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Abstract

Modelling of small-scale heterogeneous catalytic systems with master equations

captures the impact of molecular noise, but can be computationally expensive.

On the other hand, the chemical Fokker-Planck approximation offers an ex-

cellent alternative from an efficiency perspective. The Langevin equation can

generate stochastic realisations of the Fokker-Planck equation; yet, these realisa-

tions may violate the conditions 0 ≤ θ ≤ 1 (where θ is surface coverage). In this

work, we adopt Skorokhod’s formulations to impose reflective boundaries that

remedy this issue. We demonstrate the approach on a simple system involving

a single species and describing adsorption, desorption, reaction and diffusion

processes on a lattice. We compare different numerical schemes for the solution

of the resulting reflected Langevin equation and calculate rates of convergence.

Our benchmarks should guide the choice of appropriate numerical methods for

the accurate and efficient simulation of chemical systems in the catalysis field.
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1. Introduction

Traditionally, the linear and non-linear kinetics of chemical reactions on

solid surfaces has been neatly analysed using deterministic ordinary or partial

differential equations for the average concentrations of surface adsorbates or the

coverages [1]. However, it is also well recognised that in many cases the predic-5

tions of these deterministic approaches can depart from real situations due to

the stochasticity in the occurrence of the elementary processes of reaction and

diffusion [2]. This stochasticity is commonly referred to as intrinsic noise and

manifests itself by the occurrence of fluctuations in the observables (e.g. cov-

erage) when the sizes of the catalytic surfaces are small. Normally, the relative10

amplitude of these fluctuations varies as N−1/2 with N being the number of

adsorption sites on the surface [2].

Small scale chemical reactions on surfaces, where these fluctuations may be

large enough to be relevant, are of great practical importance as testified by

experiments on supported catalysts [3]. These catalysts consist of many small15

metal particles of few nanometers diameter composed by reactive facets, typ-

ically containing a few hundred to a few thousand surface atoms. In several

experimental studies performed with CO oxidation on oxide-supported Pd par-

ticles it was shown that the kinetic bistability (the existence of two kinetic

regimes for the same reaction conditions) vanishes with decreasing particle size20

[4]. Field emitter tips (FETs) have been also implemented as model systems to

study certain aspects of catalytic reactions on supported catalysts. The surface

of a tip consists of small reactive facets of similar sizes as the nanoscale particles

of a supported catalyst [5]. Interestingly, using a Pt field emitter tip as catalyst

for CO oxidation, it was shown that local coverage fluctuations induce tran-25

sitions between the two kinetic stationary states that coexist in the so-called

bistable range [6, 7]. The role of fluctuations on bistability and oscillations

occurring in other relevant chemical reactions on FETs and nanoparticles has

also been studied [8, 9, 9, 10, 11, 12]. It is also interesting to mention that in

the field of electrochemical reactions it has been theoretically predicted that, in30
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the case of nano-electrodes, the stochastic nature of electrochemical reactions

can induce random fluctuations of the electrode potential that result in signif-

icantly enhanced reaction kinetics in comparison with macroscopic electrodes

[13, 14, 15].

The most popular and successful mathematical formalism used to analyse35

chemical reactions on nano- and mesoscale surfaces is the so-called stochastic ki-

netic approach [16, 17]. Within this framework, reversible adsorption, reaction,

and diffusion are typically simulated using the on-lattice kinetic Monte Carlo

(KMC) method [18, 19, 20, 21, 22]. However, this approach can become ex-

tremely computationally intensive when the surface of interest is large or when40

the diffusion of some of the adsorbates is much faster than other processes on

the surfaces [23]. Nevertheless, in the limit of ultrafast diffusion the well-mixed

approximation holds and an interpretation in terms of the so-called chemical

master equation (CME) for the probability to find a number of adsorbates on

the surface is possible [24, 25, 12]. This equivalence between the on-lattice45

KMC approach and the well-mixed CME has been already established [26].

Under some circumstances the well-mixed CME can be solved directly, or reali-

sations can be obtained by the so-called stochastic simulation algorithm (SSA)

by Gillespie [27]. The SSA is a method of generating individual realisations

of the stochastic process whose probability distribution reproduces that of the50

CME. But, it also becomes computationally expensive as the number of adsor-

bates increases or/and when the model exhibits time scale separation (between

fast and slow reactions) [28]. Furthermore, since the system is stochastic, many

simulations are needed to make a proper inference concerning global kinetics.

An interesting alternative to incorporate stochasticity in the modelling of55

catalytic surface reactions at both the nano- and mesoscales is the so-called

chemical Langevin equation (CLE) [29, 30] and its associated chemical Fokker-

Planck equation (CFPE) [9, 31]. Several attempts to implement the CLE to

study chemical reactions on surfaces have been already reported. Phenomena

like for example intrinsic noise stochastic resonance and optimal particle size for60
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reaction rate oscillation on nanometer-sized particles have been predicted based

on this approach [32, 33].

The CLE is a stochastic differential equation (SDE) that describes the time

evolution of the coverage of adsorbates on a well-mixed surface, and constitutes

a link between the CME and the macroscopic description of surface reactions.65

Moreover it has been recognised that this approach leads to substantial savings

in computational time when the number of adsorbates is large. However, issues

concerning the validity of the CLE have been raised. Given that the solution of

the CLE describes the temporal evolution of coverage, it must be positive and

less than (or equal to) one to have a physical meaning. Yet, the mathematical70

formulation of a Langevin equation can lead to negative solutions under certain

circumstances. For instance, for a catalytic system this can happen when the

noise term is finite, due to e.g an adsorption process, at coverage close to zero.

Furthermore, since the stochastic term of the CLE equation contains the square

root of some combination of coverages, the numerical solutions can then become75

imaginary [17, 34, 35].

Several alternatives have been proposed to force the solution to remain non

negative. It is common to set the numerical solution to zero when it becomes

negative or to impose in a simplistic manner reflected boundary conditions on

traditional numerical schemes. In this work we adopted the later approach when80

numerically solving CLEs using the traditional Euler-Maruyama (EM) scheme,

and call it the mirror-boundary EM scheme. However, we will show that these

reflections do not necessarily lead to results in accordance with the solutions

of the corresponding CFPEs. Another method is to modify the drift and noise

terms of the CLE in order to ensure positivity [36]. However, this approach has85

been found to be inaccurate and even physically inconsistent [37]. A more so-

phisticated approach is to extend the domain of the CLE to the complex space

[34]. Although it has been found that the so-called complex CLE accurately

predicts real values for the mean concentrations/coverages and autocorrelation

functions, the molecular numbers are normally complex and therefore their phys-90
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ical meaning is questionable. In addition, it is not clear how the complex CLE

would impose the restriction a surface coverage cannot exceed 100%. A differ-

ent approach is to incorporate, in a mathematically rigorous way, boundaries

into the CLE [38, 39]. All the aforementioned approaches have attracted a lot

of focus in the biomathematics/computational biology communities. However,95

they have not yet been adopted in the catalysis community. We believe that

formulating catalytic kinetics models in terms of CLEs which naturally preserve

the positivity of the solution, and additionally enable us to impose a maximum

of 100% for surface coverages, would be of interest for the efficient simulation

of catalysts at the nano- and mesoscales.100

The purpose of this paper is to address the problem of ensuring realistic

solutions to the CLEs of catalytic systems occurring on metal surfaces. We

do it by using a reflected SDE formalism similar to the one implemented in

other research fields [40, 41, 42, 43, 39]. As a illustrative example we consider

the dynamics of adsorption, desorption, reactions, and diffusion on a lattice,105

involving a single species [26]. After discussing the shortcomings of the tradi-

tional stochastic approaches, we proceed to present the reflected CLE (RCLE)

of the system. We propose it as the SDE that correctly produces the individual

realisations of the stochastic process described by the chemical Fokker-Planck

equation (CFPE), which is obtained after the truncation of Kramers-Moyal ex-110

pansion of the CME, and solved after imposing reflected boundary conditions.

We numerically integrate this RCLE with an Euler-type numerical scheme in-

troduced by Lépingle [44], and analyse the order of convergence of the scheme

as a function of the strength/magnitude of the intrinsic noise [45, 46, 47]. We

continue by comparing the numerical solutions of the RCLE with the solutions115

of the CFPE and CME. Finally, we explore the computational savings offered

by the RCLE formalism.

