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4APHP Department of Genetics, Groupe Hospitalier Piti�e-Salpêtrière, and Institut du Cerveau et de la Moelle, INSERM U1127, CNRS UMR7225, Sorbonne

Universit�es – UPMC Universit�e Paris VI UMR_S1127, Paris, France

5Department of Neurology, Leiden University Medical Centre, Leiden, 2300RC, The Netherlands

6Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom

7Departments of Psychiatry and Biostatistics, University of Iowa, Iowa City, Iowa

8Department of Neurology, Ulm University Hospital, Ulm, Germany

Correspondence

Sarah Gregory, Huntington’s Disease

Research Centre, UCL Institute of

Neurology, 2nd Floor, Russell Square

House, 10-12 Russell Square, London

WC1B 5EH.

Email: s.gregory@ucl.ac.uk

Funding information

This work was funded by the CHDI

Foundation, the Wellcome Trust (GR), and

the Medical Research Council (ST). Some of

this work was also undertaken at UCLH/

UCL who acknowledge support from the

Department of Health’s NIHR Biomedical

Research Centre. SG, RS, GR, and ST

receive support from a Wellcome Trust

Collaborative Award (200181/Z/15/Z)

Abstract
Huntington’s disease (HD) is a monogenic neurodegenerative disorder caused by a CAG-repeat

expansion in the Huntingtin gene. Presence of this expansion signifies certainty of disease onset, but

only partly explains age at which onset occurs. Genome-wide association studies have shown that

naturally occurring genetic variability influences HD pathogenesis and disease onset. Investigating

the influence of biological traits in the normal population, such as variability in white matter proper-

ties, on HD pathogenesis could provide a complementary approach to understanding disease

modification.We have previously shown thatwhile whitematter diffusivity patterns in the left senso-

rimotor network were similar in controls and HD gene-carriers, they were more extreme in the HD

group. We hypothesized that the influence of natural variation in diffusivity on effects of HD

pathogenesis on white matter is not limited to the sensorimotor network but extends to cognitive,

limbic, and visual networks. Using tractography, we investigated 32 bilateral pathways within HD-

related networks, includingmotor, cognitive, and limbic, and examined diffusivitymetrics using princi-

pal components analysis.We identified three independent patterns of diffusivity common to controls

andHDgene-carriers that predictedHD status. The first pattern involved almost all tracts, the second

was limited to sensorimotor tracts, and the third encompassed cognitive network tracts. Each diffu-

sivity pattern was associated with network specific performance. The consistency in diffusivity

patterns across both groups coupled with their association with disease status and task performance

indicates that naturally-occurring patterns of diffusivity can become accentuated in the presence of

the HD genemutation to influence clinical brain function.

*TrackOn-HD is funded by the CHDI foundation, a not for profit organization dedicated to finding treatments for Huntington’s disease. There are no conflicts of

interest regarding the research in the manuscript.

.......................................................................................................................................................................................
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, pro-

vided the original work is properly cited.
VC 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2018;1–12. wileyonlinelibrary.com/journal/hbm | 1

Received: 9 June 2017 | Revised: 26 March 2018 | Accepted: 6 April 2018

DOI: 10.1002/hbm.24191

3516 wileyonlinelibrary.com/journal/hbm Hum Brain Mapp. 2018;39:3516–3527.

http://orcid.org/0000-0003-4620-6963
http://orcid.org/0000-0002-1832-106X
http://orcid.org/0000-0002-6913-3536


R E S E A R CH AR T I C L E

Natural biological variation of white matter microstructure
is accentuated in Huntington’s disease

Sarah Gregory1 | Helen Crawford1 | Kiran Seunarine2 | Blair Leavitt3 |

Alexandra Durr4 | Raymund A. C. Roos5 | Rachael I. Scahill1 | Sarah J. Tabrizi1 |

Geraint Rees6 | Douglas Langbehn7 | Michael Orth8

1Huntington’s Disease Research Centre, UCL Institute of Neurology, London, United Kingdom

2Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, WC1N 1EH, United Kingdom

3Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
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1 | INTRODUCTION

Huntington’s disease (HD) is caused by a CAG-repeat-expansion in the

Huntingtin gene (HTT). The expansion length is variable and explains

much of the heterogeneity in the age at which mutation-carriers

receive a clinical diagnosis of manifest disease (Duyao et al., 1993). A

large portion of variability in age at onset, however, remains unex-

plained by the gene-mutation and is likely the result of other factors,

both genetic and environmental (Wexler et al., 2004). Identifying these

factors and their associated biological processes could provide addi-

tional targets for therapeutic interventions that may modify disease

progression.

Approximately, half of the unexplained variability for age at onset

may be heritable. It is therefore unsurprising that much focus has cen-

tered on the role of potential genetic modifiers that do not cause dis-

ease but nonetheless influence the effects of a disease-causing

mutated gene (GeM-HD Consortium, 2015; Lee et al., 2012). Genome-

wide association analysis identified possible independent modifiers that

may influence the age at clinical onset in HD (GeM-HD Consortium,

2015). However, further work is required to understand the mecha-

nisms of modifier genes in a comprehensive biological context. As a

complementary approach, it would be valuable to first identify biologi-

cal traits in the normal population that may influence HD pathogenesis

and then investigate the underlying e.g., genetic basis. Similar to

genomic variability the expression of biological traits, e.g., height or eye

color, varies without causing disease. The expression of that biological

trait could, however, influence the vulnerability to the effects of a

mutated gene. TRACK-HD and PREDICT-HD, for example, reported

changes in brain structure that were independent of HTT CAG repeat

length and age (Paulsen et al., 2014; Tabrizi et al., 2013). The identifica-

tion of biological traits could help reveal an interaction between the

underlying biology and pathogenesis, or the timing of clinical manifesta-

tions of HD. Such traits, and their genetic bases, could propose a route

to disease modification.

