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Abstract (249 words, limit 250 words)30

Background: In principle, whole genome sequencing (WGS) can predict phenotypic31

resistance directly from genotype, replacing laboratory-based tests. However, the32

contribution of different bioinformatics methods to genotype-phenotype discrepancies33

has not been systematically explored to date.34

Methods: We compared three WGS-based bioinformatics methods (Genefinder (read-35

based), Mykrobe (de Bruijn graph-based) and Typewriter (BLAST-based)) for predicting36

presence/absence of 83 different resistance determinants and virulence genes, and37

overall antimicrobial susceptibility, in 1379 Staphylococcus aureus isolates previously38

characterised by standard laboratory methods (disc diffusion, broth and/or agar39

dilution and PCR).40

Results: 99.5% (113830/114457) of individual resistance-determinant/virulence gene41

predictions were identical between all three methods, with only 627 (0.5%) discordant42

predictions, demonstrating high overall agreement (Fliess-Kappa=0.98, p<0.0001).43

Discrepancies when identified were in only one of the three methods for all genes except44

the cassette recombinase, ccrC(b). Genotypic antimicrobial susceptibility prediction45

matched laboratory phenotype in 98.3% (14224/14464) cases (2720 (18.8%) resistant,46

11504 (79.5%) susceptible). There was greater disagreement between the laboratory47

phenotypes and the combined genotypic predictions (97 (0.7%) phenotypically-48

susceptible but all bioinformatic methods reported resistance; 89 (0.6%)49

phenotypically-resistant, but all bioinformatics methods reported susceptible) than50

within the three bioinformatics methods (54 (0.4%) cases, 16 phenotypically-resistant,51

38 phenotypically-susceptible). However, in 36/54 (67%), the consensus genotype52

matched the laboratory phenotype.53
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Conclusions: In this study, the choice between these three specific bioinformatic54

methods to identify resistance-determinants or other genes in S. aureus did not prove55

critical, with all demonstrating high concordance with each other and56

phenotypic/molecular methods. However, each has some limitations and therefore57

consensus methods provide some assurance.58

59
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Introduction60

Staphylococcus aureus causes both superficial infections (such as boils) and life-61

threatening disease including septicaemia (1). There were 11,405 S. aureus62

bacteraemias in England in 2015/2016 (2); 7.2% were meticillin resistant S. aureus63

(MRSA) which has increased costs and poorer patient outcomes (3). Fast accurate64

resistance prediction is key to managing S. aureus infections. Molecular-based methods65

directed at detecting specific genes, e.g. through rapid multiplex PCR and microarrays,66

can reduce time to identify resistance determinants and time on broad-spectrum67

antibiotics (4-6). However, they require specific primers that impact sensitivity and68

specificity.69

70

In principle, whole genome sequencing (WGS) has the potential to predict phenotypic71

resistance directly from genotype, replacing laboratory-based phenotypic tests (7).72

Several studies report high concordance between genotypic predictions based on known73

or novel resistant determinants and phenotypic methods (8-13). However, these studies74

used varying sequence processing pipelines and bioinformatics methods to identify in75

silico resistance determinants. Without formal comparisons between the various76

methods, it is unclear whether the underlying differences affect results, or whether77

differences in methodology could cause some of the observed discrepancies between78

genotypic predictions and phenotype.79

80

Here, we therefore compare three WGS-based bioinformatics methods (Genefinder81

(read-based), Mykrobe (de Bruijn graph-based) and Typewriter (BLAST-based)) in82

terms of predictions of presence/absence of different resistance determinants, and83
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overall prediction of antimicrobial susceptibility and presence/absence of virulence84

genes, from short-read Illumina WGS.85

86

Results87

Short-read Illumina WGS were available from 1,389 samples, 992 from a collection held88

in Oxford (previously described by Gordon et al (9, 10)) and 397 from Public Health89

England (PHE) Staphylococcus Reference Service, Colindale. Ten samples were excluded90

due to mixed/contaminated WGS results, leaving 1,379 for analysis. Samples were91

analysed by Genefinder and Typewriter (Table 1) after sequence mapping and variant92

calling and by Mykrobe from raw fastq reads.93

94

84 genes were included: 46 acquired resistance genes, five sets of chromosomal variants95

within genes associated with resistance, three cassette chromosome recombinases ccrA,96

ccrB and ccrC including three variants of ccrC (ccrCa, ccrCb, ccrCc) and 28 virulence97

genes (Supplementary Table 1). 99.5% (113830/114457) of the individual resistance-98

determinant/virulence gene predictions were identical between all three methods99

