed September 2013 

https://msdn.microsoft.com/en-us/library/ff701713.aspx
http://www.bing.com/maps/
http://www.channelcoast.org/
http://www.channelcoast.org/


(https://www.planet.com/products/satellite-imagery/rapid-eye-basic-product/), and has been 

used to detect invasive aquatic plants (Roessler, Wolf, Schneider, & Melzer, 2013). RapidEye 

data was freely provided by the Earthnet Online Website (http://earth.esa.int) after 

registration and submission of a brief project description. RapidEye data was provided 

orthorectified and corrected, so no pre-processing was required. Example images are 

presented in Figure 2, demonstrating the variety of pixel resolution and tidal state.

Ground-truthing

Ground-truthing surveys were undertaken in September 2011, January and June 2014.  

Transects were walked down or up the shore at low tide, sampling every 20-30 m. Habitats 

were photographed and dominant taxa were recorded along with GPS coordinates of the 

locations.  Ground truth locations were classified into the following habitat types based on 

dominant taxa or substrata: i) Brown algae, ii) Red algae, iii) Mytilus, iv) Green algae, v) 

Sand, vi) Muddy-sand, vii) Bare Chalk, viii) Flint/Sand/Chalk.

Spatial error was recorded as approximately 3 m for GPS readings (Garmin eTrex 10/20 GPS 

units). The resolution of the imagery is more precise than this spatial ambiguity, so that a 

single pixel in the image data could not be matched to the ground truth locations.  In order to 

associate pixel values with ground-truth sites, the set of pixels surrounding the recorded 

coordinates within a 3 m radius were collected and the combination of pixel values (Red, 

Green, Blue for CCO and Bing, plus Red Edge and Near Infra-Red for RapidEye imagery) 

occurring most frequently in this set were selected as the most representative of the ground-

truth location.  In the event of multiple combinations being equally represented, the 

combination closest to the mean was selected. The tidal state at the time of acquisition of the 

Bing and RapidEye images means that fewer ground-truth locations are valid (show an 

unsubmerged section of coastline). Therefore fewer ground-truth points are available for 

these images. See Table S1 for a breakdown of ground-truthing data available by habitat 

http://earth.esa.int/
https://www.planet.com/products/satellite-imagery/rapid-eye-basic-product/


class, date of acquisition and image source.

Classification model

A habitat classification model was developed using a pixel-based approach. A model was 

trained using a chromatic profile based on the pixel values at the locations of ground-truthing 

samples. A pixel based approach has been used successfully to map coastal benthic habitats 

(Hennig, Cogan & Bartsch, 2007), and has been shown to be as effective as object-based 

methods for detecting small patches of vegetation (Castillejo-González, Pena-Barragán, 

Jurado-Expósito, Mesas-Carrascosa & López-Granados, 2014).

Ground truth sites were used as training data to create a multi-class classification model.  A 

support vector machine model (SVM) was performed using the e1071 package of R statistical

software program (Meyer, Dimitriadou, Hornik, Weingessel, & Leisch, 2014). SVMs are 

learning algorithms that are commonly used for supervised image classification (Mountrakis, 

Im, & Ogole, 2011), including benthic habitat mapping (e.g. Gougeon, Kemp, Blicher, & 

Yesson, 2016), and have been shown to perform well with small training datasets 

(Mountrakis, Im, & Ogole, 2011), and for multi-spectral imagery (RapidEye data) in 

terrestrial (Ustuner et al. 2015) and coastal environments (Adam, Mutanga, Odindi & Abdel-

Rahman 2014).  Data were partitioned by site into spatial cross validation replicates 

(Radosavljevic & Anderson, 2014).  For each replicate, data for one site were kept as testing 

data, with the remaining data used for training.  The gamma and cost parameters were tested 

in combination (gamma: 2-13, 2-12, ..., 23, cost: 2-5, 2-6, …, 213) for each spatial replicate and the

kappa evaluation parameter was calculated based on predictions for the test data (following 

the recommendations of Chang and Lin, 2011).  The parameter combination resulting in the 

highest combined kappa was chosen for the final model.

