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Summary

Integrated array tomography combines fluorescence and elec-
tron imaging of ultrathin sections in one microscope, and en-
ables accurate high-resolution correlation of fluorescent pro-
teins to cell organelles and membranes. Large numbers of
serial sections can be imaged sequentially to produce aligned
volumes from both imaging modalities, thus producing enor-
mous amounts of data that must be handled and processed
using novel techniques. Here, we present a scheme for auto-
mated detection of fluorescent cells within thin resin sections,
which could then be used to drive automated electron image
acquisition from target regions via ‘smart tracking’. The aim
of this work is to aid in optimization of the data acquisition
process through automation, freeing the operator to work on
other tasks and speeding up the process, while reducing data
rates by only acquiring images from regions of interest. This
new method is shown to be robust against noise and able to
deal with regions of low fluorescence.

Introduction

Recent technological advances in electron microscopy have
allowed the acquisition of extended volume data sets at high
resolution (Peddie & Collinson, 2014). One of these methods
is known as array tomography, whereby an array of ultrathin
sections cut through resin-embedded cells or tissues are im-
aged sequentially with a scanning electron microscope (SEM)
to build up a 3D stack of images through the volume (Micheva
& Smith, 2007; Wacker & Schroeder, 2013; Hayworth et al.,
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2014). In parallel, the field of correlative light and electron
microscopy has enabled the mapping of functional informa-
tion onto high-resolution ultrastructural electron microscopy
data, by detecting fluorescent biomarkers in the context of cell
structure (Kopek et al., 2012; Bell et al., 2013; Löschberger
et al., 2014; Johnson et al., 2015; Bykov et al., 2016; Mateos
et al., 2016; Wolff et al., 2016). Integrated light and electron
microscopy (ILEM) (Liv et al., 2013) combines both micro-
scopes in one device by placing a light microscope inside the
vacuum chamber of an electron microscope. It is possible to
perform integrated array tomography inside the ILEM using
in-resin fluorescence (IRF) sections, in which both fluorescent
and electron signals have been preserved (Peddie et al., 2014,
2017). This technique delivers data from both modalities with
almost perfect alignment.

Both modalities – light and electron microscopy – produce
enormous amounts of data that must be handled and processed
using novel techniques. ILEM has the potential to reduce the
volume of data acquired, by using the fluorescent signal to
target regions of interest (ROI) for subsequent electron mi-
croscopy imaging, a process designated ‘smart tracking’. This
kind of approach would save valuable time for researchers by
automating the process of integrated array tomography.

Software-assisted array tomography can significantly help
a microscopist in the procedures aimed at 3D digitization of a
sample. A software package based on a multiscale approach
has been developed (Hayworth et al., 2014) for array tomogra-
phy using SEM, directing the mapping and imaging of selected
regions across a library of sections. This software package,
WaferMapper, can manage the process of converting sections
from an automatic tape-collecting ultramicrotome tape, into
an image volume. An initial low-resolution mapping step
is suggested, using either an optical image or an electron
microscopy montage of the entire wafer. A second step
requires more detailed low-resolution images and is done
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(A) Inside the microscope (B) Overlay example

(C) Pipeline for automated light and electron microscopy

Fig. 1. Workflow for correlative and integrated light and electron microscopy. (A) Close up of vacuum chamber inside an integrated light and electron
microscope. Modified from Liv et al. (2013). (B) An example of an overlay of the fluorescence and EM data. Scale bar: 2µm. (C) Suggested pipeline for
automated light and electron microscopy.

automatically in the SEM. For use in ILEM, this and further
steps should be revised, because the electron beam destroys the
fluorescence signal and therefore cannot be used for mapping
purposes.

A recent review covered the free software tools for detection
of fluorescence cells in light micrographs (Wiesmann et al.,
2015). The authors studied and tested 12 image analysis tools,
including Icy (De Chaumont et al., 2012), CellProfiler (Carpen-
ter et al., 2006), ImageJ/Fiji (Schneider et al., 2012; Schindelin
et al., 2012) and Omero (Allan et al., 2012). A test user with
a life sciences background was asked to segment four fluo-
rescence micrographs with all the tools. For two challenging
data sets, they report that the best results were achieved using
a seeded watershed approach. However, these tests were not
performed using ultrathin IRF sections.

Techniques for IRF yield fluorescence images with high vari-
ability in intensity in each cell. This is partially due to inherent
variability in fluorescence expression levels, and partially as
a result of ultrathin sectioning which reduces the number of
fluorescent molecules available for detection per cell per sec-
tion. Furthermore, the wide variability in cell shape due to the
sectioning process makes the detection problem even harder.

