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Heuristic and optimal policy computations in the
human brain during sequential decision-making
Christoph W. Korn1,2,3 & Dominik R. Bach1,2,4

Optimal decisions across extended time horizons require value calculations over multiple

probabilistic future states. Humans may circumvent such complex computations by resorting

to easy-to-compute heuristics that approximate optimal solutions. To probe the potential

interplay between heuristic and optimal computations, we develop a novel sequential

decision-making task, framed as virtual foraging in which participants have to avoid virtual

starvation. Rewards depend only on final outcomes over five-trial blocks, necessitating

planning over five sequential decisions and probabilistic outcomes. Here, we report model

comparisons demonstrating that participants primarily rely on the best available heuristic but

also use the normatively optimal policy. FMRI signals in medial prefrontal cortex (MPFC)

relate to heuristic and optimal policies and associated choice uncertainties. Crucially, reaction

times and dorsal MPFC activity scale with discrepancies between heuristic and optimal

policies. Thus, sequential decision-making in humans may emerge from integration between

heuristic and optimal policies, implemented by controllers in MPFC.
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In biological scenarios, decision-makers should normatively
evaluate the long-term consequences of their actions
with respect to appropriate reward or cost functions.

Foraging for food, for example, requires sequential decision-
making to avoid starvation: foraging choices should ensure
that current and future metabolic reserves remain within
homeostatic boundaries. Humans in particular can use their quite
sophisticated—but bounded—decision-making capabilities to
take multiple future outcomes into account1–4. For instance,
when current conditions are bad, decision-makers need to
determine whether to forage immediately, or to wait until
conditions improve; if current internal energy resources are
low, however, waiting may lead to starvation. Conceptually
similar multi-step decision problems arise in many different
real-world contexts, for example, in business decisions when
investors have to balance immediate and delayed threats of
bankruptcy.

Sequential decision-making requires searching over a tree of
probabilistic future states. During foraging, avoiding starvation
depends on the success of current and future foraging attempts,
on the internal energy state of the decision-maker, as well as on
momentary and expected foraging opportunities. A model-based
tree search should take all these variables into account—with
more branches to be evaluated the longer the considered time
horizon. These intricate computations may exceed the capacities
of the human brain and entail costs in terms of opportunities
foregone due to the passage of time5–7. Decision-makers could
simplify such quandaries by resorting to model-free heuristics8, 9

and by restricting the set of considered options10 and actions11, in
order to approximate optimal multi-step policies without full tree
search. For example, foraging options’ momentary probabilities
or magnitudes imperfectly signal expected starvation probability.
A considerable literature has addressed how humans make
choices on simple, economic gambles with one to three steps12–16,

but it is much less well known how humans evaluate
deeper sequences2, 17.

Here, we asked to what degree humans rely on optimal vs.
heuristic decision policies, and how these are computed neurally.
We hypothesized optimal policy computation in multimodal
regions of the medial prefrontal cortex (MPFC) known to inte-
grate economic decision variables and to evaluate prospective
outcomes18, 19. Our results show that participants rely on a
heuristic decision policy as well as on the optimal
policy—both of which relate to blood-oxygen-level dependent
(BOLD) signals in MPFC regions. The discrepancies between the
two employed policies scale with reaction times (RTs) and dorsal
MPFC activity.

Results
Sequential decision-making was framed as virtual foraging. We
developed a novel task to investigate how humans evaluate
complex sequences of decisions (Fig. 1). This virtual foraging task
embodied a Markov decision process20 (Fig. 2) and contained
decision-making aspects of foraging while neglecting biophysical
affordances such as actual energy consumption and physical
efforts. In line with similar monkey and human tasks2–4, 17, 21–25,
it thus abstracts from actual foraging26, 27 to reflect generic
properties of sequential decision-making.

In our task, participants were endowed with varying “energy
resources,” depicted graphically as an energy bar. Participants
were financially rewarded if they “survived” over a maximum of
five time steps, called “days,” within a given mini-block of trials,
called “forest” (Fig. 1). That is, participants only received a payoff
if at the end of five consecutive decisions within a forest their final
energy level was above zero. On each day, they decided between
“foraging” and “waiting.” Foraging entailed either an energy gain
or loss, with a graphically signaled probability. Waiting resulted
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Fig. 1 Sequential decision-making task in a virtual foraging frame. Participants “forage” within 240 different types of mini-blocks, called “forests”. They are
monetarily rewarded for averting “starvation” (keeping “energy bar” above zero) at day five in the forest (i.e., the last trial within a mini-block). The initial
energy is reset in new forests. In the forest phase, participants see the two foraging environments or “weather types,” that define the forest. This
information is necessary so that participants can infer all possible future states. No choice is required during the forest phase. In the following time steps,
called “days,” within a forest, each of the two weather types occurs with a probability of 0.5. We depict foraging environments in the form of spatial grids
(to allude to food distribution in natural environments). The numbers of colored dots within a subfield of the grid illustrates the magnitudes of potential
gains and losses. If participants choose to forage, each of the 10 subfields of the grid has a 0.1 probability of being realized. Thus, the probability of foraging
success is the proportion of subfields containing gains. Here, the probability of foraging success is 0.6 in the left grid and 0.1 in the right grid; and the gain
magnitude is 1 point in both. Loss magnitudes are always 2 points. In the example, the left grid depicts “good” weather and the right grid “bad” weather. In
the choice phase of each day, participants decide between foraging and waiting, which entails a sure loss of one energy point. In the outcome phase,
participants see the impact of their choice on their energy state. In the depicted example, the participant chose to forage and successfully gained 1 point.
The yellow square depicts the realized subfield. After the choice phase and a fixation period, either a new day in the same forest or a new forest starts. The
number of days past in a forest is not shown to participants. See Fig. 2 for mathematical description of the task. See Table 1 and Table 2 for explanations
and example parameters according to Fig. 1
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in a certain but smaller energy loss. To create non-trivial optimal
policies, one of two environmental conditions, called “weather
types,” occurred randomly with a probability of 0.5 on a given day
within a forest. The current weather type was signaled before
participants made their choice. Each forest was specified by an
initial energy endowment and a distribution of gain magnitudes
and probabilities for each of the two weather types (Fig. 2; see
Table 1 for a list of all heuristic variables and Table 2 for all
variables related to the optimal policy; see Supplementary Note 1
for written task instructions).

We computed the a priori optimal policy that minimizes
starvation probability according to a finite time horizon of five
days for each combination of energy state, weather type, and day
within a forest. Unless otherwise specified, we refer to the optimal
policy according to the normative finite time horizon of five steps.
To account for noise in the decision process, we used a
probabilistic version of the optimal policy (i.e., the underlying
value difference between foraging and waiting, which is the
decision variable) to explain participants’ choices, RTs, and fMRI
data.

Participant’s choices followed primarily a heuristic policy. We
tested how well the optimal policy and ten different heuristic
decision variables explained participants’ choices (see Table 1 and
Table 2 for explanations and examples of these variables,
respectively). Normatively, participants should compute the
optimal policy according to the remaining number of days, out of
the five days within a forest. By definition, heuristics are myopic

and do not rely on a full evaluation of all possible upcoming
outcomes. As heuristics, we considered variables related to the
momentary foraging options (probability of foraging success,
magnitude of the possible gain, their combination in form of
expected value, EV), the current internal energy state (continuous
or binary), the current weather conditions, and the number of
days in the current forest. Additionally, we tested two heuristic
policies (“change in states” and “win-stay-lose-shift”) that derive
from past states. We finally included a myopic policy that is
optimal for a horizon of one day. By design, the optimal policy
shares some predictions with several of the considered heuristics
most notably the probability of foraging success (Supplementary
Figs. 1, 2). However, average shared variance, derived on a trial-
by-trial basis across participants, was sufficiently low to dissociate
which variables accounted for participants’ decisions (Supple-
mentary Figs. 1, 2).

