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Abstract. This contribution on dynamic fluid-body interactions con-
centrates on applying mathematical/analytical ideas to complement di-
rect numerical studies. The typical body may be of given shape or flexible
depending on the context. In the background there are numerous real-
world motivations in industry, biomedical and environmental applica-
tions, many of which involve high flow rates. A review of ideas developed
over the last decade for cases of high flow rates first addresses inviscid
approaches to one or more bodies free to move within a channel flow, a
skimming sharp-edged body on a free surface, the sinking of a body in
water and the rocking or rolling of a body on a solid surface, before mov-
ing on to more recent viscous-inviscid approaches for channel flows and
boundary layers. The beginnings of certain current research projects are
also outlined. These concern models of liftoff of a body from a solid sur-
face, the impact of a smooth body during skimming and viscous-inviscid
effects in the presence of more than one freely moving body. Linear and
nonlinear mathematical properties as appropriate are described.
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1 Introduction

Dynamic fluid-body interactions where the body and fluid motions generally af-
fect each other about equally [1]-[11] are the basis for this chapter, with some
review and some new developments. The motivation comes from applications
as well as scientific interest. There have been a fair number of computational,
experimental or observational studies in the area [12]-[22] but comparatively few
analytical studies; the latter tend to lead to complementary understanding of
parametric and physical effects. Our aim indeed is to combine modelling, anal-
ysis, reduced computation and experimental links where possible. The present
contribution addresses several different scenarios, for example with viscous or
inviscid fluid, with internal or external flow, with a free surface or without.

Applications and motivation. The study of interactions between moving solid
or flexible bodies (including particles, grains) and the surrounding fluid has
many environmental, industrial and biomedical applications. Numerous applica-
tions arise across nature such as with falling leaves and moving seeds and coffee
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grains, not to forget the motion of frozen ice particles and hailstones as well as
sedimentation and fluidisation phenomena. Applications also arise in sporting
contexts such as running and cycling groups and to some extent in swimming
competitions and in surfboarding. The behaviours of various swarms similarly
have an interactive fluid-dynamical element to them. Three industrial applica-
tions are concerned with the falling of lumps of ice into an engine intake in
an aerodynamic safety context, the travel of wind-blown particles of ice along
a wing surface again in the aerodynamic safety context and the falling of rice
grains down a chute in a food-sorting context. In addition various disintegration,
deposition, liftoff, surface cleansing, oil-well and sequestration modelling appli-
cations exist for interactions between solid bodies and fluids. There are also
many biomedical applications in principle, for example on travel of solids within
vessels of major networks in the human body. Specific applications are to trans-
port of blood clots, embolisation procedures in stroke treatment (transportation
of glue), drug-delivery to tumours via a capillary network, the passage of cells
through vessels of lateral dimension comparable with the effective cell diameter,
and deposition of tiny particles in branching systems [23]-[30]. One fundamental
question is how far and where small objects will travel when transported, which
is a global network issue as well as depending on the shapes of the objects and
the local vessel shapes.

The solid-fluid interactions of interest are with or without side walls being
present. One specific example is in food-sorting where grains travel as a mono-
layer down an inclined chute (which has a free-surface top), fall from the bottom
of the chute and then pass an optical system that can detect defective grains. A
powerful jet of air is fired to eject a defective grain. Since the grains falling off the
chute typically are not uniformly distributed but clustered and inhomogeneous,
the air jet removes other grains surrounding the target grain which may not
themselves be defective. An industrial goal is to increase uniformity of product
feed to reduce the ejection difficulty whilst maintaining a high throughput of
grains. The ideal situation is for an evenly spaced and uniformly ordered array
of grains to fall down and off the chute such that each grain is aligned with
an ejector. This points to a study of air effects on arrays of grains. Numerical
estimates on food-sorting in [31], [32] indicate that an inviscid approximation is
reasonable as a first-go model.

Background studies. The most relevant studies are in [1]-[10] on interactions
for channels, boundary layers, free surfaces, liftoff. We should mention in addi-
tion suspension flow studies concerned with relatively sparse grain flows where
the interstitial fluid is important for the grain dynamics, such as in aeolian or
fluvial transport [1], [33], [34]. These studies address issues such as entrainment
which are potentially relevant to some fluid-body interactions of present concern.
Other investigations consider oscillations in sedimentation of spheres and fibres,
bubbles in fluidized beds, migration of particles, bubble formations and clus-
ters (see [1]). Nonlinear multi-body interactions addressed [35]-[37] for in-series
wakes and internal branching motions are also relevant although they assume
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fixed bodies in steady flow.

The present article. We will begin below with the original food-sorting con-
text in mind before branching out to skimming, liftoff, viscous influences and
related configurations. The rapid monolayers in the sorting applications are atyp-
ical for a granular flow, and enduring contacts are not as significant here; frequent
binary impacts or clashes are more typical. The issues involved lie between or
outside the arenas of existing granular flows and suspension flows. The current
focus is on substantial interactions in which the fluid flow is at relatively high
rates, tending to produce a flow multi-structure. The bodies (grains) respond
nonlinearly by means of their own induced motion which in turn affects the fluid
flow nonlinearly. In terms of grains falling down and off a chute for example we
concentrate first on the fluid-body interactions occurring at the lower end of the
chute where the fluid response is effectively inviscid due to the increased veloc-
ity of the bodies. The upper part of the chute where viscous or viscous-inviscid
behaviour is more appropriate is considered in [31] (see also section 2 below),
while a continuum model for the bulk properties of the grain motion without air
effects is in [32]. Similar considerations apply to other contexts.

Section 2 describes the model situations of interest, assuming laminar un-
steady incompressible fluid flow. These have fluid-body interactions in two spa-
tial dimensions for: one or more bodies inside a channel; skimming of a body
along a free surface; rocking of a body on a solid surface; viscous-inviscid effects
within a channel or boundary-layer flow. In each case the interaction model
and solution structure lead to a nonlinear system of difference, longitudinal-
differential and /or integral equations for the motion of one or a finite number
of bodies in surrounding fluid or on a free surface. Section 3 then examines more
recent developments in the skimming scenario. The phenomenon of take-off of
a body from a solid surface is examined in detail in section 4. The influences of
many bodies and viscous effects then form the motivation for the work in sec-
tion 5, with the viscous effects leading to other scales coming into play. Further
comments including future research possibilities are made in section 6.

2 The models

We consider the four main model areas in sections 2.1-2.4 below, with the first
section giving the typical form of non-dimensionalisation used throughout.

2.1 Bodies in a channel flow

The configuration of concern here models grains falling through fluid down a
vertical chute as in the introduction but is drawn rotated in figure 1 giving thin
bodies which travel almost horizontally. The entire motion takes place in a planar
Cartesian frame (x∗, y∗) as shown, with an asterisk signifying a dimensional
quantity. The leading edges of the bodies are aligned with each other and their
trailing edges with each other. The bodies form an unknown row-like pattern
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and they are finite in number. The representative axial extent of the bodies
from leading to trailing edge is L∗1 and the lateral distance in y∗ is L∗2. The
typical axial flow speed U∗ is a prescribed constant. The velocity components
are u∗, v∗ in x∗, y∗ respectively, the pressure is p∗, t∗ denotes the time and ρ∗

is the fluid density.
Non-dimensional scaled quantities are used in the frame moving with the

bodies at speed U∗, such that

[(x∗ − x∗0)/L∗1, y
∗/L∗1, t

∗U∗/L∗1] = [x, βŷ, t], (1a)

[u∗/U∗, v∗/U∗, p∗/(ρ∗U∗2)] = [un, βv̂n, pn], (1b)

where β ≡ L∗2/L
∗
1. The location x∗0 is a constant, as is confirmed later by the

equations of body motion. The governing equations in full for the fluid are the
continuity and Navier-Stokes equations and for the bodies are those of rigid body
motion. The fluid and the bodies interact by virtue of the unknown movements
of the individual bodies when subjected to fluid dynamic forces and the equally
unknown flow of the fluid affected by the moving boundaries. When the typical
length ratio β is small the fluid flow equations in each gap become those of thin
inviscid layers to leading order,

∂un/∂x+ ∂v̂n/∂ŷ = 0, (2a)

∂un/∂t+ un∂un/∂x+ v̂n∂un/∂ŷ = −∂pn/∂x, (2b)

0 = −∂pn/∂ŷ, (2c)

in the majority of the flow field. Here un, v̂n, pn, ŷ are of order unity, and n
runs from 1 to N in the successive N gaps for (N − 1) bodies in a row between
the side walls ŷ = 0 and ŷ = 1. The integer N ≥ 2. The equations above come
from the balances of continuity, longitudinal momentum and lateral momentum
respectively. These hold provided not only that β is small but β2Re is large,
whereRe is the characteristic Reynolds number U∗ L∗1/ν

∗ and ν∗ is the kinematic
viscosity of the fluid. The negligible inertial impact in (2c) implies that pn is
an unknown function of x, t only. The oncoming fluid motion effectively has
un = 1, v̂n = 0, pn = 0 due to the frame of reference. Effects of gravity, viscosity
and wall-contact are neglected. The boundary conditions are the kinematic ones

v̂n = ∂f±n /∂t+ un ∂f
±
n /∂x on ŷ = fn

±(x, t), (2d)

on the surface of each body given by the unknown position fn
±(x, t), n = 1 to

(N − 1), with superscripts (+, −) referring to the upper and lower surface in
turn as in figure 1, and

v̂1 = 0 on ŷ = 0, v̂N = 0 on ŷ = 1, (2e)

for tangential flow at the straight solid side walls. The bodies are closed in
the sense that f+n (0, t) = f−n (0, t), f+n (1, t) = f−n (1, t). At the trailing edges
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(a)

(b)

Fig. 1. (a) Sketch of dynamic fluid-body interaction in a channel, with uniform on-
coming flow, in nondimensional terms. There are N gaps and N − 1 bodies; in this
case N = 4. Representative gap width H ≡ H3(x, t) = (f−

3 − f
+
2 )(x, t) is shown. (b)

Nomenclature for the typical nth body. Here hn(t) is the nondimensional height of the
centre of mass and θn(t) is the orientation angle.
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where x is unity Kutta conditions apply as the individual gap flows enter into
the common wake requiring the pressures across all the gaps to be equal there,

p1 = p2 = · · · = pN at x = 1. (2f)

By contrast the velocities un at the trailing edges are unequal generally, admit-
ting vortex sheets into the common wake.

