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ABSTRACT

Real-time interactive systems such as virtual environments have
high performance requirements, and profiling is a key part of the
optimisation process to meet them. Traditional techniques based on
metadata and static analysis have difficulty following causality in
asynchronous systems. In this paper we explore a new technique
for such systems. Timestamped samples of the system state are
recorded at instrumentation points at runtime. These are assembled
into a graph, and edges between dependent samples recovered. This
approach minimises the invasiveness of the instrumentation, while
retaining high accuracy. We describe how our instrumentation can
be implemented natively in common environments, how its output
can be processed into a graph describing causality, and how hetero-
geneous data sources can be incorporated into this to maximise the
scope of the profiling. Across three case studies, we demonstrate the
efficacy of this approach, and how it supports a variety of metrics for
comprehensively bench-marking distributed virtual environments.

Keywords: profiling, benchmarking, tools, distributed, latency.

Index Terms: C.4 [Performance of Systems]—Measurement Tech-
niques; D.2.8 [Software Engineering]: Metrics—Performance mea-
sures

1 INTRODUCTION

Effective Virtual Environments (VEs) must respond quickly and pre-
dictably, often in the order of milliseconds. To optimise effectively,
developers must understand the behaviour of their VE’s components.
Gathering a comprehensive overview is difficult enough within sin-
gle application, but modern VEs often consist of multiple processes,
loosely coupled to each other and to output devices such as image
generators. Systems may be distributed across machines for addi-
tional processing power or to extend their scope. Haptics systems
especially emphasise this as their real-time nature often requires ded-
icated hardware or real-time operating systems. Profiling tools then
must trace behaviours between heterogeneous runtime environments,
with different levels of accessibility and transparency, while also
considering the potential for partial failures, and clock-skew [3].

In this paper we propose a profiling technique designed for dis-
tributed systems. Our technique is designed to bridge the gap be-
tween low resolution, non-intrusive systems used to monitor the
health of large distributed web applications (e.g. [29], [10], [30], [3])
and the highly intrusive, but precise, tools used to profile applications
on a single machine (e.g. [12], [1]). In our approach, instrumenta-
tion points are placed throughout an application at design time. At
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runtime, these generate samples containing hashes of the system’s
variables. The designer chooses which variables to hash at each
location. By choosing the same variables in two locations, their
samples will have the same hashes at any given time, implicitly
linking them. In a post-processing step all samples are collated
and associations between them identified. By following a chain of
associations from one sample to the next, causality can be traced
through an application, and various metrics such as latency, jitter,
degree of parallelism and message frequency can be extracted.

The novelty of our technique is in our use of hashing to supplant
metadata or static analysis. Hash functions can be defined to be
independent of the execution environment and even sampling tech-
nique - for example, they could be generated by external sensors,
or recovered from video or deep packet inspection. The ability to
integrate samples from heterogeneous sources allows the system to
trace causality across thread, process, and even machine and layer
boundaries. The precision is limited only by that of each system’s
clock, and their synchronization. The logical resolution is highly
scalable, depending on the number of instrumentation points, which
is entirely at the discretion of the developer.

In this paper we present our approach in detail. We describe how
it was implemented to profile a novel distributed haptic system. In
three case studies we demonstrate how its scalability facilitated quick
resolution of a synchronization bug, how its comprehensiveness
facilitated the comparison of three architectures, and how heteroge-
neous sampling techniques can be unified to characterise the latency
between an internal event and its appearance in the ‘real-world’.

2 PREVIOUS WORKS

Real-time Interactive Systems (RISs) have high performance re-
quirements, for example, update rates in the KHz range for haptic
feedback [25]. As such, there has long been interest in characterizing
these systems for the purposes of optimization.

Traditional Profiling tools (e.g. VTune [12], YourKit [27], Visu-
alVM [22]) provide high-resolution and can quickly reveal bottle-
necks in local applications. They are not always suitable for RISs
however. Rehfeld et al. [20] noted how performance gains in mod-
ern environments depend more on concurrency, which traditional
profiling tools struggle with in an asynchronous context. The au-
thors propose a set of metrics to characterise asynchronous RISs
with near completeness. The metrics are defined as functions of
message-passing times, which are analogous to associations in our
system. Huang et al. [10] focused on predictability and semantically
defined execution intervals, which are important for asynchronous
RISs, but don’t necessarily map to high level function calls. Their
tool VProfiler annotates semantic intervals at design time for precise
profiling of latency within a single application.