In a Bayesian model comparison of eleven logistic regression
models, the signaled probability of foraging success emerged as
best single predictor of participants’ choices across two samples of
participants (fMRI sample: n = 28; Bayesian model comparison,
protected exceedance probability of winning model, PEP = 0.984;
Fig. 3a; Supplementary Table 1; behavioral sample: n = 21; PEP =
0.999; Supplementary Fig. 3a; Supplementary Table 2). Visual
inspection of plots showing posterior predictive checks demon-
strate that, also qualitatively, no other model with a single
predictor captured choice data as well as the model with the
probability of foraging success (fMRI sample: Fig. 4a; behavioral
sample: Supplementary Fig. 4a). This included models relying on
the optimal policy or on a heuristic based on expected value (see
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Fig. 2 Markov decision process underlying the sequential decision-making task. a Example transition matrices used for determining the value differences
between the two choice options according to the optimal policy (corresponding to the forest in Fig. 1). The entries in the matrices are the probabilities to
transition from the initial energy state (rows) to the final energy state (columns) in one step. These entries (and their positions within the matrix) depend
on the weather types of the forests and on the choice patterns. Many of the entries are 0, which means that transitions between the respective initial and
final states are impossible. The forest is specified by the probability of foraging success p (with q= 1−p) and the magnitude of gains and losses. These
magnitudes are reflected in the positions of the probabilities within the matrix. Choices are reflected by the probabilities for foraging f and waiting w (with f
= 1−w). The probabilities f and w depend on the initial state and are indexed accordingly. Additionally, the optimal policy depends on the number of
remaining days in the forest since there is a finite horizon with a maximum number of five days. Starvation is absorbing, which is why the probability of
staying in state zero is 1. There are two corresponding transition matrices for the two weather types. Backward computation is used to determine the value
differences between the two choice options according to the optimal policies. That is, the values of the two choice options are first evaluated according to
the last day in the forest, then according to the second-last day, etc. b The state transition diagram (for one weather type) corresponding to the example
transition matrix in a. Large circles depict (energy) states and small filled circles depict the two actions to choose from. Arrows indicate transitions between
states. For clarity, only one weather type is shown. In total, each forest type comprises 12 states= 6 (energy states) × 2 (weather types)
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Table 1 Overview of heuristic variables

Variable
name

Explanation Theoretically possible
values of this variable in
the task

Example value of this variable (as in
Fig. 1 choice phase)

Grand mean of
variable across fMRI
participants (mean
within participant
SD)

Probability of
foraging
success (p
with q= 1−p)

Momentary probability that the
participant can gain a certain magnitude
of energy points (vs. losing two energy
points). The participant can infer this
probability by counting the number of
subfields with gains (i.e., subfields with
blue dots in Fig. 1) in the grid that
contains ten subfields.

0.1–0.9 in steps of 0.1 0.6 0.55 (0.24)

Magnitude of
foraging gain
g

Momentary magnitude of the possible
gain if foraging is successful. This is
depicted by the number of (blue) “gain
dots” per subfield of the grid.

0–4 in steps of 1 1 1.97 (1.41)

Expected
value (EV) of
the foraging
option

Momentary probability of foraging
success multiplied by the corresponding
magnitude of foraging gain g plus (1-
probability of foraging success)
multiplied by the loss incurred for
unsuccessful foraging, which is always
−2. The EV of the waiting option is
always −1.

−1.8 to 3.8 −0.2 −0.14 (1.13)

Continuous
energy state
s

Current state of the energy bar. (An
energy state of zero is synonymous with
starvation and therefore participants
cannot make choices at an energy state
of zero.)

1–5 in steps of 1 2 2.97 (1.09)

Binary
energy state

When the continuous energy state is
one, waiting leads to sure death. In
higher energy states, waiting will never
lead to starvation. The variable “binary
energy state” distinguishes between
these situations (1=energy state is one;
0=energy state is two or higher).

Binary variable: 1 or 0 0 “waiting does not lead to starvation” 0.07 (0.26)

Weather
type

Each forest type specifies two weather
types that can be roughly classified as
“good” or “bad” depending on whether
they imply a lower or higher probability
of starvation. Weather types are relative
to each other (i.e., a given combination
of p and g can be the “good” weather
type if paired with a relatively worse
weather type with lower p and g, or the
“bad” weather type if paired with a
relatively better weather type, higher p
and g).

Categorical variable: 1
“bad” or 2 “good”

2 “good” 1.50 (0.5)

Days past in
a forest (i.e.,
number of
time steps t)

Participants remain within a given forest
(i.e., mini-block) for up to 5 days (i.e.,
trials). The number of days is not
explicitly depicted on the screen but
participants can easily infer it by
counting the number of choice phases
after the last occurrence of the forest
phase.

1–5 in steps of 1 1 1.57 (0.91)

Change
between past
and current
energy states

Participants might track the difference
between their energy states in the past
trial and the current trial (within and
across forests).

−2 to +4 in steps of 1
(maximum loss was 2
energy points & maximum
gain was 4 energy points)

Not available in Fig. 1 because the
change depends on the previous trial
that is not depicted. In the next choice
phase, the change in energy states is +1.

−0.90 (1.55)

“Win-stay-
lose-shift”
(WSLS)
strategy

Participants might use a strategy, which
prescribes foraging if the energy state
increased with respect to the past trial
and waiting if the energy state
decreased. WSLS is a binarized version
of the change between past and current
energy states

1 “energy state increased”
or 0 “energy state
decreased”

Not available in Fig. 1 because previous
trial not depicted. In next choice phase
WSLS is 1 “energy state increased”

0.38 (0.48)
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also Supplementary Note 2). Since decisions were not perfectly
explained by this heuristic, we next asked if the optimal policy or
any other heuristic contributed to participants’ choices.

The optimal policy explained additional variance in choices.
After accounting for the best heuristic, choices in the larger fMRI
sample (n = 28) were best explained by the a priori optimal policy
with a horizon of five time steps (Bayesian model comparison,
PEP = 0.936; Fig. 3b; Supplementary Table 1). This model with
two predictors also won in an extensive model comparison of all
55 pairs of candidate variables (Bayesian model comparison, PEP
= 0.840; Supplementary Table 3). Visual inspection of plots
showing posterior predictive checks confirm that the winning
model qualitatively captured participants’ behavior (see Fig. 3c, d;
Fig. 4 for the winning model; see Supplementary Figs. 5–8 for
extended posterior predictive checks of all models and for para-
meter estimates of a full model including all candidate variables).
Additionally, models including interactions between the most
important heuristics did not provide a better fit than the model
with the optimal policy (i.e., the model including the probability
of foraging success and the optimal policy reached PEP = 0.984;
Supplementary Table 1). There was no decisive evidence
(according to protected exceedance probability; PEP = 0.549) that
a model with three variables explained choices better than the
best model with two variables (Supplementary Table 1).

In the (smaller) behavioral sample (n = 21), we found that
protected exceedance probabilities did not decisively distinguish
between two-variable models including the optimal policy, or the
binary energy state heuristic, respectively (Bayesian model
comparison, PEP = 0.298). However, log-group Bayes factors
provided decisive evidence for the same model as in the fMRI

sample, including the best heuristic and the optimal policy (log-
group Bayes factors between best and second-best model >3;
Supplementary Table 2; Supplementary Table 4; Supplementary
Fig. 3c, d; Supplementary Fig. 4b, c; Supplementary Fig. 9). Thus,
overall our model comparisons across the two groups decisively
favored the optimal policy as a predictor of participants’ choice in
our task. Nevertheless, it is possible that on specific subsets of trial
types (e.g., with energy state one), different variables predicted
behavior better (see Supplementary Figs. 6–8; see Supplementary
Note 3 for exploratory analyses on the relationship of task
behavior, IQ, and questionnaires scores).

Taken together, model comparisons suggested that partici-
pants’ choices were often predicted by a heuristic policy, but
additionally choices followed the normatively optimal policy.

Participants’ choices took five future states into account. Using
the optimal policy implies computing future states. We per-
formed detailed analyses to determine how many days partici-
pants thought ahead in the task. Participants were incentivized to
consider a time horizon of five days. In the main task they would
often not finish five days (to enhance fMRI design efficiency),
but they were instructed that their payoff depended only on a
random subset of ten forests that would be completed outside the
scanner. When comparing models with different horizons,
we found that participants’ choices were indeed best described
by a time-horizon of five days (Bayesian model comparison,
fMRI sample: n = 28; PEP = 1.000; behavioral sample: n = 21;
PEP = 0.986; see Supplementary Fig. 10 for an illustration of the
different prescriptions made by optimal policies with different
time horizons and Supplementary Fig. 11 for model compar-
isons). This finding was corroborated when analyzing subsets of

Table 2 Overview of variables related to the optimal policy, choice uncertainties, and discrepancy

Variable name Explanation

Optimal policy (h-5), i.e., value difference between foraging and
waiting according to the optimal policy with a horizon of five days.