A model was calculated based on each imagery dataset (CCO, Bing and RapidEye).  Models 



were projected back into the full images to predict habitat class in all areas not surveyed.  

Additionally, the model based on the CCO data was projected into CCO imagery taken in 

May 2001 to estimate change in habitat from May 2001 to May 2013.  Areas of each 

predicted habitat class were calculated using the R package raster (Hijmans, 2015). The open 

source desktop GIS software QGIS was used for the manipulation of GIS layers 

(https://www.qgis.org/). 

RESULTS

Comparison of model evaluation statistics

Model evaluation statistics are shown in Table 1, and a confusion matrix for each model is 

presented in Table S2.  For all the parameters, the CCO imagery shows the best outcome.  

Notably, the kappa value for the CCO (0.89) is a much closer fit (a kappa value of 1 would 

equal an exact fit) of the model than either Bing (0.51) or RapidEye (0.48).  The resolution is 

greater for CCO (0.1 m x 0.1 m) than Bing (0.6 m x 0.6 m) which is, in turn, greater than 

RapidEye (5 m x 5 m).  Consequently the CCO imagery provides a higher number of pixels 

per unit area and thus shows greater detail (Figure 2).

Changing communities

The change in areas using the CCO imagery for 2001 and 2013 are shown in Table 2 and 

Figures 3 & 4a-d.  Overall from 2001 to 2013, Flint/Sand/Chalk, Muddy-sand, Red algae and 

Sand cover have decreased, whereas Mytilus cover has stayed virtually the same, and Bare 

Chalk, Brown algae and Green algae cover have increased.  A comparison of changes in 

cover for the individual MCZs between 2001 and 2013 showed that for Thanet there was an 

increase in Flint/Sand/Chalk and a decrease in Brown algae, Mytilus and Red algae, for 



Dover to Deal there was a slight increase in Bare Chalk and a slight decrease in cover of 

Brown algae, and for Dover to Folkestone a slight decrease in Bare Chalk, and a decrease in 

Brown algae, Mytilus and Red algae.  

Predicted areas

The modelled areas based on CCO 2013, Bing and RapidEye imagery, adjusted to compare 

only the shoreline observable in all three images, is shown in Table 3.  The adjustment for the

CCO reduces the shore line by 2/3rds (from 1163 ha to 389 ha).  Bing and RapidEye models 

more or less fail to detect Chalk although RapidEye predicts Flint/Sand/Chalk.  The model 

based on RapidEye data over-predicts Green algae whereas the model using Bing images 

under-predicts this group.  Both sets of imagery fail to pick up Muddy Sand, which is a 

consequence of there being no valid (unsubmerged) ground-truth sites for Muddy Sand in 

these images.  The Bing model is reasonable at predicting Mytilus but the RapidEye model 

fails completely to predict this category.  The Bing model over-predicts Red algae, whereas 

the RapidEye model under-predicts them.  

DISCUSSION

The value of coastal aerial surveys for conservation

This pilot project has demonstrated, using an SVM model, that intertidal seaweed 

communities can be differentiated using the freely available high resolution imagery of CCO 

and that it was possible to detect temporal and spatial changes for the habitat-forming 

species. There are direct conservation and management benefits to be able to produce 

widespread habitat maps (Medcalf, Parker, Turton, & Bell, 2013; Petchey, Brown, Hambidge,

Porter, & Rees, 2011). For example, mapping UK habitats is essential for UK authorities to 



meet reporting and legal obligations, such as the EC habitats directive (Medcalf, Parker, 

Turton, & Bell, 2013). The standardised, repeated nature of many remote sensing surveys 

(including CCO) lends itself towards re-assessment of habitats, this creates an opportunity to 

assess variations in habitat coverage during a time of rapid environmental change (Secades, 

O'Connor, Brown, & Walpole, 2014). This is of great value to conservation management, 

particularly for protected areas which are defined by the presence of specific habitats, or 

those with the objective of protecting a particular habitat.