Here, we present a novel algorithm workflow for smart
tracking of fluorescent cells in IRF sections in the ILEM for
semiautomated ILEM.

Contributions

� This paper presents a method for detection and localization
of fluorescent cells in ultrathin IRF sections, and makes it
available as a Matlab program with a graphical user in-

terface.1 To the best of our knowledge, there are no other
specialized methods that target this specific problem.

� There is no standard ground truth for this problem. Our
results show that the manual segmentations by expert
microscopists are highly subjective. Therefore, we show
the results of measuring algorithm-expert and inter-expert
variability.

� Our method is simple and uses standard tools that are avail-
able in most software packages and can be easily imple-
mented.

� The method introduced in this paper is shown to be robust
against noise and can deal with regions of low fluorescence
intensity.

Results

Image acquisition in the ILEM

In ILEM, light and electron images are obtained in the same
microscope, with the light and electron beams aligned to the
same axis (Haring et al., 2017) (Fig. 1A). The resulting images
need almost no postacquisition alignment (Fig. 1B). Therefore,
the fluorescence image can be used to locate cells for electron
imaging in an automated correlative pipeline (Fig. 1C). Serial
ultrathin sections from IRF blocks containing HeLa cells ex-
pressing GFP-C1 were imaged using the widefield fluorescence
microscope inside the electron microscope chamber (Peddie
et al., 2014), giving three data sets for subsequent algorithm
development (DS1, DS2 and DS3) (Fig. 2).

1 https://github.com/jdelpiano/irfCellSegmentation.
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(A) DS1 (B) DS2 (C) DS3

(D) Detail of DS1 (E) Detail of DS2 (F) Detail of DS3

Fig. 2. Widefield fluorescence micrographs of fluorescent cells in ultrathin IRF sections. (A–C) Fluorescence micrographs for an ultrathin section in the
data sets DS1, DS2, DS3, corresponding to three specimens. The scale bar in (C) is 20 μm long. (D–F) Zoomed-in cells from (A–C). Scale bar in (f): 5 μm.

Expert segmentation as ground truth

To provide ground truth data, five expert microscopists were
asked to segment the entirety of all GFP-positive cells in two
data sets (DS1 and DS2) by drawing around the edge of the flu-
orescent cytoplasmic signal in each image. The level of exper-
tise of each microscopist varied across a wide spectrum; some
were familiar with IRF images, whereas others were not. The
expert microscopists found an average of 14.1 cells per slice
image. The segmentation took 1.4 h per expert on average,
with the group delivering more than 100 cell segmentations
per hour (Fig. 3A). It was immediately obvious that there was
large variation in segmentations between experts (Fig. 3B),
and so comparisons were made of performance within the ex-
pert group before using the segmentations as ground truth to
judge the performance of automated cell detection algorithms.
The Dice index was used for numeric evaluation of the differ-
ence between expert segmentations (Fig. 3C). The goal of this
exercise was not to assess the segmentations of each expert,
but to study the prior knowledge involved and the subjective
component of their work. The mean interexpert DICE was only
67.7% on average (Fig. 3D and Table 1), demonstrating that
the problem is difficult to tackle even for experts.

Semi-automated segmentation using Ilastik

Ilastik (Sommer et al., 2011) was used to segment the fluores-
cent cells, to test the performance of current state-of-the-art
software for semi-automated image segmentation (Fig. 4). For
this experiment, the manual segmentation by one expert (see
example in Fig. 4B) was chosen as training data for pixel clas-
sification. Each segmented pixel was considered an example of
the class ‘cell’, and all the other pixels in the slice were consid-
ered examples of the class ‘not a cell’. Although Ilastik was able

to segment the cells in the images, there were two main classes
of errors, where adjacent cells were merged and where some
cell regions were marked as ‘not a cell’ (Fig. 4C). Though these
errors may be corrected by further refinement, the interaction
required in seeding the segmentation and in correcting errors
rules out the use of this semi-automated detection method
for automated on-the-fly detection during imaging as part of
a smart-tracking correlative pipeline. We therefore moved to
develop an algorithm that would automatically detect fluores-
cent cells in IRF images without additional user interaction.