The paper is organised as follows. In Sec. 2.1 we introduce the illustrative

model and its corresponding CME. In the same section we derive the CFPE and

present the associated CLE. Then, we discuss the shortcomings of implementing120
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this CLE. In Sec 2.2 we introduce the RCLE and the numerical scheme used

to integrate it. Subsequently, in Sec 3, we compute the order of convergence of

the scheme, compare the solutions of the RCLE with the solution of the CFPE

and CME, and analyse the computational efficiency of the RCLE. In Sec. 4, we

summarise and mention a number of possible applications and extensions of the125

methodology presented in this work.

2. Theory

This section starts with the introduction of the catalytic system that serves

as a benchmark in our studies, followed by the pertinent models. Under the

assumption of ultrafast diffusion we derive a well-mixed CME, and under the130

additional assumption of mesoscopic system size, we formulate a CLE. The

boundary conditions imposed express the physical requirements that the (frac-

tional) surface coverage is bounded between 0 and 1. This naturally gives rise to

the reflected CLE, which can be solved numerically with the schemes we discuss.

The results of these schemes will then be presented in the next section.135

2.1. Model formulation and traditional stochastic analysis

To illustrate the results of this work, we consider the following dynamics of

adsorption, desorption, reactions, and diffusion on a lattice, involving a single

species [26]:

A(gas) + ∗(s)
kads
kdes

A(s), (1)

140

A(s)

krxn1 ∗(s) +B(gas), (2)

A(s) +A(n)

krxn2 ∗(s) + ∗(n) +A2(gas), (3)

A(s) + ∗(n)
kdiff ∗(s) +A(n), (4)
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where ∗(s) denotes a free site and ∗(n) its neighbour. The lattice consists of N

free sites and coordination number ζ. In the first elementary step, A(gas) repre-

sents a chemical species in the gas phase (or in general in a bulk phase) that can145

occupy a free site to give rise to the adsorbed state A(s). The adsorbed state

A(s) can subsequently desorb as A(gas). The second elementary step represents

a species in the adsorbed state A(s) that can isomerise into B(gas) and rapidly

desorb (1-site, 1st-order reaction). The third elementary step describes a situ-

ation in which an adsorbed species A(s) reacts with another species A(n) bound150

to a neighbouring site, and rapidly desorb as A2(gas) dimer (2-site, 2nd-order

reaction or dimerisation reaction). Finally, the last step represents the typi-

cal case of diffusion in which a chemical specie in the adsorbate state A(s) can

jump to a neighbour free site ∗(n) to form the adsorbed state A(n). Parameters

kads, kdes, krxn1, and krxn2 represent the rate constants for adsorption, des-155

orption, 1-site reaction, and 2-site reaction, respectively. The parameter kdiff

is the rate constant for diffusion. In this work no lateral interactions between

chemical species are being taken into account. This kinetic scheme (a single

species on a lattice) was already implemented in [26] to illustrate the equiv-

alence of on-lattice stochastic chemical kinetics with the well-mixed chemical160

master equations in the limit of fast diffusion. This reaction network is generic,

not necessarily capturing a known mechanism; however, its elementary steps

appear in several interesting catalytic reactions, e.g. steps 1 and 3 would be

relevant in electrochemical H evolution [48].

In the following subsections, we present the traditional mean-field stochastic165

description of this model and discuss its shortcomings.

2.1.1. The chemical master equation approach

Let us assume from now on that the rate constant for diffusion is much larger

than any other rate constants of the model (the assumption of fast diffusion is

usually valid for catalytic reactions on surfaces [23]). In this limit of very fast170

diffusion the well-mixed assumption holds and an interpretation in terms of the
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Table 1: Processes, population changes, and transition rates for our well-mixed CME treat-

ment of the dynamics of NA for a lattices with N available sites. Parameters kads and kdes

represent the rate constants for adsorption and desorption, respectively. kdiff is the rate

constant for diffusion. Parameters krxn1 and krxn2 are the rate constants for the 1-site and

2-site reactions, respectively. ζ is the coordination number of the lattice or the number of

nearest neighbours of a site.

Process Population change Transition rate

Adsorption NA → NA + 1 Wads = kads(N −NA)

Desorption NA → NA − 1 Wdes = kdesNA

1st-order reaction NA → NA − 1 Wrxn1 = krxn1NA

2nd-order reaction NA → NA − 2 Wrxn2 = ζkrxn2

2(N−1)NA(NA − 1)

CME already derived by Stamatakis and Vlachos is possible [26]. This CME

was obtained after applying singular perturbation analysis to a generic on-lattice

master equation for the four elementary steps described above (see Eqs. 1-4).

This equation describes the temporal evolution of the probability P (NA, t) that175

the lattice or surface has NA adsorbates at time t. Thus, this equation is a well-

mixed stochastic mean-field approach in which one only tracks the total number

of NA adsorbates on the surface and their decrement and increment. This

number changes stochastically due to the adsorption, desorption, and reactions

in the manner according to the corresponding transition rates indicated in Table180

1. These transition rates are evident for adsorption, desorption, and 1st-order

reaction. Only the transition rate for 2nd-order reaction involves a nontrivial

expression that contains the coordination number ζ and the total number of

sites on the surface (reference [26] provides a formal derivation of these transition

rates from the on-lattice master equation description). As expected, on a totally185

covered periodic lattice, one obtains Wrxn2 = krxn2
ζN
2 , where ζN

2 is the number

of occupied pairs. Note also that in a 2D regular lattice ζ can take one of the

following values: 3 for a honeycomb-type lattice, 4 for a square lattice, and 6
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for a hexagonal lattice [26]. It is now possible to write down the CME as

∂P (NA; t)

∂t
= Wads(NA − 1)P (NA − 1; t)−Wads(NA)P (NA; t)

+Wdes(NA + 1)P (NA + 1; t)−Wdes(NA)P (NA; t)

+Wrxn1(NA + 1)P (NA + 1; t)−Wrxn1(NA)P (NA; t)

+Wrxn2(NA + 2)P (NA + 2; t)−Wrxn2(NA)P (NA; t),

(5)

where 0 ≤ NA ≤ N . Because NA cannot be negative or larger that N , P (NA, t)190

must satisfy the following equations at the boundaries (reflective boundaries):

∂P (0; t)

∂t
= −kadsNP (0; t) + (kdes + krxn1)P (1; t) +

ζkrxn2
(N − 1)

P (2; t), (6)

∂P (N ; t)

∂t
= kadsP (N − 1; t)− (kdes + krxn1)NP (N ; t)− ζNkrxn2

2
P (N ; t), (7)

where we have evaluated the corresponding transition rates and considered that

P (−1; t) = P (N + 1; t) = P (N + 2; t) = 0. One can obtain the stationary

probability distribution Pst(NA; t) by direct solution of a system of N +1 alge-195

braic equations by writing Eq. 5 at steady state for NA = 1, · · · , N − 1, along

with ∂P (0;t)
∂t = ∂P (N ;t)

∂t = 0. One could also opt to numerically solve Eq. 5

or generate stochastic realisations of this equation by implementing the SSA

[26, 28]. However, as the number of molecules increases, solving or simulating

the CME becomes computationally expensive. This restricts the implementa-200

tion of the CME when modelling more complex multi-scale catalytic systems

like for example the set of coupled reactive facets of a field emitter tip [8].

The so-called stochastic simulation algorithm or SSA is a method that gen-

erates individual realisations of the stochastic process whose probability distri-

bution reproduces that of the CME [28]. One simply generates random numbers205

to determine the next chemical process to occur as well as the time interval. For

our system, this algorithm is described below [16]:

Stochastic simulation algorithm. 1) Set the time t = 0 and the initial number

of adsorbates, NA.

210
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2) Calculate the total transition rate as

Wtot =
4

∑

r=1

Wr, (8)

where the values of Wr are given in table 1.

3) Get two random numbers p1 and p2 from the interval [0, 1].

4) Determine the time interval for the next process as

δt = − ln(p1)

Wtot
. (9)

5) Find the process q to happen. To do this, take q as the smallest integer215

satisfying
q

∑

r=1

Wr > p2Wtot ≥
q−1
∑

r=1

Wr. (10)

6) Change the NA to reflect the occurrence of this process according to table

1. Finally, increase the time by δt and repeat steps 2-6 until the final time is

reached.