(Supplementary Table 1, Figure 1), with only 627 (0.5%) discordant predictions,100

demonstrating high overall agreement (Fliess-Kappa=0.98, p<0.0001). Overall, one101

method disagreed with both other methods in 0.23% for Typewriter (263/114457102

predictions), 0.16% Mykrobe (183/114457) and 0.16% Genefinder (181/114457). The103

three most common discrepancies for Typewriter were the non-detection of virulence104

genes identified by other methods (seu 57 samples, chp 46 samples, sei 33 samples).105

Similarly, for Genefinder the three most common discrepancies were non-detection of106

resistance genes (qacB 44 samples, dfrC 34 samples) or other genes (ccBb 22 samples)107

identified by other methods. Genefinder reported the presence of dfrA, qacA or ccrC(b)108
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genes in these samples. In contrast, Typewriter and Mykrobe reported the presence of109

two dfr, two qac and three ccrC genes, where the detected variants for each of these110

three genes shared more than 90% nucleotide identity. The most common discrepancies111

for Mykrobe were identifying resistance/other genes as present when the other two112

methods called them absent (aadE/ant(6)-Ia 28 samples, blaZ 19 samples, ccrCB 22113

samples). No gene was ever identified as present by Typewriter alone. 14 of the 84114

genes had >1% discrepancies (maximum 4.3% for seu), but the majority of discrepancies115

were in only one method for all genes except ccrC(b).116

117

Discrepancies were similar in acquired resistance genes (0.3%, 221/63434) and118

chromosomal resistance genes (0.1%, 8/5516), but slightly larger for ccr genes (1.8%,119

123/6895) and virulence genes (0.7%, 275/38612) (Supplementary Table 2).120

Percentage discrepancies varied modestly across the different sample sets, being higher121

for the PHE set (1.1%, 349/32,928; particularly for ccr genes with 4.2% (83/1,960)122

discrepancies), intermediate for the Oxford derivation set (0.6%, 233/42084) and123

lowest for the Oxford validation set (0.1%, 45/40,824) (Supplementary Table 2).124

125

Genotypic predictions of antimicrobial susceptibility were also identical in 99.6% of126

cases (16,477/16,548 predictions, Table 2). Of the 71 discrepancies in susceptibility127

prediction between the methods, 42% (30/71) occurred with Typewriter reporting128

susceptible when Genefinder and Mykrobe reported resistant, and 49% (35/71)129

occurred with Mykrobe reporting resistant where Genefinder and Typewriter reported130

susceptible.131

132
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Comparing genetic predictions to laboratory phenotypes (restricted to samples either133

phenotypically resistant or susceptible), in 98.3% (14224/14464) cases all three134

bioinformatics methods and the gold standard laboratory results agreed completely135

(2720 (18.8%) resistant, 11504 (79.5%) susceptible) (Table 3a, Figure 2). There was136

greater disagreement between the laboratory phenotypic results and the combined137

genotypic predictions than within the three bioinformatics methods. In 97 (0.7%)138

instances, the laboratory phenotype was susceptible but all bioinformatic methods139

reported resistance. Of these, 33% (32/97) were for penicillin, 23% (22/97)140

clindamycin and 11% (11/97) erythromycin, with smaller numbers for fusidic acid (7),141

tetracycline (6), mupirocin (6), methicillin (5), ciprofloxacin (4), gentamicin (3) and142

rifampicin (1), and none for trimethoprim. In 89 (0.6%) instances, the laboratory143

phenotype was resistant, but all three bioinformatics methods reported susceptible,144

most commonly to gentamicin (21%, 15/89), ciprofloxacin (17%, 15/89) and fusidic145

acid (15%, 13/89). The remaining 54 (0.4%) cases (16 phenotypically-resistant, 38146

phenotypically-susceptible) had different genotypic predictions made from the different147

methods. However, in 36/54 (67%), the consensus genotype (predicted by two of the148

three methods) matched the laboratory phenotype.149

150

PCR/array results were available for some virulence genes (14) and mecA/mecC for all151