Design and performance of new automated segmentation
algorithm

A workflow was designed for automated segmentation of fluo-
rescent cells in IRF images (Fig. 5), consisting of pre-processing
steps to remove noise and artefacts, a watershed-based algo-
rithm to detect and segment the cells, and post-processing steps
to clean up the resulting segmentations (Fig. 5A). The raw im-
age (Fig. 5B) was pre-processed to remove noise (an optional
step), and then uneven illumination was removed by back-
ground correction and enhancement of contrast (Fig. 5C). A
linear filter was used as a feature to highlight the borders of the
ring-like objects that result from the selected sample and stain-
ing (Fig. 5D). Markers for the presence of cells were obtained
as the brightest pixels in the feature image and saved (Fig. 5E).
Two more results were fed as inputs for the main watershed
step: the gradient magnitude of the image feature (Fig. 5F)
and candidate ‘non cell’ pixels (Fig. 5G). The initial segmenta-
tion that results (Fig. 5H) is converted into its bounding boxes
(Fig. 5I) and detections that are too large or small are filtered,
whereas merging detections that correspond to the same cell
(Fig. 5J).
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(C) Dice index (D) (D) Experts 1 and 2

(B) ROI bounding boxes for all experts(A) Expert 1 ROIs

Fig. 3. Ground truth segmentation of cell images. (A) Free-hand ROI segmentation of HeLa cells by Expert 1. (B) Bounding boxes for the cell segmentations
by the five experts were superimposed, giving one colour to each of the experts, showing the variability and subjective nature of their work. (C) The Dice
index (D , see definition in the main text) between two rectangular ROIs is a measure of how good a detection is, considering both a correct localization
and size. (D) The Dice index allows for a quantification of how subjective two expert segmentations are. Here, if Expert 1 is considered as the ground truth,
the average Dice between segmentations by Expert 1 and Expert 2 is D̄GT = 45%.

Table 1. Average Dice when comparing segmentations by experts (DS2,
image 1). Results under 60% are shown in bold text.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

Expert 1 100% 45% 74% 55% 80%
Expert 2 83% 100% 71% 70% 85%
Expert 3 83% 45% 100% 54% 70%
Expert 4 85% 56% 71% 100% 86%
Expert 5 79% 44% 63% 55% 100%

The algorithm was applied to detect cells in all three data sets
(Fig. 6). The Dice index was used to compare the output of the
automated segmentation algorithm (cell detections) to man-
ual segmentations by the expert microscopists (ground truth).

Figures 6(A, D, G and J) show the results for data set DS1, with
Dice calculated against one of the expert microscopists. The
Dice index ranges from 39% to 75%. Figures 6(B, E, H and
K) show the same results for DS2 where the Dice index varies
from 46% to 69%. Figures 6(C, F, I and L) show the output
of our method for DS3, where no ground truth is available.
Therefore, no Dice values can be obtained. Whereas the mean
interexpert DICE was 67.7%, the mean algorithm-expert DICE
was 68.08% (DS2, image 1), indicating that the algorithm
performs at least as well as expert microscopists (Table 2). The
cell detections by our watershed-based algorithm achieved an
average Dice index of 58%. The global average recall of 67%
means that our algorithm can find 67% of the objects in the
ground truth, with D > 50%. A global average precision of
63% is interpreted as 63% of our detections being correct and
with D > 50% (Table 3).

C© 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society., 00, 1–11
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(A) Original image (B) Expert segmentation (C) Ilastik result

Fig. 4. Semiautomated segmentation of cells using Ilastik. All the pixels from the manual segmentation of one expert were used as training examples for
Ilastik random forests. (A) Original image for DS1 - slice 3. (B) Segmentation by Expert 1. (C) Ilastik result. White arrows show some examples of two
types of errors: some groups of two or three close cells were merged as one and some cell parts were marked as ‘not a cell’ (green).

Development of a synthetic data set to model other fluorophore
distributions

As larger amounts of ILEM data become available, it will be-
come feasible to start applying recent machine learning tech-
niques, such as convolutional neural networks and deep learn-
ing. However, a large number of parameters implies a need for
a large number of training examples. In the absence of real
training data, a data set synthesized from a small amount of
real data was developed, similar to the ‘flying chairs’ data set
used for learning of optical flow (Dosovitskiy et al., 2015).
The synthetic cell data set developed for this purpose was a
simplistic representation of the cell population. A representa-
tive slice from a simulated fluorescence data set modelling a
cytoplasmic expression pattern with a slice thickness of 100
nm is shown (Figs. 7A–C). Based on our prior knowledge of
the ILEM images, slices were corrupted with Gaussian noise
with standard deviations σ = 20 (Fig. 7A), σ = 40 (Fig. 7B)
and σ = 60 (Fig. 7C). We then applied our watershed-based
method to these images (Figs. 7D–F) and compared the ground
truth (green) and automated segmentation results (magenta)
for the three images (Figs. 7G–I). Recall (r ) for the three noise
levels was between 86% and 88%. The precision ( p) range was
94–98%. This is a controlled experiment and the measures
here are much better than for the real data, as expected for a
simulated data set which is a simple representation of the real
problem. However, the simulated data set will expedite further
algorithm development against different fluorophore patterns
(for example, nuclear or punctate fluorophore localizations),
noise levels, cell shape and density.