Distributed RISs introduce additional complications. Their use
of heterogeneous components mean compatibility must be man-
aged, they must be tolerant to packet loss and their higher level of
concurrency leads to higher chances of design defects resulting in
deadlocks and synchronization issues [3]. Classic profiling tools are
typically unable to characterise middle-ware facilities like message
passing [20], and rarely work across platforms [15].



One approach has been to model systems formally. Hanawa &
Yonekura [9] modelled the error of a Distributed Virtual Environment
(DVE) motion predictor and compared its accuracy to numerical
simulations (∼5%) and a user study. Rehfeld and Latoschik [19]
demonstrated how model checking could predict the performance of
an asynchronous RIS (< 30% difference). Model checking requires
that the system be accurately described in a modelling language,
requiring a distinctive set of skills to those required to instrument
code. However, a reliable model could reveal design defects before
a system is implemented.Singh et al. [24] used profiled metrics
to validate and improve on models iteratively. They captured and
coded real user data in order to construct a ‘user simulator’ for
testing things such as per-user CPU and memory load on a DVE. In
a follow up study Singh & Gracanin [23] used a similar approach
with more traditional metrics: execution times and call counters.

Rueda et al. [21] characterised a peer-to-peer DVE. They mon-
itored throughput and latency, with respect to different client be-
haviours (message rates, and location in the virtual world). They
used the response times of each client to avoid clock synchronization
issues, and from repeated experiments identified the most significant
behaviours affecting overall performance. Chen et al. [5] measured
the sources of latency in remote rendering cloud gaming systems
by using application hooks to measure the response times of salient
events. Kämäräinen et al. [14] looked at remote rendering mobile
Mobile Virtual Reality (MVR) systems. They comprehensively
characterised the end-to-end latency using a multi-modal hardware
platform including photo-sensors, touch sensors as well as the ability
to time-stamp the client’s network traffic. Kämäräinen et al. unified
samples from these sensors with those from internal software events
by synchronizing their platform’s clock with that of the mobile de-
vice using a protocol similar to NTP. Casiez et al. [4] combined
hardware probes and with software time-stamping in a similar man-
ner, but relied on a low latency USB interface for their sensors, rather
than clock synchronisation.

Another area with an interest in profiling distributed systems
is large database-backed web services. These systems have sim-
ilarities to asynchronous RISs: they are composited of multi-
ple asynchronous nodes, running on different machines at non-
trivial distances. They service thousands to millions of messages,
though the response time requirements are not as tight as for RISs
(<100 ms [15]). Importantly, they are often built from a mixture of
black-box and white-box components.

One tool designed to profile such systems is Iprof, by Zhao et
al. [30]. Iprof uses static analysis to associate existing log statements
with top-level methods. Logs from multiple nodes are collated and
these associations are used to trace causality throughout a distributed
application. Zhao et al. [29] extended this idea in Stitch, a tool that
can forgo the static analysis if log messages contain pertinent object
identifiers. Zhao et al.’s [29, 30] work is most similar to ours, as
they use functions of the system state to identify correspondences
between samples without passing metadata. However, the temporal
requirements of RISs are more demanding than Iprof or Stitch are
designed for. Zhao et al. did not discuss clock synchronization. Fur-
ther, Iprof had an event attribution accuracy of 88.2%, which may
lead to confusion when characterising things like impulse response
of a haptic system or other transient issues. Chow et al. [6] presented
UberTrace, a tool similar to Iprof but that used a schema to which
each type of log message was explicitly mapped. UberTrace also
accounts for clock skew making it arguably the most (temporally)
accurate tool considered so far. Lai et al. [15] introduced milliScope,
which unifies logs from heterogeneous native profiling tools. mil-
liScope uses metadata to link samples, tracking a request across a
distributed application with perfect accuracy. milliScope is similar to
our technique in its placement of unambiguously linked tracepoints,
however we reduce the intrusiveness of the profiling by linking them
with hashes rather than metadata.

Mace et al. [16] proposed Pivot Tracing. They introduced the
happened-before join, allowing the construction of chains of arbi-
trary samples for causal tracing, as done in tools such as milliScope.
It is Mace et al. that introduce the term tracepoint.

There are then many tools to accurately instrument applications.
There are also techniques to trace causality across heterogeneous
sources. However, the data sources for these approaches are often
highly coupled to the system under test, or the runtime environments
that they were designed for, limiting both the applicable systems and
the domain of resulting profiles.

