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We present an accurate study of the static-nucleus electronic energy band gap of solid molecular hydrogen at
high pressure. The excitonic and quasiparticle gaps of the C2/c, Pc, Pbcn, and P 63/m structures at pressures
of 250, 300, and 350 GPa are calculated using the fixed-node diffusion quantum Monte Carlo (DMC) method.
The difference between the mean-field and many-body band gaps at the same density is found to be almost
independent of system size and can therefore be applied as a scissor correction to the mean-field gap of an infinite
system to obtain an estimate of the many-body gap in the thermodynamic limit. By comparing our static-nucleus
DMC energy gaps with available experimental results, we demonstrate the important role played by nuclear
quantum effects in the electronic structure of solid hydrogen.
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I. INTRODUCTION

Determining the metallization pressure of solid hydrogen
is one of the great challenges of high-pressure physics. Since
1935, when it was predicted that molecular solid hydrogen
would become a metallic atomic crystal at 25 GPa [1],
compressed hydrogen has been studied intensively. Additional
interest arises from the possible existence of room-temperature
superconductivity [2], a metallic liquid ground state [3], and
the relevance of solid hydrogen to astrophysics [4,5].

Early spectroscopic measurements at low temperature
suggested the existence of three solid-hydrogen phases [4].
Phase I, which is stable up to 110 GPa, is a molecular
solid composed of quantum rotors arranged in a hexagonal
close-packed structure. Changes in the low-frequency regions
of the Raman and infrared spectra imply the existence of phase
II, also known as the broken-symmetry phase, above 110 GPa.
The appearance of phase III at 150 GPa is accompanied by
a large discontinuity in the Raman spectrum and a strong
rise in the spectral weight of molecular vibrons. Phase IV,
characterized by the two vibrons in its Raman spectrum, was
recently discovered at 300 K and pressures above 230 GPa
[6–8]. Another new phase has been claimed to exist at pressures
above 200 GPa and higher temperatures (for example, 480 K
at 255 GPa) [9]. This phase is thought to meet phases I and
IV at a triple point, near which hydrogen retains its molecular
character. The most recent experimental results [10] indicate
that H2 and hydrogen deuteride at 300 K and pressures greater
than 325 GPa transform to a new phase V, characterized by
substantial weakening of the vibrational Raman activity. Other
features include a change in the pressure dependence of the
fundamental vibrational frequency and the partial loss of the
low-frequency excitations.
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Although it is very difficult to reach the hydrostatic pressure
of more than 400 GPa at which hydrogen is normally expected
to metallize, some experimental results have been interpreted
as indicating metallization at room temperature below 300 GPa
[6]. However, other experiments show no evidence of the
optical conductivity expected of a metal at any temperature
up to the highest pressures explored [11]. Experimentally, it
remains unclear whether or not the molecular phases III and IV
are metallic, although it has been suggested that phase V may
be nonmolecular (atomic) [10]. Metallization is believed to
occur either via the dissociation of hydrogen molecules and a
structural transformation to an atomic metallic phase [6,12] or
via band-gap closure within the molecular phases [13,14]. In
this work we investigate the latter possibility using advanced
computational electronic structure methods.

Structures of crystalline materials are normally determined
by x-ray or neutron diffraction methods. These techniques
are very challenging for low-atomic-number elements such as
hydrogen [15]. Fortunately, optical phonon modes disappear,
appear, or experience sudden shifts in frequency when the
crystal structure changes. It is therefore possible to identify
the transitions between phases using optical methods.

The electronic structures of the solid molecular phases
have mainly been investigated using computational methods
based on density functional theory (DFT) [16–25] and the
quasiparticle (QP) approach within the GW approximation
[14,26]. Although DFT-based methods can be used to search
for candidate low-energy crystal structures and to calculate
their vibrational properties, the inadequacies of DFT are
more apparent in the case of band-gap calculations [27]. To
obtain accurate gaps, it is vital to go beyond mean-field-like
methods and solve the many-electron Schrödinger equation
directly. In this work, we employ the fixed-node diffusion
quantum Monte Carlo (DMC) method to calculate excitonic
and QP band gaps of cold dense hydrogen as functions of
pressure.
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Fixed-node DMC is the most accurate known method for
evaluating the total energies of continuum systems of more
than a few tens of interacting quantum particles [28–33].
Recently, it has been indicated that DMC can provide an
accurate description of the phase diagram of solid molecular
hydrogen [34]. Although the DMC method was originally
designed to study ground states, it is also capable of providing
accurate information about excited states in atoms, molecules,
and crystals [35–38]. DMC calculations of excitations in
crystals remain challenging because of a 1/N effect: The
fractional change in the total energy due to the presence of
a one- or two-particle excitation is inversely proportional to
the number of electrons in the simulation cell. Since large
simulation cells are required to provide an accurate description
of the infinite solid, high-precision calculations are necessary.