Discussion

Our work shows that it is possible to automatically locate
ROI in ultrathin IRF sections, using the fluorescence signal to
identify cells for subsequent electron imaging.

Though the current state-of-the-art in shallow learning
platforms, Ilastik, was able to identify fluorescent cells, it re-
quired ground truth training data from an expert microscopist
as well as postcorrection to separate joined cells and to re-
classify small dim regions of fluorescence as cells, making it
unsuitable for on-the-fly detection of cells in an automated
correlative workflow.

For detection and definition of a region of interest for elec-
tron imaging in ILEM, it is better to err on the side of caution.
Acquiring more data than needed is preferred to missing fluo-
rescent cells, since subsequent exposure to the electron beam
destroys the fluorescence signal in all cell in the field of view.
This leads to some criteria to weight detection errors. A large
region of interest that contains an actual cell should be pre-
ferred over a region of interest that misses part of a cell. Like-
wise, a false positive detection where there is no cell should be
preferred over missing the detection of a cell. Regarding recall
(r ) and precision ( p), we should aim at having r as close to 1
as possible, as a top priority. As a second priority, p should be
as close to 1 as possible. Even operating with a conservative
‘if in doubt, image it’ policy, this could lead to a significant
reduction in the total area to be imaged, with concomitant
savings in data storage and processing requirements.

The cell detections by our watershed-based algorithm
achieved an average Dice index of 58%, which was an im-
provement over the performance of some expert microscopists.
Indeed, the interexpert Dice scores show that identification of
fluorescent cells in ultrathin IRF sections is a difficult problem,
even for humans. Though it is natural to expect some differ-
ences in ground truth segmentation results between experts,
our results showed that agreement was surprisingly poor. The
Dice scores revealed two groups of experts, which in postanal-
ysis proved to be those with biology and physics backgrounds.
The scientists with a biology background had a deeper under-
standing of the type of cells in the sample and were able to find
cells that look very dim in the data, or that were smaller than

C© 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society., 00, 1–11
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(A) Automated cell segmentation-detection algorithm

(B) Original image

(E) Cell markers

(H) Initial segmentation

(C) Preprocessed

(F) Gradient magnitude

(I) Detections

(D) LoG

(G) Background markers

(J) Filtered detections

Fig. 5. Development of automated cell segmentation workflow, based on the watershed algorithm, and partial results of algorithm steps. (A) Steps of
the algorithm. (B) Raw image. (C) Preprocessed image. (D) Laplacian of Gaussian (LoG) image feature. (E) Cell pixel markers. (F) Gradient of the image
feature. (G) Background pixel markers. (H) The watershed transform of modified gradient, superimposed transparently on the image. (I) Bounding boxes
for watershed labels. Arrows show two boxes corresponding to over segmentation in one cell. (J) Bounding boxes for watershed labels, after merging and
size filtering. The arrow shows a box coming from merging of two labels.

expected due to being a glancing section through the edge of
the cell.

For individual images in the data sets, interexpert Dice scores
reached an average of 67.7%, whereas mean algorithm-expert
Dice score reached 68.08%, indicating that the algorithm can
perform as well as experts on some images. However, algo-
rithm performance could undoubtedly be improved. As we
gather IRF images from a greater variety of cell types and flu-
orescent labels, it will be possible to incorporate additional flu-
orescence patterns into the algorithm to increase robustness
for multiple biological applications. In addition, 3D informa-
tion gathered from sequential serial sections will allow us to

identify the central slice for each cell, which would usually be
the largest area for a cell with a roughly spherical shape, and
use this position to track the cell outwards through the adja-
cent sections to capture and increase confidence in smaller,
dimmer cell edges. Further development and implementation
of the IRF cell simulation model will expedite this process in
the absence of real data.