A significant feature associated with upstream influence is that streamwise
jumps (Euler jumps, as in [38]) in pressure must occur at the leading-edge sta-
tion. The reason stems from the hyperbolic nature of the gap flows in (2a-2c)
which indicates zero upstream influence in general and so a possible contradiction
with the equi-pressure requirement (2f) at each trailing edge as the different gap
flows usually produce different pressures at the trailing edges if they begin with
identical leading-edge pressures. The resolution is provided by a flow-solution
discontinuity which can occur in a self-consistent manner only in the vicinity of
the leading edges, where all the upstream influence is focused in a sense. It follows
that in general the incident pressure of zero just ahead of the nth leading edge
is different from the two distinct values pn(0+, t), pn+1(0+, t) (say πn, πn+1 re-
spectively) holding on either side of the nth body just downstream. Instead the
scaled Bernoulli quantity p+1/2u2 and the scaled vorticity are conserved across
the leading-edge station and give rise to the conditions that p + 1/2u2 = 1/2
and ∂u/∂y is zero at the onset of each gap flow, in view of the incident uniform
stream and pressures. The streamwise length scale to smooth out the jumps is
of order β in x and the sizes of the velocity and pressure are u ∼ v ∼ 1, p ∼ 1.
Hence the leading-edge region is controlled by quasi-steady Euler dynamics span-
ning the channel from wall to wall, with the thin bodies appearing as flat plates
aligned with the incident stream, and that scenario leads to conservation of the
Bernoulli quantities and (zero) vorticity along each streamline and indeed to
Laplaces equation for the scaled stream function. The flow enters and leaves the
present Euler region uni-directionally but with an overall displacement of its
streamlines accompanied by pressure changes, inside each gap, consistent with
the upstream-to-downstream jumps described above, and with smooth attached
flow in between such that the stream function is an unknown constant on each of
the quasi-semi-infinite bodies. Relatively thin viscous boundary layers are gen-
erated on every leading-edge surface and these are supposed to remain attached,
before forming the beginnings of a relatively small Blasius-like effect on each
body over the longer scale of (2a-2f). Substantial separations at the leading edge
and elsewhere are discounted.

Thus the flow in (2a-2f) remains irrotational virtually everywhere and the
scaled vorticity is identically zero. Hence the thin-layer scalings yield the re-
quirement that un = un(x, t) must be independent of ŷ. It follows that v̂n varies
linearly between its values on the nth and (n− 1)th body surface. Writing

(H, u, p) = (f−n − f+n−1, un, pn) (3)

for each gap, the equations of motion within the fluid gaps become

∂H/∂t+ ∂(uH)/∂x = 0, (4a)
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∂u/∂t+ u ∂u/∂x = −∂p/∂x, (4b)

i.e. the shallow-water equations, where the influence of the unknown gap width
(f−n − f+n−1) shows up. The Euler jumps local to the leading edges also impose
the constraints

p+
1

2
u2 =

1

2
at x = 0+, (4c)

in each gap whereas the Kutta conditions at the successive trailing edges yield

each p = πe(t) at x = 1−, (4d)

for all n with the unknown downstream pressure level πe(t) being independent
of n. If for convenience we also define f+0 = 0, f−N = 1 for the containing wall
surfaces at all t then the overall mass-conservation balance requires

N∑
1

un(f−n − f+n−1) = 1 at x = 1−, (4e)

in view of the incident conditions ahead of the array of bodies. The above equa-
tions (4a-4e) describe the fluid-dynamical part of the interactive motion.

In the solid-body part of the motion each body is driven predominantly here
by the fluid-dynamical pressure forces acting laterally on either of its surfaces.
At this stage it is useful to be more explicit about the bodies, allowing for
fixed shapes of overbody and underbody F+

n (x), F−n (x) respectively and thus
thickness and camber in general. The body surfaces can then be specified simply
by

f±n (x, t) = F±n (x) + hn(t) +

(
x− 1

2

)
θn(t), (5a)

with hn, θn giving the midpoint of the nth body and the body’s angle of incli-
nation in turn and being unknown functions of time t; see figure 1 again. The
midpoint positions are the centres of mass for bodies which as here have uniform
density distribution. In consequence the equation of lateral motion for each body
takes the form

Mn
d2hn

dt2
=

∫ 1

0

(pn − pn+1) dx. (5b)

Here Mn is the scaled mass of the nth body per unit width normal to the x-y
plane, given by Mn ≡M∗nβ/(ρ∗L∗1

2) where the dimensional body mass M∗n might
vary over the (N − 1) bodies and the relations (1a,1b) are taken into account.
Similarly the equation of angular motion of each body gives

In
d2θn

dt2
=

∫ 1

0

(
x− 1

2

)
(pn − pn+1) dx, (5c)

where the scaled moment of inertia In ≡ I∗nβ/(ρ∗L∗1
4) and I∗n is the dimensional

moment of inertia of the nth body. The central case of (Mn, In) = (M, I)
being independent of n will be our concern here. The equation of axial body-
motion simply confirms that the incident flow velocity, and the location x∗0,
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remain constant over the current scales because the axial forces on the body are
relatively small.

The system controlling the fluid-body interactions is (4a-4e), (5a-5c) subject
to suitable initial conditions, with n running from 1 to N (the number of gaps)
in (4a-4d) and from 1 to (N−1) (the number of bodies) in (5a-5c). The unknown
fluid pressures and axial velocities pn, un for n = 1 to N depend on x, t, and the
trailing edge pressure πe(t) is also unknown at each time t, while the unknown
body midpoint positions and angles hn, θn respectively for n = 1 to (N −1) also
depend on the scaled time t alone.

Analytical and computational properties are of interest. Numerical results
from a finite-difference approach are given in [1] for a variety of N values and in
[3],[10] for various body shapes. Clashes are commonly indicated. Analytically
the characteristic clash occurs through a nonlinear solution structure in which
the evolving gap width H(x, t) tends to zero at one particular station x in
one particular gap within a finite time. The clash at a leading edge has the
contributions dh/dt, dθ/dt to the body velocity acquiring the form(

dh

dt
,
dθ

dt

)
= (a1, b1) +B(t)(a2, b2) + . . . , (6a)

where B(t) = −{ln(t0 − t)}−1 +O(1), (6b)

which occurs commonly for thin bodies, as t → t0−. In (6a, 6b) the constants
a1, b1, a2, b2 are O(1), while the irregular behaviour in B(t) implies that the
body acceleration becomes large along with the induced pressures locally. A
corresponding feature is observed in the numerical results. For thicker bodies
the clash occurs in a different form [3], at a station between the leading and
trailing edges. Analysis also establishes the large-N form of the system and, for
any N value, linear instability of the uniform state with growth rates that are
found to agree [1] with the numerical results.

2.2 A skimming body

The same governing equations (4a, 4b) apply in the water flow beneath a skim-
ming body on a shallow water layer [2]: see figure 2. As the depth H(x, t) evolves
during a typical skimming event an analogue of (4c) due to [39] holds at the un-
known leading contact point x = x1(t), while (4d) is replaced by p = p0 at
x = 1− where p0 is the atmospheric pressure in the air above the water and the
trailing edge is assumed sharp, giving a fixed trailing contact point. A free sur-
face evolves in the wake downstream and a splash jet and free surface upstream.
The body-motion equations are as in (5a-5c) without the superscripts (±) and
without subscripts n, with pn+1 replaced by p0 since the air flow is assumed dy-
namically negligible, and with the integration range being (x1, 1) which covers
the wetted portion of the body.

Solutions are presented in [2], [5], [9] for thin bodies with x1 at 1− and veloc-
ity dx1/dt negative at entry. See also figure 2. Depending on the initial conditions
the body eventually either becomes totally submerged (when x1 becomes less
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Fig. 2. Thin body skimming over a shallow liquid layer. Arrows indicate the direction
of liquid motion in a frame of reference in which the solid body does not appear to
move horizontally. The leading-edge position (i.e. contact point) x1 varies with time t
whereas the trailing edge x0 is fixed.

than the fixed leading edge location, x = 0 say, of the body) or continues to
skim off by emerging from the water when x1 becomes 1− after a finite time.
The onset of this emergence involves a response in which a behaviour very akin
to that in (6a,6b) recurs.

Recent work [8], [9] applies allied ideas to the sinking of the body where the
upper surface becomes wetted. The body re-emerges through the free surface in
some cases but otherwise usually hits the solid bed under the water layer within
finite time in a clashing process that is focussed near the trailing edge.

2.3 Pre-liftoff of a body from a solid surface

Here a body is initially at rest or rocking back and forth on a flat horizontal
surface or ground. A uniform horizontal flow of fluid is then started impulsively
as in figure 3. Will the body continue to rock on the surface or instead tend to
lift off? This question is addressed [4] by means of (4a, 4b) holding in the two
thin gaps of evolving thickness H(x, t) between the underbody and the ground,
one gap upstream on the left and one downstream on the right of the moving
contact point x = xc(t). The body itself is not necessarily thin. Condition (4c)
applies at the left end of the left gap and (4d) with πe(t) atmospheric (p0) at
the right end of the right gap, whereas a consistency constraint applies at the
unknown position x = x1(t). With affixes omitted the form (5a) describes H in
terms of underbody shape F (x), height factor h, rotation angle θ analogously
and (5b, 5c) describe the underbody motion where pn+1 is p0 and in (5b) a
scaled normal reaction R(t) and weight Mg are added in.

Properties from analysis and computation [4] show several interesting re-
sponses (continued rock or finite-time liftoff where R(t) goes to zero or imme-
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Fig. 3. Sketch showing two thin fluid layers, one for 0 < x < x0(t), the other for
x0(t) < x < 1, beneath a body rocking on the ground with oncoming flow. The contact
point x0(t), the reaction force R(t) and the rotation angle θ(t) vary with time t, Mg
is the weight, and CoM is the centre of mass.

diate liftoff being indicated). Further studies have been made in recent Masters
projects at UCL.

2.4 Viscous-inviscid effects

The interaction structure is more complicated when significant viscous effects
are present. A central example has a thin body of length comparable with the
width of the channel containing it [6], the body being nearly aligned with the
oncoming non-uniform fluid flow which is a planar Poiseuille or similar flow
u(= u∗/U∗) = u0(y). See figure 4. The dimensional length L∗1 is now the channel
width. Over the axial scale x of O(1) we are led to linearised Euler flow past the
body in the form

u0(y)

(
∂

∂x2
+

∂

∂y2

)
ψ1 = u

′′

0 (y)ψ1, (7a)

since the vorticity is nonzero, where ψ1 is the scaled perturbation stream func-
tion. The major boundary conditions with L standing for the non-dimensional
length of the body are

ψ1 = 0 at y = 0, 1, (7b)

no exponential growth far upstream and far downstream, (7c)

ψ±1 = u0(y0)(−f± +K±) at y = y±0 for 0 < x < L, (7d)

for reasons of tangential flow at the walls, matching upstream and downstream
and tangential flow on the overbody and underbody surfaces respectively. The
latter surfaces are given effectively by (5a), without subscripts, whereas K± are
unknown functions of scaled time T only. At the channel walls y = 0, 1 there are
thin passive viscous layers to reduce the flow velocity to zero at the walls and
likewise for viscous layers on the body. It is assumed that the time scale of the
body movements discussed below is much larger than the usual flow time scales
and dominates the interactions here leaving the flow as quasi-steady. Also the
solution is not defined uniquely by the system (7a-7d), an important issue here
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Fig. 4. A freely moving body in channel flow with vorticity [6]. Here the position x(t)
is almost constant and the single short arrows indicate a typical particle path in the
core of the fluid flow.

owing to the fact that arbitrary multiples of u0(y) and xu0(y) can be added to
any solution ψ1 and still leave the system satisfied.