3 TECHNIQUE

We investigate a technique to profile distributed RISs such as VEs.
The requirements for our profiling are that it can easily encompass
new hetereogenous components - such as software written in dif-
ferent languages, running on different operating systems - as well
as platforms such as FPGAs and microcontrollers. The profiling
must also extend to the real world - sample the actual actuation
of haptic arms and displays. We assume the developer can instru-
ment their system: modify the code, or in extremis insert hooks
or shims, and directly read from hardware devices or otherwise at-
tach external sensors. We propose an instrumentation that places
minimal demands on the execution environment. Developers run
an instrumented system for a time to generate simple logs. These
are combined a-posteriori and analysed. The logs are highly decou-
pled from the processing tool. We use Matlab for the analysis, but
equivalent implementations could be made on a range of platforms.
Alternatively, schema-based tools could even be re-purposed. In the
following sections we describe simple instrumentation to generate
such log files. We describe how different data sources can be uni-
fied, and how causality-tracing techniques can be applied to profile
performance across thread, machine and layer boundaries.

3.1 Tracepoints
In our profiling system, an application is explicitly instrumented at
design time with tracepoints (Table 1). Tracepoints write samples
(Table 2) to a log file whenever they are encountered. Each sample
is uniquely identified by the originating tracepoint (where in the
system it was generated), and in time by the time-stamp. Samples
do not have bounds; they represent the system state at a single point
in time. An application is characterised by building a directional
graph of these samples and determining the elapsed time between
them. The graph is built by identifying associations between samples
through hash-matching.

3.2 Hashes
Samples include hashes generated by running hash functions on a
subset of the system state. Which variables to include is up to the
designer. By choosing the same variables in two locations, they
will compute the same hashes and so be implicitly linked. Samples
have an input hash, and an output hash. This allows tracepoints
to change which variables and hash functions are used to form
each link in the chain, allowing causality to be traced across both
technical (thread, process, machine, layer) and semantic boundaries.
Example definitions and samples from Case Study 1 are shown in
Tables 3 & 4.

3.3 Hash-based Control Flow
Matching is based on simple equivalence. Accurately recovering
control flow requires that edges are only created between samples
from truly causally related tracepoints. This can be done by ensuring
all hashes are unique, or by constraining which tracepoints can
match with which. In the first case, the designer would choose a
sufficiently unique set of variables for each link in the chain (pair of
tracepoints), so that there will be no hash collisions anywhere else
in the application, or in the same location at any other time. In the



second case, the designer uses a much simpler parameterisation, but
the matching process is constrained so that samples from tracepoints
with potential collisions may not match. Examples of states that
could be hashed are the payload for a message, the counter in a loop,
or the force currently applied to a device or simulated for an object.

The parameterisation complexity is a trade-off between a-priori
and a-posteriori effort. The more unique the hashes generated at de-
sign time, the more the control flow can be recovered automatically
- but the harder it is to add or remove tracepoints while ensuring
that the chain of matching output-to-input functions is unbroken.
Alternatively, the developer specifies which tracepoints may match
based on type in the analysis tool, ensuring that only the correct
path between two tracepoints is recovered even if parameterisations
are re-used. This provides flexibility, as tracepoints can be inserted
and removed without altering adjacent hash functions - only the a-
posteriori constraints. Storing associations as edges means a sample
may have multiple associations in either direction, allowing control
flow patterns such as branching and fan-outs to be recovered. As the
samples themselves form the graph nodes (not the tracepoints that
originated them), it is possible to observe how control flow changes
over time.

3.4 Implementation
A drawback of many tools, even ones for distributed applications,
is that they only support a subset of environments. Rather than use
existing libraries with this limitation, we aim for our technique to be
simple enough that it can be implemented natively.

Table 1: Tracepoint definition

Variable Type Description
node name string Identifies program

instance string Identifies instance of program
tracepoint name string Identifies tracepoint in program
input hash type string Indicates content type in hash
output hash type string Indicates content type in hash

Table 2: Tracepoint logged data structure

Variable Type Description
tracepoint Tracepoint Tracepoint encountered

sample time double Time of data
input hash value uint32[4] Hashed data entering tracepoint
output hash value uint32[4] Hashed data leaving tracepoint

Table 3: Example Tracepoint Definition from Case Study 1

Variable Source Example Data
node name Developer Specified ”Chai”

instance Hash of PID and MAC 4108243516105288
tracepoint name Developer Specified ”SceneGraphBusProcessMessage”
input hash type Developer Specified ”messageid”

output hash type Developer Specified ”messageid”

An implementation has two parts: the hashing func-
tions/tracepoints in the execution paths, and a shared logging com-
ponent. Tracepoints are responsible for generating the samples (Ta-
ble 2) by executing the hashing functions. They then pass their sam-
ples to another component to output to the logging device (e.g. a file
on disk). In our implementations, tracepoints are simple functions
that pass objects to a high performance lock-free queue. A thread
then gathers these tracepoints and writes them to a file. This pre-
vents jitter in disk access times or thread synchronization primitives
from interfering with the application’s critical paths. Tracepoints
themselves have minimal overhead, so there is little disadvantage to
having multiple instances if it were necessary to, for example, hash
multiple sub-states in a single location.