In the following section we discuss advantages and disadvantages of two220

popular approximations developed to overcome the computationally expensive

problems involving the two aforementioned stochastic approaches.

2.1.2. The chemical Fokker-Planck equation approach

The chemical Fokker-Planck equation or CFPE offers a stochastic description

at a more coarse grained level than the CME [49, 50, 51]. It involves a continuous225

stochastic variable; the fraction of adsorbates or coverage, whereas the CME

considers the total number of adsorbates on the surface. To obtain the CFPE

from the CME, let us consider a large system and define the coverage y = NA/N ,

with 0 ≤ y ≤ 1. Then, after replacing NA in Eq. 5, one gets

∂P (y; t)

∂t
=

kads
ǫ

[

1− (y − ǫ)
]

P (y − ǫ; t) +
kdes + krxn1

ǫ
(y + ǫ)P (y + ǫ; t)

+
ζkrxn2
2ǫ(1− ǫ)

(y + 2ǫ)(y + ǫ)P (y + 2ǫ; t)

−
[

kads
ǫ

(1− y) +
kdes + krxn1

ǫ
y +

ζkrxn2
2ǫ(1− ǫ)

y(y − ǫ)

]

P (y; t),

(11)
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where ǫ = 1
N . Note that we are introducing a new probability for y, which is230

like P (NA, t) but renormalised according to y = NA/N . Now, we proceed to

derive the so-called Kramers-Moyal expansion of Eq. 11 [52]. This is obtained

by applying the Taylor expansion,

f(x− z) =

∞
∑

n=0

(−1)n

n!
zn

dn

dxn
f(x), (12)

to the first three terms of Eq. 11 and collecting terms of the same order. If

we assume that N is large enough, the terms of order greater that two can be235

neglected. Then, after considering

[

1− (y − ǫ)
]

P (y − ǫ; t) ≈ (1− y)P (y; t)− ǫ∂y
[

(1− y)P (y; t)
]

+
ǫ2

2
∂2
y

[

(1− y)P (y; t)
]

,
(13)

(y + ǫ)P (y + ǫ; t) ≈ yP (y; t) + ǫ∂y
[

yP (y; t)
]

+
ǫ2

2
∂2
y

[

yP (y; t)
]

, (14)

and

(y + 2ǫ)(y + ǫ)P (y + 2ǫ; t) ≈ y(y − ǫ)P (y; t) + 2ǫ∂y
[

y(y − ǫ)P (y; t)
]

+
(2ǫ)2

2
∂2
y

[

y(y − ǫ)P (y; t)
]

,
(15)

one gets the following CFPE

∂P (y; t)

∂t
= − ∂

∂y
[a(y)P (y; t)] +

1

2

∂2

∂y2
[b(y)P (y; t)], (16)

where the drift and diffusion coefficients are given by240

a(y) = kads(1− y)− (kdes + krxn1)y −
ζkrxn2
(1 − ǫ)

y(y − ǫ), (17)

and

b(y) = ǫ

[

kads(1− y) + (kdes + krxn1)y +
2ζkrxn2
(1− ǫ)

y(y − ǫ)

]

, (18)

respectively. This CFPE describes the evolution of the probability density func-

tion (PDF), P (y; t), and can be also written as

∂P (y; t)

∂t
+

∂J(y, t)

∂y
= 0, (19)
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where

J(y, t) = a(y)P (y; t)− 1

2

∂

∂y
[b(y)P (y; t)], (20)

is the so-called probability current. Then, it follows that at the steady state245

P (y; t) = Pst(y) and J(y) = constant. However, note that the CFPE approx-

imation (Eq. 16) does not satisfy the boundary conditions of the CME (Eq.

5) at NA = 0 (y = 0) and NA = N (y = 1), since the noise can drive the

system beyond those boundaries [52, 53] (we will come back to this point when

analysing the SDE or chemical Langevin equation corresponding to the CFPE).250

Therefore, if we wish to confine the probability to the interval [0, 1], appropriate

boundary conditions must be imposed [49, 54]. In this work (because y can not

leave the interval [0, 1]), the appropriate boundary conditions are total reflec-

tions; thus the probability current must be zero at the two boundaries. In other

words, J(0) = J(1) = 0, and255

a(y)Pst(y)−
1

2

∂

∂y
[b(y)Pst(y)] = 0, (21)

at y = 0 and y = 1 [49].

Note that, if we assume stationarity, the reflective boundary conditions also

ensure a zero probability current everywhere (J(y) = 0). Thus, Eq. 21 can be

integrated to give the well-known stationary solution

Pst(y) =
C

b(y)
exp

{

2

∫ y

0

dx
a(x)

b(x)

}

, (22)

where C is a constant which has to be chosen so that Pst(y) is normalised. This260

probability density function is indeed 0 outside the interval [0, 1] [49].

Before continuing with our analysis it is interesting to note that, when ap-

proaching the low boundary at y = 0, it may always occur that y < ǫ. Thus,

the terms of the drift and diffusion coefficients (Eqs. 17 and 18) corresponding

to the 2nd-order reaction can acquire negative values. This is in contrast with265

the always positive values that the corresponding transition rate of the CME

assumes (see Wrxn2 in Table 1). Therefore, to ensure positivity of this term,

in this work we replace the 2nd-order reaction terms of the drift and diffusion
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Figure 1: Stationary probability density function obtained with Eq. 22. (a) krxn2 = 10000

and (b) krxn2 = 50000. In (c) and (d) we plot the corresponding drift coefficient a(y) as

a function of y. Black solid lines correspond to plotting Eq. 22 with the Kramers-Moyal

expansion term for the 2nd-order reaction. Red dashed lines – or gray on black/white prints

correspond to Eq. 22 but with that term replaced by
(

ζkrxn2

(1−ǫ)
y(y − ǫ) ∨ 0

)

, where ∨ stands

for maximum. Similarly, in (e) and (f) we plot the corresponding diffusion coefficient b(y) as

a function of y. For simplicity we assume that krxn1 = 0. Other parameters are kads = 1,

kdes = 1000, ζ = 4 (square lattice), and N = 1000. Because the negative values appear for

y ≤ ǫ = 0.001 and the 2nd-order reaction term is proportional to y(y − ǫ), we decided to

consider large enough values of krxn2 in order to have a clear appreciation of the impact of

the replacement.
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coefficients obtained by the truncation of the Kramers-Moyal expansion with

the new term,
(

ζkrxn2

(1−ǫ) y(y − ǫ) ∨ 0
)

, where ∨ stands for maximum. Physically,270

this means that the 2nd order reaction can only happen if 2 or more molecules

of A exist on the surface. In Figs. 1(a) and 1(b) we plot the stationary PDF

calculated using the the 2nd-order reaction term obtained from the Kramers-

Moyal expressions (black lines) and the one calculated using the new positivity

preserving term (red-dashed lines) (see Eq. 22). For the simulations we use275

N = 1000 (ǫ = 0.001), and to have solutions very close to the low boundary

(y = 0), we chose a very small value of kads. Moroever, to have a clear ap-

preciation of the impact of the new term, we considered large enough values of

krxn2 (note that the 2nd-order reaction term is proportional to y(y − ǫ)). The

figures show that, although for krxn2 = 50000 the impact of this replacement on280

the PDF is important, for krxn2 = 10000 the two PDFs are practically indistin-

guishable. As an example, Figs. 1(c) and 1(d) also show the corresponding drift

coefficients, a(y). From these figures, it is clear that for y < ǫ = 1/N = 0.001

the drift coefficients differ in both cases. However, when krxn2 = 10000, such a

difference is very small. A similar effect is observed for the diffusion coefficients285

plotted in Figs. 1(e) and 1(f). Note that for the following discussions concerning

the low boundary at y = 0, we will consider krxn2 = 10000.

Although it is often simpler to use the approximation based on the CFPE

than the exact CME, in many cases one is interested in single realisations of

the stochastic process under consideration and not only on probability densities290

or averages values. Therefore, in the following section we discuss the so-called

chemical Langevin equation approach or CLE which in principle serves as a

generator of single trajectories of the process described by the CFPE.

