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SUMMARY

Our mood often fluctuates without warning. Recent
accounts propose that these fluctuations might be
preceded by changes in how we process reward.
According to this view, the degree to which reward
improves our mood reflects not only characteristics
of the reward itself (e.g., its magnitude) but also how
receptive to reward we happen to be. Differences in
receptivity to reward have been suggested to play
an important role in the emergence ofmood episodes
in psychiatric disorders [1–16]. However, despite sub-
stantial theory, the relationship between reward pro-
cessing and daily fluctuations of mood has yet to be
tested directly. In particular, it is unclear whether the
extent to which people respond to reward changes
from day to day and whether such changes are fol-
lowed by corresponding shifts in mood. Here, we
use a novel mobile-phone platform with dense data
samplingandwearableheart-rateandelectroenceph-
alographic sensors to examinemoodand reward pro-
cessing over an extended period of one week. Sub-
jects regularly performed a trial-and-error choice
task in which different choices were probabilistically
rewarded. Subjects’ choices revealed two comple-
mentary learning processes, one fast and one slow.
Reward prediction errors [17, 18] indicative of these
two processes were decodable from subjects’ physi-
ological responses. Strikingly, more accurate decod-
ability of prediction-error signals reflective of the fast
process predicted improvement in subjects’ mood
several hours later, whereas more accurate decod-
ability of the slow process’ signals predicted better
mood a whole day later. We conclude that real-life
mood fluctuations follow changes in responsivity to
reward at multiple timescales.

RESULTS AND DISCUSSION

10 human volunteers reported their mood four times a day, and

performed a reward learning task twice a day, for a period of one
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week (Figures 1A–1C). Overall, each subject completed a total of

2,316 task trials. On each trial, subjects chose between two

available images and were rewarded with a coin depending on

a reward probability associated with the chosen image. Each

of the two daily sessions included two ‘‘games’’ in which trials

involving choices between new images and explicit reward feed-

back (‘‘feedback’’ trials) were interleaved with trials involving

choices between familiar images taken from previous sessions

(‘‘no feedback’’ trials). In each game, the feedback trials involved

a set of three images associated with reward with fixed probabil-

ities of 0.25, 0.50, and 0.75. These probabilities were unknown

to the subjects and thus could only be learned by trial and

error based on obtained rewards. Thus, subjects’ performance

improved over the course of each game such that by the end

of the game, they were choosing the image associated with a

higher reward probability 78%of the time (±2%SEM). We tested

howwell subjects maintained the information they had learned in

previous sessions bymeans of no-feedback trials. In these trials,

rewards were administered as before but were not shown to the

subject so as to avoid further reward-based learning. Subjects

maintained comparable levels of performance on these no-

feedback trials even when outcomes associated with the images

had not been observed for a period of 3 days (Figure 1D).

Relatively little is known about how learning over a timescale of

minutes translates to a timescale of days [19], but previous work

suggests that humans might learn separately about short and

long timescales [20, 21]. Therefore, we first asked whether the

choices a subject made over the course of the experiment re-

flected a single learning process or, alternatively, an additive

combination of multiple learning processes that operate over

different timescales. In particular, we compared several learning

models in terms of how well each model fitted subjects’ choices

(see STARMethods; Figure S1). We found that subjects’ choices

were best explained by a combination of two learning processes:

one that learns quickly but forgets what it has learned by the end

of the day and another that learns slowly and does not forget

(Figures 2A–2C). In fact, the latter, slower process was best fitted

with a negative expectation decay parameter, which entails that

what is learned is not only maintained but is actually consoli-

dated or amplified [22] at an average rate of 5.4% per day (Fig-

ure 2B). Indeed, the impact of the rewards associated with an

image on subjects’ choices increased with time even though

during this time the image was not associated with additional

rewards (brwd 3 time = 0:12±0:05, pboostrap = 0:04, logistic
ay 7, 2018 ª 2018 The Author(s). Published by Elsevier Ltd. 1433
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Figure 1. Experimental Task

(A) Subjects chose between two images and

either received or did not receive a coin reward

depending on the probability associated with

the chosen image. Each game included 48 such

feedback trials, as well as 24 trials in which out-

comes were not revealed (no feedback trials).

Every image first appeared on two consecutive

sessions with feedback and thereafter only ap-

peared again on no feedback trials.

(B) Subjects performed the experimental task on a

smartphone while a chest strap and a headband

transmitted heart rate and EEG signals to the

phone. Data were then uploaded to a dedicated

online server.

(C) Following an initial lab visit, subjects performed

two experimental task sessions every day and re-

ported their mood four times a day.