Ideally, participants should minimize the probability of starvation after five
days. The optimal policy per se specifies the probabilities with which
participants should forage (or wait) given the current internal state and the
current time step. Since the optimal policy per se relies on taking the “true”
maximum over the value difference between the two choice options, it either
prescribes waiting or foraging (or is indifferent between the two choice
options). We therefore use the continuous value difference between foraging
and waiting as predictors of participants’ choice, RT, and fMRI data. The
optimal policy can also be calculated according to a horizon different from the
five days incentivized in our task. These horizons, and notably a horizon of only
one step (1-h), are not normative in our task (see Supplementary Fig. 10 for the
prescriptions according to different horizons).

Choice uncertainty: probability of foraging success Cases in which the prescriptions of the employed heuristic policy are closer to
0 (i.e., waiting) or 1 (i.e., foraging) are less uncertain than cases in which the
prescriptions lie in-between. We used the mean parameter estimates of the
behavioral sample to derive the relevant logistic function (cf. Supplementary
Fig. 3c). The derivative of this logistic function is used to index choice
uncertainty.

Choice uncertainty: optimal policy (h-5) In analogy to the choice uncertainty of the employed heuristic, the optimal
policy can confer more or less choice uncertainty. In some cases, the absolute
value difference between foraging and waiting is small (i.e., it does not matter
which option is chosen). In other cases, the value differences clearly indicate
that foraging or waiting should be chosen. As for the choice uncertainty of the
heuristic, derivatives of the logistic function obtained from the mean parameter
estimates of the behavioral sample are used (cf. Supplementary Fig. 3d).

Discrepancies., absolute differences in the prescriptions of the two
policies

The optimal policy and any heuristic policy make prescriptions about whether
foraging or waiting should be chosen (according to logistic functions that relate
the respective decision variables to choices). In some cases, optimal and
heuristic policies make quite distinct prescriptions (high discrepancy), whereas
in others they make quite similar prescriptions (low discrepancy).
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trials in which policies with different horizons made opposing
prescriptions (t-tests against midpoint of choice proportion: fMRI
sample: n = 28; absolute t-values> 5.2, all p’s< 10−4; behavioral
sample: n = 21; absolute t-values> 1.9, all p’s< 0.065; Supple-
mentary Table 5).

Participants used the overall best heuristic available. Does the
probability of foraging success constitute a useful heuristic? This
heuristic shared the largest amount of variance (0.37) with the
optimal policy on a trial-by-trial basis and thus the two were
related by design (Supplementary Figs. 1, 2). Additionally,
simulations showed that basing one’s decision exclusively on this
metric would lead to a lower starvation rate (0.15) than any other
of the considered metrics (all other starvation rates >0.17; Sup-
plementary Fig. 12; Supplementary Note 4). Thus, participants
relied primarily on the best available heuristic variable. Notably,

this heuristic was neither primed by our task instructions nor
particularly visually salient (Supplementary Note 5).

Reaction times increased with choice uncertainties. Models of
choice data indicate that participants used both a heuristic policy,
i.e., the probability of foraging success, and the optimal policy.
Consequently, we predicted that RTs should reflect the choice
uncertainties associated with these two variables. (These uncer-
tainties were calculated on the basis of independent data from the
behavioral sample.) Indeed, RTs were slower when choice
uncertainties were high (see Fig. 5a–d for the fMRI sample and
Supplementary Fig. 13a–d for the behavioral sample; see Sup-
plementary Fig. 6 for mean parameter estimates and Supple-
mentary Table 6 for statistics from a linear mixed effects model;
fMRI sample: n = 28; uncertainty of probability of foraging suc-
cess: t = 15.34, p< 10−15; uncertainty of optimal policy: t = 2.68,
p< 0.05; behavioral sample: n = 21; uncertainty of probability of
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Fig. 3 Choice data and models of the fMRI sample. a Model comparisons show that the probability of foraging success was the best single predictor of
participants’ behavior. Main plots depict fixed-effects analyses using log-group Bayes factors based on Bayesian Information Criterion (BIC) relative to
model #1. Insets show random-effects analyses using protected exceedance probabilities (PEP) with the winning model marked. See Table 1 and Table 2 for
lists that specify the task variables and thus the models tested here. b Crucially, the a priori optimal policy according to a time horizon of five days best
explained the remaining variance in participants’ choices. c The winning model, which includes the probability of foraging success and the optimal policy,
captures the empirical relationship between participants’ average choices and the probability of foraging success. d The winning model captures the
relationship between participants’ average choices and the optimal policy according to a horizon of five days (binned value differences of foraging vs.
waiting). In the left-hand panels, blue font denotes the winning models. In the right-hand panels, error bars are SEM. Per data bin, circles depict mean
empirical data points and lines and crosses depict mean model predictions (averaged for simulated data according to each participant’s model fit). In
several cases, error bars are smaller than the circles, which scale with the average number of trials contributing to the respective data points. See
Supplementary Fig. 3 for the behavioral sample. See Supplementary Tables 1–4 for model comparisons. h-5: horizon of 5 days; h-1: horizon of 1 day; cont.:
continuous; bin.: binary
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foraging success: t = 5.80, p< 10−5; uncertainty of optimal policy:
t = 1.86, = 0.062).

Following the heuristic entailed fast choices. Given that parti-
cipants’ choices appear to use heuristic and optimal policy for
making their decision, the question arises how these two are
computed in relation to each other. As the heuristic is easier to
determine than the optimal policy, we predicted that choices
following the heuristic policy should be faster than those fol-
lowing the optimal policy. We identified the subset of trials in the
fMRI sample in which the two policies made opposite prescrip-
tions. More specifically, we computed the policies from the
behavioral sample and applied these policies to the fMRI sample
to select trials with opposite choice prescriptions. Within this
subset (mean proportion of trials over participants± standard
deviation, SD = 0.19± 0.02), mean RTs for trials in which parti-
cipants’ choices followed the heuristic policy were faster than for
trials in which choices followed the optimal policy (mean dif-
ference± SD = 90.7± 109.2 ms; t(27) = 4.40; p< 0.001; p< 0.001;
mean predicted choices according to the used policy did not differ
between these trials; p> 0.4).

In addition, a linear mixed effects model of RT data provided
evidence for a relatively more pronounced influence of the choice
uncertainty of the heuristic compared to the choice uncertainty of

the optimal policy (as can be seen by comparing the t-values for
the uncertainty of the heuristic vs. the t-values for the uncertainty
of the optimal policy; fMRI sample: 15.34 vs. 2.68; behavioral
sample: 5.80 vs. 1.86; Supplementary Table 6). That is, choice
uncertainty under the heuristic policy related more strongly to
RTs than choice uncertainty under the optimal policy.

Reaction times increased with discrepancies between policies.
Next, we addressed whether both policies are integrated. In this
case, decisions should take longer when the two policies make
discrepant prescriptions. We quantified these discrepancies
between the two variables as the absolute differences in choice
probabilities. Indeed, decisions were slower when discrepancies
between the decision variables were larger (linear mixed effects
model, fMRI sample: n = 28; t = 6.55, p< 10−5; behavioral sample:
n = 21; t = 2.94, p< 0.01). This effect was present in addition to
influences of choice uncertainties (fMRI sample: Fig. 5e; beha-
vioral sample: Supplementary Fig. 13e).