2.1.3. The Chemical Langevin equation approach

It is well known that the trajectories of the diffusion process y whose proba-295

bility density is governed by Eq. 19 can be described by the so-called chemical

Langevin equation or CLE. In particular, there exists a standard prescription
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to go from a CLE for a stochastic variable y to the CFPE for the probability

density of this variable P (y; t) [49, 50, 51]. In our one dimensional problem, the

CLE is an Itô SDE that takes the form300

dy = a(y)dt+
√

b(y)dW, (23)

where the drift (a(y)) and diffusion (b(y)) coefficients are given by Eqs. 17 and

18, respectively. The paramater ǫ = 1/N accompanying the diffusion coefficient

(Eq. 18) is known as the intensity of the intrinsic noise or random fluctuations

of the coverage. To avoid the possibility of having negative values in the 2nd-

order reaction term of the drift and diffusion coefficients, when y < ǫ, in the305

subsequent analysis of this SDE we implement the positivity preserving term

introduced in Sec. 2.1.2. The term dW = W (t+dt)−W (t) is a Wiener increment

of the Wiener process W . A Wiener process is a stochastic process whose

increments are independent and normally distributed with mean 0 and variance

dt. The advantage of adopting the CLE description is that single trajectories of310

this stochastic equation can be obtained with comparable efficiency to that of

ordinary differential equations (ODE). One can also note that as N increases,

the fluctuating part of the CLE (or diffusion coefficient) will decrease relative

to the drift coefficient. And in the thermodynamic limit of N → ∞ (ǫ → 0), the

last term of the CLE becomes negligible and the stochastic equation collapses315

to the corresponding deterministic rate equation given by

dy

dt
= kads(1− y)− (kdes + krxn1)y − (ζkrxn2)y

2. (24)

However, it is interesting to mention that, similar to the CFPE (Eq. 16), one

can encounter issues with Eq. 23. Assume for example that we start the system

very close to the boundary of zero concentrations (y → 0 at t = 0). Provided

that adsorption is dominant the drift terms will drive the system to positive320

coverages; however, the symmetric noise term due to adsorption ǫkads(1 − y)

can drive the system to negative coverages with a finite probability in a finite

time interval. Something similar occurs when y is driven towards y = 1. In this

case, the variable y becomes larger than one with a finite probability.
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One simple method for numerically solving Eq. 23 is the Euler-Maruyama325

or EM scheme. This method has a strong rate of convergence equal to 1/2 and

a weak rate of convergence equal to 1 [45]. Note that weak convergence refers

to the error of the mean, whereas strong convergence is related to the mean of

the error in each individual path (we will come back to this point later) [45].

The scheme is based on time discretisation with points330

0 = τ0 < τ1 < · · · < τi < · · · < τM = T, (25)

in the interval [0, T ]. Let ∆t = T/M and define τi = i∆t. The numerical

approximation to y(τi) will be yi. For Eq. 23 the EM approximation gives the

following recursive equation

yi+1 = yi + a(yi)∆t+
√

b(yi)∆Wi, (26)

with y0 = x0. Here ∆Wi = W (τi+1)−W (τi) are the increments of the Wiener

process in the interval [τi, τi+1] and are represented by independent N (0,∆t) =335

√
∆t N (0, 1) Gaussian random variables with mean zero and variance ∆t [45].

The issues with Eq. 23 when trying to ensure y being inside interval [0, 1]

are presented in Eq. 26. For instance, it is easy to verify that Eq. 26 with the

drift and diffusion coefficients given by Eqs. 17 and 18 will result in negative

values for y. Suppose that at some time yi ≈ 0, then according to Eq. 26 the340

noise term has a non-zero variance ǫkads, and since the Gaussian distribution is

symmetric, a negative Gaussian random variable can be generated resulting in a

negative yi+1 (a similar argument applies when yi ≈ 1). In conclusion, the paths

obtained by the original EM scheme can leave the interval [0, 1] at some point in

the simulation, which would lead to unphysical situations (coverage becoming345

negative or higher than 100%). Thus, we need to reformulate the CLE in such

a way that it respects the boundary conditions of the CFPE and CME. One

could reflect in a simplistic manner the occurrences that result in negative or

positive (y > 1) values (mirror-boundary EM scheme); however, this will not

necessarily result in correct solutions, as we will show later.350
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The issue of unphysical solutions of the CLE is clearly not just of a numerical

nature. Although, to satisfy the boundaries of the CME, we imposed reflected

boundary conditions on the CFPE, in switching to the CLE these boundary

conditions were lost, and therefore, there is not guarantee that the solutions of

Eq. 23 lie in [0, 1]. Consequently, a probability density function obtained from355

trajectories of the CLE is not necessarily comparable to the one obtained by

solving the CFPE under reflected boundary conditions (or Eq. 5 (CME) in the

limit of large N). In the following section we discuss a manner to reformulate

the CLE in such a way that it respects the desired boundary conditions.

2.2. Reflected chemical Langevin equation with two-sided barriers360

In the analysis of the CFPE the reflected boundary conditions were imposed

by assuming no net flow of probability across y = 0 and y = 1. This condi-

tion guaranties reflection at the boundaries of the continuous process y because

the probability to leave the domain [0, 1] should be zero. However, as men-

tioned above the solution of the CLE could leave this domain with a non-zero365

probability.

To impose the boundaries condition given by Eq. 21 on the CLE (Eq. 23), let

us decompose the continuous process y into the sum of two stochastic continuous

processes y(t) = x(t)+ k(t) [40, 41]. The temporal dynamics of x(t) is governed

by Eq. 23, and therefore, it determines the behaviour of y(t) inside (0, 1). The370

new process k(t) is the minimal process which forces y(t) to remain in the unit

interval. This reflecting process determines the behaviour at the boundaries and

at t = 0 its initial value is usually assumed to be zero [40, 41]. Thus one has that

y(0) = x(0) and that y(t) = x(t) on (0, 1). Now we can introduce the SDE that

takes into account the necessary reflective boundary conditions. This equation375

is called reflected stochastic differential equation (RSDE) or reflected chemical

Langevin equation (RCLE), and for our representative model in differential form

it is given by

dy = a(y)dt+
√

b(y)dW + dk, (27)
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where y(t) ≥ 0, k(0) = 0, and k(t) = k0(t) − k1(t). The processes k0(t) and

k1(t) are non-decreasing functions such that380

k0(t) =

t
∫

0

1{y(s)=0}dk
0(s), (28)

and

k1(t) =

t
∫

0

1{y(s)=1}dk
1(s), (29)

with k0(0) = k1(0) = 0 This means that k(t) changes only when y(t) = 0

or 1 (note that the indicator variables 1{y(s)=0} and 1{y(s)=1} evaluate to 1 if

y(s) = 0 and 1, respectively). In other words, dk(t) disappears when y(t) does

not lie on the boundaries, and Eq. 27 reduces to Eq. 23 [44, 55]. When y(t) = 0,385

k(t) must push the process in the positive direction, while at y(t) = 1, k(t) must

push the process in the opposite direction

The first proof of the existence and uniqueness of solutions (y(t), k(t)) to

reflected stochastic differential equations of the type, Eq. 27, was provided by

Skorokhod [40, 41]. Normally, these types of equations are approximated using390

numerical methods, and a popular one is the projection method for RSDE [44].

This method is a simple extension of the EM scheme, given in Sec. 2.1.3. At

time t the non-reflected process is evaluated at the next step t + ∆t using the

traditional EM scheme (Eq. 26). If this value lies within the defined domain,

then the process at the next time step is set to this value. Otherwise it is equal395

to the orthogonal projection of this point onto the boundary of the domain. In

contrast to the EM scheme, it has been shown that the projection method has

a strong order of convergence of 1/2− σ, for σ > 0 [56, 57]. The lower rate of

convergence is normally attributed to the fact that, between t and t +∆t, the

process may leave the domain and lie again in the domain without its excursions400

having any effect on the value of the numerical approximation at t+∆t. Better

approximations are normally obtained by watching the path between t+∆t and

t and not allowing it to leave the domain. Therefore, in this work, we choose

to implement a method due to Lépingle which solves this problem by sampling
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from the exact distribution of the reflecting process at each time step [44]. This405

method has been shown to have a similar strong rate of convergence as that of

the EM scheme. This numerical scheme is summarised in the following section.