Macrostructural brain changes are a consistent phenotype in HD.

In addition, considerable evidence points towards changes in white

matter microstructure in HD cohorts. Diffusivity is an indirect marker

of white matter tract organization. Increases of diffusivity across both

the whole brain and in select white matter pathways, such as within

the sensorimotor network, are suggestive of white matter degeneration

in premanifest (preHD) and early manifest HD (Della Nave et al., 2010;

Douaud et al., 2009; Dumas et al., 2012; Kl€oppel et al., 2008; Matsui

et al., 2014; Novak et al., 2014; Odish et al., 2015; Poudel et al., 2014,

2015). In a recent study of the sensorimotor network, we observed a

broad structural HD phenotype that encompassed gray and white mat-

ter volume, cortical thickness, and altered diffusivity in left white mat-

ter tracts in the sensorimotor network, which was associated with CAG

repeat length (Orth et al., 2016). In addition, we identified an inverse

relationship between levels of axial diffusivity (AD; water movement in

the direction of the main tract) and radial diffusivity (RD; water move-

ment perpendicular to the main tract) that predicted both motor per-

formance and disease stage in HD and was independent of CAG

repeat length. Interestingly, this same diffusivity pattern was also evi-

dent in controls, suggesting that it may reflect natural biological varia-

tion in white matter microstructure, which in the presence of the HD

gene-mutation independently contributes to HD pathogenesis.

Given the extant evidence of widespread white matter changes,

we have investigated the potential role of natural biological variation

on white matter microstructural alterations beyond those that we had

described within the left sensorimotor network in HD. We tested to

what extent the effects of natural variability on HD pathogenesis are

specific only to sensorimotor white matter tracts most likely affected

by HD pathology or whether there is a more widespread effect across

the whole brain. We performed tractography analyses to investigate

diffusivity in 32 tracts within networks likely to be affected as part of

the HD phenotype: sensorimotor, cognitive, limbic (neuropsychiatric),

and visual and subsequently employed principal components analysis

(PCA) on diffusivity metrics extracted from these tracts to identify and

parsimoniously describe diffusivity patterns in both controls and HD

gene-mutation carriers. First, we examined whether patterns differed

between controls, preHD and earlyHD or if there was some consis-

tency within the control and HD populations. Second, we aimed to dis-

tinguish diffusivity patterns linked to key contributors to HD

pathology, e.g., CAG repeat length, from those that are independent

but still influence HD manifestation. Third, we investigated the relative

contribution of the three diffusivity measures i.e., RD, AD, and FA to

each pattern of diffusivity or principal component. Finally, we examined

the relationship between each PC and both cognitive and motor per-

formance as indexed by the global cognitive composite and grip force,

respectively. We predicted that tracts associated with networks more

directly affected in HD, in particular those connecting striatal regions

would likely show more disruption than cortico-cortical tracts and that

the main patterns of diffusivity would discriminate robustly between

controls, preHD and earlyHD gene-mutation carriers. We also pre-

dicted that patterns of natural variation would be associated with HD-

related biological variables, including volume changes and CAG-repeat

length extending to structural connections in other brain networks and

therefore representing a wider structural HD phenotype.

2 | METHODS AND MATERIALS

2.1 | Participants

We analyzed brain images from the TrackOn-HD study. Participants

were recruited into the TrackOn-HD study at four study sites (London,

Paris, Leiden, Vancouver) as previously described (Kloppel et al., 2015;

Orth et al., 2016). For the present analyses, we used data of those par-

ticipants who had complete Diffusion Tensor Imaging (DTI) data. Sixty-
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one individuals (F544%; mean age6SD: 43.169.1) carried the HTT

gene with a CAG trinucleotide repeat expansion mutation of�39 but

did not have a clinical diagnosis of HD. Thirteen participants (F562%,

mean age6 SD: 43.163.3) had early motor manifest HD (UHDRS

diagnostic confidence level of 3 or 4), and 79 were controls (F561%,

mean age6 SD: 49.169.7). A global cognitive composite score was

derived from nine cognitive tasks that were completed in testing ses-

sions separate to the MRI procedures: Stroop Word Reading test, Sym-

bol Digit Modality Test, Paced Tapping, Circle Tracing (two conditions),

Map Search test, Cancelation task, the Spot the Change visual working

memory task, Mental Rotation task (Jones et al., 2014). The United

Huntington’s Disease Rating Scale (UHDRS) motor examination was

administered to all participants to derive the UHDRS total motor score.

Grip force as a sensorimotor test was selected as a further marker of

motor performance; for details see (Kloppel et al., 2015; Orth et al.,

2016). All participants were right-handed. Exclusion criteria included

age below 18 or above 65 (unless previously in Track-HD study), major

psychiatric, neurological or medical disorder or a history of severe head

injury (Kloppel et al., 2015). The study was approved by the local ethics

committees, and all participants gave written informed consent accord-

ing to the Declaration of Helsinki.

2.2 | MRI data acquisition and analysis

Standardisation of data acquisition across sites was performed based on

previous suggestions (Glover et al., 2012; Kloppel et al., 2015). 3T-MRI

data were acquired on two different scanner systems (Philips Achieva at

Leiden and Vancouver and Siemens TIM Trio at London and Paris).