The main input to any ab initio calculation is the structure of
the system under study, which in this case is unknown. Hence
there is no option but to use structures predicted by mean-field
methods such as DFT. It is now generally accepted that DFT
results for high-pressure hydrogen depend on the choice of
exchange-correlation functional [21,22,25]. This frustrating
limitation may be the main cause of the contradictions [39,40]
between existing computational results.

In the present work we use the DMC method to carry out a
comprehensive study of the pressure dependence of the energy
band gap of solid hydrogen at high pressure. The definitive
static-nucleus many-body band-gap data we provide can be
used to correct results obtained using less accurate methods.
The corrections required are approximately independent of
lattice vibrations and temperature.

The paper is organized as follows. Section II describes
the details of our DFT and quantum Monte Carlo (QMC)
calculations. Section III provides the DMC electronic structure
results for molecular solid hydrogen structures at 250, 300, and
350 GPa. The nature of metallization is discussed in Sec. IV.
Section V concludes.

II. COMPUTATIONAL DETAILS

A. DFT calculations

We consider the C2/c, Pc, Pbcn, and P 63/m molecular
structures of solid hydrogen at pressures of 250, 300, and
350 GPa. According to ab initio calculations, the C2/c and
Pc structures are the most favorable candidates for phases
III and IV, respectively [17,34]. The C2/c and Pc crystals
have weakly-bonded graphenelike layers [17], while the Pbcn

structure includes two different layers of graphenelike three-
molecule rings with elongated H2 molecules and unbound H2

molecules [16,17]. The P 63/m structure may also be viewed
as layered, but it is not graphenelike: Three quarters of the H2

molecules lie flat in the plane and one quarter lie perpendicular
to the plane. The interplane bonding is relatively strong and the
centers of the molecules fall on a slightly distorted hexagonal
close-packed lattice [16]. The structures were fully relaxed
using DFT at fixed pressure, and the relaxed structures were
then used in the DMC simulations. Our DFT calculations
were carried out within the pseudopotential and plane-wave
approach using the QUANTUM ESPRESSO [41] and CASTEP

[42] codes. All our DFT calculations used norm-conserving

pseudopotentials, a basis set of plane waves with a cutoff of
100 Ry, and the Becke-Lee-Yang-Parr (BLYP) generalized
gradient approximation exchange-correlation energy func-
tional [43]. Geometry and cell optimizations employed a dense
16 × 16 × 16 k-point mesh. The Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton algorithm was used for cell and ge-
ometry optimization, with convergence thresholds on the total
energy and forces of 0.01 mRy and 0.1 mRy/Bohr, respectively,
to guarantee convergence of the total energy to better than
1 meV/proton and the pressure to better than 0.1 GPa. Internal
coordinates and lattice parameters of our optimized structures
are reported in the Supplemental Material [44].

We used the BLYP functional because the resulting struc-
tures give lower DMC energies than structures determined
using the Perdew-Burke-Ernzerhof (PBE) functional [34]
Therefore, the BLYP geometries are more accurate and hence
DMC band gaps obtained using BLYP geometries should be
more accurate than DMC band gaps obtained using PBE
geometries. Further evidence in support of our approach is
provided by Figs. 3, 4, and 5 of Ref. [22] and also Table I of the
Supplemental Material of that work. It was shown that the van
der Waals density functional (vdW-DF) [45] geometry of the
C2/c phase is very close to the DMC geometry; in particular,
according to Fig. 5 of Ref. [22], of all the functionals studied,
vdW-DF gives the smallest error in the molecular bond length
relative to DMC calculations. However, the DFT geometries
calculated using the vdW-DF and BLYP functionals are
almost the same. To investigate further, we have compared
the vdW-DF-optimized geometry with the BLYP-optimized
geometry for the P 63/m phase at 250 GPa. We find that the
difference between the resulting molecular bond lengths is
0.0007 Å. Therefore we conclude that BLYP is an accurate
DFT functional for optimizing the geometry of solid hydrogen.

B. QMC calculations

Our DMC calculations used Slater-Jastrow trial wave
functions as implemented in the CASINO QMC code [46]. The
single-particle orbitals were obtained from DFT calculations
using the plane-wave-based QUANTUM ESPRESSO code [41]. A
norm-conserving pseudopotential constructed within DFT us-
ing the BLYP exchange-correlation functional was employed
[43]. We chose a very large basis-set cutoff of 200 Ry [47].
The plane-wave orbitals were transformed into a blip spline
basis [48] before use in our DMC calculations. A time step of
0.01 a.u. was used for the DMC calculations.

The fixed-node DMC method samples the variationally
optimal many-electron wave function consistent with an as-
sumed trial nodal surface. [The nodal surface of an N -electron
wave function �(r1,r2, . . . ,rN ) is the (3N − 1)-dimensional
surface on which � is zero.] The trial nodal surface is usually
defined by means of a trial wave function, and the quality of
the nodal surface of the trial wave function affects the quality
of the results. This is the only fundamental approximation in
the method.