To resolve the issue the behaviour over a longer length scale x = O(Re1/7)
needs accounting for, where Re is based now on the channel width. An expan-
sion analogous to (1b) holds in the inviscid core flow then for 0 < y < 1 but
with only small perturbations around u = u0(y) which produce an unknown
displacement as well as a nonzero normal pressure gradient instead of (2c). A
different expansion then holds in each viscous wall layer, such that each layer is
controlled by the boundary layer equations

∂U/∂X + ∂V/∂Y = 0, (8a)

U∂U/∂X + V ∂U/∂Y = −∂P (X, T )/∂X + ∂2U/∂Y 2, (8b)

where in particular u = Re−2/7U(X, Y, T ), X = x/Re1/7, Y = yRe2/7 in the
lower layer, essentially the same in the upper layer, and the time scale T is
described below. The main constraints on (8a,8b) require [40] zero slip at Y = 0,
matching with the displaced core at large positive Y , satisfying a wall-pressure-
difference condition between the two viscous layers, boundedness as X → ±∞
and matching with the linearised Euler flow of (7a-7d) as X → 0± since the body
and its nearby flow appear as a point disturbance on the longer length scale.
Details given in [6] show how the nonlinear viscous-inviscid system associated
with (8a,8b) acts to determine the correct multiples of u0(y) and xu0(y) in the
near-body system of (7a-7d).

Coupled with (7a-7d) are the evolution equations for the movement of the
body which are essentially as in (5a-5c) in altered notation. Solutions are pre-
sented in [6]. A common finding is instability over the present time scales such
that the small angle θ increases exponentially with increasing time T .
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Another central case has a thin body of length almost comparable with the
development length of the channel flow or boundary layer [7]; in the boundary
layer setting on an airfoil the development length is usually a significant fraction
of the airfoil chord. This case examines a direct link between the moving body
shape, acting as a displacement, and the pressure response P in the wall layer(s).
The response P then affects the body movement as in (5a-5c), leading once more
to dynamic fluid-body interaction. A new form of instability is again found unless
mitigation measures are taken [7].

The findings and ideas summarised in sections 2.1-2.4 above provide the
basis for the more recent and continuing studies considered in the following
three sections.

3 Skimming by a smooth body

The skimming process for a smoothly curved body in general can be decomposed
into two consecutive stages [5], [41], [42]: an initial impact stage followed by a
planing stage, after which the body either sinks or lifts off from water and thereby
completes one skipping (skimming) cycle. We present a shallow water impact and
planing model, and then investigate how such a smooth body is able to rapidly
transit from its initial impact to a planing motion. We shall also analyse how the
presence of an adverse pressure gradient in the trailing separation flow, which is
typically associated with flows past a smooth or bluff body, can affect its planing
motion.

The skimming object of our interest here has an elongated horizontal profile,
whose length l̄ is much greater than its thickness; its lower body surface, which
may be in contact with water, is smooth and strictly convex. Suppose h̄ is the
depth of the water: its shallowness implies h̄ ∼ εl̄ with parameter ε � 1. This
object could be skimming at an inclined angle, say α, as well as having an angular
velocity ω; the angle of inclination, defined as the one made by its major axis and
the undisturbed water free surface, is assumed to be small such that α ∼ O(ε).
Letting (ū, v̄) be the body’s horizontal and vertical velocities respectively, in our
model of interest the horizontal speed is a magnitude larger than the vertical
speed, i.e. v̄ ∼ εū. See figure 5 for a depiction of the coordinate system and
necessary nomenclature.

An upper-half Cartesian coordinate system (x̄, ȳ) is introduced such that its
x̄-axis rests at the bottom of the shallow water and points in the opposite direc-
tion to the skimming body’s horizontal velocity ū. Its ȳ-axis points upwards and
goes through the skimming body’s centre of mass, whose coordinate is (0, ȳm). In
this configuration the coordinate system travels horizontally with the skimming
body, the undisturbed water flows in the positive direction of the x̄-axis and the
body itself has only vertical and angular motions.

As the body impacts on water, the flow can be approximately divided into
three sub-regions: an undisturbed far-stream flow region, where the water is
undisturbed and at rest; a region with elevated free surface of size O(h̄)×O(h̄),
known as the “jet-root” or “turn-over” region where the flow separates from the
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Fig. 5. A close-up sketch of a smoothly curved body during the impact stage of a
skimming process. x̄1 and x̄2 represent the horizontal positions of the leading and
trailing contact edges respectively. h̄ denotes the representative depth of the water
layer, the jet root regions 1 and 3 have representative scales of O(h̄) × O(h̄), while
the region underneath the impact body has size of O(l̄)×O(h̄). At a sufficiently small
time, the contact surface of the blunt body can be approximated by a flat plate at the
leading order, and x̄1, x̄2 move away from each other at an extremely large speed.

body and splash jets may be emitted; and finally a main flow region trapped
under the body and enclosed by the jet-root region. The splash jets are typically
thin compared with the main body flow and their effects can be neglected [39],
[43].

We let x̄1, x̄2 be the horizontal positions (called here the leading edge and
trailing edge respectively) of the stream turn-over points in the jet-root region,
which are not known a priori and would need to be found as part of the skimming
system. Once the leading and trailing edge positions are determined together
with the known skimming body’s surface function, the total contact area between
the body and the fluid can be determined.

3.1 Impact model

Taking (ū0, v̄0) to be the body’s initial horizontal and vertical velocities respec-
tively, the system can be non-dimensionalized as follows:

x =
x̄

l̄
, y =

ȳ

l̄
, h =

h̄

l̄
, t =

l̄

ū0
, ũ =

ū

ū0
, ṽ =

v̄

ū0
, p̃ =

p̄

ρū20
, m =

m̄

ρh̄l̄
, i = ρl̄4ī;

where m̄ and ī are the body’s mass and moment of inertia respectively.
Suppose the body’s lower surface is given by η(x), which is smooth and

strictly convex, and can be expressed locally in a parabolic form:

η(x) = ax2 + bx+ c (where a < 0). (9)



14 Frank T. Smith et al.

The coefficients a, b, c are constants that can be calibrated according to the
object’s shape. Notice that to ensure our skimming body has a horizontally
elongated profile, the surface coefficients are small: a, b, c ∼ O(ε). The water
depth under the body can be obtained:

h(x, α, t) = ym(t) + xα(t)− η(x), (x ∈ [x1(t), x2(t)]). (10)

The large differences between the horizontal and vertical scales of our problem
can be exploited by introducing the expansion:

(ũ, ṽ, p̃, y, h, a, b, c, α, η) ∼ (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) + ε(u, V, p, Y,H,A,B,C, θ, T ),
(11)

where the newly scaled variables on the right-hand-side are of order unity and
ε = h̄0/l̄ � 1 as before. The water depth and the body surface equations now
become:

H(x, θ, t) = Ym(t) + xθ(t)− T (x), (x ∈ [x1(t), x2(t)]); (12a)

T (x) = Ax2 +Bx+ C, (A < 0). (12b)

For a body skimming at a sufficiently large horizontal velocity, a straight-
forward scaling analysis (see [2], [5], [39] for example) shows that pressure force
dominates over other effects such as viscosity, gravity and surface tension in the
flow. Therefore the Navier-Stokes equations at the leading order can be reduced
to:

∂u

∂t
+
∂u

∂x
= −∂p

∂x
, (13a)

∂p

∂Y
= 0. (13b)

Applying the kinematic boundary condition at the surface of the flow yields this
additional relation:

∂H

∂t
+
∂H

∂x
+
∂u

∂x
= 0. (14)

By Newton’s third law of reciprocity the skimming body’s vertical and angular
momentum equations at the leading order can be written as:∫ x2

x1

p(x, t)ds = M
d2Ym
dt2

, (15a)∫ x2

x1

xp(x, t)ds = I
d2θ

dt2
, (15b)

where M = εm, I = εi. Notice the horizontal force on the body is only of order
ε, so that in the time scale of our consideration the skimming horizontal velocity
is unchanged at the leading order.

Imposing the pressure jump conditions as introduced by [2], [39], [42], [44]
together with Bernoulli’s principle at the leading and trailing edges we derive
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the boundary conditions for our impact problem as follows:

p(x1, t) +
1

2

(
u(x1, t)−

dx1
dt

)2

=
1

2

(
1− dx1

dt

)2

, (16a)

p(x2, t) +
1

2

(
u(x2, t)−

dx2
dt

)2

=
1

2

(
1− dx2

dt

)2

, (16b)(
u(x1, t)−

dx1
dt

)/(
1− dx1

dt

)
= 2H(x1, t)

− 1
2 − 1, (16c)(

u(x2, t)−
dx2
dt

)/(
1− dx2

dt

)
= 2H(x2, t)

− 1
2 − 1. (16d)

Our impact model therefore consists of (12) - (16).
We focus on a linearised formulation of this integro-differential problem in

the next subsection to gain further insights.

3.2 Linearised impact model and rapid transition to planing motion

During the impact phase the solid-liquid contact surface initially goes through
a phase of rapid expansion and spray jets are formed at the boundary of the
surface. To analyse the impact system behaviour during this phase of rapid
contact surface expansion, we focus on a short time after impact such that time
t is of order δ where δ � 1.

Given that the body’s initial vertical velocity is of order unity, we expect the
free surface penetration to be small and have the same order as time t. Balancing
the terms of the free surface equation (12a) suggests that the model’s horizontal

and angular scales both evolve on a higher order, specifically x ∼ O(δ
1
2 ) and

θ ∼ O(δ
1
2 ). From the pressure jump conditions (16a) and (16b) we can deduce

that the fluid’s horizontal velocity u evolves on the same scale as x and that
the pressure p evolves on the scale of order unity. We therefore asymptotically
expand the system variables as follows:

t = δt̂, (17a)

x ∼ x0 + δ
1
2 x̂+O(δ), (17b)

Ym ∼ Y0 + δŶ +O(δ2), (17c)

θ ∼ θ0 + δ
1
2 θ̂ +O(δ), (17d)

H ∼ 1 + δĤ +O(δ2), (17e)

u ∼ δ 1
2 û+O(δ), (17f)

p ∼ p̂+O(δ
1
2 ). (17g)

Applying asymptotic analysis of such form to our impact model indicates that,
unless the body has sufficiently small body mass (M ∼ O(δ

3
2 )), the force gen-

erated by hydraulic pressure underneath the body does not have a significant
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effect on the body’s momentum in a short time after impact. At the leading
order we thus expect the body’s vertical and angular velocities to be equal to
their initial values: dŶ /dt̂ ∼ V̂0 and dθ̂/dt̂ ∼ ω̂0.