397 PHE isolates. Compared with genetic predictions, in 96.8% (3983/4115) cases all152

three bioinformatics methods and the PCR/array results agreed completely (3364153

(81.7%) absent, 619 (15.0%) present) (Table 3b, Supplementary Figure 1). As for154

antimicrobial resistance, there was greater disagreement between the laboratory155

PCR/array results and the combined genotypic predictions than within the three156

bioinformatics methods, with 81 (2.0%) cases where all three methods called a gene157
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present that had not been detected by PCR/array and 12 (0.3%) where no method called158

a gene present that had been detected by PCR/array, in comparison with 39 (0.9%)159

discrepant predictions between the methods. In 20/39 (51%), the consensus genotype160

matched the PCR/array result.161

162

The sensitivity and specificity of all three bioinformatics methods compared to163

laboratory phenotypic methods in predicting antimicrobial susceptibility was very164

similar. Across the 14464 genotypic predictions, Typewriter had the lowest overall165

sensitivity (0.964 (95% CI 0.956-0.970), but the highest specificity (0.992 (0.990-166

0.993)), while Mykrobe had higher sensitivity (0.967 (0.960-0.974)) and lowest167

specificity (0.989 (0.987-0.990)). Genefinder’s performance fell between Mykrobe and168

Typewriter for specificity (0.990 (0.988-0.992)) with a sensitivity equal to Mykrobe169

(0.967 (0.960-0.973)). Specificity and sensitivity varied across the different antibiotics170

(Figure 3), but were broadly similar between the three methods, overall and within each171

dataset (Supplementary Table 3). There were no vancomycin resistant isolates172

identified by either phenotyping or bioinformatics methods. Similarly, specificity and173

sensitivity to identify PCR-detected virulence and other genes varied across the different174

genes, but were broadly similar between the three methods (Supplementary Figure 2).175

176

Discussion177

Whilst WGS is increasingly used to detect antibiotic resistance and virulence178

determinants, to our knowledge this is the first study that compares three methods for179

predicting genotype on large numbers of isolates. As discussed in the recent European180

Committee on Antimicrobial Susceptibility Testing (EUCAST) report (15), discordance181

can occur between phenotypic and genotypic resistance due to inadequate limits of182
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detection for WGS methods, incomplete understanding of the genotypic basis of183

phenotypic resistance, flaws with the phenotypic or molecular (e.g. PCR) methods184

currently used to detect resistance, and/or WGS failures including lack of assembly185

caused by multiple operons or similar sequences, incomplete gene coverage, non-186

functional genes (e.g., due to presence of stop codons/indels) or cropped contigs.187

188

Here we found that three different approaches to identifying genetic determinants of189

resistance and virulence (Genefinder, Mykrobe and Typewriter) agreed in 99.5%190

predictions. Genefinder and Mykrobe were fast, taking under five minutes whereas191

Typewriter, while also taking a few minutes per sample, required initial genome192

assembly that increased turnaround time by up to three hours. Mykrobe and Typewriter193

are freely available (https://github.com/iqbal-lab/Mykrobe-predictor and194

https://github.com/tgolubch/typewriter respectively); Genefinder is not but the195

underpinning methods are relatively straightforward, and the freely available SRST2196

(https://github.com/katholt/srst2) follows an analogous mapping approach (16) which197

would likely provide very similar results with the same catalogue. Previous comparisons198

of bioinformatics methods relevant to the microbiology community are limited. Bradley199

et al (9) found good concordance between Mykrobe and SeqSphere (17), an allele-based200

method that detects presence/absence of a limited number of resistance and virulence201

markers. SeqSphere took longer than Mykrobe as, like Typewriter, it uses Velvet202

assemblies. Other previous studies have shown 100% concordance between resistome203

and toxome in 14 MRSA isolates (18), 98.6% concordance across 5288 susceptibility204

predictions in 308 S. aureus isolates (both MRSA and MSSA) (19), 100% concordance for205

selected resistance and toxin gene presence/absence in 18 MRSA strains (17), and206