Our fixed-node DMC results were obtained using real trial
wave functions constructed at the � point of the simulation
supercell. To study convergence with cell size and correct
the finite-size errors we used various supercells, the smallest
and largest of which contained 128 and 864 hydrogen
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TABLE I. DMC results for the C2/c structure at pressures P = 250,300, and 350 GPa. The columns headed E0, E′, EN+1, and EN−1 list
the total DMC energies in Hartrees of the ground state of a supercell containing N electrons, the first singlet excited state of that supercell,
the ground state of the supercell after one electron has been added, and the ground state of the supercell after one electron has been removed,
respectively. The columns headed �exc, �qp, and δsci are the values in eV of the excitonic band gap, the QP band gap, and the scissor correction.

P = 250 GPa
N E0 E′ EN+1 EN−1 �exc �qp δsci

192 −102.288(1) −102.177(2) −101.888(2) −102.571(2) 3.02(6) 3.18(6) 1.08(6)
432 −230.075(2) −229.947(3) −229.662(3) −230.354(3) 3.5(1) 3.6(1) 1.1(1)
648 −345.278(2) −345.112(3) −344.868(3) −345.524(3) 4.5(1) 4.5(1) 1.2(1)

P = 300 GPa

192 −100.803(1) −100.721(2) −100.381(2) −101.142(2) 2.23(6) 2.26(6) 0.81(6)
432 −226.808(1) −226.713(3) −226.377(3) −227.143(3) 2.6(1) 2.6(1) 0.7(1)
648 −340.400(1) −340.278(3) −339.963(3) −340.707(3) 3.3(1) 3.5(1) 0.7(1)

P = 350 GPa

192 −99.377(1) −99.331(2) −98.934(2) −99.775(2) 1.25(6) 1.22(6) 0.6(1)
432 −223.686(2) −223.611(3) −223.225(3) −224.070(3) 2.0(1) 2.1(1) 0.7(1)
648 −335.419(2) −335.306(3) −334.991(3) −335.736(3) 3.1(1) 3.0(1) 0.8(1)

atoms. Our Jastrow factor included polynomial one-body
electron-nucleus (1b) terms, two-body electron-electron (2b)
terms, three-body electron-electron-nucleus (3b) terms, and
plane-wave expansions (p terms) in the electron-electron
separations [49]. The p terms build long-ranged correlations
into the Jastrow factor and significantly improve the wave
function and variational energy. We also employed a backflow
(BF) [50] transformation to introduce more correlation into
the trial wave function and thus improve the fixed nodal
surface. Our BF transformation included electron-electron
and electron-proton terms and is given by

Xi({rj }) = ri + ξ
(e−e)
i ({rj }) + ξ

(e−P )
i ({rj }), (1)

where Xi({rj }), the transformed coordinate of electron
i, depends on the full configuration of the system {rj }.
The vector functions ξ

(e−e)
i ({rj }) and ξ

(e−P )
i ({rj }) are the

electron-electron and electron-proton BF displacements of
electron i, respectively. They are parameterized as

ξ
(e−e)
i ({rj }) =

Ne∑

j �=i

αij (rij )rij (2)

and

ξ
(e−P )
i ({rj }) =

NP∑

I

βiI (riI )riI , (3)

where αij (rij ) and βiI (riI ) are polynomial functions of
electron-electron and electron-proton distance, respectively,
and contain optimizable parameters. All adjustable parameters
in the Jastrow factor and BF function were optimized using
variance and energy minimization, respectively, at the
variational Monte Carlo (VMC) level [51,52].

The QP energy gap is defined as

�qp = EN+1 + EN−1 − 2E0, (4)

where E0 is the ground-state energy of a system of N electrons
and EN+1 (EN−1) is the many-body total energy of the system
after an electron has been added to (removed from) the system.

Our calculations of �qp are performed at the � point of the
supercell Brillouin zone, equivalent to a mesh of k points
including � in the primitive Brillouin zone. We calculate
a vertical QP energy gap, assuming that the ground- and
excited-state structures are the same. The difference between
the vertical and adiabatic QP gaps is expected to be small [53].
We used the same Jastrow factors (and, where relevant, BF
functions) for N -, (N + 1)-, and (N − 1)-electron systems.
We create excitonic states by promoting an electron from a
valence-band orbital into a conduction-band orbital with the
same Bloch wave vector. The excitonic absorption gap is

�exc = E′ − E0, (5)

where E′ is the total energy of the excitonic state. Again we
work at the � point of the supercell Brillouin zone. In the
ground-state geometry, the singlet excitonic gap is equivalent
to the vertical optical absorption gap [53].

To obtain DMC band gaps in the thermodynamic (infinite
supercell) limit, we introduce a scissor correction δsci(N ),
defined as the difference between the DMC and DFT band gaps
of a given supercell at a given density: δsci(N ) = �DMC(N ) −
�DFT(N ), where �DMC(N ) and �DFT(N ) are DMC and DFT
band gaps for a simulation cell containing N atoms.