Using the current algorithm, and future iterations that may
include machine learning approaches, we foresee a workflow
for automated integrated array tomography, whereby auto-
mated detection of fluorescent cells drives automated acquisi-
tion of electron images from cells of interest, which will speed

C© 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society., 00, 1–11
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Fig. 6. Results of detection for part of the HeLa cell data sets. Detections in solid magenta rectangles and ground truth in dashed green boxes. Left (A, D,
G, J): Some slices of data set DS1. Centre (B, E, H, K): Slices of DS2. Right (C, F, I, L): DS3, no ground truth available.

C© 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society., 00, 1–11



8 J . D E L P I A N O E T A L .

Table 2. Average Dice for sample segmentation results. Results for data
set DS2, image 1, are shown. See comments in main text.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Avg.

Image 1 64% 73% 64% 77% 62% 68.08%

Table 3. Average performance for our segmentation results.

Global Avg.

Dice 58%
Recall 67%
Precision 63%

up discovery research while minimizing the cost and compute
resource required for 3D correlative microscopy by focusing
data acquisition to specific ROI.

Materials and methods

Sample preparation

HeLa cells expressing a cytoplasmic GFP-C1 fluorescent tag
were embedded as described previously (Peddie et al., 2014).
Sections of 200-nm thickness were cut using an ultramicro-
tome and collected on indium-tin oxide-coated glass cover
slips, which are conductive and optically transparent.

Fig. 7. Watershed-based detection steps and dependence on noise level for simulated data. (A–C) Simulated fluorescence images with Gaussian noise
and σ = 20, and magnitude of bell-shaped background Abg = 80. A rolling ball filter was used to level the background. (B) Same configuration, but
Gaussian noise with σ = 40. (C) σ = 60. (D–F) Watershed-based segmentations, from the simulated images in (A–C). (G–I) Watershed-based detections
(solid magenta) and ground truth (dashed green).
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Data acquisition

ILSEM was performed on the same day as sectioning using
a SECOM light microscope platform (Delmic B.V., Delft) with
Nikon Plan Apo 40x/0.95 objective, mounted on a Quanta
250 FEG SEM (FEI Company, Eindhoven). GFP fluorescence
was stimulated by excitation with a 488-nm laser light source
and multiband filters (Di01-R405/488/594 dichroic, FF01-
446/532/646-25 emission; Semrock, Rochester, NY, USA).
Individual fluorescence images at an XY pixel resolution of
178 nm were collected from matched areas of five serial sec-
tions using an EMCCD camera (iXon 897 Ultra; Andor Tech-
nology, Belfast, U.K.). The exposure time was 2 s, and power
density was 0.5 W/cm2 at the sample level. For fluorescence
imaging, the chamber was maintained at a partial pressure
of 200 Pa, created using water vapour. To collect matching
SEM images of specific cells of interest at an XY pixel reso-
lution of 16.5 nm, the system was pumped to high vacuum
(∼ 10−3 Pa). The vCD backscatter detector (FEI Company,
Eindhoven) was used at a working distance of 5.8 mm, and in-
verted contrast images were acquired (2.5 keV, spot size 3.5,
30 μm aperture and pixel dwell time of 60 μs for a 1536 *
1103 pixel image frame).

Manual segmentation

Manual segmentation was performed using a touchscreen in-
terface (Wacom) in Fiji (Schindelin et al., 2012; Schneider et al.,
2012) with the freehand selection tool, and exported as ROIs
from the ROI manager. Five microscopists, with varied exper-
tise in light and electron microscopy, segmented five images
each from two data sets (DS1 and DS2).

Semiautomated segmentation using Ilastik

For pixel classification in Ilastik, six features were selected:
Gaussian smoothing, Laplacian of Gaussian, Gaussian gradi-
ent magnitude, difference of Gaussians, structure tensor eigen-
values and Hessian of Gaussian eigenvalues. Random forests
were trained for those features with ground truth data from
one of the expert microscopists.