Diffusion-weighted images were collected with 42 unique gradient

directions (b51,000 s/mm2) with eight images with no diffusionweight-

ing (b50 s/mm2) (Siemens) and one image with no diffusion weighting

(b50 s/mm2) (Philips). Acquisition parameters were TE588 ms,

TR513 s and voxel size 2 3 2 3 2 mm (Siemens); TE556ms and

TR511s and voxel size 1.96 3 1.96 3 2.75 mm (Philips). The diffusion

datawere preprocessed using standard FSL pipelines (Smith et al., 2004).

The T1 scan was segmented into gray and white matter using the

VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/) and combined to

create an improved anatomical scan for DTI data registration. Prior to

analysis, we screened each DTI dataset for artifacts, signal drop-out

and motion. Data were then corrected for distortions caused by eddy

currents and motion using eddy_correct in FSL, and vector gradient

information updated accordingly. The no-gradient (B0) image (an aver-

aged B0 image was used for the Siemens data) was then skull-stripped

using the Brain Extraction Tool (BET) and manually corrected. For regis-

tration purposes, we also applied BET to the structural T1 image. To

improve the quality of the brain mask, we combined and dilated a

thresholded segmented image with an eroded brain-extracted T1 mask,

which was then applied to the original brain-extracted T1 image. We

then linearly registered the resultant T1 image to the B0 image using

FLIRT (Jenkinson & Smith, 2001) with standard parameters. Diffusion

tensors were fit to the corrected data using dtifit and fractional anisot-

ropy (FA) axial diffusivity (AD) and radial diffusivity (RD) values derived.

We modeled within-voxel crossing fibers using a Bayesian probabilistic

method implemented in Bedpostx (Behrens et al., 2003).

Probabilistic tractography was performed for a series of tracts

using probtrackx (Behrens, Berg, Jbabdi, Rushworth, & Woolrich,

2007); more information can be found at Table 1. For the sensorimotor

network, this included tracts in the right hemisphere connecting the

primary motor cortex (M1) and the motor thalamus; the premotor cor-

tex (PMC) and the motor thalamus; and the primary somatosensory

cortex (S1) and the somatosensory thalamus (for completeness we also

included the equivalent left-sided tracts from our previous study in the

final analyses). This was then repeated replacing the thalamic region

with the putamen in both hemispheres. Tracking was then performed

on bilateral tracts within the cognitive network connecting the dorso-

lateral prefrontal cortex (DLPFC) and the DLPFC thalamic parcellation

and caudate, respectively; and the posterior parietal cortex (PPC) and

the parietal thalamus. We also performed tractography on tracts within

“limbic circuits,” the middle and posterior cingulum and the uncinate

fasciculus (UF) bilaterally. Finally, we performed fiber-tracking between

the primary visual cortex (V1) and the visual thalamus, the inferior

fronto-occipital fasciculus (IFOF), the inferior longitudinal fasciculus

(ILF) and the middle and posterior corpus callosum (see Supporting

Information Table S1 for further details). Masks were created using the

Anatomy Toolbox, the WFU PickAtlas (Maldjian, Laurienti, Kraft, & Bur-

dette, 2003) or FSL MNI template and the JHU White Matter Labels

TABLE 1 Tracts included in principal component analysis

Network Tract

Sensorimotor
network

Primary Motor Cortex (M1) – Putamen

Primary Motor Cortex (M1) – Motor Thalamus

Premotor Cortex – Putamen

Premotor Cortex – Motor Thalamus

Primary Somatosensory Cortex (S1) – Putamen

Primary Somatosensory Cortex (S1) – Somatosensory
thalamus

Visual network Inferior Fronto-Occipital Fasciculus

Primary Visual Cortex (V1) – Visual Thalamus

Limbic network Uncinate Fasciculus

Mid Cingulum

Posterior Cingulum

Cognitive
network

Dorsolateral Prefrontal Cortex – Caudate

Dorsolateral Prefrontal Cortex –Prefrontal Thalamus

Posterior Parietal Cortex – Parietal Thalamus

“Non-HD” Inferior Lateral Fasciculus

Interhemispheric
tracts

Mid corpus callosum

Posterior corpus callosum

Tractography was performed for all listed tracts. Diffusivity measures
were extracted from each tract and included in our PCA analysis.
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atlas (Wakana et al., 2007). All masks were defined in standard MNI

space and warped into native space for each participant. Exclusion

masks were used to exclude any streamlines that may track via the

contralateral hemisphere or outside of the anatomically-defined tract.

A white matter termination mask was also used to ensure tracts

stopped at the gray/white matter interface and did not extend beyond

the white matter into the gray matter, CSF or dura. The resulting tracts

were then warped into diffusion space using FLIRT. All tracts were vis-

ually inspected following probtrackx analyses and warping into

diffusion space. Due to poor tracking in a high number of participants,

the following tracts were excluded from the final analyses: the PPC

and the parietal thalamus, the lateral orbitofrontal cortex to the cau-

date, the anterior cingulum and the anterior corpus callosum. Mean

fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity

(RD) values were extracted from the mask of each tract for each partic-

ipant weighted by the contribution of each voxel by the number of

streamlines that pass through it (as opposed to assuming an equal con-

tribution from each voxel).