III. RESULTS

A. C2/c structure

The C2/c structure has 24 atoms in the primitive unit cell.
Our DMC simulations employed supercells of 192 (2 × 2 ×
2), 432 (2 × 3 × 3), and 648 (3 × 3 × 3) atoms. Table I lists
our DMC results for the C2/c phase at pressures of 250, 300,
and 350 GPa. Slater-Jastrow trial wave functions without BF
were used.

The top panel of Fig. 1 shows the ground-state VMC and
DMC energies of the C2/c structure at 250 GPa. Calculations
were carried out with five different Slater-Jastrow trial wave
functions: The first included only one- and two-body Jastrow
correlations [SJ(1b+2b)]; the second had one-, two-, and three-
body correlations [SJ(1b+2b+3b)]; the third had one-, two-,
and three-body correlations and p terms [SJ(1b+2b+3b+p)];
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FIG. 1. Top panel: VMC and DMC energies of the C2/c structure
at 250 GPa. Various wave functions were used as explained in the
text. Total energies were calculated at the � point of a simulation
cell containing 288 atoms. Bottom panel: VMC and DMC energies
relative to their values calculated using a SJ(1b + 2b) wave function.
The incorporation of BF significantly improves the DMC total energy.

the fourth had one- and two-body correlations and BF
[BSJ(1b+2b)]; and the fifth had one-, two-, and three-body
correlations, p terms, and BF [BSJ(1b+2b+3b+p)].

The bottom panel of Fig. 1 shows how the choice of wave
function affects the calculated ground-state energy of the C2/c

structure; energies are relative to the SJ(1b + 2b) value, which
was chosen as a reference. As expected, adding 3b correlations
and p terms to the Jastrow factor reduces the VMC energy
substantially, but the DMC energy is not affected because the
trial nodal surface is unaltered. Using a BF transformation

-10

-5

0

5

 10

 15

 20

 25

Γ A L U M Γ Y V LD

ε 
(e

V
)

(a) C2/c ; P = 250 GPa

-10

-5

0

5

 10

 15

 20

 25

Γ A L U M Γ Y V LD

ε 
(e

V
)

(b) C2/c ; P = 300 GPa

-10

-5

0

5

 10

 15

 20

 25

Γ A L U M Γ Y V LD

ε 
(e

V
)

(c) C2/c ; P = 350 GPa

FIG. 2. DMC scissor-corrected DFT-BLYP band structures of the
C2/c phase at pressures P = 250, 300, and 350 GPa. The dashed line
shows the Fermi energy.

TABLE II. DMC results for a simulation cell containing N = 192 atoms in the C2/c structure at 250 GPa. Calculations were carried out
using SJ(1b + 2b) and BSJ(1b + 2b) wave functions. The columns headed E0, EN+1, and EN−1 list the ground-state energies in Hartrees of
systems containing N , N + 1, and N − 1 electrons, respectively. The column headed E′ lists the energy of the singlet first excited state of the
N -electron system, again in Hartrees. The columns headed �qp and �exc are the QP and excitonic energy gaps in eV.

Wave fn. E0 E′ EN+1 EN−1 �exc �qp

SJ −102.288(1) −102.177(2) −101.888(2) −102.571(2) 3.02(6) 3.18(6)
BSJ −102.373(2) −102.270(4) −101.986(3) −102.662(4) 2.8(1) 2.7(1)
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TABLE III. DMC results for the Pc structure at pressures P = 250,300, and 350 GPa. The columns headed E0, E′, EN+1, and EN−1 list
the total DMC energies in Hartrees of the ground state of a supercell containing N electrons, the first singlet excited state of that supercell,
the ground state of the supercell after one electron has been added, and the ground state of the supercell after one electron has been removed,
respectively. The columns headed �exc, �qp, and δsci are the values in eV of the excitonic band gap, the QP band gap, and the scissor
correction.

P = 250 GPa
N E0 E′ EN+1 EN−1 �exc �qp δsci

192 −101.410(1) −101.266(2) −101.008(2) −101.672(2) 3.92(8) 3.81(8) 1.79(8)
384 −203.298(2) −203.190(3) −202.885(3) −203.596(3) 2.9(1) 3.1(1) 1.6(1)
576 −306.654(2) −306.502(3) −306.238(4) −306.926(4) 4.1(1) 3.9(2) 1.7(2)

P = 300 GPa
192 −99.915(1) −99.8012(2) −99.492(2) −100.214(2) 3.09(8) 3.3(1) 1.7(1)
384 −200.379(2) −200.301(3) −199.951(3) −200.729(3) 2.1(1) 2.1(1) 1.5(1)
576 −303.519(2) −303.395(3) −303.086(4) −303.834(4) 3.3(1) 3.2(2) 1.6(1)

P = 350 GPa
192 −98.474(1) −98.390(2) −98.024(2) −98.828(2) 2.28(8) 2.6(1) 1.4(1)
384 −197.568(2) −197.522(3) −197.126(3) −197.973(3) 1.2(1) 1.0(1) 1.1(1)
576 −299.483(2) −299.388(4) −299.023(4) −299.853(4) 2.6(1) 2.4(2) 1.3(1)

improves the trial nodal surface and lowers the calculated
energy at both the VMC and DMC levels. Adding BF to a
SJ(1b + 2b) wave function lowers the DMC energy by 18(1)
meV/atom.