2.2.1. The Euler-Lépingle scheme for two-sided barriers

In references [44, 58], Lépingle introduced a feasible numerical scheme to

solve one-dimensional RSDEs for the simple situation in which a reflective plane410

exists at y = 0 (see supplementary information for details of this method). The

method is based on the following explicit expression

k0(t) = sup
0≤s≤t

[

−x(s)
]+

, (30)

where a+ = a ∨ 0, ∨ stands for maximum, sup stands for supremum, and x(s)

is the unreflected process governed by Eq. 23. The role of the process k0(t) is

to ensure that the modified process y(t) = x(t) + k0(t) remains greater than or415

equal to zero, where x(t) is the unreflected process described by Eq. 23 [40, 41].

However, although for the one-dimensional case with two-side barriers there

is also an expression for the corresponding reflecting process [56, 59], it is rather

cumbersome to be implemented in a numerical method. Nevertheless, in direct

analogy to Eq. 30, it is easy to see that k1(t) defined by420

k1(t) = sup
0≤s≤t

[

x(s)− 1
]+

, (31)

insures that the modified diffusion process y(t) = x(t)− k1(t) remains less than

or equal to one, where x(t) is also governed Eq. 23 [59].

The process k0(t) represents the pushing up from zero that is needed to

keep y(t) ≥ 0 for all time, and k1(t) represents the pushing down from 1 that

is needed to keep y(t) ≤ 1 for all time. Thus, after assuming that a path can

not be simultaneously close to the low and upper boundaries of the domain and

that in a small interval of time there is very small chance that lower and upper

reflecting process both have to work, Lépingle also proposed a numerical scheme

for the two-side barriers problem which is based on the Euler scheme together
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with Eqs. 30 and 31 [44]. For our case study, it is given by

yi+1 = 0 ∨
(

yi + a(yi)∆t+
√

b(yi)∆Wi + Ci+1

)

∧ 1, (32)

where

Ci+1 = 1{yi<ᾱ}

(

(Γ0
i − yi) ∨ 0

)

− 1{yi>β̄}

(

(Γ1
i + (yi − 1)) ∨ 0

)

, (33)

with

Γ0
i = sup

τi≤s≤τi+1

{−a(yi)(s− τi)−
√

b(yi)(W (s)−W (τi))}, (34)

and

Γ1
i = sup

τi≤s≤τi+1

{a(yi)(s− τi) +
√

b(yi)(W (s)−W (τi))}, (35)

where y0 = x0, the time discretisation is given by Eq. 25 (∆t = τi+1 − τi), and425

∆Wi = W (τi+1) − W (τi) =
√
∆t N (0, 1). Note that 0 < ᾱ < β̄ < 1 and ∧

stands for minimum. The indicator variables 1{yi<ᾱ} and 1{yi>β̄} evaluate to

1 if yi < ᾱ and yi > β̄, respectively. The simulation of this scheme requires

the simulation of the pair (∆Wi, Γ
0
i ) or (∆Wi, Γ

1
i ) at each time step. This

scheme is feasible because we already know how to simulate ∆Wi (increments430

of a Wiener process W ), and proceeding as for the case of a single barrier at

y = 0 (see supplementary material and references [44, 58]), one has that

Γ0
i =

1

2

(

Λi +
√

b(yi)ϑi + Λ2
i

)

, (36)

and

Γ1
i =

1

2

(

−Λi +
√

b(yi)ϑi + Λ2
i

)

, (37)

with

Λi = −a(yi)∆t−
√

b(yi)∆Wi, (38)

where the term ϑi is an exponential random variable with rate parameter435

(2∆t)−1. If one does not want to compute too many correction terms, one can

take ᾱ close to 0 and β̄ close to 1. In summary, the Lépingle or Euler-Lépingle

scheme for two barriers amounts to performing exact reflection on the lower

boundary on [τi, τi+1] when yi < ᾱ and exact reflection on the upper boundary
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on [τi, τi+1] when yi > β̄. Then, when at the end of the time (iteration) step the440

computed value is smaller that 0 or greater than 1, yi+1 is respectively given

the value 0 or 1. It was shown that the aforementioned numerical method has

a strong rate of convergence equal to 1/2 (similar to the EM scheme) [44]. In

the supplementary material we present a detailed description of the Lépingle’s

numerical scheme to solve one-dimensional RSDEs for the simple situation in445

which a reflective plane exists at y = 0. This description contains a proposition

that leads to Eqs. 36 and 37.

The rest of this article deals with the comparison of the EL numerical so-

lutions of the RCLE for our single species model, with the solutions obtained

using the mirror-boundary EM scheme, the CFPE with reflected boundary con-450

ditions, and the CME and SSA. We also analyse the rates of convergence of the

EL scheme.

3. Simulation results

For the purpose of testing the EL scheme, the choice of parameter values

(reaction constants) is motivated by our aim of testing the performance of this455

computational scheme close to the low or upper boundaries. Thus, all the

simulation results presented below are obtained with reaction constants giving

stochastic paths very close to the boundaries y = 0 and y = 1. In particular,

for the low boundary cases we consider, without loss of generality, parameter

values in line with Fig. 1(a).460

Figure 2 shows a case for parameter values giving paths very close to the low

barrier y = 0. Panel (a) of Fig. 2 presents a stochastic path from a simulation of

the CLE using a mirror-boundary EM scheme where, if the numerical solution

becomes negative, we consider as input to the next time step the absolute value

of it (one simply reflects the instances that result in negative values for y). On465

the other hand, panel (c) shows a stochastic path obtained solving Eq. 27 with

the more rigorous Euler-Lépingle (EL) scheme for two barriers. The plots of
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Figure 2: Panel (a) shows transient simulations obtained by solving the CLE using the mirror-

boundary EM scheme. This is a scheme that reflects back to the domain the instances where

y tries to cross the boundary 0. Panel (c) shows transient simulations obtained by solving

the RCLE with the EL scheme. Panels (b) and (d) show stationary PDFs obtained with

Eq. 22 and by solving the CLE with the mirror-boundary EM scheme (black solid lines) and

the RCLE with the EL scheme (red dashed lines – or gray on black/white prints). For the

PDFs we consider tini = 0 and tfin = T = 5000. For all simulations kads = 1, kdes = 1000,

krxn1 = 0, krxn2 = 10000, ζ = 4 (square lattice), and N = 1000. For the EL scheme we use

ᾱ = 0.1 and β̄ = 0.9. For time seres and PDFs we use ∆t = 2× 10−14.

panel (a) and (c) are just representative transients. The error introduced by the

mirror-boundary EM scheme becomes apparent if one calculates the respective

stationary probability density functions and compares them with Eq. 22 (panels470

(b) and (d)). The mirror-boundary EM scheme introduces a significant error

close to y = 0, with the probability profile appearing to artificially flatten-out

towards the boundary (see Fig. 2(b)). On the other hand, the shape of the

solution of Eq. 22 is better reproduced by the EL scheme (see Fig. 2(d)).

Figure 3 shows a case of paths very close to the upper barrier. In this case, we475
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Figure 3: Panel (a) shows transient simulations obtained by solving the CLE using the mirror-

boundary EM scheme. This is a scheme that reflects back to the domain the instances where

y tries to cross the boundary 1. Panel (c) shows transient simulations obtained by solving

the RCLE with the EL scheme. Panels (b) and (d) show stationary PDFs obtained with Eq.

22 and by solving the CLE with the mirror-boundary EM scheme (black solid lines) and the

RCLE with the EL scheme (red dashed lines – or gray on black/white prints). For the PDFs

we consider tini = 0 and tfin = T = 5000. For all simulations kads = 2000, kdes = 10,

krxn1 = 0, krxn2 = 0.1, ζ = 4 (square lattice), and N = 250. For the EL scheme we use

ᾱ = 0.1 and β̄ = 0.9. For time series and PDFs we use ∆t = 2× 10−14.

reduced the rate constants of desorption (kdes) and 2nd-order reaction (krxn2)

but increased the one for adsorption (kads). For simplicity we also assume that

krxn1 = 0. Figures 3(b) and (d) shows that, close to the upper barrier y = 1, the

EL scheme also reproduces very well the solution of the CFPE, while the mirror-

boundary EM scheme fails to reproduce it. In this case the mirror-boundary480

reflects the instances that result in values for y larger than one, while solving

Eq. 23 using the EM scheme (if the numerical solution becomes larger than

one, we consider as input to the next time step one minus the amount by which
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the solution overshoots the y = 1 boundary). As before, the path presented in

Figs. 3(a) and (c) are just representative transients.485

To continue elucidating the advantage of using the EL scheme to numerically

integrate Eq. 27, in the following section we numerically estimate the strong

and weak rates of convergence of it and compare them with the corresponding

rates of convergence of the traditional EM scheme.
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Figure 4: (a) Solutions of the RCLE obtained with the EL scheme for time steps ∆t = Rδt,

where R = 2s−1 for s = 1, 3, and 4. In this case N = 1000 and δt = 2−14 (exact solution). (b)

Strong error plotted in circles for N = 25, 50, 100, 250, 500, 1000, 2000 from top to bottom

(solid lines are guides to the eye). The assumed exact solution obtained with δt = 2−14 is

compared with other numerical solutions with ∆t = Rδt, where R = 2s−1 for s = 2, · · · , 7.