FIGURE 1 Study workflow. After processing data from the DTI sequence, tractography was employed to discern 15 tracts bilaterally, the

mid corpus callosum and posterior corpus callosum so that, altogether, we derived 32 tracts. From each tract we extracted information
about axial (AD) and radial diffusivity (RD) as well as fractional anisotropy (FA). Hence, we included 96 diffusivity measures in our PCA. The
first 3 principle components, each of which contains information on all 3 diffusivity measures (AD, RD, FA) explained 56% of the variability
in the data. The heatmap illustrates the relative contribution of each tract’s diffusivity measures to the respective PC to show the diffusivity
patterns for each PC across all tracts. For the three main PCs, we then calculated a principle component score for each participant followed
by group comparisons of PCs [Color figure can be viewed at wileyonlinelibrary.com]
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2.3 | Statistical analysis

We performed PCA using centered, standardized (standard

deviation51) versions of the tract-specific DTI measures. PCA is a

method to identify patterns of correlation among multiple measures

and is based on the correlations among those measures. To the extent

that the first few principal components account for much of the com-

bined variance in a set of variables, those components serve as a useful

approximation of the overall correlation patterns. Principal components

are described in terms of their correlations with their constituent varia-

bles, and the pattern represented by a component can be understood in

terms of these correlations. Furthermore, participants’ original data can

be transformed to scores on each principal component. We can then

analyze a few component scores rather than a large number of original

measures, for example, to examine group differences. This reduces mul-

tiple comparisons and ideally contributes to insight regarding systematic

patterns that may be related to underlying biology and pathology.

Initially, we observed that separate PCA of the controls and of the

combined preHD and earlyHD group yielded very similar results (see

Supporting Information Table S2 for further details). Subsequently, the

final PCA was performed on all three groups combined. The data were

first screened for univariate outliers with the only cases identified from

tracts subsequently removed from the analyses due to general QC

issues as described above. As a check of stability and potential multi-

variate outlier influence, PCA was also performed using Hubert’s robust

PCA (Hubert, Rousseeuw, & Vanden Branden, 2005) as implemented in

the R packaged rrcov (Todorov & Filzmoser, 2009). These results (not

shown) were in excellent agreement with conventional PCA and influ-

ence plots suggested no substantial outliers. Differences in PC scores

among groups were assessed via ANOVA. Group differences and their

statistical significance were calculated from the ANOVA-based means

and standard errors. Statistical significance was defined as p< .05, after

Tukey-Kramer adjustment for multiple group comparisons. Predictive

models for PC scores were all estimated by linear regression. We used

logistic regression for multivariate prediction of earlyHD versus preHD

clinical status. We used Pearson correlation (equivalent to linear regres-

sion), with and without control for age and CAG, to assess relationships

between DTI scores and cognitive or motor measures. With the excep-

tion noted above, all analyses were performed with SAS/STAT 14.1

(SAS Institute Inc., Cary, NC).

3 | RESULTS

We investigated diffusivity in 32 tracts within networks likely to be

affected as part of the HD phenotype: sensorimotor, cognitive, limbic

(neuropsychiatric), and visual (Table 1; Figure 1). We employed PCA in

all participants combined to identify diffusivity patterns and addressed

three main questions. First, we examined the diffusivity patterns across

the 32 white matter tracts and asked whether such patterns differed

between controls, preHD and earlyHD. Second, we aimed to distin-

guish diffusivity patterns linked to key contributors to HD pathology,

e.g., CAG repeat length, from those that are independent but still influ-

ence HD manifestation. Third, we investigated the relative contribution

of the three diffusivity measures i.e., RD, AD, and FA to each pattern

of diffusivity or principal component. Finally, we examined the relation-

ship between each PC and both cognitive and motor performance as

indexed by the global cognitive composite and grip force, respectively.

3.1 | Diffusivity patterns (PCA) across both controls

and HD gene-carriers

We first examined diffusivity patterns, i.e., PC (principal components)

across all 32 tracts of the combined control and HD gene-carrier

groups. PCA revealed that the first three principal components

FIGURE 2 Principal component analysis. Scree plot showing variance explained by the first 10 principal components
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2.3 | Statistical analysis
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explained 56.8% of the overall variance in diffusivity (Figure 2). Thus,

the three corresponding patterns of diffusion metric correlations

describe a substantial portion of the overall diffusion metric variability

within the underlying white-matter regions. As noted in the Methods,

the first three PCs of the joint data closely resembled the correspond-

ing PCs when the controls and HD groups were analyzed separately.

The similarity with the PCA of controls alone suggests that the overall

variability in the data forms patterns similar to the patterns of corre-

lated natural variability within the healthy white matter of the controls.

Nonetheless, within the joint analysis there were notable differences in

the mean PC scores. On the first and third PCs, the early HD group

had significantly different mean scores compared to the preHD and

control groups (see below).

For PC1, there was a pattern across all tracts which demonstrated

an inverse relationship between FA and the two diffusivity measures,

AD and RD, i.e., the lower the FA, the higher the AD and RD and vice-

versa (Figure 3; Table 2). This was particularly the case in connections

from the PPC to the thalamus, limbic tracts (the mid and posterior cing-

ulum and the uncinate fasciculus), visual tracts (IFOF, V1 to thalamus),

the corpus callosum and the ILF. Additionally, AD and RD were corre-

lated with PC1 in all sensorimotor tracts (bilateral M1, PMC, and S1 to

putamen and thalamus) and cognitive tracts (DLPFC to caudate and

thalamus, respectively). However, FA reductions in the sensorimotor

and cognitive tracts were not as high as those in the limbic and visual

tracts, the corpus callosum or the ILF (Figure 3). PC1 scores distin-

guished clinical groups. Scores were higher in early HD compared to

controls (0.61 versus 20.24, p5 .0002) and to the preHD group (0.61

versus 0.05, p5 .0395) while the scores of controls and preHD were

similar (–0.24 versus 0.04, p5 .238). Thus, the pattern of diffusivity in

PC1 was significantly more pronounced in earlyHD (Figure 3).