The difference between the VMC energies calculated with
the SJ(1b + 2b) and SJ(1b + 2b + 3b + p) wave functions
is 45(2) meV/atom, whereas adding BF correlations to a
SJ(1b + 2b) wave function lowers the VMC energy by 53(1)
meV/atom. The VMC energy gained by introducing BF is
therefore comparable to that gained using 3b correlations
and p terms. The difference between the SJ(1b + 2b) DMC
energy and BSJ(1b + 2b + 3b + p) VMC energy is just 9(2)
meV/atom.

Table II lists the DMC QP and excitonic gaps of the C2/c

structure at 250 GPa. Results obtained with Slater-Jastrow
(SJ) and BF-Slater-Jastrow (BSJ) wave functions are shown.
We used a simulation cell with 192 hydrogen atoms.

Figure 2 illustrates the DMC band structure of the C2/c

phase at pressures of 250, 300, and 350 GPa; the band energies

were obtained by adding the DMC-based scissor correction to
the DFT-BLYP band structure.

B. P c structure

The Pc structure has 48 atoms in the primitive unit cell. Our
DMC simulations employed supercells of 192 (2 × 2 × 1),
384 (2 × 2 × 2), and 576 (3 × 2 × 2) atoms. Table III lists our
DMC results for the Pc structure at pressures of 250, 300, and
350 GPa.

Figure 3 illustrates the DMC band structure of the Pc phase
at pressures of 250, 300, and 350 GPa; the band energies were
obtained by adding the DMC-based scissor correction to the
DFT-BLYP band structure.

C. P bcn structure

The Pbcn structure has 48 atoms in the primitive unit cell.
Our DMC simulations employed supercells of 384 (2 × 2 ×
2), 576 (3 × 2 × 2), and 864 (3 × 3 × 2) atoms. Table IV lists

TABLE IV. DMC results for the Pbcn structure at pressures P = 250,300, and 350 GPa. The columns headed E0, E′, EN+1, and EN−1

list the total DMC energies in Hartrees of the ground state of a supercell containing N electrons, the first singlet excited state of that supercell,
the ground state of the supercell after one electron has been added, and the ground state of the supercell after one electron has been removed,
respectively. The columns headed �exc, �qp, and δsci are the values in eV of the excitonic band gap, the QP band gap, and the scissor
correction.

P = 250 GPa
N E0 E′ EN+1 EN−1 �exc �qp δsci

384 −204.109(2) −203.969(2) −203.693(3) −204.384(3) 3.8(1) 3.8(1) 1.5(1)
576 −306.573(2) −306.442(3) −306.169(3) −306.845(3) 3.5(1) 3.6(1) 1.4(1)
864 −459.801(3) −459.650(3) −459.391(4) −460.052(4) 4.1(1) 4.3(1) 1.4(1)

P = 300 GPa
384 −201.177(2) −201.067(2) −200.745(3) −201.499(3) 2.9(1) 3.0(1) 1.4(1)
576 −302.286(2) −302.180(3) −301.857(3) −302.611(3) 2.9(1) 2.8(1) 1.5(1)
864 −453.392(3) −453.260(3) −452.942(4) −453.703(4) 3.6(1) 3.8(2) 1.5(1)

P = 350 GPa
384 −198.219(2) −198.146(2) −197.764(3) −198.598(3) 2.0(1) 2.1(1) 0.9(1)
576 −297.994(2) −297.927(3) −297.546(3) −298.380(3) 1.8(1) 1.7(1) 0.9(1)
864 −446.970(3) −446.892(3) −446.519(4) −447.334(4) 2.1(1) 2.3(2) 0.9(1)
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FIG. 3. As Fig. 2, but for the Pc phase at pressures P = 250,
300, and 350 GPa.

our DMC results for the Pbcn phase at pressures of 250, 300,
and 350 GPa.

Figure 4 illustrates the DMC band structure of the Pbcn

phase at pressures of 250, 300, and 350 GPa; the band energies
were obtained by adding the DMC-based scissor correction to
the DFT-BLYP band structure.

D. P63/m structure

The P 63/m structure has 16 atoms in the primitive unit
cell. Our DMC simulations employed supercells of 128
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FIG. 4. As Fig. 2, but for the Pbcn phase at pressures P = 250,
300, and 350 GPa.

(2 × 2 × 2), 192 (2 × 2 × 3), 288 (3 × 2 × 3), and 768 (4 ×
3 × 4) atoms. Table V presents our DMC results for P 63/m

phase at pressures of 250, 300, and 350 GPa.
Figure 5 illustrates the DMC band structure of the P 63/m

phase at pressures of 250, 300, and 350 GPa; the band energies
were obtained by adding the DMC-based scissor correction to
the DFT-BLYP band structure.
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TABLE V. DMC results for the P 63/m structure at pressures P = 250,300, and 350 GPa. The columns headed E0, E′, EN+1, and EN−1

list the total DMC energies in Hartrees of the ground state of a supercell containing N electrons, the first singlet excited state of that supercell,
the ground state of the supercell after one electron has been added, and the ground state of the supercell after one electron has been removed,
respectively. The columns headed �exc, �qp, and δsci are the values in eV of the excitonic band gap, the QP band gap, and the scissor correction.