For all simulations kads = 1, kdes = 1000, krxn1 = 0, krxn2 = 10000, and ζ = 4 (square

lattice). We use ᾱ = 0.1 and β̄ = 0.9. In (b) dashed blue line and dotted red line are the

appropriate reference slope in each case. Note that ǫ = 1/N . The error was calculated from

Eq. 41 at time T = 1.

3.0.1. Convergence rates of Euler-Lépingle scheme490

In this section we use our illustrative model to calculate the rates of con-

vergence of the EL scheme. If yi is the approximate numerical solution of the

RCLE and y(t) is the exact one, we say that the EL scheme has strong order of

convergence equal to γ if there exists a constant C such that

E

(

∣

∣yi − y(t)
∣

∣

)

≤ C∆tγ , (39)
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for any fixed t = i∆t ∈ [0, T ] and ∆t sufficiently small. Note that E denotes495

the expected value. In our numerical analysis, we focus on the error at the end

point t = T , so we have

estrong = E

(

∣

∣yM − y(T )
∣

∣

)

, (40)

where M∆t = T . If Eq. 39 holds at any point inside [0, T ], it also holds at the

end point. Thus

estrong ≤ C∆tγ . (41)
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Figure 5: (a) Stationary probability density function of the CFPE obtained with Eq. 22

(back solid line) and three numerical stationary PDFs with ∆t = 2−12 (green dotted line ),

∆t = 2−14 (blue dash-dotted line), and ∆t = 2−17 (red dashed line) approaching it from

below. (b) Weak error plotted in circles for N = 25, 50, 100, 250, 500, 1000 from top to

bottom (solid lines are guides to the eye). The stationary mean obtained from Eq. 22 is

compared with the solutions of the RCLE obtained by using the EL scheme with ∆t = 2s−16,

for s = 1, · · · , 6. For all simulations kads = 1, kdes = 1000, krxn1 = 0, krxn2 = 10000, and

ζ = 4 (square lattice). We use ᾱ = 0.1 and β̄ = 0.9. In (b) dashed blue line and dotted

red line are the appropriate reference slope in each case. Note that ǫ = 1/N . The error was

calculated from Eq. 42 at time T = 5000.

500

For our calculations we first compute a discretised Brownian path over [0, T ]

with δt = 2−14 and use it to iterate Eq. 32. This iteration is considered as the

exact solution. Then, we iterate again Eq. 32 using the same Brownian path
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but for time steps ∆t = Rδt, where R = 2s−1 and s an integer number larger

than one. This ensures that the set of points in which the discretised Brownian505

path is based contains the points τi at which the EL solution is computed.

Figure 4(a) shows several EL solutions for parameter values that generate paths

close to the low barrier of y = 0. It is clear that the path with s = 1 (R = 1)

corresponds to the assumed exact solution, whereas the other two time series

show that effectively the EL solutions approximate the exact solution better510

as ∆t decreases. In Fig. 4(b) we plot the end point error as a function of

∆t for several system sizes N (or noise intensities ǫ). The figure shows that

the slope of the curves drops from 1 to 1/2 as the system size N decreases

(or the noise intensity ǫ increases). These results are consistent with a strong

order of convergence of the EL scheme changing between γ = 1 and γ = 1/2515

as the intrinsic noise intensity increases. This is in agreement with Lépingle’s

mathematical proof of a strong order of convergence of one-half [44] (note that

the commonly used projection method has a smaller strong order of convergence

[56, 57]). The order of convergence of γ = 1 in the small noise limit coincides

with the order of convergence of the deterministic Euler scheme which is usually520

implemented to solve Eq. 24 [45]. This exchange is due to the fact that the

noise terms of the EL scheme decrease relative to the deterministic one (or drift

coefficient), as N increases. Eventually, the noise terms are negligible and the

EL recursive equation approach the well-known Euler recursive equation. Note

that if the numerical scheme is convergent with order γ, and we make the step,525

∆t, l times smaller then the approximation error will decrease by a factor of lγ .

Therefore, the order of convergence equal one means that if we want to decrease

the error 10 times, we have to make the step 10 time smaller. The order equal

to one-half means that if we want to decrease the error 10 times, we have to

make the step 102 = 100 smaller. And the computational time grows by the530

same factor.

It is also interesting to explore the weak order of convergence of the EL

scheme. Figure 5(a) shows that stationary solutions of the EL scheme in fact

26



converge in probability to the stationary solution of the CFPE when ∆t de-

creases. In this work we calculate the weak error as the absolute value of differ-535

ence Est(yi) − Est(y), where Est(y) =
∫ 1

0 yPst(y) with Pst(y) given by Eq. 22,

Est(yi) is obtained with the EL scheme after averaging over several independent

iterations, and i is the iteration step of the scheme. Here, Est in the expectation

value at steady state. Thus, we say that at steady state the scheme has weak

order of convergence equal to γ if there exists a constant C such that540

eweak =
∣

∣Est(yi)− Est(y)
∣

∣ ≤ C∆tγ . (42)

Figure 5(b) shows simulation results that are consistent with a weak order

of convergence equal to γ = 1, for both, the weak and strong noise cases.

This order of convergence is equal to the weak order of convergence of the EM

scheme in the same limits [45]. It also agrees with the weak order of convergence

proved in [47] for the case of reflected stochastic differential equations or RSDEs545

with addictive noise. However, to the best of our knowledge, this is the first

numerical calculation of the weak order of convergence of the EL scheme in a

model involving a multiplicative noise term.

In Figs. 2 and 3 we showed that the RCLE numerically solved with the

EL scheme reproduces very well the solution of the CFPE. We also numerically550

verified that the EL scheme, in which every new step requires the easy simulation

of a Gaussian variable and a new independent exponential variable, yields the

same rates of convergences as in the usual EM scheme (see Figs. 4 and 5).

Thus, in the following sections we explore how accurately this scheme reproduces

solutions of the CME.555

3.1. Comparison of Euler-Lépingle scheme with steady state solutions of the

chemical master equation

In this work we assume that the approximation of the CME by the CFPE and

its corresponding SDEs only holds for larger N , and so for small N the diffusion

process approximation may no longer accurately reproduce the dynamics of560
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Figure 6: Comparisons of stationary discrete versus continuous distributions (CME versus

CFPE/RCLE) for a fixed-size lattice while varying kads. The stationary discrete distribution

functions were obtained by numerically solving the CME at steady state (bar plots). The

continuous stationary distributions are obtained from the solution of the CFPE (red dashed

lines – or gray on black/white prints) but also from the numerical integration of the RCLE

using the EL scheme (solid black lines). Low boundary cases (a), (b), and (c) are with

kads = 1, 3, and 6, respectively. In this situation, kdes = 1000, krxn1 = 0, krxn2 = 10000,

N = 1000, and ζ = 4 (square lattice). Upper boundary cases (d), (e), and (f) are with

kads = 2000, 1000, and 500, respectively. In this situation, kdes = 10, krxn1 = 0, krxn2 = 0.1,

N = 250, and ζ = 4 (square lattice), For the EL scheme tini = 0, tfin = T = 5000, and

∆t = 2−14. We use ᾱ = 0.1 and β̄ = 0.9. The discrepancy between the CFPE and RCLE

becomes small as ∆t decreases (not shown in figure).

the discrete-state Markov chain described the CME. Thus, in this section, we

compare stationary discrete distributions obtained with the RCLE solved using

the EL scheme or Eqs. 32-38 (black solid lines) and the CFPE or Eq. 22 (red
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Figure 7: Comparisons of stationary discrete versus continuous distributions (CME versus