97%/97% sensitivity/specificity for Typewriter and 99.1%/99.6%207
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sensitivity/specificity for Mykrobe for predicting phenotypic resistance in the Oxford208

validation samples used here (9, 10). A comparison between microarray and WGS in 154209

isolates reported 1.7% discordancy in detecting resistance and virulence genes (20),210

mainly due to failure of WGS to detect enterotoxins and super antigens (similar to211

Typewriter in this study).212

213

Individually, the three programs demonstrated high concordance, but interestingly, in214

almost all genes only one of the three bioinformatics methods did not identify a215

determinant that the other two methods did identify, or vice versa. The most common216

discrepancy with Typewriter was failing to identify virulence genes identified by217

Mykrobe and Genefinder (namely, seu, chp and sei). Two of these genes, sei and seu, are218

located on the enterotoxin gene cluster (egc) (21, 22), referred to as an enterotoxin gene219

nursery (23), and the other, chp, on a prophage (24). Such regions may be particularly220

susceptible to recombination (25, 26) and paralogs. As Typewriter uses BLAST, it may221

have a higher chance of detecting one of multiple closely related genes than the other222

two methods.223

224

Similarly to Typewriter, the most common discrepancy with Genefinder was failing to225

identify genes reported by Typewriter or Mykrobe, particularly ccrB, qacB (quaternary226

ammonium compound B, conferring resistance to chlorexidine (27) via an efflux drug227

pump, but differing from another gene, qacA, by only seven nucleotides (28)), and dfrC228

(a dihydrofolate conferring resistance to trimethoprim believed to be the origin of the229

more common transposon-associated drfA gene). The fact that Genefinder identified230

only one variant of acquired dfr and qac may indicate that the other two methods were231

misidentifying paralogs (29). Alternatively, as Genefinder detects pre-determined232
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alleles, recombination of partial genes or differences in flanking sites or genomic233

variation alone may reduce its ability to detect some genes. One advantage of Genefinder234

is its ability to detect variations in multicopy genes such as the ribosomal RNA encoding235

genes associated with linezolid resistance in staphylococci.236

237

In contrast, Mykrobe most commonly identified a determinant that other methods did238

not, particularly aadE(ant6’)-Ia, an adenyltransferase encoding resistance to239

aminoglycosides. This gene is associated with small plasmids flanked by direct repeats240

of staphylococcal insertion sequence IS257 (30). Although Mykrobe is kmer-based, it241

requires a high match across the whole gene, not just flanking sequences, so the reason242

for this is unclear. Mykrobe also had a higher false-positive rate in blaZ, as reported243

previously (9). Although this was previously attributed to phenotypic errors, the fact244

that neither Genefinder nor Typewriter identified blaZ in these isolates suggests the245

algorithm/threshold may need adjusting for this gene. Mykrobe also had a high false-246

positive rate for the ccrCB gene, which is part of the cassette chromosome recombinase247

(ccr) associated with SSCmec (31). As all ccrC genes share >87% similarity, and were not248

included in the original Mykrobe implementation, further investigation and modification249

of sequence identity thresholds may be required to accurately classify this gene, whose250

different alleles can have 60-82% sequence identity.251

252

Overall, the comparison highlights key challenges inherent in all methods. First is the253

trade-off between specificity and sensitivity to detect specific genes/variants, and the254

need for adjustment based on specific features, such as proximity to repetitive elements255

or similarity with other alleles. Specific genes may also require different approaches, e.g.256

the ccr genes were the most discordant overall in the study. These genes were more257



13

often present in the Staphylococcal reference laboratory isolates, increasing overall258

error rates for this sample set. Reference libraries of genes/variants also require259

frequent updating with new alleles, and appropriate thresholds must be set to allow260

separate copies of closely related genes (e.g. qacA and qacB) to be detected if genuinely261

present. Taking the consensus prediction across the three different bioinformatics262

methods is one strategy for balancing these different trade-offs. As error rates were low263

overall, this only improved genetic predictions slightly, but in samples where the264

susceptibility is unknown it could be valuable, particularly if the two fast265

implementations (GeneFinder, Mykrobe) are used, followed by the slower assembly-266

based method only if they disagree.267

268

Our main findings were that the largest discordance occurred between phenotype and269