Visual inspection of plots showing posterior predictive checks
indicate that log-transformed RT data were qualitatively captured
by a model that included the heuristic and the optimal policies
themselves, their associated choice uncertainties, and the
discrepancies in the choice probabilities of the two policies (see
Fig. 4; Supplementary Figs. 6, 7; Supplementary Fig. 13).
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Fig. 4 Comparison of choice data to different model predictions in the fMRI sample. a Posterior predictive checks show that—among the models with a
single predictor—the model comprising the probability of foraging success captures choice data better than any of the other models. b Posterior predictive
checks show that—among the models with two predictors—the model comprising the probability of foraging success and the optimal policy (at a horizon
of 5 time steps) captures choice data better than any of the other models. Overall most models make quite similar predictions since they all include the
probability of foraging success. c Posterior predictive checks show that the model comprising both the probability of foraging success and the optimal
policy (horizon-5) provides a better fit to the data than the model that only comprises the probability of foraging success. Error bars are SEM. Per data bin,
circles depict mean empirical data points and colored lines and crosses depict mean model predictions (averaged for simulated data according to each
participant’s model fit). In several cases, error bars are smaller than the marker sizes, which scale with the average number of trials contributing to the
respective data points. See Table 1 and Table 2 for lists of all variables. See Supplementary Fig. 4 for the behavioral sample. See Supplementary Fig. 5 and
Supplementary Fig. 9 for posterior predictive checks of the winning model with choice data split according to the nine other heuristics and combinations
thereof. See Supplementary Fig. 6 for parameter estimates of a full model including all candidate variables. See Supplementary Fig. 7 and Supplementary
Fig. 8 for further posterior predictive checks of the winning model with choices split jointly according to the energy state and the probability of foraging
success or the weather type. See Supplementary Fig. 10 and Supplementary Fig. 11 for comparisons of different time horizons. h-5: horizon of 5 days; h-1:
horizon of 1 day; cont.: continuous; bin.: binary
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Motivated by this model of RT data, we also tested whether
interactions of choice uncertainties or discrepancy influenced
choices but found no decisive effects (Bayesian model compar-
ison, fMRI sample: n = 28; highest PEP = 0.521; Supplementary
Table 1; behavioral sample: n = 21; highest PEP = 0.202; Supple-
mentary Table 2).

MPFC reflected variables guiding choice. We next assessed how
heuristic and optimal policies are neurally computed (on a trial-
by-trial basis). To do so, we implemented a main general linear
model (GLM) that included the variables from the winning choice
model and the RT model as parametric modulators during the
choice phase: the probabilities of foraging success, the value dif-
ferences between foraging and waiting according to the optimal
policy (time horizon of five days), their associated choice
uncertainties, and the discrepancies in choice probabilities, as well
as log-transformed RTs. Given the central role parts of the MPFC
in decision-making, we specifically focus on this region in the
presentation of our results. All described clusters are whole-brain
family-wise error (FWE) corrected for multiple comparisons at p
< 0.05 with a cluster-defining threshold of p< 0.001.

The momentary probability of foraging success, i.e., the
variable underlying the heuristic policy, showed a positive
relation with BOLD signals in a posterior part of the dorsal
MPFC (DMPFC, extending into pre-supplementary motor area,
pre-SMA; peak voxel x;y;z(MNI) = 8; 29; 50; t = 5.80), in bilateral

intraparietal sulcus (IPS; left: x;y;z(MNI) = −42; −45; 51; t = 4.42;
right: x;y;z(MNI) = 47; −42; 50; t = 5.37), and the left frontal
pole (x;y;z(MNI) = −42; 47; −5; t = 4.28), among other regions
(Fig. 6a, see Supplementary Table 7 for fMRI results in the choice
phase). The same variable showed a negative relation with signals
in the perigenual anterior cingulate cortex (ACC), extending into
the ventral MPFC (VMPFC; x;y;z(MNI) = 6; 33; 6; t = 6.27;
Fig. 6b).

The optimal policy showed a positive relation with activity in
perigenual ACC (extending into VMPFC; x;y;z(MNI) = 6; 50; 6;
t = 4.53) and mid-cingulate cortex (x;y;z(MNI) = 2; 14; 29;
t = 5.31; Fig. 6c). That is, parts of the MPFC were relatively
more active when waiting was favored by the heuristic and
when foraging was favored by the optimal policy. This suggests
an overall involvement of the MPFC in computing differences
in choice value of the variables that explained participants’
behavior.

MPFC reflected choice uncertainties and discrepancies. Lower
choice uncertainty of the heuristic was related to increased BOLD
signals in an anterior part of the VMPFC (x;y;z(MNI) = 9; 59; −2;
t = 6.24), dorsal MPFC regions (x;y;z(MNI) = 3; 56; 33; t = 4.50) as
well as to the inferior frontal gyrus (IFG; x;y;z(MNI) = 48; 35; −5;
t = 7.37) and the posterior cingulate cortex (x;y;z(MNI) = 15; −27;
39; t = 7.63), among other regions (Fig. 7a; Supplementary
Table 7).
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Fig. 5 Reaction time data and models of the fMRI sample. We tested the relationship between RTs and variables associated with the heuristic and optimal
policies. Since the probability of foraging success emerged as the best predictor of participants’ choices, we only included this but not any other heuristic in
the model of RT data. RTs relate to a the probability of foraging success and also weakly to b the optimal policy. Importantly, RTs become slower with c, d
increasing choice uncertainties of these two variables and e higher discrepancies in their prescriptions. Posterior predictive checks show that RT data were
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crosses depict mean model predictions (averaged for simulated data according to each participant’s model fit). Circles scale with the average number of
trials contributing to the respective data points. See Supplementary Fig. 13 for the behavioral sample, Supplementary Fig. 6 for the parameter estimates of
the full RT model, and Supplementary Fig. 7 for posterior predictive checks of the RT model with data split differently. See Supplementary Table 6 for
statistical inferences obtained from a linear mixed effects model

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02750-3

8 NATURE COMMUNICATIONS |  (2018) 9:325 |DOI: 10.1038/s41467-017-02750-3 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


Lower choice uncertainty of the optimal policy scaled with
activity in DMPFC, extending into ACC (x;y;z(MNI) = 6; 42; 38; t
= 4.81), and in the IFG (x;y;z(MNI) = 48; 26; −9; t = 5.88; Fig. 7b;
Supplementary Table 7). That is, we found increased BOLD
signals with increasing choice certainty of both heuristic and
optimal policy in regions of the MPFC.

Crucially, as in our RT data, we found evidence for an
integrated computation of the heuristic and the optimal policy:
DMPFC activity correlated in a trial-by-trial fashion with the
discrepancies between the two policies (i.e., the absolute
differences in their decision variables; x;y;z(MNI) = −9; 36; 38;
t = 8.25; Fig. 7c; Supplementary Table 7). This DMPFC
region extended into pre-SMA and ACC. The same
metric correlated with BOLD signals in bilateral dorsal striatum

(left: x;y;z(MNI) = −11; 12; 3; t = 7.16; right: x;y;z(MNI) = 11;
20; −3; t = 7.66) and bilateral IFG (left:x;y;z(MNI) = −30; 26; −5;
t = 6.17; right: x;y;z(MNI) = 50; 26; −11; t = 6.85).

Additional fMRI analyses corroborated MPFC involvement.
All relationships of the relevant model variables—as described
above for the main GLM—emerged with log-transformed RTs as
parametric modulator in the GLM (Fig. 7d). Overall, the same
regions described above were also identified in a second GLM,
which additionally included participants’ choices themselves as
parametric modulators during the choice phase (Supplementary
Table 8). The primary qualitative difference between the GLMs
with and without choices as additional parametric modulator was
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foraging success) showed a negative relation with BOLD signals in VMPFC (peak voxel: x;y;z(MNI)= 9; 59; −2; t= 6.24), DMPFC (x;y;z(MNI)= 3; 56; 33; t
= 4.50), IFG (x;y;z(MNI)= 48; 35; −5; t= 7.37), and the posterior cingulate cortex (x;y;z(MNI)= 15; −27; 39; t= 7.63), among other regions. b Choice
uncertainty of the optimal policy exhibited a negative correlation with DMPFC/ACC (x;y;z(MNI)= 6; 42; 38; t= 4.81) and IFG (x;y;z(MNI)= 48; 26; −9; t=
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p< 0.001. Color bars depict t-values. See Supplementary Table 7 for a list of all clusters (as well as Supplementary Tables 8–10; Supplementary Fig. 14; and
Supplementary Fig. 15 for further analyses of the choice phase). See Supplementary Table 11 and Supplementary Fig. 16 for BOLD signals during the
outcome phase

Posterior Anterior

x=3 x=47 x=–42

8

6

4

2

0
tt x=6 x=5 t

6
5
4
3
2
1
0

6

4

2

0

a b c
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Overlay on group average T1-weighted image in MNI space; clusters are whole-brain family-wise error (FWE) corrected for multiple comparisons at p<
0.05 with a cluster-defining threshold of p< 0.001. Color bars depict t-values. See Supplementary Table 7 for a list of all clusters
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that in the GLM including choices the DMPFC cluster related
to lower choice uncertainty of the optimal policy failed to
reach significance with FWE correction for multiple comparisons
at p< 0.05 (with a cluster-defining threshold of p< 0.001; cf.
Fig. 7b).