In comparison to this study, the majority of other studies that have used remote sensing to 

differentiate seaweed communities have concentrated on the shallow subtidal.  A major 

problem with working in the subtidal is turbidity which can vary both spatially and seasonally

such as was experienced in the Baltic (Kuster et al., 2006, Vahtmäe & Kuster, 2013).  

However, this can be much less of a problem in clear, tropical water such as was experienced 

in the study of seagrasses in Zanzibar (Gullström et al.,, 2006) and Michalek, Wagner, 

Luczkovich, & Stoffle, (1993) who worked in the Caribbean coastal zone.  

As with our study, Vahtmäe & Kuster (2013) found that benthic habitat maps could be 

constructed from aerial images, but they point out the requirement for extensive fieldwork. 

This is dependent, in part, on the variability of the habitat. For the present study, we 

performed 2 days of ground-truthing and this permitted the construction of a habitat map 

covering more than 70km/1100ha of coastline.  Our ground-truthing surveys were performed 

at different times to the image collection, both in a different year and month. It has been 

suggested that ground-truthing should be contemporaneous with imagery surveys to ensure 

results are not compounded by seasonal or annual changes (Vahtmäe & Kuster, 2013). 

However, our model produced good evaluation statistics (at least for the high-resolution 



imagery), although areas with less long-term stability may be less robust to asynchronous 

ground-truthing. This is likely to be an issue for many studies seeking to use freely available 

aerial/satellite imagery.   

There are a number of advantages of the specialist low tide CCO imagery.  The programme 

for coastal monitoring for the English coast (http://www.channelcoast.org/programme) 

collects tidally coordinated aerial imagery, thus significant coverage of intertidal seaweed 

communities are available, and this has recently been supplemented with near infra-red data 

which gives greater discriminatory powers.  Furthermore, the very high resolution (0.1 m x 

0.1 m) provides images with excellent differentiation of boundaries, making it more reliable 

to match with ground-truthing data.  In contrast, using more sensors from hyperspectral 

satellite imagery can provide more information to discriminate habitats, but because the 

imagery is of a relatively coarse resolution, the relative gain from the additional sensors does 

not compensate the inability to detect smaller features.  For example, Kuster et al., (2006), 

who used multispectral satellites, found that the sensors they used could only detect 

differences in brightness in one band which was insufficient to recognize different benthic 

types.

One of the few specifically intertidal studies which used hyperspectral remote sensing 

methods to classify rocky habitats on Helgoland (Hennig, Cogan & Bartsch, 2007) was able 

to map the dominant intertidal seaweed vegetation and general intertidal structures, although 

additional data were required to separate mixed vegetation types.  In our study, the 

disadvantage of satellite data is that they are not specifically collected to capture the 

intertidal.  The differences in the amount of shore exposed between images, combined with 

the coarseness of the resolution, do not provide the reliability of coverage and clarity of CCO.

http://www.channelcoast.org/programme


Indeed one habitat class, Muddy Sand, is not observed in some images because of the tidal 

state.   However, rapid advancement in technology and cost of image acquisition may change 

what is possible with satellite data (Hoang, O'Leary & Fotedar, 2016).

Changing communities

Observed changes in cover between 2001 and 2013 may represent natural variation that 

occurs in shore communities with time.  There were pronounced differences between 

individual MCZs (Figures 4b-d), which showed local variations but a decrease in bare 

substrata (Flint/Sand/Chalk and Sand) and an increase in Red algae and Mytilus might 

indicate a general trend with time for an increase in the cover of these organisms.  However, 

the increase observed in Bare Chalk in the Dover to Folkestone MCZ, in comparison with 

Thanet and Dover to Deal, could relate to the physical protection of chalk cliffs.  Much of the

chalk cliffs of Thanet and Dover to Deal (c. 80%) are incarcerated in concrete (Tittley et al., 

1998), whereas Dover to Folkestone is a natural area of chalk and therefore subject to greater 

erosion.  Smothering by chalk could explain the observed decrease in sand for Dover to 

Folkestone. However, sand cover changes rapidly and is reported locally to rise or fall by 

over a metre annually (I. Tittley, personal observation), so this change might be ephemeral in 

nature, rather than a sign of any long-term trend. Multi-year comparisons are possible with 

the repeated imaging surveys. Future work examining multiple years will help distinguish 

longer term trends from short term fluctuations. Detection of changing habitat cover could be 

an important monitoring tool within this protected area.