genotype regardless of the method used to predict genotype, and that the “consensus”270

genotypic prediction agreed with the phenotype in two-thirds of the small number of271

cases where bioinformatics methods made different predictions. Where bioinformatics272

methods are concordant, but disagree with phenotype, the unresolved question is which273

is “correct”, in terms of a drug achieving clinical cure in a patient infected with this274

strain. Penicillin and clindamycin/erythromycin were most likely to be called resistant275

by all methods but susceptible by phenotyping. Previous studies of erythromycin and276

clindamycin resistance have reported positive ermC PCR results from non-detectable277

resistance phenotypes (32) and have suggested that plasmids conferring resistance to278

these antibiotics may be lost in subculture (9, 33). Sensitivity to penicillin by phenotypic279

methods where genotype methods predict resistance has been reported previously (34,280

35) and the evidence suggests that phenotyping underreports resistance. The EUCAST281

guidelines illustrate the challenges in distinguishing between penicillin-resistant and -282
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susceptible isolates based on fuzzy versus sharp zones (36). Overall therefore it is283

plausible that genetic detection of resistance may reflect more closely the impact of the284

strain on a patient.285

286

Interpretation where phenotyping reports resistance but WGS methods predict287

susceptibility is more difficult. One possibility is small colony variants (SCV) being288

present phenotypically but overgrown in WGS culture and thus not represented in the289

sequence. Resistance associated with gentamicin, fusidic acid and ciprofloxin, the main290

antibiotics where this phenomenon was observed, is observed with SCV phenotypes (37,291

38). An alternative explanation is novel resistance mechanisms, for example,292

ciprofloxacin (39), leading to false-negative WGS predictions. The need for a293

continuously updated curated database is a key challenge for WGS methods. As more294

sequencing occurs, novel mutations will be identified in resistance genes that may or295

may not confer phenotypic resistance, but these can at least be identified and tested;296

identifying entirely new resistance-conferring genes is more complex and prediction297

software that can recognize new, clinically important genes a priori would be a valuable298

addition to an analysis pipeline. However, we observed similar differences between299

concordant genotypic predictions and both phenotypic antimicrobial susceptibilities300

and single gene PCR results, suggesting that the underlying causes may not necessarily301

be related to resistance. As previously noted, agreement between WGS and phenotyping302

is higher (98.6%) than between phenotyping undertaken by two separate laboratories303

(97.6%) (19), thus at least some discrepancies are probably due to incorrect304

phenotyping results. In contrast, concordance between genotypic predictions made305

using a single method but based on WGS generated from 5 different laboratories was306

recently shown to be >99.8% (40).307
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Limitations308

This comparison was based on a pre-specified set of resistance or virulence associated309

genes: some genetic traits previously associated with resistance were omitted (eg. IleS310

mutations linked to low-level mupirocin resistance). Despite this, we found good311

agreement between genotypic predictions and phenotype. Typewriter used Velvet de312

novo assemblies: other newer assemblers (e.g. SPADES (41)) might have improved313

predictions further. We included data which had been used in development of two of the314

methods compared, which could potentially have led to over-fitting, although315

performance of all three methods was in fact similar on this dataset (Supplementary316

Table 3). All analysis was undertaken on short-read Illumina data. The increasing use of317

long-read sequences will require further software testing, although Mykrobe has been318

successfully used for initial resistance calling in Mycobacterium tuberculosis from319

Nanopore sequencing in a small number of samples (42). However, it has not been320

comprehensively tested, nor have Typewriter or Genefinder, with long-read sequences321

generated using Nanopore or PacBio technology. The greatest differences detected in322

this study were between phenotype and genotype, which could be partly due to the323

method of phenotypic testing and recognised issues with reproducibility. We did not324

have resources to re-phenotype all or a subset of the isolates; well-characterised sets of325

repeatedly phenotyped isolates would be useful for further studies. We found no326

suggestion that missing calls in one program were associated with scores just below a327

threshold, but did not undertake a more detailed assessment of specific sequence328

coverage and quality around discrepant genetic predictions.329

330
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Conclusion331

In summary, in this study the choice between three specific bioinformatic methods to332

identify resistance-determinants or other genes in S. aureus did not prove critical. All333