For the sake of completeness, we set up a third GLM that only
included participants’ choices as parametric modulator (please
refer to Supplementary Fig. 14 and Supplementary Table 9).

In a fourth GLM, we specifically analyzed how the values of the
chosen options related to BOLD signals (Supplementary Fig. 15;
Supplementary Table 10). The probabilities of foraging success
according to the options chosen by participants scaled positively
with the left frontal pole (x;y;z(MNI) = −47; 39; 6; t = 4.63), in a
similar region as described above for the probabilities of foraging
success according to the presented foraging options (i.e., x;y;z
(MNI) = −42; 47; −5; t = 4.28). The values of optimal policy
according to the chosen options’ values were positively related to
the VMPFC (x;y;z(MNI) = 2; 63; 11; t = 4.76), in a similar region
as described above for the value differences according to the
optimal policy (i.e., x;y;z(MNI) = 6; 50; 6; t = 4.53). These findings
corroborate that BOLD signals in the left frontal pole and in the
VMPFC were associated with variables on which participants
based their choices.

Finally, classic reward regions14, 15 (including VMPFC,
striatum, and posterior cingulate cortex) tracked the realized
outcomes, that is the impact of participants’ decisions on their
internal energy state (overall peak voxel of the cluster: x;y;z(MNI)
= 0; −26; 48; t = 9.01; Supplementary Fig. 16; Supplementary
Table 11).

Taken together, our results show that variables relevant for
participants’ choices and RTs scale with activity in multiple brain
regions involved in decision-making—in particular in ventral and
dorsal MPFC areas.

Discussion
This study addresses the neural computations required to make
sequential decisions during virtual foraging, when participants
had to navigate above a lower homeostatic boundary over a
number of consecutive steps with probabilistic outcomes. We
show that humans rely both on an easy-to-access heuristic and on
an optimal policy that integrates over probabilistic future states.
More specifically, we demonstrate that participants took advan-
tage of a model-free heuristic available at the time point of
decision-making. This heuristic of relying on the probability of
foraging success performed best overall in explaining participants’
choices among a large set of alternatives (including the foraging
options’ expected values). This finding is in line with studies
showing that participants often base their choices on the overall
probability of winning in another type of sequential decision-
making task16, 28. Importantly, choices in our task were also
explained by the normatively optimal policy. Participants’ choices
were therefore best explained by the combination of two metrics
that constitute the end points of a spectrum between sloppy (but
easy) and exact (but difficult) solutions.

We did not find decisive evidence that any linear combination
of two candidate policies and variables explained our choice data
better than the probability of foraging success and the optimal
policy. Although it is theoretically possible that participants use a
yet unknown decision policy (for discussion see refs. 29, 30), such
policies do not follow from the given task variables in an obvious
way. Any such model would thus likely require higher complexity
than the linear combination of the probability of foraging success
and the optimal policy (or it would only apply to a less complex
setting than the one investigated here). It is an interesting ques-
tion for follow-up research whether on specific trial types

(possibly under-sampled here) participants may have used a more
(or less) complex model. Also, it appears possible that in a more
(or less) challenging task, participants may abandon the optimal
policy in favor of a combination of two or more heuristics.

For our task, we can exclude that participants resorted to a
simple heuristic of looking just one time step ahead, which would
have been clearly suboptimal given that they finite time horizon
was five steps in our task. Imposing different time constraints or
varying the number of time steps in our task may alter the time
horizon considered and shift the balance between heuristic and
optimal computations. Evidence for the possibility of such
dynamic alterations has been provided in a recent study by
Keramati et al.31 which demonstrated that humans adaptively
adjust the depth of planning and the reliance on habits in a three-
step learning task—with time pressure leading to shallower
planning.

Our behavioral data suggest interdependent—but partly dis-
tinct—computations of heuristic and optimal processes during
sequential choice. But what is the relationship between the two
policies? Analyses of RTs showed that the choice uncertainty of
both policies—but in particular of the heuristic—slowed RTs.
Intriguingly, the discrepancies in choice probability between the
two policies also led to longer RTs, which provides crucial evi-
dence for computation of heuristic and optimal policies, and their
integration. We interpret these findings as pointing toward pro-
gressive computational processes such that the approximations
provided by the heuristic are abandoned if the associated choice
uncertainties turn out to be too high. That is, an insufficient
choice certainty of the heuristic metric may suggest that it is
worthwhile to engage in a deeper search in form of a full-blown
optimal policy computation.

Integrated computation of heuristic and optimal policies could
be understood in terms of a process that accumulates from
increasingly sophisticated policies, until the associated choice
uncertainties become sufficiently small. This could explain why
the uncertainty of the heuristic had a larger effect on RTs than the
uncertainty of the optimal policy, which may be computed later
during the trial. Integration of opposing predictions may then
engage an additional time-consuming step, leading to increased
RTs. In some cases, the requirement to integrate two specific
types of information may be especially pertinent (for example at
the energy state boundaries integrating information about the
probability of foraging success and about the energy state can be
crucial). Identifying the precise temporal requirements of infor-
mation integration processes is an interesting and challenging
avenue for future research.

Our fMRI data revealed that the heuristic variable, i.e., the
probability of foraging success, was positively associated with
BOLD signals in the frontal pole, the IPS, and a posterior part of
the DMPFC. The same heuristic was negatively related to signals
in a region of perigenual ACC extending into VMPFC. By defi-
nition, appropriate heuristics are related to the given task
demands and therefore brain regions associated with any heur-
istic variable likely depend on the particular heuristic used. For
example, the involvement of the IPS observed in the current study
might be related to its role in processing numbers32. On the other
hand, frontal pole, DMPFC, perigenual ACC and VMPFC play
roles in several decision-making process19. Since participants
were more likely to choose waiting rather than foraging when the
probabilities of foraging success were small, the identified region
of the perigenual ACC and VMPFC scaled positively with the
relative value of “waiting” vs. “foraging,” as signaled by the
heuristic. This finding may thus accord with the role of a similar
region in a conceptually different sequential decision-making
task: In the task used by McGuire and Kable33 participants had to
adaptively decide how long to keep waiting for future rewards

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02750-3

10 NATURE COMMUNICATIONS |  (2018) 9:325 |DOI: 10.1038/s41467-017-02750-3 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


with different, uncertain timings. The temporal unfolding of the
subjective value during different waiting periods was related to
the VMPFC. In both tasks, “waiting” (either as a discrete action as
in our task or as temporal persistence as in the task by McGuire
and Kable33) trades off current (opportunity) costs against
potential gains in the future. Still, the fact that our analyses also
identify regions outside the VMPFC that scale with the value of
foraging (notably in the DMPFC) constitutes a difference between
our findings and those by McGuire and Kable33. Interestingly, the
uncertainty of the heuristic variable was negatively (and not
positively) related to BOLD signals in several regions, in parti-
cular in the posterior cingulate cortex, an anterior part of the
VMPFC, dorsal MPFC, and IFG. Put differently, these regions
showed a positive association with the “easiness” of making a
decision according to the heuristic policy. Negative relations of an
uncertainty metric have previously been identified a region of the
posterior cingulate cortex, which was slightly more posterior than
the cluster identified here12, 34.