PC2 revealed a diffusivity pattern of increased FA and AD focused

mainly on sensorimotor tracts (Figure 3; Table 2), while RD showed lit-

tle association. PC2 scores were significantly higher in earlyHD than

controls (0.48 versus 20.19, p5 .006) and also higher than those in

preHD, although the difference was not statistically significant (0.48

versus 20.04, p5 .148). Again, there was no significant difference in

scores between controls and preHD (–0.19 versus 0.04, p5 .395).

Thus, the pattern of diffusivity in PC2 was significantly more pro-

nounced in earlyHD.

Finally, PC3 revealed a diffusivity pattern of increased FA and

reduced RD in bilateral connections between the DLPFC and caudate

and thalamus, respectively (Table 2), while increased AD correlated

with PC3 in the right mid and bilateral posterior cingulum. PC3 scores

were lower in earlyHD than both controls (–0.06 versus 0.03

p5 .0016) and preHD (–0.06 versus 0.34, p5 .0001) and there was no

significant difference between controls and preHD (0.03 versus 0.34,

p5 .08). Thus the pattern of diffusivity in PC3 was lesser in earlyHD.

3.2 | Associations between diffusivity patterns and

HD pathology

As age and CAG-repeat length interactions influence HD pathogenesis,

we used linear regression to test whether age and CAG-repeat length

were associated with our diffusivity patterns. In the combined preHD

and early HD group, the diffusivity pattern evident in PC1 was strongly

predicted by both age (0.083 (0.02), t54.16, p5 .0001) and CAG-

repeat length (0.291 (0.08), t53.62, p5 .0005) but not an age-by-CAG

interaction. There was a suggestion of a relationship between PC2 and

CAG-repeat length (0.094 (0.06), t51.71, p5 .092), but no relationship

with age; PC3 was predicted by age (0.039 (0.01), t52.76, p5 .007)

but not CAG-repeat length. For controls, PC3 was significantly pre-

dicted by age (–0.027 (0.01), t52.52, p5 .014), and there was a sug-

gestion of age related difference in PC1 scores (0.02 (0.01), t51.86,

p5 .07). PC2 scores were not predicted by age.

Brain volume loss is a hallmark of HD progression and so we

assessed whether diffusivity patterns distinguished preHD from ear-

lyHD independently of whole brain, gray matter, white matter, puta-

men, caudate, and ventricular volumes. A preliminary model selection

demonstrated that only the caudate and lateral ventricle volumes acted

as joint predictors of HD status. Adding PC scores to that model, the

diffusivity pattern of PC3 was also a significant predictor of disease

status (log odds ratio51.078 per SD (0.410), X256.90, p5 .009), but

PC1 (log odds ratio50.166 per SD (0.38) X250.192, p5 .66) and PC2

(log odds ratio50.448 per SD (0.4) X251.13, p5 .29) were not.

FIGURE 3 Principal component analysis of diffusivity. Heat map
of correlation coefficients for each measure of diffusivity with
dimensions derived from PCA performed in controls and HD
participants. For each tract, there are two rows within the heat
map; the top represents the left hemisphere, the bottom the right
hemisphere. Abbreviations: DLPFC, dorsolateral prefrontal cortex;
IFOF, inferior fronto-occipital fasciculus; M1, primary motor cortex;
PMC, premotor cortex; PPC, posterior parietal cortex; S1, primary
sensorimotor cortex; V1, primary visual cortex [Color figure can be
viewed at wileyonlinelibrary.com]
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3.3 | Contribution of diffusivity measures to principal

component patterns

PC coefficients represent correlations between diffusivity measures

and their contributions to each pattern of diffusivity. We investigated

these associations in a subset of representative tracts for each PC, plot-

ting diffusivity metric values against PC scores with individual data

points color-coded for group membership. As discussed earlier, there

was considerable overlap in distribution across the groups (Figure 4).