Table 4: Example Log Sample from Case Study 1

Variable Source Example Data
tracepoint Instrumentation Call Params (Tracepoint reference)

sample time Instrumentation Timing Code 15053009044.9114494
input hash value Hash of Message Id 10e4b624000000000000

output hash value Hash of Message Id 10e4b624000000000000

The most demanding part of this approach is the requirement of a
lock-free queue. We use open-source implementations available for
our environments (MSVC, CLR). The implementation approaches
are well known [17], so they could be ported to other platforms,
however this is non-trivial. Similarly, for hashing we use MD5.
Hashes do not have to be cryptographically secure, and there are
simpler fingerprinting algorithms (e.g. Rabin’s Fingerprint [18]).
However MD5 has many open-source implementations and is often
part of frameworks such as .NET.

Implementing tracepoints is more involved than placing instru-
mentation points for tools like VProfiler [10], due to the need to
choose which variables to hash. However, it is the hashes that allow
associations to cross machine and semantic boundaries.

3.5 Numerical Precision & Epoch
Our system specifies double floating point precision for absolute
time, in seconds. Many computer systems represent time as a set
of discrete intervals from an epoch, where the interval resolution
and the epoch vary. The lack of standardisation makes the use of SI
units attractive, but the necessity of floating point storage introduces
numerical precision considerations. A double can accurately repre-
sent 17 significant digits [13], therefore with an epoch of the year
1601 (Microsoft Windows systems) we could expect a resolution of
1 microsecond. We considered this sufficient. If necessary however,
this could be improved by agreeing an epoch of a later date (e.g.
beginning of the current year), since the only constraint is that it
pre-dates all the samples in a given analysis.

3.6 Analysis
Components of the system or other instrumentation write tracepoint
samples to log files. In our implementation these are simply Comma
Separated Value (CSV) files with each line a concatenation of Ta-
bles 1 & 2. Log files are collated, and each sample becomes a node
in a graph. Directional edges are created by matching the output
hash of a node to the input hashes of other nodes. The range of
destination nodes is limited. Potential matches are first filtered by
the happened-before operator. Secondly, for each tracepoint, the
designer specifies what other tracepoints may be immediately down-
stream and only edges that match one of these pairs may be created
(Section 3.3). Once all possible edges have been created, process-
ing is complete and the graph may be traversed to find causality
between two samples, and the delay between them by comparing
their timestamps.

This latency computation, and the other metrics described in
Section 5.3, were implemented in Matlab. For performance reasons,
log file parsing & graph building was performed in a .NET assembly
that was loaded into Matlab. Log processing is decoupled from the
logging and so can be limited to a single environment. Even so,
constructing the graph is straightforward in a true object oriented
language as it is mainly a procedure of filtering and matching.

4 TIME SYNCHRONIZATION

When crossing machine boundaries, clock synchronisation becomes
important to timing metrics. Due to the difficulty in obtaining a
global system clock, various approaches have been explored. For
their visualization tool ShiViz, Beschastnikh et al. [3] use vector
clocks to maintain the logical time between nodes. Kämäräinen
et al. [14] explicitly synchronise their clocks with an NTP-like



protocol. Rueda et al. [21] only consider relative times within each
client and bypass clock synchronization considerations. Chow et
al.’s [6] UberTrace system computes the clock-skew and network
delay between two nodes from the message transmission and receipt
timestamps at either end during RPC-like exchanges.

Our implementations rely on the system time for simplicity. This
requires that the clocks of each node be synchronised. We experi-
ment with two techniques.

In Case Study 3 we use Pulse Per Second (PPS) signals to syn-
chronise the clock phase to that of a signal generator. PPS is a 1 Hz
square wave of arbitrary width, with the rising edge in phase with
the second boundary of a reference clock. We use an Amplicon
PCIe GPIO card to sample the signal and detect the rising edge, then
round the system clock to the nearest second. Since Windows is not
a real-time operating system however, it is always possible that the
algorithm is pre-empted. We can use the system’s high-performance
counter to detect this case, but even so it may be too late to stop
adjusting the clock. As such, instead of setting the clock every
second we set it once and rely on the local oscillator to maintain syn-
chronisation after. The initial synchronisation was typically within
500 µs. This was sufficient for Case Study 3, but the clocks quickly
drift (9 µss−1). More advanced algorithms continually adjust the
synchronisation of the local clock.