  Fucus serratus and F. vesiculosus are the two main habitat-forming species of brown algae 

on the shores of this study.  A slight but not significant decrease was reported for F. serratus 

for the Eastern English Channel between 1974 and 2010 and the trend for this species in other



geographical regions around Britain was for a non-significant decrease in abundance, with 

the exception of the Western Channel and Celtic Sea where there was a significant increase in

abundance (Yesson et al., 2015b).  Furthermore, Fucus vesiculosus tended to show increases 

in abundance but only significantly so in the North Sea and warmer summer and winter 

temperatures appear favourable for this species (Yesson et al., 2015b).

Seasonality

An increase in Green algae may reflect differences in seasonal progression, although both 

2001 and 2013 images were collected in May, this month in 2013 was unseasonably cold, 

while in 2001 it was closer to the long term average (http://www.metoffice.gov.uk/).  

Alternatively, variation in cover from year to year of Ulva species may influence observed 

patterns, which tend to be most abundant in the spring-summer (I. Tittley personal 

observation).  A decrease in the Red algae overall may reflect the increase in Brown algae but

it is possible that the red species are still present but inconspicuous underneath the fucoids at 

the time images were taken. Any image-based habitat classification will be biased in favour 

of the top-most layer of observed fauna/flora, as this is the layer picked up by the images. 

Ideally an assessment of understory taxa could be undertaken at the time of ground-truthing 

to assess the potential impact of this issue.

Modelling methods

The example classification presented herein employs a relatively simple pixel-based 

classification using a SVM model. There are a variety of models available to perform pixel-

based classifications, and different methods may perform better on different datasets (Adam, 

Mutanga, Odindi & Abdel-Rahman, 2014; Mountrakis, Im, & Ogole, 2011). Object-oriented 

methods for classification are an alternative approach to pixel based assessment, the latter 

independently assesses the chromatic signature of each pixel, whereas the former examines 

http://www.metoffice.gov.uk/


local neighbourhoods to incorporate shape and texture features (Ouyang et al. 2011). 

Alternative methods might help produce better models for the coarser pixel resolutions.

Conclusions

The MCZs in Kent represent most of the rocky areas in the county, making them particularly 

crucial for the conservation and management of seaweed communities in the region. The high

resolution habitat maps presented here form a baseline for future assessment.  The problem of

distinguishing natural variation between years and long term trends highlights the need for 

multiple year comparisons. The method we have piloted in this study would enable a periodic

review of these communities and provide a tool for monitoring over the long term.  As such, 

this could provide a valuable addition to the monitoring of SACs which have to be monitored 

by law under the EU habitats directive (Davies et al., 2001) every six years.  
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SUPPORTING INFORMATION

Table S1 – Summary of ground truthing observations by time of observation. The tide 

position in the Bing and RapidEye images mean that some observations cannot be tied to a 

valid (unsubmerged) section of image.



Table S2 – Confusion matrices evaluating predicted and observed habitat classes for ground-

truth sites.
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Figures

Figure 1. Isle of Thanet and south Kent coast study area.  The Thanet Coast Marine 

Conservation Zone (MCZ) was designated in 2013.  Tranche 2 MCZs were designated in 

January 2016.



Figure 2. Sources of imagery. CCO = The Channel Coastal Observatory. Landsat data is not 

used in this analysis (the resolution is too coarse for useful modelling in this area), but is 

included for reference as this is a very popular remote sensing product.



Figure 3. An example of a stretch of shore showing 2013 and 2001 imagery and predicted 

habitat.  The shore is Hackemdown Point, the headland between Kinsgate Bay and Joss Bay, 

Kent, UK.