CFPE/RCLE) for lattices of increasing size, N . The stationary discrete distribution functions

were obtained by numerically solving the CME at steady state (bar plots). The continuous

stationary distributions are obtained from the solution of the CFPE (red dashed lines – or

gray on black/white prints) but also from the numerical integration of the RCLE using the

EL scheme (solid black lines). Low boundary cases (a), (b), and (c) are with N = 500, 2000,

and 4000, respectively. In this situation, kads = 1, kdes = 1000, krxn1 = 0, krxn2 = 10000,

and ζ = 4 (square lattice). Upper boundary cases (d), (e), and (f) are with N = 50, 150,

and 300, respectively. In this situation, kads = 2000, kdes = 10, krxn1 = 0, krxn2 = 0.1, and

ζ = 4 (square lattice). For the EL scheme tini = 0, tfin = T = 5000, and ∆t = 2−14. We use

ᾱ = 0.1 and β̄ = 0.9. The discrepancy between the CFPE and RCLE becomes small as ∆t

decreases (not shown in figure).

dashed lines) with stationary distribution functions of the CME (bar plots). The

CME is solved numerically at steady state by solving a set of N + 1 algebraic565

equations along with steady state equations for the reflective boundaries (see
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Eqs. 5, 6, and 7). Figure 6 shows that for the low (upper) boundary the

agreement between the three approaches becomes progressively better as the

rate constant of adsorption ka increases (decreases). The inability of the RCLE

and CFPE to reproduce the CME results very close to the boundaries is due to570

the inherent continuous character of these two approaches. Figure 7 also shows

the stationary discrete distribution of the CFPE (red dashed lines), the RCLE

(black solid lines), and the CME (bar plots) for different system sizes N . It is

evident that, as expected, the two continuous descriptions approach the CME

as the system size increases and we move away from the boundaries.575

3.2. Computational savings

In order to analyse the computational savings of the EL scheme, we compare

the numerical solutions of the RCLE with individual stochastic realisations of

NA simulated using the so-called stochastic simulation algorithm (SSA) due to

Gillespie (we refer to Sec. 2.1.1 for a presentation of this method).580

Figures 8(a) and (b) summarise the results of these comparisons for the case

of paths very close to the low barrier. Panel (a) shows transients of NA obtained

with the EL scheme (red-dashed line) and the SSA (black-solid line). In panel

(b) we compare the mean simulation times of the EL scheme and the SSA. These

are the computational times needed to simulate the system over a fixed time585

interval. In general the figure shows that, although for the parameter values

considered, the SSA would be the more convenient choice when the system size

N is small, the RCLE approach offers computational savings when the system

size is large. Furthermore, it clearly shows that the computational time of the

SSA increases with the system size N , while that of the RCLE remains more or590

less constant. This leads to a crossover between the two lines at some critical

value of N . This is due to the fact that, while the computational cost of the

EL scheme is only dependent on the ∆t used, the SSA simulates each and

every reaction event in the system. The number of these reaction events before

reaching the end time of the simulation increases with the system size N (i.e.595
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Figure 8: (a) and (b) show simulations for the low barrier case, with kads = 6, kdes = 1000,

krxn1 = 0, krxn2 = 10000, and ζ = 4 (square lattice). (a) Comparison of the transients

obtained with the SSA (black solid line) and the RCLE integrated using the EL scheme (red

dashed line – or gray on black/white prints). In these simulations N = 500, ᾱ = 0.5, and

β̄ = 0.9. (b) Comparison of the mean computational times of the RCLE integrated using

the EL scheme with the SSA for parameter values leading to a path closes to y = 0. Mean

simulation times are obtained after 2000 independent realisations. In all cases simulations are

stopped at t = T = 1 and for the EL scheme we considered ∆t = 2−17 and β̄ = 0.9. (c)

and (d) show simulations for the upper barrier case, with kads = 2000, kdes = 10, krxn1 = 0,

krxn2 = 0.1, and ζ = 4 (square lattice). In this case, the description of panel (c) is similar to

panel (a), but with ᾱ = 0.1 and β̄ = 0.9. Panel (d) is similar to panel (d) but with ᾱ = 0.1.

see Sec. 2.1.1 and reference [16] for details). Figures 8(c) and (d) show that

something similar occurs for parameter values giving paths very close to the

upper barrier.

Finally, it is interesting to note that, for our single species reaction model,

it has been already demonstrated that simulating the CME is much faster than600

performing full on-lattice KMC simulations with fast diffusion [26]. Therefore
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the computational savings of RCLE versus full KMC simulations can be tremen-

dous for mesoscale systems (N of the order of a thousand or more sites).

4. Summary and conclusions

It is well-recognised that at the nano- and mesoscale, intrinsic noise or molec-605

ular fluctuations due to the erratic and incessant motion of atoms, has a strong

impact on reactions and diffusion of matter. This is the case for chemical reac-

tions occurring on catalytic surfaces [6, 7, 8, 9, 10, 11, 4].

The traditional tools used to theoretically investigate small catalytic systems

have been the on-lattice KMC method, the so-called well-mixed CME, and its610

statistically equivalent SSA approach. However, it is also well known that the

computational implementation of these approaches can be very expensive. Due

to its widely recognised computational speedup, an attractive alternative to the

aforementioned methods is the so-called CLE approach and its corresponding

CFPE. This approach has already been implemented to model different aspects615

of surface reactions. However, the validity and accuracy of the solutions of the

CLE have recently been questioned. In particular, it can be verified that in some

cases numerical solution schemes can give rise to negative or even imaginary

solutions. For many CLEs describing catalytic reaction systems this can happen

when the noise term is finite, due to e.g an adsorption process, at coverage close620

to zero.

In this paper we have contributed detailed benchmarks of reflected CLE

solution methods on a catalytic/chemical system, and have demonstrated the

numerical accuracy of the Euler-Lépingle (EL scheme) showing that the nu-

merical solutions thus obtained correctly reproduce physically realistic surface625

coverages. More specifically, we dealt with the issue of ensuring positivity of

the solutions of the CLE, while also imposing that coverage fractions of species

do not exceed the maximum value of unity (100%). To illustrate our results, we

considered a simple reaction network consisting of a single species. We demon-
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strated that the solutions are guaranteed to remain bounded in [0, 1] provided630

appropriate reflection terms are added to the traditional CLE. In this way we

introduced the reflected CLE or RCLE in line with the seminal Skorokhod’s

work [40, 41]. We showed that this formulation reproduces very well the diffu-

sion process whose probability density function is described by the CFPE with

reflected boundary conditions obtained after a second order truncation of the635

Kramers-Moyal expansion of the CME. We concluded that the RCLE consti-

tutes a physically realistic and mathematically consistent modelling framework

that can be effectively implemented to understand the role of intrinsic noise on

the complex and non-linear kinetics of surface reactions. Furthermore, to nu-

merically solve the RCLE we implemented the EL scheme. This is a numerical640

scheme that samples from the exact distribution of the reflected process at each

time step of the numerical integration. It only requires the easy simulation of a

Gaussian variable and an independent exponential variable [44]. We would like

to note that the RCLE approach is more general than the also mathematically

rigorous complex CLE method, in which however it is not clear how to impose645

the restriction that coverage cannot exceed 100% [34].

We then proceeded to calculate the error of the EL scheme. In particular, we

numerically demonstrated that the strong order of convergence of the scheme

increases from 1/2 to 1 as the size of the surface increases (resulting in lower

noise intensity). To our knowledge this is the first numerical verification of the650

strong order of convergence of this scheme in the small noise limit. Moreover,

the strong order of convergence of 1/2 that we obtained numerically coincides

with the strong order of convergence already proved by Lépingle [44]. We also

computed the weak order of convergence of the method at steady state condi-

tions and showed that the order is always 1. For this scheme, a weak order of655

convergence equal to 1 has been already proven for the case of additive noise

[47]. However no such convergence analysis has been carried out for a sys-

tem with multiplicative noise (as is the case of the model implemented in this

work). Thus, our computations suggest that, in contrast to the commonly used
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projection method, the EL scheme has the same rate of convergence as in the660

traditional Euler-Maruyama scheme [45]. This high order of convergence makes

the EL scheme very attractive for the computational integration of RCLEs.