P = 250 GPa
N E0 E′ EN+1 EN−1 �exc �qp δsci

128 −67.887(1) −67.755(2) −67.448(2) −68.197(2) 3.59(6) 3.51(7) 1.2(1)
192 −102.401(1) −102.272(2) −101.956(3) −102.720(3) 3.51(6) 3.4(1) 1.1(1)
288 −153.446(2) −153.303(3) −152.996(3) −153.756(3) 3.89(9) 3.8(1) 1.4(1)
768 −410.141(3) −409.998(3) −409.691(4) −410.451(4) 3.9(1) 3.8(1) 1.3(1)

P = 300 GPa
128 −66.821(1) −66.718(2) −66.401(2) −67.141(2) 2.80(6) 2.7(1) 1.0(1)
192 −100.918(1) −100.817(2) −100.499(3) −101.237(3) 2.75(6) 2.7(1) 0.9(1)
288 −151.198(2) −151.081(3) −150.757(3) −151.523(3) 3.2(1) 3.2(1) 1.4(1)
768 −403.192(3) −403.082(3) −402.757(4) −403.517(4) 3.0(1) 3.0(1) 1.3(1)

P = 350 GPa
128 −65.832(1) −65.760(2) −65.405(2) −66.186(2) 1.96(6) 2.0(1) 0.9(1)
192 −99.501(1) −99.431(2) −99.081(3) −99.850(3) 1.9(1) 1.9(1) 0.7(1)
288 −149.067(2) −148.982(3) −148.647(3) −149.403(3) 2.3(1) 2.3(1) 1.0(1)
768 −397.818(3) −397.735(3) −397.398(4) −398.156(4) 2.2(1) 2.2(1) 1.0(1)

IV. DISCUSSION

A. Static-nucleus results

1. Exciton binding

We calculated the DMC singlet and triplet excited-state total
energies for the C2/c phase using a simulation cell containing
192 hydrogen atoms. The singlet excited-state energy was
obtained by promoting an electron without flipping its spin;
the triplet excited-state energy was obtained by promoting an
electron and flipping its spin. The values of the first singlet and
triplet excited-state total energies at a pressure of 250 GPa are
−102.177(2) and −102.174(3) Hartrees, respectively; thus the
difference in the singlet and triplet excitonic gaps is statistically
insignificant. Indeed, we find that the singlet and triplet exciton
binding energies in high-pressure solid hydrogen are smaller
than 0.1 eV and cannot be resolved above the statistical and
finite-size errors in our DMC results. Many-body perturbation
theory calculations of the excitonic gap of the Cmca-12
structure show that the exciton binding energy decreases with
increasing pressure from 66 meV at 100 GPa to 12 meV at
200 GPa [54]. Accurate DMC calculations of the exciton bind-
ing energy would therefore require an unattainable precision
of better than 10 meV in the total energy of the simulation cell.
Therefore, in the rest of this paper, we do not attempt to distin-
guish the excitonic band gap �exc from the QP band gap �qp.

2. Backflow

The simplest possible antisymmetric many-electron trial
wave function is a Slater determinant of Hartree-Fock or
DFT orbitals. Multiplying the Slater determinant by a Jastrow
factor helps to keep electrons away from each other and
significantly lowers the energy expectation value calculated
in a VMC simulation, but does not change the nodal surface or
the fixed-node DMC energy. Introducing a BF transformation
[50], which can be viewed as a leading-order improvement
to the Slater-Jastrow form [55,56], changes the nodes and
thus lowers the DMC energy. Here we have systematically

investigated the influence of BF on the fixed-node DMC results
for solid hydrogen. We also have addressed the question of how
the choice of wave function affects VMC and DMC results.

Band gaps calculated using Hartree-Fock theory, which
neglects electron-electron correlation, are generally much too
large. DMC calculations using Slater-Jastrow trial wave func-
tions retrieve a high percentage of the correlation energy and
produce gaps closer to experimental values. It is unsurprising
that improving the DMC description of electronic correlation
by adding a BF transformation further lowers the calculated
DMC gap. As shown in Table II, using BF trial wave functions
decreases the calculated QP and excitonic gaps of the C2/c

structure by 0.5(1) and 0.2(1) eV, respectively, bringing them
within error bars of each other. Although the inclusion of BF
considerably improves the DMC results, the computational
cost is high. One of the most expensive operations in any
DMC code is the evaluation of the orbitals and their first two
derivatives, and the evaluation of the collective BF coordinates
makes this even slower, because every element of the Slater
matrix must be updated every time a single electron is moved.
For this reason we did not utilize BF wave functions for the
other structures at different pressures.