If on the other hand our skimming object has a small mass, for instance M ∼
O(δ

3
2 ), then its vertical momentum equation (15a) has an immediate response

to the flow pressure even inside our small time regime in (17). The linearised
impact system takes on a form of five differential algebraic equations (DAEs) for

five unknowns: x̂1, x̂2, Ŷ , f̂ and ĝ:

Ŷ =
1

3
A(x̂21 + x̂1x̂2 + x̂22)− 1

2
ω̂0(x̂1 + x̂2)t̂, (18a)

f̂ = −1

6
ω̂0(x̂21 + x̂1x̂2 + x̂22)− 1

2
(x̂1 + x̂2)

dŶ

dt̂
, (18b)

f̂ =
1

2

d

dt̂

[
A

3
(x̂31 + x̂32)− ω̂0

2
(x̂21 + x̂22)t̂− (x̂1 + x̂2)Ŷ

]
, (18c)

ĝ = −1

2

d

dt̂

[
ω̂0

6
(x̂31 + x̂32) +

1

2
(x̂21 + x̂22)

dŶ

dt̂
+ (x̂1 + x̂2)f̂

]
, (18d)

(6M̂ + x̂31 − x̂32)
d2Ŷ

dt̂2
+ 3(x̂21 − x̂22)

df̂

dt̂
+ 6(x̂1 − x̂2)ĝ = 0, (18e)

where M̂ = δ
3
2M .

Numerical analysis of this DAEs system indicates that for a body with pos-
itive/forward rotation (i.e. ω̂0 > 0), a retraction of the trailing edge position
could occur inside this small-time regime, see figure 6 for a demonstration.

It is seen that at the instant of touchdown the speeds at which the leading and
trailing edges evolve away from the initial contact point are very large, hence
the wetted surface expands rapidly immediately after impact. The “outward
expansion” speeds of the two edges decrease as time progresses however, and
for a forward-rotating body the trailing edge’s velocity eventually drops to zero
(figure 6b).

Letting t̂c denote the critical time when this phenomenon occurs, before this
critical time is reached the fluid is thrown away from the skimming body’s leading
edge towards upstream, which is signified by the fluid velocity being negative at
this edge as demonstrated in figure 6c. At the trailing edge the fluid velocity is
initially positive, but as the critical time is approached this gradually decreases
to zero, which also corresponds to the trailing edge pressure decreasing to be
atmospheric, see figure 6d. The vertical centre of mass position Ŷ reaches its
minimum shortly before this critical time and begins to move upwards. Hence
before the trailing edge pressure drops to be atmospheric the body is already
in the early stages of moving upwards in the water. It is evident therefore that
the body mass and its angular rotation have an important and immediate effect,
influencing the development of the wetted surface and thereby affecting the lift
force on the body.

The pressure in the fluid is initially high and positive everywhere. In the
case of a positive rotation the leading edge separation point sustains the highest
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Fig. 6. Various profile plots of a skimming body with a positive rotation ω̂0 > 0.
The initial vertical velocity of the body V̂0 is taken to be −1, and the initial angular
velocity ω̂0 is taken to be 1. Under these initial settings the trailing edge x̂2 initially
evolves towards the downstream, however at time t̂ ∼ 1.0497 this edge reaches its
maximum and begins to retract towards upstream initial contact point. (a) Evolution
of leading and trailing edges x̂1, x̂2 w.r.t. time t̂. (b) Evolution of leading and trailing
edge velocities dx̂1

dt̂
, dx̂2
dt̂

. (c) The evolution of fluid velocities û1 and û2. (d) Evolution
of leading and trailing edge pressure profiles. (e) Vertical evolution of the skimming
body’s centre of mass. (f) Water surface elevation at the leading and trailing edges.
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Fig. 7. The time evolution of the pressure and fluid velocity underneath the skimming
body during the impact stage for a positively rotating body. The time begins from
shortly after impact t̂ = 0.0357 to the end of impact stage at t̂ = 1.0497 when the
trailing edge pressure drops to zero. Notice that the wetted surface area is initially
small and increases over time. The initial conditions are V̂0 = −1 and ω̂0 = 1. (a)
A plot of pressure profiles p̂ underneath the skimming body at different times of the
impact stage. (b) A plot of fluid velocity profiles û underneath the skimming body at
different times of the impact stage.

pressure, as is demonstrated in figure 7a. As time progresses the contact surface
grows and pressure decreases everywhere; eventually a negative pressure region
begins to develop in a region close to the body’s trailing edge, and in particular
an adverse pressure gradient field inside this negative pressure region begins to
form. This sub-atmospheric pressure region eventually reaches the trailing edge,
at which point the trailing edge fluid velocity drops to zero, i.e. water is no longer
ejected away at the trailing edge: see figure 7b for an illustration.

Once this critical time is reached the skimming body changes from its initial
impact phase to a planing phase. In the next subsection we describe the planing-
phase model.

3.3 Planing model

The change from impact to planing stage is marked by the position of the trailing
edge which stops extending further towards the downstream direction, as well as
the disappearance of the spray jet at this edge. Our analysis in Section 3.2 shows
that a region with negative pressure gradient begins to develop near the trailing
edge at the end of the impact stage. This phenomenon is consistent with the
separation of a high-Reynolds-number incompressible flow passing a bluff body.

For the case of a completely submersed body, the presence of a significant
adverse pressure gradient field causes the flow to separate from the body, a
behaviour which is well analysed using triple-deck theory (see [45]-[47]) for the
laminar or turbulent regime. For the planing case where the body is only partially
submersed in water, experiments show that in the region of separation near the
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trailing edge there is a turbulent mixture of air and water. One can speculate
for continuity that there should be an adverse pressure gradient at the trailing
separation edge, at least for a brief period of time, when the body switches from
impact to planing motion. Such an adverse pressure gradient, say κ (or κ(t) as
a function of time), however, can only be determined via appropriate boundary
layer analysis and that is considered beyond the scope of this discussion. A more
detailed discussion can be found in reference [47]. Thus under the assumptions
of turbulent separation the trailing edge boundary conditions can be prescribed
as:

p(x2, t) = 0,
∂p

∂x

∣∣∣∣
x=x2

= κ. (19)

The governing equations for the fluid flow and the planing body then are very
similar to those of the impact model, the differences being that: 1) in our planing
model the time t starts at t = t∗, where t∗ is the time at the end of the impact
stage; and 2) at the trailing edge the momentum and pressure jump conditions
are replaced by the separation conditions of (19).

In the sections that follow we pick up our analysis for a light body in Section
3.2 and investigate the planing behaviour.

3.4 Linearised planing model

Under the asymptotic settings of (17) our planing model in Section 3.3 reduces
to a system of three ODEs with three unknowns x̂1, x̂2 and Ŷ :

[
6M̂ + (x̂1 − x̂2)3

]d2Ŷ
dt̂2

+ 3κ̂(x̂1 − x̂2)2 = 0, (20a)

1

2
(x̂1 − x̂2)2

d2Ŷ

dt̂2
+ (Ax̂21 − ω̂0t̂x̂1 − Ŷ )

(
dx̂1

dt̂

)2

+ κ̂(x̂1 − x̂2) = 0, (20b)

(x̂1 − x̂2)
d2Ŷ

dt̂2
− (Ax̂21 − ω̂0t̂x̂1 − Ŷ )

d2x̂1

dt̂2
− (2Ax̂1 − ω̂0t̂)

(
dx̂1

dt̂

)2

+ 2

(
ω̂0x̂1 +

dŶ

dt̂

)
dx̂1

dt̂
+ κ̂ = 0. (20c)

Here κ̂ = δ
1
2κ according to the scaling of (17).

In figure 8 we display solutions to our planing model for a range of prescribed
κ̂ values. It can be seen that the larger κ̂ is, the further the flow is able to attach
onto the body, which is represented by the position of x̂2, and therefore the
greater the contact surface area between water and body. Further analysis (see
[9]) reveals that there is a maximum adverse pressure gradient, say κ̂M , that
can be sustained at the trailing edge, exceeding which our planing regime breaks
down. Under the support of such a κ̂M value the maximum distance between
the leading and trailing edge positions can be deduced as follows:

MAX(x̂2 − x̂1) = [(24 + 18
√

2)M̂ ]
1
3 . (21)



20 Frank T. Smith et al.

1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1 x
1
( =0)

x
2
( =0)

x
1
( =0.1)

x
2
( =0.1)

x
1
( =0.3)

x
2
( =0.3)

x
1
( =0.5076)

x
2
( =0.5076)

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

Y ( =0)

Y ( =0.1)

Y ( =0.3)

Y ( =0.5076)

(a) (b)

Fig. 8. Plot of the leading and trailing edges, as well as the plate’s vertical centre of
mass during the planing stage for varying values of trailing edge pressure gradient κ̂.
The body’s mass M̂ and rotational velocity ω̂0 are both taken to be one. For the case
of κ̂ = 0 the trailing edge position x̂2 is not continuous when transition from impact
to planing stage. (a) The evolution of the plate’s leading and trailing edges during the
planing stage. (b) The evolution of the plate’s vertical centre of mass position during
planing.

This limit is dependent only on the body mass, and intuitively the heavier the
body, the further apart the leading and trailing edges can be.

If on the other hand the adverse pressure gradient is weak, κ̂� 1, the body’s
planing motion can be divided into three distinct and consecutive phases, which
are discussed next.

Initial planing phase. Let t̂c denote the time when the body changes to the
planing stage. We write ξ̂ to be the horizontal distance between the leading and
trailing edges: ξ̂ = x̂2− x̂1, and let x̂c1, Ŷc and V̂c denote the horizontal position
of the leading edge, vertical position of the centre of mass and vertical velocity
respectively at time t̂c. Given that the pressure gradient satisfies 0 < κ̂� 1, we
postulate the following asymptotic expansions:

x̂1 = x̂c1 + κ̂
1
2 x̌1(t̂) +O(κ̂), (22a)

ξ̂ = ξ̌1(t̂) +O(κ̂
1
2 ), (22b)

Ŷ = Ŷc + V̂ct̂+ κ̂Y̌1(t̂) +O(κ̂2). (22c)
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Our planing system can then be simplified to a system of differential algebraic
equations of the following form:

d

dt̂

[
ζ2
dx̌1

dt̂

]
= 0, (23a)

ξ̌41 + 2ζ(6M − ξ̌31)

(
dx̌1

dt̂

)2

+ 12Mξ̌1 = 0, (23b)

[6M − ξ̌31 ]
d2Y̌1
dt2

+ 3ξ̌21 = 0, (23c)

where the function ζ(t̂) is given as

ζ(t̂) = x̂2c1 + Ŷc + (V̂c + ω̂0x̂c1)t̂. (24)

Let Y̌10, V̌10 be the initial value and initial first order derivative for Y̌1, and
x̌10, ǔ10 be the initial value and initial first order derivative for x̌1 respectively.
We may then apply the following Cauchy conditions:

Y̌10 ≡ Y̌1
∣∣∣∣
t̂=t̂c

= 0, V̌10 ≡
dY̌1

dt̂

∣∣∣∣
t̂=t̂c

= 0; (25a)

x̌10 = 0, ǔ10 = −
[
ξ̌410 + 12Mξ̌10

2ζ0(ξ̌310 − 6M)

] 1
2

. (25b)

The initial condition for ǔ10 can be obtained by combining (23b, 23c) and setting
t̂ = t̂c.