We further compared the numerical simulations of the RCLE and the so-

lutions of the CFPE with solutions of the CME and the corresponding SSA.

We showed that in general the stationary probability distributions obtained by665

the integration of the RCLE using the EL scheme are in good agreement with

the solutions of the CME equation. The observed deviations, very close to the

barriers and for very small system sizes, are due to the discrete nature of the

system which can not be properly captured by the continuous CFPE and RCLE

approaches. Moreover, we demonstrated that for systems with a large number670

of sites (i.e large surfaces) the RCLE is more computationally efficient than the

SSA.

Although we have focused on a single species reaction network contain-

ing some representative reaction steps, the same methodology can easily be

extended to realistic surface reaction systems containing more than a single675

species. Moreover, the RCLE approach is an attractive methodology to numer-

ically investigate a number of realistic catalytic surface reactions where the im-

pact of intrinsic noise has been experimentally observed [6, 7, 8, 9, 9, 10, 11, 12].

Those catalytic systems can be analysed through reflected chemical Langevin

equations like the one presented in this work, and integrated using the Euler-680

Lépingle scheme.

It is interesting to mention that the effects induced by extrinsic or parametric

noise on macroscopic surface reactions have also been experimentally and the-

oretically explored [60, 61, 62]. Recently, several theoretical results concerning

the impact of molecular noise on electrochemical reactions occurring on nano-685

and mesoscale electrodes have been also reported [13, 14]. The methods we have

discussed in this work can be applied mutatis mutandis to these other catalytic

systems. For the case of external noise on macroscopic surfaces, the analysis

should include stochastic partial differential equations for reaction-diffusion pro-
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cesses [63]. In the case of electrochemical reactions on nanoscale surfaces, one690

has to consider that the rate constants are themselves time-fluctuating quanti-

ties in addition to the normal chemical variables [14].

As a final note on the applicability and future extensions of this work, we

would like to emphasise that the RCLE approach that we presented is valid

in the so-called fast-diffusion limit and for mesoscopic system sizes. If dif-695

fusion rates are not sufficiently large or if the system size is very small, one

should use the well-mixed CME or on-lattice CME with appropriate bound-

ary conditions. A future interesting extension of our work is concerning the

robustness/sensitivity of the LE scheme in the presence of model parametric

uncertainty. We can identify two ways/approaches to do this: (i) consider-700

ing ensemble of simulations over a distribution of rate constants, but with the

parameter set fixed for each simulation of the ensemble, (ii) treating the rate

constants as stochastic processes themselves. The first way would model para-

metric uncertainly when, for instance, we do not know the exact value for the

activation energy of an event, but we know a range. The second way could705

be relevant when inherent fluctuations in the pressure or temperature of the

system (or even species that are treated implicitly, within lumped parameters)

make the kinetic constants themselves random functions of time. This is an

interesting extension of our work that will be explored in the near future.

Acknowledgments The authors gratefully acknowledge funding from the Lev-710

erhulme Trust (project RPG-2014-161), as well as the use of the UCL High

Performance Computing Facility Legion@UCL and associated support services,

in the completion of the simulations of this work. Acknowledgments

References

[1] G. Ertl, Angew. Chem., Int. Ed., 47 (2008) 3524–3535.715

[2] R. Imbihl, New J. Phys., 5 (2003) 62.

35



[3] C. N. Satterfield, Heterogeneous Catalysis in Practice, New York: McGraw-

Hill, 1980.

[4] V. Johanek, M. Laurin, A. W. Grant, B. Kasemo, C. R. Henry, J. Libuda,

Science., 304 (2004) 1639–1644.720

[5] Y. S. Lim, M. Berdau, M. Naschitzki, M. Ehsasi, J. H. Block, J. Catal.,

149 (1994) 292–299.

[6] Y. Suchorski, J. Beben, R. Imbihl, E. W. James, D. J. Liu, J. W. Evans,

Phys. Rev. B., 63 (2001) 165417.

[7] Y. Suchorski, J. Beben, E. W. James, J. W. Evans, R. Imbihl, Phys. Rev.725

Lett., 82 (1999) 1907–1910.

[8] P. Grosfils, P. Gaspard, T. V. de Bocarme, J. Chem. Phys., 143 (2015)

064705.

[9] Y. D. Decker, D. Bullara, C. Barroo, T. V. de Bocarmé, Nonlinear Dynam-
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Supplementary material.
The Euler-Lépingle scheme for the one dimensional case, with

a low barrier at y = 0

M. Pineda1 and M. Stamatakis1

1Department of Chemical Engineering, University College London, Roberts Building,

Torrington Place, London WC1E 7JE, United Kingdom

If we are interested in the numerical simulation of

dy = a(y)dt+
√

b(y)dW + dk0, (1)

where y(t) ≥ 0, k0(0) = 0, and

k0(t) =

t
∫

0

1{y(s)=0}dk
0(s), (2)

on the interval [0,∞), we need to know how to simulate the reflecting process k0(t).

Note that the indicator variable 1{y(s)=0} evaluates to 1 if y(s) = 0. The process k0(t)

ensures that the modified process y(t) = x(t) + k0(t) remains in the interval [0,∞).

For this one-dimensional case, with a lower barrier at zero, there is an expression for

k0(t) [1–4]:

k0(t) = sup
0≤s≤t

[−x(s)]+ , (3)

where a+ = a ∨ 0, ∨ stands for maximum, sup stands for supremum, and x(s) is the

unreflected process governed by

dy = a(y)dt+
√

b(y)dW. (4)

That is, the smallest value that would have to be added to the unreflected process to

ensure that it remains in [0,∞) in the time interval [0, t] will be the maximum amount

1



by which the unreflected process crosses the zero boundary towards negative values

up until time t. Using this explicit expression together with the so-called Skorokhod

problem, Lépingle derived a numerical scheme based on the well-known Euler scheme

to solve Eq. 1, for the simple situation in which a reflective plane exists at 0. For our

system, this numerical scheme is outlined below:

yi+1 = yi + a(yi)∆t +
√

b(yi)∆Wi + Ci+1, (5)

where

Ci+1 = (Γ0
i − yi) ∨ 0 (6)

with

Γ0
i = sup

τi≤s≤τi+1

{−a(yi)(s− τi)−
√

b(yi)(W (s)−W (τi))}, (7)

and y0 = x0. The time discretisation is given by

0 = τ0 < τ1 < · · · < τi < · · · < τM = T, (8)

in the interval [0, T ], with ∆t = T/M = τi+1 − τi, τi = i∆t, and ∆Wi = W (τi+1) −

W (τi). The simulation of this scheme requires the simulation of the pair (∆Wi, Γ
0
i )

at each time step. This scheme is feasible because we already know how to simulate

∆Wi (increments of a Wiener process W ), and Lépingle proposed a way to simulate

Γ0
i based on the following result

Proposition 1 Let h = (h1, . . . , hr) and d be a real number. We consider the r-

dimensional Wiener process W (t) and the random value

Ψ(t) = sup
0≤ω≤t

(cω + h.W (ω)). (9)

We also consider the Gaussian random vector U = (U1, . . . , Ur) with mean zero and

covariance matrix tIr, where Ir is the r-dimensional identity matrix, and the expo-

nential random variable ϑ with parameter (2t)−1, with U and ϑ being independent.

2



Let

Z =
1

2

[

ct+ h.U +
√

|h|2ϑ+ (ct+ h.U)2
]

. (10)

Then (W (t),Ψ(t)) and (U,Z) have the same distribution or law. See [1,2] for a proof.

Applied to our system, Lépingle proposal gives

Γ0
i =

1

2

(

Λi +

√

b(yi)ϑi + Λ2
i

)

, (11)

where

Λi = −a(yi)∆t−
√

b(yi)∆Wi, (12)

where in the proposition t is replaced by ∆t = τi+1 − τi, c = a(yi), h =
√

b(yi),

and U = ∆Wi = N (0,∆t), where ∆Wi is a Gaussian random variable with mean

zero and variance ∆t. The new term ϑi is an exponential random variable with

rate parameter (2∆t)−1. Therefore, every new step requires the easy simulation of a

Gaussian variable ∆Wi and a new independent exponential variable. This numerical

method has a strong rate of convergence equal to 1/2 (similar to the EM scheme) [1]
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