demonstrated a high concordance with each other, and phenotypic methods, and can be334

recommended for genotype prediction. However, each has some limitations and335

therefore consensus methods provide at least some assurance. Due to computational336

speed, Mykrobe (de Bruijn graph-based) and Genefinder (or equivalent mapping-based337

program such as SRST2 (16)) are a sensible combination to use as an initial consensus338

method, followed by Typewriter (BLAST-based) if these two methods disagree. As a set339

of 34 diverse bacteria have been made available for whole genome sequencing340

validation (43), the study strains and genotypic predictions are available as a resource341

for other studies investigating different bioinformatic analysis methods which will342

become increasingly important as this technique is more widely used to inform clinical343

management, though bacterial identification, antimicrobial susceptibility prediction and344

virulence profiling. External quality control of clinical laboratory performance in345

predicting antibiotic resistance is provided by UK proficiency testing schemes such as346

UK NEQAS (United Kingdom National External Quality Assessment Service for347

Microbiology) (44); a similar set of standards will need to be created to accredit whole348

genome sequencing methods.349

350

Materials and Methods351

Three sets of S. aureus isolates with known high-quality phenotypes were analysed: a352

derivation, n=501, and validation, n=491, set (denoted “Oxford derivation/validation”)353

from blood cultures and nasal swabs isolates at the Oxford Radcliffe Hospitals NHS Trust354

and Brighton and Sussex University Hospitals NHS Trust, spanning a period of 13 years,355
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sequenced for an initial assessment of genotypic prediction of susceptibility phenotype356

in S. aureus (9, 10)and 397 isolates that had been referred to the Public Health England357

reference laboratory for investigation (denoted “Colindale 397”, available at NCBI:358

PRJNA445516). The Oxford derivation set had previously been used in the development359

of Typewriter and Mykrobe, but not Genefinder; the former methods were then applied360

to the Oxford validation set.361

362

Phenotypes for “Oxford derivation/validation” isolates used disc diffusion and/or363

automated broth diffusion (BD Phoenix) with discrepancies between phenotype and364

genotype resolved as described previously (11). All PHE isolates (n=397) were365

subjected to MIC testing by the PHE Staphylococcal Reference Laboratory using the agar366

dilution method (45). In addition, the mecA/C status and virulence gene profile of the367

PHE isolates was determined by PCR or microarray testing as described previously (14).368

The European Committee on Antimicrobial Susceptibility Testing (EUCAST): thresholds369

were used to determine sensitivity or resistances for each phenotype370

(http://www.eucast.org/clinical_breakpoints).371

372

All “Oxford derivation/validation” isolates were sequenced using the Illumina HiSeq373

2000 platform as previously described (46). PHE samples were sequenced in an374

Illumina HiSeq 2500 platform as described previously (47) (both 150bp reads). Samples375

determined as mixed based on WGS were excluded from further analysis. Quality control376

of sequences at PHE used the trimmomatic software (Illumina adapter removed, leading377

and trailing quality threshold set to 30 and minimum length of read set to 50 bases)378

(48). Isolates from Oxford analysed by Typewriter were mapped and de novo379

assembled with exclusion parameters of <70% coverage of reference genome for380
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mapping and <50% of the genome in contigs >1 Kb (10). Mykrobe processes raw381

sequence data with no prior cleaning of the data. Isolates came from 111 sequence382

types, including 29 new STs/alleles, covering the range of S. aureus genomic diversity as383

previously described in Oxfordshire.384

385

Three programs, Genefinder (MD; PHE, not published), Mykrobe (PB; Version v0.3.13-2-386

gd5880fa, open-source at https://github.com/iqbal-lab/Mykrobe-predictor), and387

Typewriter (TG; version 2.0, MMM group, Oxford University,388

https://github.com/tgolubch/typewriter) (Table 1), were compared to determine389

presence/absence of resistance-determinants (genes or variants) and toxin genes390

(Tables 2, 3). Mykrobe is part of the automated processing with the Complete Pathogen391

Software Solution (COMPASS) developed at University of Oxford. This returns quality392

and depth of sequence metrics, maps against a reference (MRSA 252, GenBank393

Accession no: BX57186561) using Stampy (49) and performs de novo assembly using394