At this point we can write down the solution to x̌1:

x̌1(t̂) = Φ0(1− ζ0ζ−1), (26)

where Φ0 is given as

Φ0 = − ζ0

V̂c + ω̂0x̂c1

[
ξ̌410 + 12Mξ̌10

2ζ0(ξ̌310 − 6M)

] 1
2

. (27)

This explicit solution for x̌1 leads to the following quartic equation of ξ̌1 from
(23b):

ζ3ξ̌41 − 2Φ2
0ξ̌

3
1 + 12Mζ3ξ̌1 + 12MΦ2

0 = 0. (28)

The formula for finding roots of quartic equations is well known and will not be
presented here explicitly. Out of the four possible solutions for ξ̌1 the admissible
one should be real, positive and fit the physical context of the system. From
(23c) we can obtain the solution for Y̌1 in a double integral form based on the
admissible solution of ξ̌1 and initial conditions (25a):

Y̌1 =

∫∫ t̂

t̂c

3ξ̌21
ξ̌31 − 6M

dt̂2. (29)
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Fig. 9. Solutions of the planing system (23) with M = 1, ω̂0 = 1, κ̂ = 0.1. The values
of x̂c1, x̂c2, Ŷc and V̂c are the results from the final stage of impact model (18), their
respective values are: −1.9944, 0.9434, −0.4431 and 0.0359.

The solutions for x̌1, ξ̌1 and Y̌1 are presented in figure 9. The results demon-
strate that for a planing body with positive rotation, its leading edge position
continues to extend in the upstream direction as with the impact stage case. The
trailing edge position on the other hand also begins to move in the upstream
direction, and it moves at a greater pace compared with that of the leading edge
as demonstrated by the decreasing value of ξ̌1 in figure 9b. This signifies that the
contact surface between the water and planing starts to decrease. During this
phase the planing body continues to emerge from the water as shown in figure
9c.

Planing phase II. The solution of x̌1 given in (26) depends inversely on ζ(t̂),
which eventually decreases to zero as time progresses and x̌1 becomes singular.
Suppose t̂N is the time when this singularity occurs. Then from the definition
of ζ in (24) t̂N can be deduced as:

t̂N = − x̂2c1 + Ŷc

V̂c + ω̂0x̂c1
, (30)

which is the time when the second phase of our planing stage begins. In this
phase we seek a new asymptotic form as follows:

t̂ = t̂N + κ̂
1
4 t̄, (31a)

x̂1 = x̂c1 + κ̂
1
4 x̄1 + . . . , (31b)

ξ̂ = (6M)
1
3 − κ̂ 3

4 ξ̄1 + . . . , (31c)

Ŷ1 = Ŷc + V̂ct̂N + κ̂
1
4 V̂ct̄+ κ̂

3
4 Ȳ1 + . . . . (31d)

In contrast to the initial planing phase during which the trailing edge evolves on
a much larger time scale when compared with that of the leading edge, in the
second phase the body’s trailing edge moves on a scale comparable to that of



Interactions between body motion and fluid motion 23

0 1 2 3 4 5
−10

−8

−6

−4

−2

0

0 1 2 3 4 5
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0 1 2 3 4 5
0

20

40

60

80

100

(a) x̄1 (b) ξ̄1 (c) Ȳ1.

Fig. 10. Plots of x̄1, ξ̄1 and Ȳ1 over time t̄ ∈ [0, 5]. The values of x̂c1, x̂c2, Ŷc and V̂c
are the results from the final stage of impact model (18), their respective values are:
−1.9944, 0.9434, −0.4431 and 0.0359.

the leading edge with only an O(κ̂
3
4 ) adjustment. Substituting these asymptotic

expansions into the planing system of (20) yields:

ξ̄1
¨̄Y1 + 1 = 0, (32a)

1

2
(6M)

2
3 ¨̄Y1 −

[
(2x̂c1 + ω̂0t̂N )x̄1 + (ω̂0x̂c1 + V̂c)t̄

]
˙̄x21 = 0, (32b)[

(2x̂c1 + ω̂0t̂N )x̄1 + (ω̂0x̂c1 + V̂c)t̄
]
¨̄x1 + (2x̂c1 + ω̂0t̂N ) ˙̄x21 + 2(ω̂0x̂c1 + V̂c) ˙̄x1 = 0.

(32c)

This system can be solved explicitly via the method of matched asymptotic
expansions (see [9]) and the solutions are:

x̄1 =
(γ20 t̄

2 − 2λ0Φ0ζ0)
1
2 − γ0t

λ0
, (33a)

Ȳ1 = (6M̂)−
2
3

[
2

3

(γ20 t̄
2 − 2Φ0ζ0λ0)

3
2 − γ30 t̄3

λ20
+

2Φ0ζ0γ0t̄

λ0

]
, (33b)

ξ̄1 = − (6M̂)
2
3λ20(γ20 t̄

2 − 2Φ0ζ0λ0)
1
2

2γ20
[
(γ20 t̄

2 − 2Φ0ζ0λ0)
1
2 − γ0t̄

]2 . (33c)

Here γ0 = ω̂0x̂c1 + V̂c and λ0 = 2x̂c1 + ω̂0t̂N . See figure 10 for a demonstration
of the solutions.

The solutions indicate that the leading and trailing edge positions in this
phase continue to move in the upstream direction. The pace at which the body
emerges from the water significantly increases. It becomes evident that as time
progresses our planing system will emerge from the O(κ̂

1
4 ) regime, which leads

to the final large time phase of this planing.
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Fig. 11. Numerical solutions of the planing system (35) compared with the full planing
system (20) for t̂ > t̂N and κ̂ = 10−4. (a) Comparison of numerical solutions for x̂1,
x̂2. (b) Comparison of numerical solutions for Ŷ .

Planing phase III. In the final phase of the planing motion the system
variables can be expanded asymptotically as

t̂ = t̆, (34a)

x̂1 = x̆1, (34b)

ξ̂1 = (6M)
1
3 − κ̂ξ̆1, (34c)

Ŷ1 = Y̆1. (34d)

Substituting these expansions into the planing system of (20) yields the following
planing system for phase III:

ξ̆1
¨̆
Y1 + 1 = 0, (35a)

1

2
(6M)

2
3

¨̆
Y1 − (x̆21 + ω̂0t̆x̆1 + Y̆1)( ˙̆x1)2 = 0, (35b)

(6M)
1
3

¨̆
Y1 − (x̆21 + ω̂0t̆x̆1 + Y̆1)¨̆x1 − (2x̆1 + ω̂0t̆)( ˙̆x1)2 − 2(ω̂0x̆1 +

˙̆
Y1) ˙̆x1 = 0.

(35c)

It is difficult to obtain explicit solutions of this coupled non-linear ODE system;
numerical solutions are therefore pursued and the results are presented in figure
11. We also present a comparison with the numerical solutions to the full planing
system (20). The results show that our phase III planing system is able to capture
the planing body’s behaviour at large times well.

The solutions indicate that during this phase the planing body continues to
emerge from the water and leading and trailing edges continue to move in the
upstream direction, with the distance between the two edges fixed at (6M)

1
3 at

leading order.
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In order to see the behaviour of the system at large times, i.e. as t̆→∞, we
introduce the following scaled large time variables:

t̃ = δt̆, x̃1 = δx̆1, ξ̃ = ξ̆, Ỹ = δ2Y̆ ,

where δ � 1 and the tilde sign is used to denote variables which are O(1) at
large times. Upon substituting the above variables into the phase III planing
system (35) we obtain the system:

ξ̃1
¨̃Y1 + 1 = 0, (36a)

(x̃21 + ω̂0t̃x̃1 + Ỹ ) ˙̃x21 = 0, (36b)

(x̃21 + ω̂0t̃x̃1 + Ỹ )¨̃x1 + (2x̃1 + ω̂0t̃) ˙̃x21 + 2(ω̂0x̃1 + ˙̃Y ) ˙̃x1 = 0. (36c)

The solutions here can be written down explicitly with the initial conditions of
x̃1(0) = 0 and Ỹ (0) = 0:

x̃1 = −1

2
ω̂0t̃, (37a)

ξ̃ = − 2

ω̂2
0

, (37b)

Ỹ =
1

4
ω̂2
0 t̃

2. (37c)

If we could see the planing body lifting off and separating from water, the po-
sitions of the leading and trailing edges should eventually coincide as shown by
[42]. This is however not the case in our linearised planing model as the large
time solutions (37) demonstrate: under our linearised planing regime the body
continues to lift upwards as time grows but the distance between the two wetted
edges does not decrease. As the body evolves vertically to the squared power of
time it will eventually depart from the linearised regime defined in (17), as which
point we will need to revert to the full planing system to capture the motion of
the planing body.

4 Post-liftoff and fly-away of a body from a surface

In this section, post-liftoff of a thin body and its continued departure from
the ground (fly-away) are investigated. We model, analyse and compute the
mechanisms for a single body which is initially at rest on a horizontal solid
surface and can be lifted off impulsively by a horizontal fluid flow. The aim is to
gain an understanding of lift-off followed by a return to the surface or complete
fly-away. Criteria for liftoff and fly-away and the ensuing motion are examined.
Analysis of the early behaviour when lift-off starts and a numerical study of the
ensuing evolution are presented, followed by large-time analysis which shows a
critical flow speed for fly-away for any shape of body.

The body is assumed much denser than the fluid, implying that the major
gravity force acts on the body. Experimental results or observations are many,
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(a) At time t = 0. (b) At time t > 0.

Fig. 12. (a) A sketch of the body at its initial position, the fixed centre of mass (CoM),
the contact point x = σ at time t = 0 and the oncoming stream of fluid. (b) The body
position at some time t > 0.

as in [13], [18], [19]. Applications vary from grain segregation, leaf-blowers, dust
loss, dust blowing, removal of debris, sand movement on beaches, to aircraft
take-off and ski jumping. See for example [15], [16], [22].

The fluid is incompressible and its motion is assumed to be two-dimensional
and laminar with uniform density ρ∗, where the asterisk (∗) refers to a dimen-
sional quantity. We express the motion of the fluid and the immersed thin body
(see figure 12) with regard to non-dimensional flow velocities (u, v), correspond-
ing Cartesian coordinates (horizontal x, vertical y), time t and pressure p, such
that the dimensional versions are u∗(u, v), L∗1(x, y), L∗1t/u

∗ and ρ∗u∗2p, in turn.
Here L∗1 is the length of the body, while u∗ is the free-stream velocity and the
temporal factor L∗1/u

∗ is the typical transport time. The Reynolds number Re
is large. Also (u, v) is given by (1, 0) in the far field and the leading edge of the
body can be taken as origin.

A nonlinear evolutionary system for the unknown scaled functions h, θ, u, p
is found to govern the interaction. Here x = σ is the prescribed x-location of
the centre of mass and the initial contact point with the ground. Also h(t) is
the vertical y-location of the centre of mass of the body, while θ(t) is the small
angle the body chord makes with the horizontal.