Multimodal integration regions such as MPFC and IFG
were associated with the optimal policy and also the choice
uncertainty of the optimal policy. These regions have often been
observed in studies testing for brain activity related to model-
based learning processes35, 36. Indeed, optimal decision-making
in our task bears considerably resemblance with model-based
learning36–38 since both involve searching across a tree of
probabilistic future states. Here, we demonstrate brain activity
when participants evaluated decision trees with extended time
horizons independent of the uncertainties arising during learning.
In particular, we found that a dorsal region of the MPFC corre-
lates negatively with the choice uncertainty of the optimal policy
(i.e., positively with the “easiness” of making a decision according
to the optimal policy). This region seems to be especially well
positioned to integrated different types of decision signals related
to reward values and actions18, 19. An intriguing possibility is
that this region may generally be related to the uncertainties in
recursive evaluations of a tree of probabilistic future states,
which is a key feature for inferring optimal solutions in many
realistic tasks.

The discrepancies between the two employed policies showed a
positive trial-by-trial relationship with a prominent cluster in the
region of the DMPFC, extending into the pre-SMA and the ACC
(in addition to relationships bilateral dorsal striatum and IFG).
The DMPFC cluster overlaps with regions classically associated
with multiple types of decision discrepancies39, 40. Thus, our
finding relating discrepancies between the heuristic and optimal
policies to a part of the DMPFC could potentially indicate that
this DMPFC region becomes increasingly engaged when the
computations of the two policies prescribe divergent choices such
that progressive evidence accumulation and competition pro-
cesses are required for making a decision.

Our virtual foraging task does not require exploring or infer-
ring unknown, uncertain, or unobservable, states, which distin-
guishes it from learning tasks aimed at comparing explicitly
signaled vs. previously trained values and tasks designed to assess
model-based vs. model-free reinforcement learning6, 35–38, 41–45.
Our approach could be extended to include learning or infor-
mation seeking such that the optimal policy would require
reducing uncertainty about environmental states (cf. 45, 46).

We have previously shown that formal models incorporating
homeostasis maintenance can explain economic choices better
than standard economic models4. In the present study, we
address the underlying choice mechanism. We show that humans
minimize the probability of virtual starvation via combining
heuristic and optimal policies. In general, our delineation of
heuristic and optimal policy computations informs a substantial
body of behavioral work supporting notions of nuanced trade-offs

between heuristic and optimal solutions47–49 or of fine-grained
specifications of rationality5, 8, 50, 51. Our behavioral findings
corroborate recent proposals that the optimality of decision-
making depends on cognitive limitations of the decision-maker as
well as the energy and opportunity costs incurred during the
decision process5–8, 49, 52, such that a theoretically optimal model-
based system ceases to be optimal under some circumstances. Our
fMRI results relate activity in the MPFC to the model-based tree
search implicated in the computation of the optimal policy. Brain
activity associated with the discrepancies between heuristic and
optimal policies points towards a mechanism of integrated
computation that may well generalize over many decision sce-
narios with multiple probabilistic states. Thus, our study paves
the way towards better understanding the computations of the
neural systems involved in making ecologically optimal choices in
the face of complex multi-step decision-making scenarios.

Methods
Participants. Participants were recruited from a student population via mailing
lists of local universities. Twenty-one participants participated in the behavioral
study (15 female; mean± standard deviation (SD): age = 25.8 ± 4.3 years). Thirty
participants were recruited for the fMRI study. Two had to be excluded (one due
technical problems with the scanner and one due to excessive motion >4 mm).
This resulted in a final sample of 28 participants (13 female; age = 23.5 ± 3.9 years)
for the fMRI study. Due to time constraints, one participant in the fMRI sample
only performed eight out of ten sessions and another only performed nine out of
ten sessions. Participants were paid a show-up fee (behavioral sample: CHF 20;
fMRI sample: CHF 50) plus a variable amount (see Instructions and task). Both
groups performed exactly the same task with the only difference that one group
underwent MR scanning.

The study was conducted in accord with the Declaration of Helsinki and
approved by the governmental research ethics committee (Kantonale
Ethikkommission Zürich, KEK-ZH-Nr. 2013-0328). All participants gave written
informed consent using a form approved by the ethics committee.

Mathematical framework of virtual foraging task. To probe sequential decision-
making, we propose a toy scenario and a corresponding Markov decision process
(MDP) for a hunter-gatherer or any foraging agent that aims at dynamically
maintaining homeostasis over time. See Fig. 1 for an example trial and Fig. 2 for the
corresponding transition matrix, and the associated state transition diagram. See
Table 1 and Table 2 for lists of all variables described in this and the following
sections. The decision-making agent has to keep its internal energy state s above
zero, i.e., the agent “dies from starvation” upon reaching the energy state zero at
any time step. Here, the energy state can have discrete values equaling one to five
energy points (but our model easily extends to additional numbers of energy states
without loss of generality). At each time step t, or “day,” the agent can chose to
“wait” and incur a sure loss cw (of one energy point) or it can “forage” in which case
the agent probabilistically gains an amount g (of zero to four energy points) or
incurs a cost for foraging cf (of two energy points). We denote the probability of
foraging success as p (i.e., the probability of gaining points during foraging). The
probability of unsuccessful foraging and thus of incurring cf is q = 1−p. The
maximum energy is capped; in the highest energy state the agent cannot gain more
but simply stays in the highest state if foraging is successful.

The agent “lives” within a given “forest” in which all relevant variables are
specified (presented to participants during the “forest phase,” see Fig. 1). We
included good and bad environmental conditions denoted as “good and bad
weather types” that each occur with a probability of 0.5 on a given time step in a
given forest. That is, per forest there are total of 12 states in the MDP: 6 (energy
states) × 2 (weather types).

A core component of an MDP is the transition matrix between these different
states (see Fig. 2 for one example). Starvation, i.e., the state of having zero energy is
absorbing (and thus the entry in the transition matrix leading from energy state
zero to energy state zero is 1). Waiting leads to a sure loss cw of one point, which is
formalized by the associated probabilities w in the off-diagonal below the main
diagonal. Foraging can lead to either success (fp) or not (fq). These probabilities
constitute the entries in the associated off-diagonals (depending on the magnitudes
of g and cf).

How should the agent’s optimal policy look? The agent should minimize the
probability of starvation pstarve(n,s,t); i.e., it should minimize the probability of
reaching zero energy points within a fixed and finite time horizon of n days when
starting with the internal energy state s. In our case, the instructed finite time
horizon n is always 5 days and the starting energy state s at the first day can be 2, 3,
or 4 energy points. Participants were incentivized accordingly, i.e., they received a
monetary payoff (for a random subset of forests), if their energy was above zero at
day 5 and nothing otherwise. This corresponds to a simple implementation of a
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reward function within the framework of MDPs: All transitions to zero are
associated with a “reward” of −1 and all other transitions with a reward of 0.

Starvation probability pstarve(n,s,t) and thus the optimal policy depend on the
agent’s choice at the current time step t and the next n−1 time steps—in addition to
the dependence on n and s. In our finite-horizon scenario, the starvation
probability thus depends on the number of time steps t, i.e., days within a forest.

A rough and basic intuition for a more or less prototypical optimal policy under
such circumstances is that in many types of forests the agent should forage when
the weather is good and wait when the weather is bad; unless waiting leads to sure
death on the next time step. When the energy state is high enough so that
starvation is impossible within the remaining number of days (e.g., energy state is 4
and only 1 day is left of the 5 days within a forest), the agent is indifferent between
the two choice options.

Derivation of optimal policy in Markov decision process. We derived the
optimal policies analytically for a large number of different forests, i.e., for all
combinations of p (from 0.1 to 0.9 in steps of 0.1) and gains g (from 0 to 4 in steps
of 1) for a finite time horizon of n = 5 days. In our MDP, the possible policies
consist of the probabilities of foraging f in each energy state s, environmental
condition (“weather”), and each time step t (with the probabilities of waiting w= 1
−f). To derive optimal policies in our finite-horizon scenario, we used backward
induction: That is, we started from the final time step (i.e., day 5) and calculated the
values of the two choice options (i.e., foraging or waiting) for each state for that last
and final time step. These values depend on the possible transitions from the
respective states (see the example transition matrix in Fig. 2a and the corre-
sponding example state transition diagram in Fig. 2b). If the value of foraging is
higher than the value of waiting, foraging is the deterministically better option in
that state and at that time step—or vice versa. If both choice options have the same
value, the optimal choice is indifferent between the two options. We then used the
maximum of the two choice options’ values to calculate the values for the second-
to-last time step and determined optimal choices. This procedure was repeated
until arriving at the first time step (i.e., day 1).