Development of automated workflow

Our workflow for automated detection of cells was imple-
mented in Matlab and is available for download https://github.
com/jdelpiano/irfCellSegmentation. A graphical user inter-
face was developed for easy access of the workflow to users
with no experience in programming. The workflow consisted
of the following steps. First, an optional denoising step may
be applied to images if required. Due to its excellent results
in tests with simulated fluorescence, the Matlab implemen-
tation of the block-matching and 3D filtering algorithm was
used (Dabov et al., 2007), assuming a good estimation of the
noise level sigma. Widefield fluorescence microscopy images

of IRF sections tend to have a Gaussian-shaped background
intensity, which was reliably corrected with the rolling ball
filter. Due to the sample preparation procedures and fluores-
cent protein expression levels, some cells were very dim in
the fluorescence image, and therefore contrast limited adap-
tive histogram equalization (CLAHE) (Zuiderveld, 1994) was
applied to increase the intensity of the dimmer cells. Three
scalar fields were fed to the watershed transform as prepa-
ration for segmentation: (1) A threshold of 92% was used
in the cumulative density function to obtain the 8% bright-
est pixels in the feature image and save them as candidate
cell pixels, (2) the gradient magnitude for the feature image,
which was the result of applying a Laplacian of Gaussian lin-
ear filter with parameter σ = 7 to the preprocessed image and
(3) markers for background or absence of cells. The markers
for background were obtained from the image complement of
the cell markers. The distance transform was applied to that
complement and then the watershed transform was used to
find the skeleton of the structures observed in the distance
transform.

Dice index for inter-expert and algorithm-expert comparisons

To quantify comparison of cell segmentations, we defined the
Dice index (D ) between two segmentations as

D = (2A ∩ B)/(A + B), (1)

where A and B were the areas of the corresponding seg-
mentations, and A ∩ B is the area of the intersection of both
detections.

Given a set of cell detections and a set of ground truth
segmentations, a computer does not know which detected
cell corresponds to which cell in the ground truth. There-
fore, the calculation of the Dice index between them re-
sults in a matrix which may recall a confusion matrix. We
need to define the Dice index for each element in that mat-
rix as

Dij = (2Ai ∩ Bj )/(Ai + Bj ), (2)

where Ai and Bj are the areas of the i th detection and the
j th ground truth detection, and Ai ∩ Bj is the area of the
intersection of both detections. A Dice index matrix can be
defined by {Dij}i=1,...,Ndet; j=1,...,NGT , where Ndet is the number of
detections and NGT , the number of objects in the ground truth
set.

There are two intuitive choices for an average Dice, given
by Eqs (3) and (4), one with respect to the detections that have
been found D̄det and one with respect to the ground truth D̄GT .
These choices are not equivalent nor symmetric.

D̄det = 1
Ndet

Ndet∑

i=1

max
j

{Dij}, (3)
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D̄GT = 1
NGT

NGT∑

j=1

max
i

{Dij}. (4)

As we aim at defining the field of view for obtaining high-
resolution microscopy data, Dice indexes will be determined
over the rectangular bounding boxes for each ground truth or
estimated segmentation.

A cell segmentation will be considered correct as a detection
if the Dice index D between itself and a ground truth cell
detection is greater than a threshold, which was defined for the
experiments shown here as 0.5. To analyse the performance
of cell detection, we define two more quantities: recall r and
precision p , as

r = TP
TP + FN

, (5)

p = TP
TP + FP

, (6)

where TP is the number of true positives, which are the correct
detections of cells; FN, the number of false negatives, corre-
sponds to the ground truth objects that were not detected and
FP is the number of false positives. TP + FN is the number of
objects in the ground truth data set.

Development of a synthetic data set to model other fluorophore
distributions

In order to test the detection of various fluorescent patterns,
simulated cell data were generated with a custom MATLAB
program that randomly placed cells within the volume. Each
spherical cell had its size and brightness drawn from a Gaus-
sian distribution, and a cytoplasmic staining was represented
by a uniform intensity inside the sphere apart from an empty
spherical region denoting the nucleus. On top of this, Gaussian
noise was added at σ = 20, 40, 60 (Figs. 7A–C). The result-
ing volume was sliced into dimensions typical for this type of
experiment.

To obtain a ground truth, a bounding box was calculated
for each simulated object, before adding Gaussian noise with
standard deviation σ = 20, 40, 60. Figures 7(A–C) show the
result of preprocessing these images.
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mann, R. (2015) Correlative in-resin super-resolution and electron
microscopy using standard fluorescent proteins. Sci. Rep. 5, 9583.

Kopek, B.G., Shtengel, G., Xu, C.S., Clayton, D.A. & Hess, H.F. (2012)
Correlative 3D superresolution fluorescence and electron microscopy
reveal the relationship of mitochondrial nucleoids to membranes. Proc.
Natl. Acad. Sci. 109, 6136–6141.

Liv, N., Zonnevylle, A.C., Narvaez, A.C. et al. (2013) Simultaneous cor-
relative scanning electron and high-NA fluorescence microscopy. PLoS
One 8, e55707.
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