First, we present the model in detail, followed by the behaviour for small
times. Then we examine the lift-off criterion for different body shapes. If the
body does lift off it returns to the ground within a finite time or flies away at
large time. We focus on the latter, finding a criterion for fly-away. Finally, we
provide conclusions and further discussion.

4.1 Governing equations and the parameters

The interaction between fluid and body and governing equations are described
as follows. The body has a smooth shape and is thin, of vertical scale O(δ)
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with δ being small. The fixed surface or wall is located at y = 0 on which the
body initially is at rest and in contact, directly below its centre of mass whose
x-location is x = σ as presented in figure 12a. The incoming flow moving from
left to right is the uniform stream with (u, v) = (1, 0).

The scaled body mass and the scaled acceleration due to gravity are rep-
resented as M and g respectively in figure 12. Also I denotes the moment of
inertia given below. The scaled weight of the body is represented as Mg. The
flow over the length scale of order unity remains irrotational to leading order al-
most everywhere and the scaled vorticity is zero under the present assumptions.
The velocity u = u(x, t) does not depend on y, a feature which is due to the
thin layer dynamics. Then v is forced through continuity to change in y from
zero at zero y to a value consistent with the kinematic condition at the unknown
position of the moving lower surface of the body.

The equations of motion of the body are as in (5b, 5c) such that

M

(
dUB
dt

+ g

)
=

∫ L

0

p dx, (38a)

d(IΩB)

dt
=

∫ L

0

(x− σ) p dx, (38b)

where L is the length of the body, which is taken as unity in this section. Also
UB = ḣ is the translational velocity and ΩB = θ̇ is the angular velocity. The
dimensional mass is ρ∗L∗1

2Mδ−1, while the dimensional moment of inertia is
ρ∗L∗1

4Iδ−1. The acceleration due to gravity is δu∗2gL∗1
−1 in dimensional terms.

The Froude number is (δg)−1, whereas the Richardson number is δg. Here I <
M/4 from its definition.

The equations of motion within the fluid gap are shallow-water equations as
in (4a, 4b),

Ht + (uH)x = 0, (39a)

ut + uux = −px. (39b)

Here H(x, t) denotes the unknown scaled thickness of the thin gap and depends
on the lower surface shape of the body and its orientation given in (39c) below;
F−(x) is the prescribed shape of the underbody as in section 2. The kinematic
condition yields (39a) while the dominant streamwise momentum balance is
given as (39b). Here p is dependent only on x, t by virtue of the normal momen-
tum balance. Changes in the lateral location and orientation of the body lead to
the contributions h and θ respectively. These are prescribed at the initial time
of zero as in (39d). Thus

H(x, t) = −F−(x) + h(t) + (x− σ) θ(t), (39c)

h(0) = F−(σ); θ(0) = F−
′

(σ). (39d)

We also have the Euler jump across the leading-edge Euler zone at x = 0+ such
that

p+
1

2
u2 =

1

2
at x = 0+, (39e)
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and the Kutta condition at the trailing edge of the body at x = 1 yields

p = 0 at x = 1. (39f)

The constraints (39d) coming from H = 0 at the contact point x = σ, and also
∂H/∂x = 0, x = σ, hold for the smooth shapes considered herein. The leading-
edge jumps (39e) are required in order to satisfy the equi-pressure condition at
the trailing edge (see section 2.1). These conditions are coupled with the body-
motion equations in (38a,b). The task in general is to solve the nonlinear system
(38a,b) and (39a-f) for the unknowns h, θ, u, p.

4.2 Small-time behaviour

When the fluid flow is begun impulsively or a considerable change in the fluid
flow occurs at time t = 0, the body is supposed to be positioned initially on the
surface. Then it is assumed to move from rest. For 0 < t � 1, two regions are
present: one is influenced by the whole underbody for 0 < x < σ, σ < x < 1
and the other is in the neighbourhood of the contact point σ. The task now is
to study the mathematical structure of the fluid-body interaction as the lifting
begins and the contributions of the inner and outer region dynamics.

In the outer region, the appropriate expansions for height and orientation
have the patterns above with the typical x ∼ O(1). The small-time perturbations
of the vertical location and the orientation of the centre of mass are predicted
as

(h, θ) = (h0, θ0) + t(h1, θ1) + . . . , (40a)

where the dominant terms (h0, θ0) = (F−(σ), F−
′
(σ)) are found from (39d)

and the contact point x = σ is also the horizontal location of the centre of mass.
Hence the gap width, the scaled velocity and pressure H, u, p develop according
to

(H, u, p) = (H0(x), u0(x), p0(x)) + t(H1(x), u1(x), p1(x)) + . . . , (40b)

with the leading order term being H0(x) = −F−(x) + h0 + (x − σ)θ0 where
h0 and θ0 are given in (40a). The unknown perturbations u0, u1, p0, p1 are
functions of x to be determined. Substituting (40b) into (39a) and integrating
in x leads to the leading order term of the velocity in the outer region,

u0(x) =
1

H0(x)

{
− h1(x− σ)− θ1

2
(x− σ)2 + c1

}
, (41a)

where c1 is the integration constant. A requirement for definiteness of u0 at
the contact position x = σ is applied in order to keep the related pressure
coefficient finite at the initial contact location in accordance with the fluid-body
interaction structure. Indeed, this indicates that c1 = 0, h1 = 0 to keep u0 finite
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at x = σ since the denominator H0 is then of O((x−σ)2) there. Making another
substitution into (39a) with (41a) and (40b) and an integration in x yields

u1(x) =
1

H0(x)

{
−2h2(x−σ)− θ2

2
(x−σ)2−c2

}
+

1

H0(x)
2

{
θ21
2

(x−σ)3
}
. (41b)

Next, integrating (39b) with respect to x at leading order and considering (39e,f)
yields the leading term in the pressure as

p0(x) =


−
∫ x
0
u1(x̂) dx̂− 1

2u0(x)
2

+ 1
2 , x ∈ [0, σ),

−
∫ x
1
u1(x̂) dx̂− 1

2

{
u0(x)

2 − u0(1)
2
}
, x ∈ (σ, 1].

(42)

Matching below implies that c2 in (41b) is zero. This reduces the local inertial
effects. We will study the case θ1 = 0 implying u0 = 0 in the rest of the section.
(See also [10] for the case θ1 6= 0 whereby u0 6= 0). We also observe that

p0 ∼
2h2
B

ln |x− σ|+ π± as x→ σ±, (43a)

where π+ = −
∫ σ

1

u1 dx, π− =
1

2
−
∫ σ

0

u1 dx (43b)

and B = F−
′′
/2 from the expression for the gap width near the original contact

point. Figure 13 shows a sample comparison between p0 in (43a) and a numerical
solution for the pressure given in [10]. The inner region near the initial contact
x = σ is investigated next.

For x near the lift-off point, x = σ+ tη with η ∼ O(1), the solution takes the
form

(H, u, p) = (t2H∗2 (η), u∗0(η),
2h2
B

ln(t) + p∗0(η)) + . . . . (44)

These scalings stem from those in the outer region. Substituting into (39a-d)
and matching yields the leading order terms in the local velocity and pressure
expansion such that

u∗0(η) =
−2ηh2 − c∗0
Bη2 + h2

, (45)

p∗0(η) = p∗0(0) + ηu∗0(η)−
∫ η

0

u∗0 dη −
1

2
u∗0(η)

2
+

1

2
u∗0

2(0), (46)

where c∗0, p∗0(0) are integration constants to be determined. Matching the ve-
locities and pressures in the inner and outer regions yields c2 = 0 in (41b) for
u0 = 0 in (41a). Also c∗0 is determined by

√
2πc∗0(

h2F−
′′
)1/2 = −

∫ σ

1

u1 dx−
1

2
+

∫ σ

0

u1 dx. (47)

The pressure coefficient p∗0(0) can similarly be found, and this completes the
velocity and pressure solutions.
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Fig. 13. Comparison between analytical and numerical solutions of the pressure at
time t almost zero.

We note that the main body motion is only controlled by the outer region.
The body-movement relations (38a,b) give the leading order contributions

M(2h2 + g) =

∫ σ

0

p0(x, t) dx+

∫ 1

σ

p0(x, t) dx, (48a)

2Iθ2 =

∫ σ

0

(x− σ) p0(x, t) dx+

∫ 1

σ

(x− σ) p0(x, t) dx. (48b)

We need h2 in (48a) to be positive so that the body can lift off from the surface.
Substituting p0(x) from (42) (for u0 = 0) into the system (48a,b) gives two linear
equations for the two unknowns h2, θ2, namely

2Mh2 =
σ

2
+ h2I1 + θ2I2 −W, (49a)

2Iθ2 =
−σ2

4
+ h2I2 + θ2I3, (49b)

with

I1 = −2

∫ 1

0

(x− σ)2

H0(x)
dx, I2 = −

∫ 1

0

(x− σ)3

H0(x)
dx, I3 = −1

2

∫ 1

0

(x− σ)4

H0(x)
dx.

(49c)
The coefficient I2 is identically zero if the body is symmetric with σ = 1/2.
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Fig. 14. The right hand side of (51) versus σ for varying Iκ ranging from 0.02 to 0.5.
The underbody has a parabolic shape.

4.3 Lift-off criterion

The study suggests that the lift-off requirement is simply h2 > 0. Considering a
body having general shape and using the relationship θ2 = (h2 I2 − σ2/4)/β in
(49b) where β = (2I − I3), (49a) becomes

γ h2 =
σ

2
−W − I2

β

σ2

4
, (50a)

with γ =

(
α− I22

β

)
, α = (2M − I1). (50b)

We note that I2 can either be negative or positive, while α > 0, β > 0, I1 <
0, I3 < 0. If M and I are sufficiently large that γ > 0, then from (50a) lift-off

requires Mg < σ
2 −

σ2

4β I2 by virtue of h2 > 0. The criterion in (50a) becomes

Mg <
σ

2
+
σ2

8
(1− 2σ)(2Iκ+

1

6
(1− σ)3 + σ3)−1 (51)

for a parabolic shaped body F−(x) = κx(1− x) and for any σ.
The right hand side of (51) versus σ is shown in figure 14 for a range of Iκ

values. The value of Mg needs to be small for lift-off at small σ values. When σ
is near unity, lift-off is possible for larger Mg. When the position σ is away from
the leading and trailing edges, lift-off does not occur for a significant range of σ.
The lift-off requirement is Mg < 1/4 at σ = 1/2, in accordance with (49a).

Numerical evolutions of the system (38a-39f) are shown in figures 15, 16. The
body lifts off but returns to the ground after a finite time in figure 15, whereas in
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(a) (b)

Fig. 15. Numerical solutions of Hmin against t in which the body returns to the surface.
The effect of (a) scaled mass M ranging from 1 to 1.5, (b) κ ranging from 1 to 1.5. In
(a), the scaled moment of inertia I also changes according to I = ΓM , for Γ = 0.2.
Here a symmetrical sinusoidal shaped body is investigated: F− = κ sin(πx).

figure 16 the departure from the ground continues to large times and produces
a fly-away phenomenon with h, θ becoming large then.