TABLE 2 PCA results

PC1 PC2 PC3

FA AD RD FA AD RD FA AD RD

M1-Motor Thalamus L 0.4944 0.71558 0.67955 0.70197

R 0.43883 0.67178 0.64759 0.71228

M1-Putamen L 0.59931 0.77047 0.78749 0.61072

R 0.5695 0.66923 0.77874 0.66393

PMC-Motor Thalamus L 0.43661 0.61912 0.73059 0.71341

R 0.45098 0.64774 0.68891 0.68221

PMC-Putamen L 0.63268 0.74575 0.79596 0.58385 20.43091

R 0.59244 0.67459 0.77046 0.55995 20.46135

S1-Somatosensory Thalamus L 0.51495 0.72899 0.70752 0.68283

R 0.46951 0.66197 0.61133 0.70453 20.43991 0.46866

S1-Putamen L 0.59981 0.77641 0.77865 0.61116

R 0.62317 0.76785 0.75927 0.60292

DLPFC-Prefrontal Thalamus L 0.69285 0.65991 20.67064

R 0.6591 0.74847 20.74165

DLPFC-Caudate L 0.68251 0.68763 0.48431

R 0.66408 0.69064 0.47344 0.59726 20.42632

PPC - Parietal Thalamus L 20.57012 0.6499 0.83471

R 20.54872 0.55881 0.75936 0.41155

Uncinate Fasciculus L 20.4484 0.43608 0.61483

R 0.50387 0.50397

Mid Cingulum L 20.54713 0.47198 0.71255 0.4385

R 20.50473 0.56258 0.77297 0.40841 0.4084

Posterior Cingulum L 20.5396 0.76733 0.42102 0.44304

R 20.53816 0.76758 0.4282 0.41278

V1 - Visual Thalamus L 20.52886 0.44216 0.74869

R 20.53247 0.65093 0.44095

IFOF L 20.65731 0.5482 0.84464

R 20.60571 0.49602 0.81886

ILF L 20.63733 0.50695 0.77461

R 20.61165 0.47702 0.79844

Mid Corpus Callosum 20.67649 0.57568 0.84759 0.41806

Posterior Corpus Callosum 20.6755 0.61222 0.82682

Correlation co-efficients for each PC showing the contribution of each measure of diffusivity to each PC for all tracts; for visualization purposes, these
have only been shown for co-efficients that are smaller than or greater than 0.4. Tracts are color-coded according to the network to which they puta-
tively belong. Blue: Sensorimotor Network tracts; Green: Cognitive network tracts; Pink: Limbic network tracts; Orange: Visual network tracts; Purple:
Control (non-HD phenotype); Brown: Interhemispheric tracts. AD: axial diffusivity; DLPFC: dorsolateral prefrontal cortex; FA: fractional anisotropy;
IFOF: inferior fronto-occipital Fasciculus; ILF: inferior lateral Fasciculus; M1: primary motor cortex; PMC: premotor cortex; PPC: posterior parietal cor-
tex; RD: radial diffusivity; S1: primary somatosensory cortex; V1: primary visual cortex.
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Posterior Cingulum L 20.5396 0.76733 0.42102 0.44304

R 20.53816 0.76758 0.4282 0.41278

V1 - Visual Thalamus L 20.52886 0.44216 0.74869

R 20.53247 0.65093 0.44095
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Correlation co-efficients for each PC showing the contribution of each measure of diffusivity to each PC for all tracts; for visualization purposes, these
have only been shown for co-efficients that are smaller than or greater than 0.4. Tracts are color-coded according to the network to which they puta-
tively belong. Blue: Sensorimotor Network tracts; Green: Cognitive network tracts; Pink: Limbic network tracts; Orange: Visual network tracts; Purple:
Control (non-HD phenotype); Brown: Interhemispheric tracts. AD: axial diffusivity; DLPFC: dorsolateral prefrontal cortex; FA: fractional anisotropy;
IFOF: inferior fronto-occipital Fasciculus; ILF: inferior lateral Fasciculus; M1: primary motor cortex; PMC: premotor cortex; PPC: posterior parietal cor-
tex; RD: radial diffusivity; S1: primary somatosensory cortex; V1: primary visual cortex.
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For PC1, all three groups displayed correlations between PC1 scores

and RD and AD in sensorimotor (bilateral PMC and both thalamus and

putamen, respectively) and visual network (bilateral IFOF) tracts plus

bilateral ILF (Figure 3; Table 2), suggesting that both AD and RD con-

tributed strongly to PC1 regardless of the type of tract (Figure 3). Dif-

fusivity values and mean scores were highest in earlyHD (Figure 4). For

PC2 all three groups displayed a strong positive correlation between

PC2 scores and both FA and AD in bilateral PMC and both thalamic

and putaminal tracts with a weak negative correlation with RD. The dif-

ferentiation between early HD and the other groups is more difficult to

appreciate. Finally, for PC3, all three groups displayed a moderate neg-

ative correlation between RD and PC3 with the earlyHD group show-

ing higher levels of RD and lower PC3 scores. AD also correlated

moderately positively with PC3 scores in the bilateral mid and posterior

cingulum and here, the earlyHD group had lower levels of FA and AD

and lower PC scores compared to the control and preHD groups

(Figure 4).

3.4 | Relationship between diffusivity patterns and

behavior

Global cognitive composite scores and grip force index (as a marker of

motor performance) were correlated with overall PC scores for both

controls and a combined HD group (Table 3). The diffusivity pattern of

PC1 was negatively correlated with global cognition and positively cor-

related with motor performance for the combined HD group and to a

lesser extent the control group, suggesting that widespread increased

diffusivity was associated with diminished cognitive and motor per-

formance. Associations for cognition were only slightly attenuated

when controlling for the age-CAG interaction and thus cannot be

explained by the common causal influence of the HD gene. The

sensorimotor-based diffusivity pattern for PC2 was positively corre-

lated with motor performance only in both groups with little effect of

age or CAG. Finally, the cognition-based diffusivity pattern for PC3,

was not associated with either cognition or motor performance for

either controls or HD.

Looking at specific tracts, there were correlations between

increased AD in PMC tracts, and reduced motor performance bilaterally

for HD and in the right hemisphere for controls, that were little dimin-

ished when controlling for age and CAG repeat length. RD in the

DLPFC—caudate tract was positively correlated with the global cogni-

tion in both groups. This was attenuated when controlling for age and

CAG and was large enough in controls to suggest that changes may be

due to ageing. However, many of the attenuated correlations remained

significant in HD. There was also a similar correlation for the DLPFC–

thalamic tract for controls but not HD.