We intend our system to operate across large geographical dis-
tances, and so need a true global clock as a reference. For larger
systems we use UTC and we rely on Precision Time Protocol (PTP)
to synchronise individual nodes. PTP is a time-delivery protocol that
can deliver time with sub-microsecond accuracy by compensating
for the estimated network latency. It is common in the telecommuni-
cation and power industries, and is therefore well supported [2, 26].
As delay estimation is critical for accurate operation, devices with
non-deterministic latency in the path must be PTP aware. For Case
Study 2 we transmit time on a dedicated network, as shown in Fig-
ure 1. The direct connection of each computer to the time-server
(Grandmaster) bypasses the non-deterministic switch and ensures
a predictable latency. In informal tests, Windows 8 (and later) has
been shown to maintain an accuracy of 50 µs, and a synchronisa-
tion of ∼200 µss−1 [7], which matches our observations during the
experiments.

Figure 1: Example network configuration for time distribution used in
Case Study 2.

5 CASE STUDIES

5.1 Prototype System
We demonstrate the efficacy of our technique by profiling a novel
distributed haptic RIS. Our system is built from up to five nodes
synchronised using the scene-graph-as-a-bus technique [28]. Nodes
communicated over a thin message passing library running on TCP.
There is a graphics rendering node built in Unity (C#), a combined
graphics rendering and physics simulation node built in Unity (C#), a
physics simulation node powered by Bullet (C++), a haptic rendering
node powered by CHAI3D (C++) that drove a Phantom Omni, and
a simple fan-in/fan-out router (C++).

Each node is a standalone process making maximum use of estab-
lished libraries and running its own UI, critical loop and networking
threads. Similar design patterns are used in each. Every network
connection is supported by its own thread, and all synchronization
between the network and critical loop threads is based on lock-free
queues. The shared scene graph is maintained through the exchange
of atomic messages. As such it is highly decoupled from the mes-
sage transport and there are multiple interconnection possibilities,
which are described for each case study.

5.2 Case Study 1 - Thread Synchronization Debugging
In this case study we demonstrate the flexibility of hash-based tracing
across multiple boundaries, by showing how our technique assisted
in resolving a real bug in our networking code. This case study used
the combined physics and graphics node, and Chai node to provide a
minimal working example of the issue. The high-level execution and
data flow of this application, along with the tracepoints, are shown
in Figure 2.

Figure 2: High-level data flow of the system in Case Study 1. Each
column represents a separate thread. Tracepoint locations are shown
in italics. The four initial tracepoints are emphasised. Message
passing between threads is shown in green, and between processes
in blue.

At runtime, we found that when touching haptics objects, they
would react visually, but appear stationary kinaesthetically indicating
de-synchronisation of the haptic rendering and graphical rendering
scene graphs. In the ideal case, they would always be synchronised.
Objects continued to accelerate so long as a force was applied with
the haptic device. This indicated that latencies between nodes were
asymmetrical.

Initially, four tracepoints were placed in the application hashing
message ids. Recall that tracepoints represent only a single location,
not a bounds, and do not necessarily correspond to individual func-
tion calls. The system was run for 12 seconds generating ∼22,000
samples. These were analysed in Matlab to determine the end-to-
end latency between the nodes in both directions, confirming the
hypothesized asymmetry (Figure 3, Run #1).

Based on this conclusion, additional tracepoints were introduced
focusing on the disproportionately latent path (Unity to Chai), and
the system ran a second time (Figure 3, Run #2) generating ∼60,000
samples. We hashed loop counters, message ids and message pay-
loads, and used a-posteriori constraints (see Section 3.3) to disam-
biguate the paths. With this additional resolution we identified the
exact link in the chain of tracepoints followed by messages between
Unity and Chai that was introducing the delay. This link corre-
sponded to a thread boundary in Unity in which the recipient was
not reading all available messages at each iteration causing a back-
log, and on review of this code the bug was resolved on the first
attempt.

Figure 4 maps the maximum observed latency between nodes.
Black indicates there is no identifiable connection between the nodes.
Figure 5 shows an example of a recovered route between two nodes,
as a directed network graph [11].
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Figure 3: Plot of message passing latencies in Case Study 1 for the
beginnings of two runs: #1 with four tracepoints (top), and #2 with
twelve (bottom).
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Figure 4: Table of all node permutations and the maximum observed
latency (in seconds) between them, highlighting the latency issues
discovered in Case Study 1.
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Figure 5: The route taken by a Force message from the Chai haptic
rendering to the Unity physics engine.