The optimal policy thus depends on the time horizon considered. Our task was
designed such that participants should use a time horizon of 5 time steps and
participants were instructed and incentivized accordingly. Nevertheless, it is a
possibility that participants use a different time horizon. Therefore, we calculated
optimal policies for the following time horizons: n = 7, n = 6, …, n = 1. Participants
may employ a longer (i.e., 7 or 6 days) or shorter (i.e., 4, 3, 2, or 1 days) time
horizon than instructed. Time horizons are flexible in the sense that it is assumed
that participants start in a new forest with a given time horizon n and then reduce
their horizon on each day by one. If the horizon has reached one (i.e., n = 1), it will
remain one. Supplementary Fig. 10 provides an illustration of how the proportions
of actions prescribed by the optimal policy change according to different finite
horizons.

Since the optimal policies binarize the value differences over the two choice
options (either foraging or waiting is better, or they are exactly the same), they do
not allow for variability in the decision process (i.e., in some cases waiting and
foraging entail large value differences whereas in other cases the two choice options
have quite similar values). We therefore used the continuous value differences
between the two choice options as predictors of participants’ choices, RTs, and
fMRI data. For brevity, we often use the term “optimal policy” to refer to the value
differences between the foraging and waiting (according to the normative horizon
of 5 steps in our task).

All calculations were carried out in MATLAB.

Instructions and task. Participants received detailed written task instructions, in
which the different task components were introduced step by step (Supplementary
Note 1). For each mini-block of trials called “forest,” participants were first pre-
sented with a screen that depicted the foraging options for the two weather types
(3.5 s; Fig. 1). Foraging options were illustrated as a grid with ten subfields. Each of
the ten subfields had a probability of 0.1 to become realized. The number of colored
dots within the subfields indicated the foraging costs (always 2 points) or foraging
gains (ranging from 0 to 4). Sides were counterbalanced for the two weather types.
An energy bar at the bottom of the screen depicted the starting energy state (which
was 2, 3, or 4 points). After a fixation period (3.5 s), participants had to choose
between one of the two foraging options (which represented either good or bad
weather) and waiting, which was symbolized by a single dot depicting the sure
energy loss of one point. Sides were counterbalanced for the two options. Parti-
cipants had a maximum of 2 s to make their choice, which was then indicated by an
asterisk. If they failed to respond or pressed a wrong button, the words “Too slow
or wrong button” appeared. After an interval of 1 s, participants saw the outcome of
their choice (1 s): If they had foraged one of the ten subfields turned yellow and the
corresponding energy points were added to or subtracted from their energy bar. If
they had waited, one point was subtracted from the energy bar. After a variable
fixation interval (between 0.5 and 3.8 s), a new day or a new forest was depicted.
Participants were not explicitly cued about the current day within a forest; but they
knew that they always remained a maximum of five days within a forest (so they
could count down the number of days when entering a new forest). If participants
had died from starvation, an empty energy bar was depicted and they were asked to

press one of the two buttons to elicit a motor response. The task was presented
using the MATLAB toolbox Cogent (www.vislab.ucl.ac.uk).

Participants performed a short first training session of four forests with five
days. To ensure that participants could get accustomed to looking five days ahead,
they performed a second training session, in which they remained for five days in
each of 24 forests. Participants performed ten sessions of the actual experimental
task either on a PC (behavioral sample) or in the MR scanner (fMRI sample).

Participants were incentivized to avoid starvation over five days in a forest. To
strike a balance between design efficiency and the requirement to make participants
integrate over a number of future time steps, the number of days in a forest
followed an exponential distribution with a mean of 2.5 resulting in 40 days in 24
forests per session. Importantly, participants were instructed to always consider
staying five days in a forest and were monetarily incentivized accordingly. In the
end, we randomly selected one of the 24 forests for each of the ten sessions. To
determine participants’ payment, they were again presented with the two weather
types and their current energy state and completed the 5 days within these forests.
For each forest in which they survived (regardless of the precise energy state) they
received additional CHF 1.50.

Analyses of choice data and model comparison procedures. Of the total pos-
sible number of 400 days, participants in the behavioral sample had reached the
starvation state on 22.2± 6.0 trials (behavioral sample) and 21.1 ± 5.9 trials (fMRI
sample). In the remaining trials they did not make a response within the time limit
in 8.6± 10.7 trials (behavioral sample) and 6.4± 8.6 trials (fMRI sample). This left
369.1± 13.0 trials (behavioral sample) and 368.3± 18.8 trials (fMRI sample) for
analyses.

We used logistic regression models (implemented in the MATLAB function
mnrfit) of the following form:

pforage ¼ 1
1þ e�DV

;

with the following form of the decision variable DV:

DV ¼ β0 þ β1 � policy:

As policy, we first considered the following potential optimal or heuristic policies
(see Table 1 and Table 2 for annotated lists): (1) the optimal policy according to a
time horizon of 5 days (h-5). In contrast to the optimal policy, the following
variables should be regarded as heuristics since they do no necessitate integration
over the relevant future time points: (2) momentary probability of foraging success
p; (3) momentary magnitude of foraging gain g; (4) expected value (EV) of
foraging; (5) current continuous energy state s (ranging from 1 to 5 points); and (6)
binary energy state (indicating whether waiting would lead to sure death or not).
Since waiting leads to sure death when the continuous energy state is one, the
optimal policy never prescribes waiting in these situations (i.e., even when the
probability of foraging success is small, the optimal policy always favors a non-zero
starvation probability). Therefore, at a continuous energy state of one the
prescriptions of the binary energy state variable are always in line with the optimal
policy. We also included the following variables: (7) current weather type; (8)
number of days past in a forest; (9) change between past and current energy states
(within and across forests); and (10) a type of “win-stay-lose-shift” (WSLS) strategy,
which prescribes foraging if the energy state increased in the past trial
(i.e., after a foraging win) and waiting if the energy state decreased (i.e., after
waiting and after a foraging loss). In other words, WSLS is a binarized version of
the change between past and current energy states. Additionally, we tested for a
myopic optimal policy: (11) the optimal policy according to a time horizon of 1 day
(h-1).

Since the probability of foraging success emerged as best single predictor of
participants’ choices, we tested whether any other decision variable explained
remaining variance in models that included the probability of foraging success, p,
as first predictor and one of the other policies as second predictor (Supplementary
Tables 1, 2):

DV ¼ β0 þ β1 � pþ β2 � policy:

According to the same logic, we tested all possible models with two predictors
(Supplementary Tables 3, 4) and additionally models with three predictors
(Supplementary Tables 1, 2). We also tested interaction models of the general form
(Supplementary Tables 1, 2):

DV ¼ β0 þ β1 � pþ β2 � policy þ β3 � p � policy:

For each model we approximated model evidence by calculating the Bayesian
Information Criterion (BIC), which penalizes model complexity. We performed
both fixed-effects and random-effects analyses. The latter assume that different
participants may use different models. We used the Bayesian model selection
(BMS) procedure implemented in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) to
calculate protected exceedance probabilities, which measure how likely it is that
any given model is more frequent than all other models in the population53.
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Calculation of variables related to participants’ choices. Both RTs and brain
activity may also relate to the choice uncertainties of the employed decision
variables. Choice uncertainties can be quantified by the logistic functions that relate
participants’ empirical choices to the decision variables (cf. Fig. 3; Supplementary
Fig. 3). That is, choice uncertainty is higher at the inflection point of the logistic
function (i.e., at the point at which participants are indifferent between the two
choice options) than at the ranges of the decision variable where the values of the
logistic function are close to zero (prescribing waiting) or close to one (prescribing
foraging). As metrics of choice uncertainties, we therefore took the derivatives the
logistic functions related to the two variables included in the winning model of
participants’ choice: the probabilities of foraging success and the value differences
according to the optimal policy (with a horizon of 5 days). To base the quantifi-
cation of choice uncertainties for the fMRI sample on independent data, we used
the mean parameter estimates of the choice models from the behavioral sample to
derive the logistic functions.