4 | DISCUSSION

In this study, we examined the relationships between AD, RD, and FA

within white matter tracts in HD gene expansion mutation-carriers and

healthy controls and identified three independent patterns of diffusiv-

ity relationships common to both. Absolute diffusivity levels varied

between individuals, while the relationship between AD, RD, and FA

was maintained potentially representing natural biological variation of

white matter microstructure. All three patterns were more pronounced

in HD compared to controls; with two closely related to biological fac-

tors associated with the HD gene-mutation. The first described a

FIGURE 4 Relationships between PC scores. Scatterplots showing the relationships between individual PC scores for manifest HD (red
dots) and preHD (blue crosses) (A-C) and manifest HD and controls (green crosses) (D-F). Manifest HD participants tend to have higher PC1
and PC2 scores, and lower PC3 scores, than preHD or control participants [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 3 Correlations between PC scores and performance

HD Controls

Global Cognitive Score Adjusted Adjusted

PC1 Score (74) 20.449 20.396 20.199 20.121

p val <.0001 0.0006 0.0787 0.293

PC2 Score (74) 20.133 20.130 0.106 0.076

p val 0.2593 0.2785 0.354 0.5063

PC3 Score (74) 0.093 0.057 0.227 0.119

p val 0.4315 0.6396 0.0444 0.3008

RD: Left DLPFC-Caud(90) 20.304 20.230 20.311 20.141

p val 0.0035 0.0321 0.0036 0.2012

RD: Right DLPFC-Caud(90) 20.284 20.198 20.271 20.111

p val 0.0066 0.066 0.0115 0.3135

RD: Left DLPFC-Thal(90) 20.165 20.103 20.282 20.210

p val 0.1204 0.3422 0.009 0.0547

RD: Right DLPFC-Thal(90) 20.101 20.039 20.218 20.126

p val 0.3412 0.7196 0.0439 0.254

HD Controls
Grip Force Adjusted Adjusted

PC1 Score (74) 0.361 0.349 0.196 0.203

p val 0.0016 0.0028 0.0839 0.0742

PC2 Score (74) 0.253 0.232 0.219 0.218

p val 0.0297 0.0517 0.053 0.0551

PC3 Score (74) 20.015 0.006 0.117 0.117

p val 0.8993 0.9578 0.306 0.3077

AD: Left PMC-Thal(74) 0.420 0.397 0.168 0.171

p val 0.0002 0.0006 0.1377 0.1334

AD: Right PMC-Thal(90) 0.318 0.265 0.267 0.269

p val 0.0022 0.0257 0.0131 0.0127

AD: Left PMC-Put(90) 0.407 0.464 0.141 0.146

p val <.0001 <.0001 0.1946 0.1825

AD: Right PMC-Put(90) 0.297 0.237 0.204 0.208

p val 0.0044 0.0464 0.0594 0.0557

RD: Left PMC-Thal(74) 0.138 0.112 0.064 0.064

p val 0.2415 0.3507 0.5757 0.5791

RD: Right PMC-Thal(90) 0.060 0.105 0.025 0.031

p val 0.5734 0.3857 0.8164 0.7758

RD: Left PMC-Put(90) 0.126 0.147 0.108 0.128

p val 0.2355 0.2216 0.3223 0.2448

RD: Right PMC-Put(90) 0.094 0.122 0.009 0.023

p val 0.378 0.3096 0.9324 0.8334

Pearson correlations between behavioral measures and PC Scores and individual diffusivity measures in specified tracts for HD and Control groups.
Correlations are presented unadjusted and adjusted for each group; for HD the correlations are adjusted for Age, CAG, Age*CAG, for Controls the cor-
relations are adjusted for Age. AD, axial diffusivity; DLPFC, Dorsolateral Prefrontal Cortex; PMC, premotor cortex; Put, Putamen; RD, radial diffusivity.
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widespread pattern of increased AD, RD and reduced FA, while the

second was restricted to increased AD and FA in sensorimotor network

tracts. In the case of the HD group, these patterns were to some extent

driven by CAG repeat length, the primary predictor of HD onset, indi-

cating that HD pathogenesis may accentuate pre-existing diffusivity

patterns that are independent of the HD gene mutation and also pres-

ent in controls. Further, both patterns were linked to widespread HD-

related brain volume loss reflecting key elements of the structural phe-

notype of HD. The third pattern, consisting mainly of RD changes in

tracts associated with cognitive function, however, while associated

with age was independent of both HD-mediated volume loss and CAG

repeat length, but nonetheless, a predictor of HD diagnostic status

independently contributing to HD clinical manifestations.

In this study, we examined diffusivity across 32 white matter tracts

from a number of functional networks and identified three independent

patterns of AD, RD and FA relationships common to controls, preHD

and earlyHD gene-carriers. Having previously shown that in left-sided

sensorimotor tracts diffusivity naturally varies for both controls and

HD gene-carriers independently i.e., absolute diffusivity levels differs

between individuals but the relationship between AD and RD is main-

tained (Orth et al., 2016), the current findings extend this concept of

variability within naturally-occurring patterns of diffusivity in HD to

include pathways within cognitive, limbic and visual networks. This

subsequently supports the idea that HD pathogenesis does not neces-

sarily abolish pre-existing patterns of diffusivity, or even generate new

ones, but instead modifies existing patterns throughout the brain.