Figure 6: High-level execution flow of the rendering and physics nodes
in Case Study 2. Message passing between machines is shown in
blue.

Figure 7: Three potential connection architectures tested in Case
Study 2.

5.3 Case Study 2 - Virtual Network Architecture Com-
parison

In this case study, we profile a distributed application across multiple
metrics in order to better understand the performance implications
of different interconnection architectures. In this system the physics
engine was placed on a separate computer, with the intent that in the
future additional haptic nodes could be added and collaboratively
interact with the physical scene through the scene-graph-as-a-bus
scene graph synchronisation. Here we use the graphics rendering,
physics simulation, haptic rendering and router nodes to build the
same system with different architectures as shown in Figure 7. The
Chai node had the same construction as shown in Figure 2. Equiva-
lent diagrams of the Unity and Bullet nodes are shown in Figure 6.

To determine how this may affect performance we placed a num-
ber of tracepoints throughout the nodes, and ran the system for ∼60
seconds in each configuration generating ∼4e6 samples. We took
the same approach to hashing as in Case Study 1. The environment
is shown in Figure 8. The operator behaved similarly during each
capture by attempting the same task: lifting one or more items.

Figure 8: Simple haptics ballpit environment used in Case Study 2.
The volume of the pit is roughly the same as that of the Phantom
Omni.

We implemented a variety of metrics defined by Rehfeld et al. [20]
that were designed for the benchmarking of message passing RISs.
Their application to our system is described below; exact definitions
can be found in the original publication (we have continued to use
their numbering).



M3 Degree of Parallelism The number of messages concurrently
’in-flight’.

M4 Process Latency The performance of an individual node char-
acterised by the delay between the tracepoints in the following
pairs:

1. Bullet Message Receipt to Message Processed

2. Bullet Simulation to Message Transmission

3. Chai Force Computation to Message Transmission

4. Unity Message Receipt to Message Processed

M5 Latency The performance of the system characterised by the
end-to-end latency in a meaningful semantic interval between
the tracepoints in the following pairs:

1. Haptics Force Computation to Graphics Scene Graph Update

2. Haptics Force Computation to Physics Scene Graph Update

3. Physics Simulation to Haptics Scene Graph Update

4. Physics Simulation to Graphics Scene Graph Update

M8 Messages Per Second Average number of messages ex-
changed per second.

M11 Message Waiting Time Time between a message being cre-
ated and beginning processing.

M12 Simulation-Overhead Ratio The time spent acting on a mes-
sage compared to the time spent passing it. This is M10 in
Rehfeld et al. We intend for the metric to be the same, but we
do not have the concept of trigger messages in our system and
cannot implement their definition exactly, so call our version
M12 instead.

Measurements are shown in Table 5. Where a metric has an ideal
value (e.g. latency) the best values have been emphasised. The
standard deviations are high, however the dataset is also very large
(∼4e6) and an ANOVA shows that the M3-5 & M11 are significantly
different between the configurations.

From our results we see that too much time is spent in message
passing (proportion of end-to-end latencies (M5.1-4) expressed by
M11), and that the Chai node contributes disproportionately to this
(M4.3 compared to M4.1, 2 & 4). We also see that the remote router
typically performs the best, with lower latencies and lower variances
of those latencies, possibly because moving the message duplication
to the second machine better distributes processing power. Note
that this configuration has the best simulation-overhead ratio. As an
absolute measure, this metric is only useful when the coverage of
the system nears 100 %, however it can be a useful comparator if
the coverage is consistent. One may expect the mesh configuration
to have the best performance, however this is not the case. While
it has higher concurrency the computational overhead of each node
duplicating its messages appears to outweigh any benefits. Note how
M4.1 and M4.2 change when the router process is moved remotely.

One consideration when profiling asynchronous systems is to
what extent performance is dependent on user input. Ostensibly one
solution would be to test under input that is in some way artificial or
constrained, however the results will then only indicate the superior
system under those constraints. If two systems are so close as to
make user input the deciding factor this is itself a result.

One of the advantages of this type of analysis is that we can
generate many measurements (36) from a single dataset, and even
in noisy data detect trends that provide guidance for system design
or further investigation, such as with the effect of processing power
distribution M4.1, 2 & M5.1, and the significance of M4.3 for total
performance.

5.4 Case Study 3 - Latency Measurement from Hetero-
geneous Data sources

In this case study we demonstrate how our technique can unify sam-
ples across different layers, by measuring the latency of a message
between an internal instrumentation point and its appearance on a
physical display in the haptic system from Case Study 1 (Figure 2).