Velvet v1.0.18 (50). These de novo assemblies formed the basis for the Typewriter395

program, whereas Genefinder used the raw sequencing reads.396

397

Although all three methods search for matches to a pre-defined list of alleles, they have398

different approaches to their identification (further details below). Genefinder and399

Mykrobe required fastq files whereas Typewriter used BLAST on de novo assemblies. All400

used pre-set thresholds to detect genes. Thresholds are adapted for certain genes (e.g.401

blaZ which can be chromosomally integrated or carried on plasmids) to improve402

prediction and for quality control. Both Typewriter and Mykrobe identified presence or403

absence of each target singly, whereas Genefinder identified which of closely related404

homologs is most plausibly present. Genefinder and Mykrobe were very fast, between405
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one and three minutes, and can be used on a standard desktop computer (specification406

of 2.3 GHz processor and 16GB memory). Typewriter, as it requires de novo assembly,407

took up to three hours and used cloud computing or high-capacity servers.408

409

Genefinder was written by MD. It used a mapping approach (similar to SRST2,410

https://github.com/katholt/srst2) to detect the presence or absence of predefined411

genes or variations in predefined genes using Bowtie. Thresholds were defined at 90%412

overall, but amended where required in order to distinguish between both variants413

where genes were represented with multiple reference sequences and the level of414

diversity expected for each gene sought. Genefinder also checked for premature stop415

codons and compared the average depth of read coverage to identify any potential416

sequence contamination.417

418

Mykrobe was written by PB and ZI (9). A threshold frequency was generated for each419

gene (K minimum percentage) based on the empirical level of diversity observed in the420

training set described by Bradley (K=0.3 for blaZ, K=0.6 for fusB, fusC, K=0.8 otherwise).421

The maximum likelihood from 3 models (gene absent, gene present in minor proportion,422

gene present) was chosen. The models took into account expected proportion of kmers423

based on depth of coverage and empirical level of diversity (described in (9)). Mutations424

were genotyped by choosing the maximum likelihood model from 3 Poisson models425

comparing the depth of coverage across 63 base pair reference and alternate alleles426

while demanding 100% coverage across the allele, also described in (9).427

428

Typewriter was developed by TG (described in (10)). It considered BLAST results over a429

query reference (blastn for sequence identity, tblastn for mutations). It used a “relative430
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coverage” to determine presence/absence of a gene, a metric that gives equal weight to431

coverage and sequence identity. Typewriter reported this value for each query gene of432

interest and cutoffs were adjusted to optimize specificity/sensitivity for different genes.433

In this study, a relative cutoff of 90% for resistance and toxin genes was used except434

blaZ for which a cutoff of 80% was used. For variant reporting, mutations were reported435

above a given threshold of relative coverage (e.g. 90%) however, this could be changed436

or set to 0% to report all identified differences from the query sequence. Stop codons437

were predicted, as were novel mutations.438

439

84 genes were included in the analysis; 46 acquired resistance genes, five sets of440

chromosomal variants within resistance-associated genes, five cassette chromosome441

recombinases (ccr) and 28 virulence genes (Tables 2, 3). Acquired resistance genes were442

classified as present (p,P) or absent (a, A), setting 3 missing Genefinder predictions443

(“ND” or “X”) to absent. Chromosomal resistance variants were those listed in444

Supplementary Table 4; 23 other mutations were reported in the relevant genes but445

were not compared, as they are not considered resistance-determinants446

(Supplementary Table 4). For all methods, genotype predictions of susceptibility447

phenotype were based on the presence of any relevant resistance-determinant as shown448

in Tables 2 and 3 (as described in (10) with minor modifications and updates from (9)).449

Intermediate phenotype results were excluded from analysis (80 cases; 0.5%).450

451

452

453

454

455
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Figure legends646

Figure 1: Determinant-by-determinant disagreements between methods647

Each panel shows percentage difference in proportion of detected presence of each648

determinant between the first method and the second.649

650

Figure2: Antimicrobial susceptibility genotypic predictions compared to phenotype651

652

Figure 3: Sensitivity and specificity of genotypic predictions of antimicrobial653

susceptibility654

655

656
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Table 1 Overview of Genefinder, Mykrobe and Typewriter methods and668

requirements669

Genefinder MyKrobe (9) Typewriter (10)