3. Finite-size effects in scissors corrections

Our results indicate that the magnitude of the scissor
correction depends on the crystal structure and the applied
pressure. To within our statistical error of 0.1(1) eV, we found
that δsci(N ) is independent of system size N for N � 200.
The DMC band gap at infinite system size is therefore
�DMC(N → ∞) = �DFT(N → ∞) + δsci.

The scissor correction δsci has a very weak bond-length
dependence, but the DFT band gap �DFT is sensitive to the
molecular bond length. The bond lengths used here lie within
0.0007 Å of those calculated using the van der Waals density
functional (vdW-DF) [45], which are known to differ by less
than 0.008 Å from the optimized DMC bond lengths for the
C2/c phase [22]. Figure 6 illustrates the P 63/m DFT band
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FIG. 5. As Fig. 2, but for the P 63/m phase at pressures P = 250,
300, and 350 GPa.

gaps, which were obtained using the BLYP, PBE, and vdW-DF
functionals, as a function of H-H molecular bond length. The
gradient of the band gap with respect to molecular bond length
is ∼27.3 eV/Å. The same gradient is obtained with each
density functional. Multiplying the maximum bond-length
error of 0.008 + 0.0007 ≈ 0.009 Å by the gradient of the DFT
gap with respect to bond length shows that the resulting error
in the static-nucleus gap is no greater than 0.25 eV.
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FIG. 6. DFT energy gap as a function of molecular bond length
for the P 63/m phase at fixed density. The results are calculated using
the BLYP, PBE, and vdW-DF functionals.

4. DMC band gaps

Table VI shows the static-nucleus DMC band gaps of the
C2/c, Pc, Pbcn, and P 63/m structures at pressures of 250,
300, and 350 GPa. The band gaps of the C2/c and Pc structures
are similar, as are those of the Pbcn and P 63/m structures.
The P 63/m band gaps are slightly greater than those of the
other structures studied. A linear extrapolation suggests that
the band gaps of the C2/c, Pc, Pbcn, and P 63/m structures
vanish at pressures of 464(5), 421(6), 442(5), and 473(4) GPa.
DMC calculations of the phase diagram predict that the static-
nucleus molecular-to-atomic phase transition also occurs in
the pressure range 415–475 GPa [12].

Figure 7 compares the pressure dependence of the static-
nucleus DMC band gaps of the C2/c, Pbcn, Pc, and P 63/m

structures of hydrogen with experimental data. The DMC
energy gaps of the Pc and C2/c structures at 300 GPa are
close to the absorption-edge measurements for hydrogen at
100 K and above 300 GPa reported in Ref. [57]. These authors
predicted that, at low temperatures, metallic hydrogen should
be observed at about 450 GPa, when the electronic band gap
closes. The Pbcn and P 63/m energy gaps are larger than
the experimentally measured gap over the entire pressure
range studied. Figure 7 illustrates that there is substantial
disagreement between experimental gap measurements.

TABLE VI. DMC band gaps for different high-pressure solid
molecular hydrogen structures at pressures of 250, 300, and
350 GPa.

�DMC (eV)

Structure 250 GPa 300 GPa 350 GPa

C2/c 3.0(2) 2.3(2) 1.6(2)
Pc 3.2(2) 2.4(2) 1.3(2)
Pbcn 3.6(2) 2.8(2) 1.7(2)
P 63/m 3.6(2) 2.8(2) 2.0(2)
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B. Nuclear quantum effects

It is well known [12,34] that nuclear quantum effects
(NQEs) are significant in hydrogen-rich systems and affect the
phase transitions of high-pressure solid hydrogen. DFT-based
path-integral molecular dynamics (PIMD) simulations [21]
indicate that the influence of NQEs on the band gap is
strongly dependent on the choice of exchange-correlation
functional. PIMD results at T = 200 K obtained using the
PBE [58] functional predict that the band gaps of the C2/c and
Pbcn structures close below 250 GPa [21], in disagreement
with experiment. PIMD simulations employing the Heyd-
Scuseria-Ernzerhof (HSE) [59] functional are not significantly
better, although using a van der Waals functional leads to an
improvement [21]. These results are surprising because DFT
calculations using the hybrid HSE functional normally yield
much better ground-state band gaps than calculations using
the semilocal PBE functional [60].

Assuming the validity of the Born-Oppenheimer approxi-
mation, the full electron-nuclear wave function �(R,d) may
be approximated as �(R|d)χ (d), where �(R|d) is a function
of the positions R = (r1,r2, . . . ,rN ) of the N electrons in
the supercell at fixed nuclear positions d, and χ (d) is the
nuclear wave function. The band structure as calculated using

PIMD is an average of the band structures corresponding to
the electronic wave functions �(R|d), weighted according to
the nuclear probability density |χ (d)|2. Since each HSE band
gap is likely to be better (wider) than the corresponding PBE
band gap, the finite-temperature HSE-PIMD gap ought to be
better than the PBE-PIMD gap. The observation that both
PIMD gaps are poor suggests, therefore, that both functionals
produce inaccurate nuclear probability densities |χ (d)|2. This
problem is consistent with other observed failures of DFT for
high-pressure hydrogen [25]. Understanding the influence of
NQEs and temperature on the band gap of solid hydrogen
is a challenging problem that may require going beyond
DFT-based methods. We do not address this problem here,
but a comparison of our static-nucleus DMC band gaps with
experimental results can yield estimates of NQEs.