To do so, we modify the Unity node to display a QR code contain-
ing the ID of the latest Transform Update message processed. The
system clock is synchronised to an external PPS from a signal gen-
erator (see Section 4). The PPS also drives an LED. A high-speed
(1000 fps) camera (Chronos 1.4) captures both the QR code and the
LED (Figure 9). Both nodes write tracepoint logs as usual.

Figure 9: A function generator drives a PPS to a GPIO card where it is
used to synchronise the phase of the system clock and an LED visible
to the high speed camera. The QR code is undergoing a transition.

The system was run for ∼8 seconds. After capture, a script reads
the QR code of each video sample (frame of high speed video) as
well as the luminance of the region containing the LED. The lumi-
nance is used to identify samples containing the rising edge of the
PPS. The video is synchronised to the system clock by identifying
the last QR code shown before a rising edge. Then, a corresponding
sample from the software logs is found using hash matching. The
time-stamp of this sample rounded up to the nearest second indi-
cates the absolute time of the rising edge in the video. The software
sample only indicates the second boundary, so any tracepoint that
reliably pre-dates the QR display by <1 s can be used. The synchro-
nisation of the system clock and PPS is monitored. The maximum
deviation across the capture period is subtracted from the software
time-stamp before it is rounded, to ensure it rounds up to the cor-
rect boundary even with imperfect synchronisation. Once the first
boundary has been timestamped in this way, absolute timestamps
for the remaining frames are interpolated based on the number of
frames between successive PPS edges. Once timestamps have been
generated for the video samples, they are integrated with the typical
software logs. ∼70,000 samples were generated across the 8 second
run with ∼8,700 of those from the video.

The highest deviation between the video and system clock was
600 µs. Due the persistence of the display, the QR code became
unintelligible during switching at the beginning of each frame (see
Figure 9), resulting in an overestimate of the smallest latency of
approximately 6 ms - the average time the code could not be read.

The plot of the latencies between all nodes in the capture is
shown in Figure 10. The dominant latencies are due to internal
message passing and drawing delays in Unity, shown in Table 6
along with the total latency of the examined path. The high frequency
component of the final stage (processing to display) is due to display
persistence - the QR code remains visible for the entire frame, and
so is matched multiple times. In some cases the code is displayed for
two frames, no doubt contributing to the high average latency. This
indicates our system would benefit from a low persistence display.
(The occurrence of double frames and an end-to-end latency of
∼60 ms was verified independently with high speed video.) These
measures are far higher than is acceptable for a haptic system. Again
our technique revealed a surprising source of latency in the form



Table 5: Mean and Standard Deviation of various metrics for the three-node distributed haptics system, in three configurations, with the best
system for each metric highlighted

M3 (messages) M4.1 (ms) M4.2 (ms) M4.3 (ms) M4.4 (ms) M5.1 (ms) M5.2 (ms) M5.3 (ms) M5.4 (ms) M8 (messages/s) M11 (ms) M12
Mesh 593 264 6.8 2.1 3.5 1.4 12.4 6.5 16.5 11.6 32.6 20.1 20.4 6.1 19.3 6.5 27.5 17.2 137762 22.9 12.7 0.017
Local Router 255 243 5.7 1.7 2.6 1.0 15.3 7.5 9.4 10.4 35.6 29.7 24.2 6.5 18.1 5.6 26.7 28.5 80175 22.8 20.9 0.015
Remote Router 210 80 7.1 3.0 4.3 2.1 11.7 5.9 8.1 6.9 26.0 11.1 21.2 5.2 20.4 7.2 19.1 11.8 66811 19.8 9.6 0.019

Figure 10: Plot of message latencies in the two-node distributed haptic
system in Case Study 3, including the physical display.

Table 6: Message latencies of the dominant semantic intervals in
Case Study 3

Path Latency StdDev Min Max
Message Created (Chai) - QR Display 0.0674 0.0111 0.0209 0.0981
Message Receipt - Processed (Unity) 0.0082 0.0107 0.0000 0.3182
Message Processed - Display (Unity) 0.0607 0.0108 0.0172 0.0976

of internal cross-thread delays, which may have been missed by
less comprehensive profiles looking only at end-to-end latency, or
rendering delay.

This case study demonstrates how straightforward it is to inte-
grate non-traditional instrumentation in order to extend our profiling
domain to the ‘real-world’. Another variant of this would be to mon-
itor data at various points in the network. A dedicated board could
monitor packet checksums, for example, either as a ‘bump-in-wire’
or through port-mirroring.