The patterns of diffusivity that we previously identified in the sen-

sorimotor network, not only reflect natural variability but are also influ-

enced by HD pathology and could be clinically relevant since they

were associated with manifestations of unequivocal motor signs of HD

(Orth et al., 2016). In the current study, therefore, we explored whether

the exacerbation of such diffusivity patterns could potentially be con-

sidered a factor in HD pathology. Despite the commonalities between

diffusivity patterns across the three groups, it is important to note that

the distribution of the data along the PC axes, which describe the rela-

tionship between data, i.e., the pattern, differed between the earlyHD

and control groups. Thus, differences in PC scores between groups

indicate their placement at opposite ends of the axis. Indeed all three

diffusivity patterns were accentuated in earlyHD, while remaining

broadly similar for controls and preHD. For example, for PC1, where

we saw a widespread pattern of increased AD and RD and to a lesser

extent decreased FA across all 32 white matter tracts, the earlyHD

group displayed higher scores mainly due to higher levels of RD com-

pared to both controls and preHD. Similarly, the earlyHD group

showed higher levels of both RD in cognitive tracts (PC3) and AD in

bilateral sensorimotor tracts (PC2). In all cases, differences were only

found in earlyHD, and there were no detectable differences in the

preHD group. The evidence of both widespread and localized changes

in diffusivity over and above those patterns seen in controls and preHD

suggests that in the manifest stages of HD there is ongoing disorgani-

zation in white matter pathways which underscores a series of func-

tions including motor and cognitive – both key elements of the

phenotype. It is interesting to note that while there were no

differences between preHD and controls, the direction of diffusivity

changes in these naturally-occurring patterns in the preHD was compa-

rable with that seen in earlyHD. It is likely that the white matter

changes in the earlyHD group begin many years prior to diagnosis but

are not necessarily detectable in comparisons with non-CAG expanded

individuals. There is robust evidence to suggest that macrostructural

white matter changes in the cortex occur prior to those in the gray

matter with similar white matter microstructural changes (Paulsen

et al., 2010; Tabrizi et al., 2012; Wu et al., 2017).

We also examined the extent to which the diffusivity patterns pre-

dict HD disease status independent of genetic and structural markers

of HD progression. As such, despite significantly discriminating

between preHD and earlyHD, both patterns of diffusivity identified in

PC1 and PC2 were closely associated with CAG repeat length and

whole brain, gray matter, white matter, putamen, and caudate volume

loss and therefore, not independently associated with HD clinical group

classifications. Here, it would appear that widespread increased radial

diffusivity (as seen in PC1) and increased axial diffusivity in the sensori-

motor network (as seen in PC2) were both closely related to the overall

effects of HD pathogenesis, ultimately contributing to the structural

phenotype of HD.

The third DLPFC-based diffusivity pattern associated with cogni-

tive function did, however, remain associated with disease status even

when controlling for volumetric markers of HD pathology and CAG

repeat length. Changes in this pattern may be due to factors that do

not cause HD and the diffusivity properties represented may instead

independently influence the effects of the HD mutation. As this partic-

ular pattern of diffusivity was associated with age for both controls

and HD gene-carriers, changes here may be related to normal aging. In

other words, factors associated with aging may influence the diffusivity

properties of frontal lobe white matter tracts involved in networks sub-

serving cognition. In healthy individuals, frontal lobe gray and white

matter structure and connectivity have been associated with age-

related cognitive performance loss (Kievit et al., 2014; Serbruyns et al.,

2016; Zhao et al., 2015) that may be associated with reduced myelina-

tion of the frontal lobe. Given the known benefits of cognitive training

on myelination in healthy individuals (Caeyenberghs et al., 2016; Take-

uchi et al., 2010), similar therapeutic interventions in HD gene-carriers

may counteract the effects of age and thus positively influence HD

pathogenesis before disease onset, akin to the disease-modifying

effects of environmental enrichment in HD animal models (Dersi et al.,

2016; Nithianantharajah and Hannan, 2006; Xu et al., 2016). Although

this pattern of diffusivity correlated with global cognition in controls

only, increased RD in the DLPFC-caudate tract specifically correlated

with cognitive performance in both controls and HD. Furthermore, this

effect was reduced once correcting for age and CAG suggesting that

while influenced by natural variability, the presence of the HD gene

mutation has an independent effect that requires further investigation.

HD may not, however, affect all aspects of white matter micro-

structure in equal measure. The first pattern of widespread change was

driven mainly by RD suggesting that the HD gene-mutation may con-

tribute to widespread demyelination (Fox et al., 2011), which given the

correlation of this pattern with age in both controls and gene-carriers
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could be an amplification of a pattern seen in normal ageing. This over-

all effect is reflected in the correlation between the PC score and both

cognitive and motor performance. The difference in the strength of

these associations echoes the accentuated effect of naturally-occurring

age-related increased diffusivity in those with the HD gene. Increased

AD in sensorimotor tracts, coupled with an apparent inverse relation-

ship between RD and AD was similar to that identified previously (Orth

et al., 2016). Although data were from the same cohort and therefore,

some correspondence in findings is expected, this pattern is neverthe-

less consistent across both hemispheres of the sensorimotor network

with earlyHD showing the highest levels of AD. Again, this was

reflected in the strong correlations between increased AD, not RD, in

the sensorimotor tracts and motor performance. Given that motor dys-

function is one of the key clinical presentations of HD, it would appear

that AD increases are associated with motor deterioration seen in HD

(M€uller et al., 2016) and may reflect degeneration in the main fiber

direction within motor pathways and subsequent disorganization lead-

ing to deficits in motor performance. In both cases however, we must

proceed with caution given the considerable uncertainty associated

with the biological interpretation of diffusivity changes (Jones et al.,

2013). Taken together, our data suggest that HD pathogenesis

increases RD across widespread networks, and AD in sensorimotor

connections as part of a wider structural phenotype of earlyHD. Inde-

pendent of key contributors to HD pathogenesis, RD increases in cog-

nitive network-based connections distinguished earlyHD from preHD

or controls. This suggests that the HD mutation exerts effects on top

of naturally-occurring white matter tract microstructural variability. In

addition, age-related effects on cognitive tract microstructure inde-

pendently modify HD pathogenesis, the identification of which may be

valuable in understanding disease modification.
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cognitive and motor performance. The difference in the strength of

these associations echoes the accentuated effect of naturally-occurring
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function is one of the key clinical presentations of HD, it would appear
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direction within motor pathways and subsequent disorganization lead-

ing to deficits in motor performance. In both cases however, we must
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nitive network-based connections distinguished earlyHD from preHD
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