It is not straightforward to measure the band gap at pressures
greater than 300 GPa, but the experimental results shown in
Fig. 7 suggest that solid hydrogen remains an insulator up to
350 GPa or more. The C2/c and Pc structures are currently
considered [34] the most likely candidates for phases III and
IV, respectively, and the Pbcn and P 63/m structures have
higher band gaps than these. Despite the inevitable band-gap
reduction due to NQEs, we assume that all of the structures
considered in this paper have nonzero band gaps at 300 GPa
and 300 K. The estimated molecular-to-atomic transition
pressure, calculated using static-nucleus DMC calculations
together with DFT anharmonic vibrational corrections, is
about 374 GPa [12]. According to Fig. 7, the vibrational
renormalization of the gap of C2/c (the structure believed
to correspond to phase III) would have to be −1.3(2) eV if
the gap is to have closed at 374 GPa. Assuming that the Pc

structure is the best candidate for phase IV, as has been reported
recently [34], the calculated DMC band gap at 300 GPa is
0.6(2) eV larger than the experimental gap reported in Ref.
[7]. The difference is similar to the zero-point renormalization
of the diamond band gap at ambient conditions, which was
found to be as large as 0.6 eV [61,62], but the atomic mass
of carbon is twelve times that of hydrogen and we would
expect a larger band-gap reduction here. Other experimental
results [18] report an energy gap of 1.2 eV for high pressure
hydrogen at 300 K and pressures around 300 GPa. This would
imply a NQE band-gap reduction of 1.2(2) eV, which we
believe to be more plausible. Bearing in mind the expected
NQE, our static-nucleus DMC gaps are more consistent with
the experimental results reported in Ref. [18] than with those
reported in Refs. [57], [11], and [7]. Hence our results suggest
that due to the strong zero-point motion and coupling between
the band gap and molecular bond length, it is possible all of the
graphenelike phases have a significant density of states within
the static gap.

The main effect of quantum and thermal vibrations is
to increase the intermolecular interactions and weaken the
intramolecular bonding. Bearing in mind the symmetries and
geometries of the crystals studied, we would expect the
NQE-induced band-gap reduction to be larger in the layered
C2/c, Pc, and Pbcn structures than in the P 63/m structure.
This suggestion is consistent with the high structural flexibility
of phase IV observed in ab initio variable-cell molecular
dynamics simulations [63] at pressures of 250–350 GPa and
temperatures of 300–500 K. Protons in the graphenelike layers
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were seen to transfer readily to neighboring molecular sites
via a simultaneous rotation of three-molecule rings. The
role played by nuclear dynamics needs to be investigated
in subsequent work, and ultimately this prediction about the
nature of the phase transition needs to be tested by experiment.

V. CONCLUSIONS

In summary, we have performed DMC calculations of
the QP and excitonic energy band gaps of solid molecular
hydrogen at high pressure. We find that the exciton binding
energy is smaller than 100 meV/atom and that our DMC QP
and excitonic band gaps are within error bars of one another.
We have systematically investigated the energy reductions
obtained by introducing a better description of electronic
correlation into our VMC and DMC trial wave functions.
Using a highly-correlated BF wave function reduces the DMC

band gap and significantly improves the ground-state DMC
energy by decreasing the fixed-node errors. A comparison
of our DMC band-gap results with experiments suggest that
NQEs reduce the band gap significantly, especially in the
layered structures. We also find that there is a strong coupling
between the band gap and molecular bond length.

ACKNOWLEDGMENTS

This work was supported by the UK Engineering and Physi-
cal Science Research Council under Grant No. EP/K038141/1,
by the Thomas Young Centre under Grant No. TYC-101, and
by PRACE-3IP project FP7 RI-312763. Computing facilities
were provided by ARCHER, the UK National Supercomputing
Service, and by the Imperial College London High Perfor-
mance Computing Centre.

[1] E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).
[2] N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).
[3] S. A. Bonev, E. Schwegler, T. Ogitsu, and G. Galli, Nature

(London) 431, 669 (2004).
[4] H. K. Mao and R. J. Hemley, Rev. Mod. Phys. 66, 671 (1994).
[5] V. L. Ginzburg, Phys. Usp. 42, 353 (1999).
[6] M. I. Eremets and I. A. Troyan, Nat. Mater. 10, 927 (2011).
[7] R. T. Howie, C. L. Guillaume, T. Scheler, A. F. Goncharov, and

E. Gregoryanz, Phys. Rev. Lett. 108, 125501 (2012).
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