6 PERFORMANCE IMPACT

Profiling systems must have minimal impact on the system under
test. While disk writes take place in a dedicated thread, hashing still
takes place in the main thread. This is necessary because there are no
guarantees of the lifetime of any memory being hashed, especially
with black-box APIs. Table 7 shows the average performance of
an MD5 hash in C++ averaged over 106 samples. As can be seen
the hashing times are below the clock synchronisation error up to
10 kB. In practice the objects hashed are scene graph messages or
local variables that never exceed a hundred or so bytes. Different
hashing functions may also have different opportunities for accelera-
tion, such as dedicated CPU instructions [8] or dedicated hardware
blocks on platforms such as FPGAs, though we are not aware of any
accelerators for MD5.

We used a simple log file format (CSV) in our case studies for
expediency. Though it did not impact the performance of our system,
it is inefficient. Each capture in Case Study 2 produced 0.5 GB of
log files. Taking a Unity log as an example, 40% of each record
is repeated data that could be moved into a look-up table. The
remaining data could be reduced to 37% of its size by using a binary

Table 7: Average execution time of an MD5 based tracepoint for
different payload sizes

Payload Size Mean Executions Per Second Mean Execution Time
10B 1476840 0.67 µs

100B 1197810 0.80 µs
1kB 393890 2.54 µs

10kB 53178 18.80 µs
100kB 3837 260.60 µs

representation, or 20% in the case of tracepoints that use the same
input and output hashes.

7 DISCUSSION AND CONCLUSION

Our profiling technique aims to facilitate high accuracy profiling
with the ability to easily cross common boundaries in distributed
RISs. A number of tools can infer data-flow entirely a-posteriori,
but their efficacy is limited by the existing log formats. Other tools
can achieve high accuracy, but typically do so by passing metadata
or performing static analysis. This bounds the profiling to explicitly
supported environments. milliScope [15] attempts to broaden these
bounds by leveraging existing tools in each environment. We attempt
to do so by defining a process simple enough that implementing it
on a new platform is competitive with using existing tools.

The use of hashing to implicitly associate samples can introduce
ambiguities about the data-flow in an application. In our experi-
ments we used simple hash parameterisations and constrained the
hash-matching to valid tracepoint pairs. This approach allows an
application to be profiled at different logical resolutions, and incor-
porate the execution bounds of black-box APIs. It does require good
knowledge of the system’s architecture however. If necessary, the
logical structure could be recovered automatically if each tracepoint
pair used unique hash parameters. The ability to unify heterogeneous
data sources is important for distributed systems, both because some
components may not support modification, and also because it is
necessary to instrument the real world. Kämäräinen et al. [14] and
Casiez et al. [4] also unified sensor data with internal samples, but
their implementations were more tightly coupled than ours.

Clock synchronization is important to distributed profiling. Like
most we assume that system clocks are synchronised to a desired
accuracy. UberTrace [6] has a novel clock correction scheme that
does not rely on this. We do not assume that distributed applications
use the traditional RPC model required by UberTrace, but integrating
their approach is certainly worth investigating.

As can be seen from Mace et al. [16] and Rehfeld et al. [20],
performance analysis from disparate samples is conducted predomi-
nantly by comparing timestamps. We have emphasised portability
and simplicity, however at haptics rates the amount of data to be pro-
cessed can become prohibitive. We had to write a native processor
in C#, for speed and because graph reconstruction proved impracti-
cal without object-oriented language features. Our technique also
has dependencies despite our efforts to minimise them. Lock-free
queues are necessary to prevent performance degradation due to
slow disk access. Hashing libraries are necessary for tracepoints
to flexibly adapt to many message types and functions. We expect
however that these lower level facilities will be more common than
profiling subsystems that other techniques rely on.

We do assume a level of access to existing systems. Importantly
we also assume a level of architectural knowledge. Where this is



the case though, our technique should be similarly easy to integrate
into any type of application, including the web stacks that inspired
our approach, due to the deliberately self-contained nature of the
tracepoint implementation.

While our hash-matched tracepoint approach could still benefit
from inbuilt clock compensation, fewer dependencies and easier
automated structure recovery, it has demonstrated its potential for
characterising distributed RISs. Across three case studies we demon-
strate a combination of flexibility, comprehensiveness and scope
that are not available in other profiling systems. All three are impor-
tant for efficient optimisation of systems as complex as distributed
asynchronous RISs. The instrumentation is simple enough to be
implemented natively in an environment with existing hashing func-
tion and lock-free queue implementations, though we have made
implementations for C++ and C# available1. We have also made
available our processing tool and metric implementations, though in
theory tools with explicit schemas such as milliScope could also be
leveraged, as the principles are the same.
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