On the other hand, we might expect the time scales of (38a,b) to dominate
for large M, I. Therefore, the time scale is given as t = M1/2T with T being of
order unity since the typical h, p, θ must remain of O(1). We also take I = MΓ
with Γ being O(1) and g ∼ O(M−1), keeping weight W of order unity. Solving
(39a,b) with the new scalings gives more explicit velocity and pressure solutions
and leads to

ḧ =
1

2

∫ 1

0

(
1−

(
h(T ) + (1− σ)θ(T )

)2
H(x, T )−2

)
dx−W, (52a)

Γ θ̈ =
1

2

∫ 1

0

(x− σ)
(

1−
(
h(T ) + (1− σ)θ(T )

)2
H(x, T )−2

)
dx. (52b)

Subsequent working shows that two coupled ordinary differential equations are
obtained for h, θ for the parabolic underbody. Furthermore, in the general case a
large-time response is suggested by (52a,b) in which h, θ grow like t2 leading to
the integrands being of order unity and an independence from the shape F−(x).
This is followed through below in the general case.

4.4 Large-time behaviour

At large times a first guess for the response is that h, θ are of O(t2) as p typically
must be O(1) by virtue of (39e). The analysis here is for t� 1 and general values
of M, I, g. We therefore seek an asymptotic description taking the form

(H,h, θ, u, p) = (t2H2(x), t2h2, t
2θ2, u0(x), p0(x)) + . . . . (53)
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(a) (b)

Fig. 16. (a) Comparison between analytical and numerical solutions for (a) h, (b) θ for
a fly-away case. Body has symmetric parabolic shape F− = x(1 − x), σ = 0.5, scaled
mass M = 1, moment of inertia I = 0.2, and g = 0.1.

Simple quasi-steady relations hold again as the time derivatives are negligible in
(39a,b). Likewise, the body-shape contribution F−(x) becomes negligible in com-
parison with the h, θ contributions. The Kutta condition (39f) implies u0(1) = 1.
Thus, the leading-order terms in the velocity and the pressure u0, p0 are found
as

u0(x) =
h2 + (1− σ)θ2
h2 + (x− σ)θ2

, (54a)

p0(x) =
1

2

{
1−

{
h2 + (1− σ)θ2
h2 + (x− σ)θ2

}2
}
. (54b)

The pressure in (54b) is found by substituting (54a) into (39e). Finally, the
body-balance equations in (38a,b) yield

2Mh2 = − θ2
2(h2 − σθ2)

−W, (55a)

4ΓMθ2 =
(1

2
−σ
)

+
h2
θ2

(
h2 + (1− σ)θ2
h2 − σθ2

)
− 1

θ22
(h2+(1−σ)θ2)2 ln

∣∣∣∣h2 + (1− σ)θ2
h2 − σθ2

∣∣∣∣.
(55b)

The t2 terms h2, θ2 are thus determined, following which the leading order terms
H2, u0, p0 in (53) can then be obtained.

A sample comparison between the analytical solutions and numerical ([10])
for the height h and angle θ is shown in figure 16. The analytical solutions use
the large-time asymptotic expansions in (55a,b). There is a close match for both
h, θ in terms of the growth with time.

Figure 17 plots the coefficients h2, θ2 versus scaled weight. A critical value
W = Wc(= 1/2) emerges for the fly-away. To explain this we put

Mg =
1

2
− ε with ε� 1 (56)
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Fig. 17. The coefficients h2, θ2 in large time response versus weight: 0 < Mg < 0.5 for
σ = 0.5, M = 1. This indicates the range for lift-off and fly-away for any body shape:
see text.

for some positive ε and then expand h2, θ2 in powers of ε such that (h2, θ2) =

ε(ĥ2, θ̂2) + . . . . It is found with the scaled mass M = 1 for example that

(h2, θ2) = (
ε

2
, −ε) + . . . . (57)

The critical value 1/2 applies for any shape of body. As h2, θ2 are small, the
Bernoulli pressure head drives the main balance of forces which is between the
weight and the pressure force in the critical case. The asymptotic predictions in
(57) show a close agreement with those in figure 17 as g increases. We note that
the (h2 + (1 − σ)θ2) contribution in (55b) implies that the trailing edge stops
rising, whereas the leading edge height is still increasing for a symmetric body
for example.

4.5 Summary

In the present section, liftoff and fly-away of a body from a surface have been
investigated. For any symmetric body the critical value of scaled weight W is
found to be 1/4 so that the body can initially lift off from the surface. A criterion
is also found for nonsymmetric body shapes. After lifting off, the body can either
return to the surface or fly away. There is a wide range of parameters such as
gravity, scaled mass, moment of inertia as well as body shapes where liftoff can
occur in practice. Also, a critical value of the scaled weight is found to be 1/2 for
a fly-away and this applies irrespective of the shape of body. Bernoulli pressure
during liftoff acts only on the front half of the underbody in contrast with the
complete underbody at late times due to the body being far from the wall. The
difference between these two factors stems from this fact.

The liftoff and fly-away criteria on the incident velocity can be written in
dimensional terms, respectively,

u∗2/(h∗Bg
∗) > 4(ρ∗B/ρ

∗), (58a)



Interactions between body motion and fluid motion 35

u∗2/(h∗Bg
∗) > 2(ρ∗B/ρ

∗), (58b)

(for a symmetric body in the case of (58a)) with g∗ denoting gravity. This is
for a body mass represented as ρ∗B h

∗
B L
∗
1 where ρ∗B is the body density and h∗B

is the mean body thickness. These criteria are on effective Froude numbers and
are broadly in line with Shield’s condition ([11], [17]) in sediment processes; this
section shows evolution towards or away from fly-away and determines a precise
coefficient (4 or 2) rather than the order of magnitude estimate of Shield. Further
agreement with experiments or observations concerns the movement of dust on
the surface of Mars as discussed in [4]. The difference between the liftoff and fly-
away conditions implies that symmetric bodies for instance which are subject to
flow velocities between the two values in (58a,b) satisfy the fly-away condition
but are unable to lift off, while a body that lifts off may either return to the
ground or fly away.

The effects of incident shear in the oncoming flow, three-dimensionality and
viscous effects have not been considered yet. The normal pressure gradient comes
into play considerably on a larger time scale. Several bodies, clashes, reptation,
body flexibility, and investigating the influence of the surface shape might also
be of further concern.

5 Many bodies in slightly viscous fluid

Allowing for several plates at small angle of attack in unbounded flow forms
a basic part of the extension of the research in section 2.4. The classic exact
solution for streaming flow past two cylindrical aerofoils is given by [48] and
derived succinctly in [49] where it is extended to include freely propagating point
vortices and patches of vorticity within the flow field. [50] extended Lagally’s
result to flow past a finite stack of cylindrical aerofoils with specified circulations
about the aerofoils. Here we consider the case of plates aligned at small angles
of attack to the flow. The circulation around each plate is determined uniquely
by requiring the flow to leave the trailing edge of the plate smoothly: given the
angle of attack of each plate the flow field is unique. This allows the forces on
the plates to be computed and thus the subsequent motion of the plates if they
are free to move (as in section 2.4).

5.1 A single plate

Consider the single plate given by y = 0, |x| < 1 in the infinite complex z-plane
and take the pre-image of this domain in the complex ζ-plane to be the interior
of the unit circle |ζ| = 1, denoted C here. Let what will become the leading edge
of the plate, at z = −1, be mapped to the point ζ = 1 on C and the trailing
edge, at z = 1, be mapped to the point ζ = −1. Then the conformal mapping
between the domains is the Joukowski map

z = −(1/2)(ζ + 1/ζ), ζ = −z +
√
z2 − 1, (59)
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with the point at infinity in the z-plane mapped to the origin in the ζ-plane.
We wish to construct the analytic function q(z(ζ)) giving the velocity field

q = u + iv that has velocity v = 1 on the plate and vanishes at infinity. Note
that it is the analytical function q that is mapped from the ζ- to the z- plane.
The corresponding complex velocity potentials do not map to each other with

w(ζ) =

∫
q(ζ) dζ, W (z) =

∫
q(z) dz =

∫
q(ζ)(dz/dζ) dζ. (60)

Observe that the streamlines for a dipole in an unbounded domain are circles,
i.e. the imaginary part of the complex potential for a dipole is constant on circles.
If the velocity field q in the ζ-plane is itself taken to be a dipole centred at the
leading edge ζ = 1, directed along the =ζ axis, i.e. q ∼ i/(ζ − 1), then v = =q
will be constant on circles through ζ = 1 and, in particular, on the circle C.
To construct this velocity field, introduce in the ζ-plane the complex velocity
potential for a vortex of strength κ at the leading edge and the corresponding
complex velocity

w = (κ/2πi) log(ζ − 1), q = (κ/2πi)(ζ − 1)−1. (61)

Then q → 0 as ζ →∞ as required and on C, where ζ = exp(iθ),

q = (κ/4π)[− cot(θ/2) + i], (62)

showing that v is constant on C and v = 1 there when κ = −4π. Note that u
vanishes at the trailing edge θ = ±π and is infinite at the leading edge θ = 0.
This completes the determination of the complex velocity and complex velocity
potential in the ζ-plane, giving

w = 2i log(ζ − 1), q = 2i/(ζ − 1). (63)

The corresponding complex velocity and complex velocity potential in the
z-plane are

q(z) = −2i/(1 + z −
√
z2 − 1) = −i

√
z − 1/

√
z + 1− i, (64)

W (z) = −i

∫
(1/ζ + 1/ζ2) dζ = i(− log ζ + 1/ζ)

= −i[z +
√
z2 − 1− log(z +

√
z2 − 1)]. (65)

Figure 18 gives the streamlines for this flow.
The Blasius theorems give the x and y components of force, X and Y , and

the moment M about the origin as

X − iY =
1

2
iρ̂

∮
q̂2 dz, M = −1

2
ρ̂ <

∮
q̂2z dz, (66)

where ρ̂ is the fluid density, q̂ is the total fluid velocity, and the integral is taken
around the plate and outside the singularity at the leading edge. Now q̂ = U +q,
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Fig. 18. Perturbation streamlines for potential flow past a single plate at small angle
of attack.

where U is the oncoming flow so q̂2 = U2 + 2Uq + q2 with the first term being
constant and thus making no contribution and the final term negligible in the
linear approximation. Hence in the linear approximation

X − iY = iρ̂U

∮
q(z) dz, M = −ρ̂U <

∮
q(z) zdz. (67)

Since the velocity fields in ζ and z map to each other, these formulae become
immediately

X − iY = iρ̂U

∮
C′
q(ζ) (dz/dζ) dζ, M = −ρ̂U <

∮
C′
q(ζ)z(ζ) (dz/dζ) dζ,

(68)
where C′ denotes a path around C lying outside the singularity at the leading
edge. For the velocity field (63), the residue from the sole enclosed pole at the
origin gives X = 0, Y = 2πρ̂U , M = πρ̂U .