Figure 4a-d.  Change in areas using the CCO imagery between 2001 and 2013. Figure 4a. 

Overall results. Figure 4b. Thanet MCZ. Figure 4c. Dover to Deal MCZ. Figure 4d. Dover to 

Folkestone.



Table 1. Model evaluation statistics
Attributes CCO Bing RapidEye
Resolution (m) 0.1 x 0.1* 0.6 x 0.6 5 x 5
Pixels within 3m radius 2833 79 4
Valid ground truth points 115 77 66
CV Kappa Range -0.1-0.5 -0.1-0.4 0.0-0.4
Best gamma 0.5 0.03 0.0005
Best cost 2048 1024 4096
Diagonal % 0.91 0.65 0.62
Rand Index 0.94 0.73 0.75
Corrected Rand Index 0.83 0.35 0.40
Kappa 0.89 0.51 0.48
Bootstrap Kappa Range 0.2-0.6 0.0-0.6 0.0-0.8
* Resolution for 2013; resolution for 2001 = 0.2 x 0.2 m



Table 2 
Areas (hectares) predicted using CCO images from 2001 and 2013 (proportions given in parentheses).

Entire region MCZ 2013 MCZ 2001

Class 2001 2013 Change Thanet Dover to Deal Dover to Folkstone Thanet Dover to Deal Dover to Folkstone

Bare Chalk 58.85 (0.05) 93.54 (0.08) 34.69 22.67 (0.04) 2.73 (0.03) 4.85 (0.06) 17.78 (0.04) 3.67 (0.03) 2.47 (0.04)

Flint/Sand/Chal
k

99.82 (0.09) 54.36 (0.05) -45.45 8.93 (0.02) 4.08 (0.04) 2.90 (0.03) 16.37 (0.03) 5.66 (0.05) 5.27 (0.08)

Brown algae 248.77 (0.21) 275.38 (0.24) 26.61 131.61 (0.25) 46.15 (0.46) 33.92 (0.41) 116.57 (0.24) 52.07 (0.49) 23.41 (0.37)

Green algae 51.07 (0.04) 78.01 (0.07) 26.94 22.31 (0.04) 8.54 (0.09) 7.57 (0.09) 17.62 (0.04) 7.13 (0.07) 5.65 (0.09)

Muddy Sand 114.94 (0.10) 96.51 (0.08) -18.44 100.80 (0.19) 2.85 (0.03) 2.35 (0.03) 106.90 (0.22) 3.24 (0.03) 2.14 (0.03)

Mytilus 214.19 (0.18) 215.29 (0.19) 1.11 25.05 (0.05) 4.93 (0.05) 7.46 (0.09) 15.15 (0.03) 2.53 (0.02) 2.83 (0.04)

Red algae 259.35 (0.22) 237.86 (0.21) -21.48 179.38 (0.34) 22.21 (0.22) 17.68 (0.21) 148.36 (0.31) 19.51 (0.18) 11.35 (0.18)

Sand 116.14 (0.10) 87.71 (0.08) -28.44 38.63 (0.07) 8.14 (0.08) 6.98 (0.08) 40.62 (0.08) 12.55 (0.12) 10.48 (0.16)

Total 1,163.13 (1.00) 1,138.66 (1.00) 529.38 (1.00) 99.63 (1.00) 83.71 (1.00) 479.38 (1.00) 106.36 (1.00) 63.61 (1.00)

 



Table 3 
Predicted areas (hectares) based on three sets of images.  Study area is the shoreline 
observable in all three images.
Classes CCO 2013 Bing Rapid Eye
Bare Chalk 30.49 2.45 0.00
Flint/Sand/Chalk 16.49 6.13 23.08
Brown algae 102.55 40.37 191.27
Green algae 30.68 60.73 94.76
Muddy Sand 17.02 0.00 0.00
Mytilus 68.56 50.21 2.54
Red algae 71.33 143.52 30.72
Sand 52.13 96.71 69.05
Total 389.24 400.11 411.43
Total no. of pixels 97302500 1111426 164572
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