Method Maps raw reads to

list of target alleles

using Bowtie

Looks for list of target

alleles in de Bruijn

assembly graph

Blasts list of target

alleles against de

novo assemblies*

Input Fastq file Fastq file Genome assembly

output (Velvet)

Required

homology to

declare gene

presence/absence

>90% to target

allele

Based on Kmer

recovery: K is

minimum percentage

expected to be

recovered for a gene;

K = 0.3 for blaZ, K=0.6

for Fus B, C, K= 0.8

otherwise **

>90% relative

coverage

(homologyXlength)

(80% for blaZ)

Required

homology to

declare SNP

>90% to target:

can be modified

100% of 63 kmers

required to call a

variant present

>90% to target: can

be modified

Prediction of stop

codons in genes

present

Yes No: there is no

assembly

Yes

Reads can be

mapped to

Multiple targets Single target Single target
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Genefinder MyKrobe (9) Typewriter (10)

Speed / processor 1 to 3 minutes on

laptop with 2.3

GHz processor and

16GB memory†

2 minutes on laptop

with 2.3 GHz

processor and 16GB

memory

3 hours for

assemblies on cloud

computational

system, then few

minutes for BLAST

Sequence quality

control

Threshold adjusted

if gene has multiple

reference sequence

or variable level of

diversity, can

detect potential

contamination by

comparing average

depth of coverage

Can identify mixtures

of difference species

and same species

Thresholds for n50

and parallel

reference-based

mapping: nothing

reported if below

these thresholds

670

* using blastn for sequence identity and tblast for mutations.671

672

† Genefinder speed is relative to the number of genes present in the database673

674

675
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Table 2: Predicted antibiotic susceptibility phenotype from WGS by Genefinder,676

Mykrobe, Typewriter (n=1379)677

Antibiotic

Susceptibility prediction for Genefinder, MyKrobe,

Typewriter

Discordant

across

methods (n,

%)

RRR SSS RRS RSR RSS SRS

Ciprofloxacin 304 1072 0 2 0 1 3 (0.2%)

Clindamycin 338 1024 7 0 0 10 17 (1.2%)

Erythromycin 354 1011 6 0 0 8 14 (1.2%)

Fusidic acid 151 1221 4 0 0 3 7 (0.5%)

Gentamicin 76 1300 1 0 0 2 3 (0.2%)

Methicillin 393 984 2 0 0 0 2 (0.1%)

Mupirocin 15 1362 0 0 2 0 2 (0.1%)

Penicillin 1,161 211 3 0 0 4 7 (0.5%)

Rifampicin 23 1,354 0 1 0 1 2 (0.1%)

Tetracycline 121 1,249 4 0 0 5 9 (0.7%)

Trimethoprim 175 1,199 3 1 0 1 5 (0.4%)

Vancomycin 0 1,379 0 0 0 0 0 (0.0%)

Total (% of

16548)

3111

(18.8%)

13,366

(80.8%)

30

(0.2%)

4

(0.02%)

2

(0.01%)

35

(0.2%)

71

(0.4%)

678

679

680
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Table 3: Predicted genotype and phenotype681

(a) Antimicrobial susceptibility682

Antimicrobial susceptibility prediction from Genefinder,

Mykrobe, Typewriter

Laboratory

phenotype
RRR SSS RRS RSR RSS SRS Total

R 2720 89 9 3 0 4 2825

S 97 11504 13 1 2 22 11639

Total 2817 11593 22 4 2 26 14464

683

(b) Virulence genes, ccr genes and mecA/mecC684

Prediction from Genefinder, Mykrobe,

Typewriter

PCR AAA PPP APA PPA Total

A 3362 82 10 17 3475

P 14 618 2 10 643

Total 3376 700 12 27 4115

685

Note: not all isolates were phenotyped for all antimicrobials, and therefore total with686

phenotypes (14464) is less than the total with genotypic predictions (16548) in Table 2.687

Only PHE isolates had PCR results for some virulence genes. Dark grey shading shows688

complete concordance, and light grey majority concordance between predictions.689

R=resistant, S=susceptible, A=absent, P=present690
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