To investigate the interplay between the two variables of the winning choice
model, we were specifically interested in the discrepancies in the prescriptions of the
two decision variables. Therefore, we took the absolute differences between the
predicted choices under the heuristic of using the probabilities of foraging success
and under the value differences according to the optimal policy. That is, we
calculated the absolute differences between the points on the logistic functions
derived from the mean parameter estimates of the choice models from the
behavioral sample. We refer to this metric as “discrepancy” between the two policies.

We included choice uncertainties and discrepancies as trial-by-trial estimates in
RT and fMRI models (see below). Additionally, we explored whether choice
uncertainties and discrepancy guided the use of the decision variables included in
the winning model. Specifically, we tested the following interaction models
(Supplementary Tables 1, 2):

DV ¼ β0 þ β1 � p � ð1� choice uncertainty of pÞ þ β2 � optimal policy

DV ¼ β0 þ β1 � pþ β2 � optimal policy

�ð1� choice uncertainty of optimal policyÞ

DV ¼ β0 þ β1 � p � ð1� choice uncertainty of pÞ þ β2 � optimal policy

�ð1� choice uncertainty of optimal policyÞ

DV ¼ β0 þ β1 � p � discrepancy þ β2 � optimal policy

DV ¼ β0 þ β1 � pþ β2 � optimal policy � discrepancy:

For additional analyses, we used the relevant logistic functions derived from mean
parameter estimates (from the behavioral sample) to select trials in which the
heuristic policies of using the probability of foraging success and of using the EV
made opposite prescriptions for choice. That is, we binarized the prescriptions of
the two policies by splitting them into those above and below the midpoint of 0.5.
Logistic functions were derived from the mean parameter estimates of the
behavioral sample (Supplementary Note 2).

To analyze subsets of trials, in which different horizons of the optimal policy
made opposing prescriptions, we simply selected trials in which the (a priori
computable) optimal policy for a horizon of 5 time steps prescribed foraging and
the optimal policy for another time horizon prescribed waiting; or vice versa
(Supplementary Table 5; Supplementary Fig. 10).

Models of RTs. We analyzed log-transformed RTs using linear mixed effects
models as implemented in the R package lmer54 (http://cran.r-project.org/web/
packages/lme4/index.html). The independent variables in the mixed effects model
were the probabilities of foraging success, the value differences of foraging vs.
waiting according to the optimal policy (with a horizon of five days), the choice
uncertainties of the two policies, and the discrepancies between the prescriptions of
the two policies. Random effects for participants included a random intercept and
random slopes for all variables. Since we had no hypotheses for interactions, we did
not include any interaction terms as fixed- or random-effects. Significance levels of
the fixed-effects were determined by performing log-likelihood tests, which com-
pared the full model to models without the respective factor (Supplementary
Table 6). Additionally, we performed the same analyses using untransformed RTs,
which resulted in qualitatively similar results (mean± SD of the skewness of the RT
distributions: behavioral sample: untransformed 0.751± 0.404; log-transformed:
−0.067± 0.928; fMRI sample: untransformed: 0.873± 0.335; log-transformed
−0.038± 0.843).

To compare RTs in a subset of trials in which the heuristic policy of using the
probabilities of foraging success and the value differences according to the optimal
policy made opposing prescriptions, we binarized the prescriptions of the two policies
by splitting them into those above and below the midpoint of 0.5. Logistic functions
were derived from the mean parameter estimates of the behavioral sample. We then
selected trials in which the two policies differed (mean± SD of resulting number of

trials per participant: fMRI sample: 70.4± 8.1; behavioral sample: 70.4± 6.8; the
minimum number of trials included per participant was 47 trials).

MRI data acquisition. Data were recorded in a 3 T (Philips Achieva, Best, The
Netherlands) MRI scanner using a 32-channel head coil. Functional images were
recorded using a T2*-weighted echo-planar imaging (EPI) sequence (TR 2.1 s; TE
30 ms; flip angle 80°). A total of 37 axial slices were sampled for whole brain
coverage (matrix size 96 × 96; in-plane resolution 2.5 × 2.5 mm2; slice thickness 2.8
mm; 0.5 mm gap between slices; slice tilt 0°). Imaging data were acquired in ten
runs of 170 volumes each. The first five volumes of each run were discarded to
obtain steady-state longitudinal magnetization. Field maps were acquired with a
double echo gradient echo field map sequence, using 32 slices covering the whole
head (TR 349.11 ms; TE 4.099 and 7.099 ms; matrix size, 80 × 80; in-plane reso-
lution 3 × 3mm2; slice thickness 3 mm; 0.5 mm gap between slices; slice tilt 0°).
Anatomical images were acquired using a T1-weighted scan (FoV 255 × 255 × 180
mm; voxel size 1 × 1 × 1mm3).

Preprocessing and nuisance regressors. All fMRI analyses were performed in
SPM12. The FieldMap toolbox was used to correct for geometric distortions caused
by susceptibility-induced field inhomogeneities. Preprocessing of EPI data included
rigid-body realignment to correct for head movement, unwarping, and slice time
correction. EPI images were then coregistered to the individual’s T1 weighted
image using a 12-parameter affine transformation and normalized to the Montreal
Neurological Institute (MNI) T1 reference brain template. Normalized images were
smoothed with an isotropic 8 mm full width at half-maximum Gaussian kernel.

We corrected for physiological noise using RETROICOR as implemented the
MATLAB PhysIO toolbox55, 56 (open source code available as part of the TAPAS
software collection: http://www.translationalneuromodeling.org/tapas/). We
collected electrocardiogram (ECG), pulse oximeter, and breathing belt data during
scanning. After quality checks, we used ECG and breathing belt data for noise
correction in 19 participants, pulse oximeter and breathing belt data in two
participants, and no physiological noise correction in six participants. The
corresponding confound regressors as well as the six motion correction parameters
estimated from the realignment procedure were entered as covariates of no interest.
Regressors were convolved with the canonical HRF and low frequency drifts were
excluded using a high-pass filter with a 128 s cutoff.

General linear models. The three distinct phases of the task (forest, choice, and
outcome phases; see Fig. 1) were entered as events with a duration of 0 s
(i.e., as stick functions) into the GLMs. Choice and outcome phases in which
participants had starved or for which they did not reply were not explicitly
modeled.

We were mostly interested in the choice phase and ran a main GLM with a
combination of variables that emerged in our analyses of behavioral and RT data.
Specifically, the following variables were entered on a trial-by-trial basis as
parametric modulators of the choice phase: The probabilities of foraging success,
the value differences of foraging vs. waiting according to the optimal policy (with a
horizon of 5 days), the choice uncertainties of the two policies, the discrepancies
between the prescriptions of the two policies, and RTs. A second GLM included
participants’ choices (as a binary variable) as a parametric modulator in addition to
the variables entered in the main GLM. A third GLM only included participants’
choices as a single parametric modulator. A fourth GLM included parametric
modulators in terms of chosen (and unchosen) options (and not in terms of the
presented options as in the first three GLMs). Specifically, this fourth GLM
contained the a parametric modulator for the chosen values of the employed
heuristic (i.e., the current probability of foraging success for trials in which the
foraging option was chosen and a probability of zero when the waiting option was
chosen) and a parametric modulator for the chosen values according to the optimal
policy (i.e., the current values of the foraging or the waiting options) as well as
parametric modulators for the corresponding unchosen values along with
parametric modulators for participants’ choices and RTs.

In all four GLMs, the forest phase was parametrically modulated by the current
energy state and the overall starvation probability across five days. The outcome
phase was parametrically modulated by the change in energy state.

We report analyses in which regressors competed for variance (i.e., without
serial orthogonalization). In the main GLM, the maximum average shared variance
was below 0.5 for all combinations of regressors.

We performed a second-level one-sample t-test on contrast images from all
participants. All reported clusters are family-wise error (FWE) corrected for
multiple comparisons at p< 0.05 using the SPM random field theory based
approach. The cluster-defining threshold was p< 0.001. At this voxel-inclusion
threshold the random-field theory approach in SPM correctly controls the false
positive rate57.

Data availability. The behavioral data that support the findings of this study are
publicly available at https://figshare.com/s/1a4d75cb4176a3fef040. The neuroima-
ging data that support the findings of this study are publicly available at https://
neurovault.org/collections/3242/.
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