It is useful to derive the solution (63) and the transformation (59) from the
complex potential,

w1(ζ, σ, τ) = (κ/2πi) log(ζ − σeiτ )− (κ/2πi) log(ζ − σ−1eiτ ), (69)

for a point vortex of circulation κ at ζ = σeiτ , lying inside the circle C when
|σ| < 1. For positive κ, differentiating with respect to σ gives a dipole in the
arg ζ = τ − π/2 direction [49, for example],

w2(ζ, σ, τ) = −(κ/2πi)eiτ [1/(ζ − σeiτ ) + σ−2/(ζ − σ−1eiτ )]. (70)

The dipole at the leading edge is obtained by setting τ = 0 and σ = 1 to give

w2(ζ, 1, 0) = iκ/π(ζ − 1), (71)

which, for κ = 2π, is the required complex velocity (63).
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Setting τ = π/2 and σ = 0 gives a dipole at the origin, oriented in the
arg ζ = 0 direction, which, omitting an additive constant, can be written

σ2 w2(ζ, 0, π/2) = −(κ/2π)(ζ + 1/ζ). (72)

This is the complex potential for uniform flow past the circle but equally pro-
vides, for κ = π, the mapping (59) since the streamlines in the ζ-plane map to
lines of constant y in the z-plane cut along the plate: the same dipole solution
(70) provides the required complex velocity field and the conformal mapping. A
similar result was noted by [51] when extending the results of [52] to domains
of connectivity three and more, although there the correspondence was between
the complex velocity potentials not between the complex velocities as here.

5.2 A finite collection of plates

To generalise the results of section 5.1, consider the unbounded region Dz ex-
terior to a collection of M + 1 plates, denoted Dj , j = 0, . . . ,M , of bounded
extent aligned in the positive x-direction, corresponding to a set of plates at
small angle of attack to an oncoming uniform flow. The domain can be scaled so
that the plate D0 lies on y = 0 with |x| < 1. The normal velocities on the plates
are determined by their individual angles of attack and so are specified as vj ,
j = 0, . . . ,M , where v0 can be scaled to unity by linearity. We follow [50] taking
the pre-image domain to be the unit disc in the ζ-plane with M smaller circular
discs excised, and denoting the domain by Dζ , the circular boundary of the jth
excised circular disc by Cj , j = 1, . . . ,M and the unit circle, the pre-image of
D0, by C0. The domain is then specified by the centres δj and radii ρj of the
circles Cj and the results in section 5.1 correspond to the case M = 0. Finding
the flow-field and the forces and moments on the plates thus reduces to related
sub-problems: finding the conformal map between Dz and Dζ and obtaining the
velocity field in Dζ .

The mapping between Dz and Dζ. The pre-image Dζ is not unique but can
be made so, to within a rotation, by specifying the pre-image ζ = β of the point
z = ∞, at infinity in Dz. The mapping here will thus depend on β which can
be chosen to exploit, for example, symmetry in the domain Dz. The mapping
from Dζ to Dz follows from the construction that led to (72). Analogously to
(69), the complex velocity potential for a point vortex of strength κ located at
ζ0 = σeiτ can be written [51] as

G0(ζ, σ, τ) = (−iκ/2π) log[ω(ζ, σeiτ )/σω(ζ, σ−1eiτ )], (73)

where ω(ζ, ζ0) is the Schottky-Klein prime function associated with the domain.
Differentiating (73) with respect to σ gives a dipole with flow in the arg ζ =
τ − π/2 direction,

w3(ζ, σ, τ) = (−iκ/2π)eiτ [Ω(ζ, σeiτ ) + (1/σ2)Ω(ζ, σ−1eiτ )− 1/σ], (74)
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Fig. 19. The mapped domains. (a) The annular domain Dζ . The circular boundaries
C0, C1 correspond to the plates. The dipole lies on <ζ = 0 oriented in the =ζ direction.
Streamlines passing through the stagnation points are shown in bold with the leading
edges marked by red crosses and trailing edges by green crosses. (b) The plates in the
domain Dz. Streamlines here are simply lines of constant y.

where

Ω(ζ, ζ0) =
1

ω(ζ, ζ0)

∂ω(ζ, ζ0)

∂ζ0
, (75)

is the logarithmic derivative of ω(ζ, ζ0). Setting ζ0 = β gives a dipole at z =∞,
and thus uniform flow, in Dz.

It remains to find the positions ζjl,t = δj+ρj exp(iλjl,t) on the circles Cj that
correspond to the leading and trailing edges of the plates. These are the pairs
of points where streamlines from infinity meet the circle Cj , i.e. the stagnation
points on Cj and so satisfy

dΩ

dζ
(ζjl,t, β) = 0. (76)

The mapping from Dζ to Dz is straightforward given the data δj and ρj ,
with the constant value of the streamfunction =w3 on Cj giving yj and the
values of <w3 at the stagnation points giving the ends of the plates. Finding the
inverse mapping is more difficult. Given the plate data it is necesssary to solve
simultaneously the M equations

=w3 = yj , on Cj , (77)

and the 2M equations (76). This is considered in greater detail in section 5.3.

The velocity field in Dζ. The required velocity field associated with each
plate is given by a dipole tangent to the plate, i.e. tangential to the circle Cj .
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(a) (b)

Fig. 20. Isolines in the annular domain Dζ of v, the velocity component in the y
direction in the domain Dz. (a) v = 1 on plate D0 and v = 0 on plate D1. These
isolines are also the streamlines for a dipole at the leading edge of plate D0 oriented
along the plate. (b) v = 0 on plate D0 and v = 1 on plate D1. These isolines are also
the streamlines for a dipole at the leading edge of plate D1 oriented along the plate.
The general solution for arbitrary constant v on each plate is a linear combination of
these fields.

It is sufficient to construct, for each j, the solution that has a dipole at ζjl
aligned in the λjl − π/2 direction (i.e. normal to the radius at the stagnation
point) with unit imaginary part on Cj and zero imaginary part on all other
boundaries. Then the solution for arbitrary constant v on each plate follows by
linear superposition. From (74), this is simply w3(ζ, |ζjl|, λjl).

5.3 The case of two plates

The simplest non-trivial example is given by two plates. The domain Dζ can then
be taken as the annulus q < |ζ| < 1 for some value of the conformal modulus q
[53]. [50] notes that for this geometry

ω(ζ, γ) = −(γ/C2)P (ζ/γ, q), (78)

where

P (ζ/γ, q) = (1− ζ)

∞∏
k=1

(1− q2kζ)(1− q2kζ−1), C =

∞∏
k=1

(1− q2k), (79)

so the logarithmic derivative (75), and its derivative in (76), are simple sums,
allowing the solutions to (76) and (77) to be obtained straightforwardly.

Figure 19 shows the annular domain Dζ . The dipole for the mapping lies on
<ζ = 0 oriented in the =ζ direction. Streamlines passing through the stagnation
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points are shown in bold with the leading edges marked by red crosses and
trailing edges by green crosses. (b) The plates in the domain Dz. Streamlines
here are simply lines of constant y. Figure 20 gives isolines in the annular domain
of v, the velocity component in the y direction in domain Dz. In (a) v = 1 on
plate D0 and v = 0 on plate D1. These isolines are also the streamlines for a
dipole at the leading edge of plate D0 oriented along the plate. In (b) v = 0
on plate D0 and v = 1 on plate D1. These isolines are also the streamlines for
a dipole at the leading edge of plate D1 oriented along the plate. The general
solution for arbitrary constant v on each plate is a linear combination of these
fields.

With the velocity field q determined the forces on the plates follow from (68).
Since the integrand is periodic over the closed path of integration, the trapezium
rule gives exponentially accurate results. To minimise truncation errors the path
is taken to lie midway between the given circle and the point, β, at infinity.
Once the forces have been determined in Dζ the motion of the plates in the
physical plane follows the dynamics in [6]. This gives a set of ordinary differential
equations that can be integrated forward in time by standard methods.

6 Further comments

The majority of analytical studies on dynamic fluid-body interactions have been
for cases of a single body as in sections 3, 4 of this chapter on a skimming body
and on body liftoff respectively and in the references [1]-[11]. The exceptions
are in [1] which concerns a cascade of bodies in channel flow and in the present
chapter’s section 5 which describes interactions involving many bodies moving
in surrounding potential flow of fluid with none or possibly (by use of simple
images) at most one solid fixed wall present. The aim throughout this chapter
has been to seek out relatively simple configurations and basic evolution prop-
erties first, as the occurrence of important linear and nonlinear effects implies
that mathematical accounts are often likely to be insightful. Assumptions made
include those of unsteady laminar incompressible fluid motions over medium-
to-large ranges of the Reynolds and in two spatial dimensions but there must
also be awareness concerning three-dimensionality, flow separation, transition,
turbulence, impacts and rebounds, and so on. We believe the study here may
be of interest in terms of mathematical issues, real applications, the science of
fluid dynamics with freely moving bodies present and the clear interaction with
direct numerical simulations. In reality there are often very complex additional
phenomena to deal with in the practical situations of concern as hinted above.

Specific issues are connected with the individual sections of the chapter.
Thus considerably more detail and analysis of the original multi-body problems
addressed in section 2.1 is to be found in [10] especially in terms of the wakes
behind the bodies but also in terms of the influences from the presence of flexible
patches of wall which respond to the local pressure due to the fluid flow: compare
with [7]. More investigation of the skimming problems described in section 2.2
and later in section 3 is given in [9]. It would be interesting to consider adding
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in the effects of three-dimensionality within the various skimming-body analyses
conducted to date and the same comment applies to the analysis of liftoff. Both
for the skimming scenario in section 3 and the liftoff scenario in section 4 the
influence of viscosity also remains to be examined seriously given that the influ-
ence is potentially substantial. As far as the beginnings of many-body analysis
in section 5 are concerned the basic elements of an account that includes vis-
cous effects can be found in [6] for the channel-flow situation, where essentially
the same viscous-inviscid interplay over two axial length scales covers the case
of many short bodies at small incidence, while the corresponding situation for
external flow with a boundary layer brings in triple-deck theory. An extension
of the study in reference [7] would be necessary to cater for many long bodies
freely moving inside a boundary layer or channel flow.

There are numerous intriguing follow-on studies which could be undertaken.
With that in mind we refer to the earlier remarks on three-dimensional effects,
on many bodies being present in the fluid flow and on the influences of different
body lengths as well as thicknesses. In addition future investigations could tackle
increased connections with experimental work, observations and direct numerical
simulations, not to forget full nonlinearity arising with a body in a viscous wall
layer or with a body of length comparable with the development length in the
oncoming flow, namely of the order of the chord length in a boundary layer
and of order Reynolds number multiplied by the channel width in a channel
flow. Body movement relative to the nearby wall can also be a key factor [7].
We should perhaps mention that there are many other near-wall phenomena of
interest, including problems of flexible walls, dynamic roughnesses on a surface
and the impact on airfoil stall. Finally, novel instabilities occur in most of the
dynamic fluid-body interactions addressed so far, and these instabilities merit
much further study.
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