(D) Task performance computed as the proportion

of choices of the image associated with a higher

reward probability. Also shown is simulated

performance of the computational model (see

Figure 2). Performance on ‘no feedback’ trials is

shown as function of the time that passed since

images appeared with feedback. Shaded areas:

SEM (dark) and SD (light).

n= 10 subjects.
regression of choices between images about which subjects

learned at least one day ago as a function of sum of observed

rewards, the average time since these rewards were observed,

and their interaction). Importantly, the multi-timescale dynamics

captured by the two-process model could not be captured using

more complex models that allow for multiple timescales but

learn only a single set of expectations (BIC difference of 1377;

Figure S1B). Thus, the modeling results revealed fast- and

slow-learning processes, each with its own set of learned

expectations.

Building on the insight afforded by our learning model about

how subjects solved the task, we next asked how subjects’ pro-

cessing of rewards changed from session to session. We first

tested variants of the model in which different aspects of the

fast- or slow-learning processes were allowed to vary from ses-

sion to session. These aspects included the learning rates, the

decision temperatures, and the subjective value of reward out-

comes. We found that variability in subjects’ choices across

the experiment was best explained by assuming that, for the

slow (but not the fast) process, the subjective value of a coin

obtained in one session could differ from that of an identical

coin obtained in a different session (Figure S1C; Figure 2D).

These fluctuations in subjective value during learning explained

subjects’ later preferences when they were asked to choose

between images from different sessions (Figure 2E).

This session-by-session behavioral measure of reward sensi-

tivity, which is based on subjects’ choices, did not significantly

correlate with subsequent mood changes or with current mood

(pbootstrap > 0:1; see STAR Methods). This is despite the fact

that subjects’ reported mood did vary considerably over the

course of the week (mean range 61%; Figure S2B). However,

receptivity to reward has at least two aspects. First, there is

sensitivity [1], which is reported above and which maps objective

reward values into subjective utilities. Second, there is respon-
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sivity, which reflects the attention paid to the dimension of

reward and which we operationalized as the degree to which

physiological responses (e.g., Figure S3) reflect signals indica-

tive of reward processing. Reward prediction errors, in partic-

ular, have been suggested to mediate the emotional impact of

reward [3, 23–25], and thus, we next examined whether the

reward prediction errors that drove learning according to the

model were manifested in subjects’ physiological responses

and whether this physiological responsivity provided a mea-

sure more closely reflective of the dynamics underlying mood

changes.

To examine this possibility, we first tested whether physiolog-

ical responses were consistently modulated by the two elements

that compose a prediction error—namely, actual and expected

outcome [17, 18]. For this purpose, we computed the average

time series of the heart rate (from 1 s before to 10 s after each

outcome) and of the EEG signal (from 0.5 s before to 1.5 s after

each outcome) during each session for each of six types of

outcomes: reward and no-reward outcomes where reward

probability was 0.25, 0.50, or 0.75. We then measured the simi-

larity between responses from different sessions (see STAR

Methods), and, indeed, we found that physiological responses

to the same type of outcome were more similar than responses

to different types of outcome (Figures 3A and 3B; Heart rate :

rsame = 0:038, rdifferent = �0:001, pbootstrap = 10�6; EEG :

rsame = 0:005, rdifferent = �0:001, pbootstrap = 10�7).

This result indicates that the components of the reward pre-

diction error were consistently reflected in subjects’ physiolog-

ical responses. However, this analysis can be improved on in

several ways through the medium of the model. First, subjects’

expectations of each image were not fixed. Instead, they were

dynamically updated as a function of observed outcomes,

and the model provides trial-by-trial estimates of these chang-

ing expectations. Second, the model indicated that subjects



Figure 2. Fast and Slow Learning

Subjects’ choices were best explained by a

model that involves two simultaneous learning

processes. n= 10 subjects. see STAR Methods

and Figure S1 for details of modeling procedures.

(A) Expectations learned by the two processes

given a fixed repeating outcome. Shaded areas

indicate spread across subjects (95% interval of

fitted group-level distribution).

(B) Decay of expectations as a function of time.

(C) Weights assigned by the two processes to

different outcomes as a percentage of the most

recent outcome’s weight.

(D) Subjective value of reward for the slow

process in an exemplar subject. Inset shows the

subject’s expectations for two images for the slow

and fast processes over three sessions (green

shading). The images appearedwith feedback only

in the first two sessions. Error bars: 95% credible

interval.

(E) Image choice probability in ‘no feedback’ trials

as a function of the subjective value of reward

during learning about the image, minus the sub-

jective value during learning about the alternative

image. For visualization, trials were divided into ten quantiles of subjective value differences (each circle represents 10% of a subject’s trials). Subjects are color-

coded (dark blue: subject from [D]). Choice probabilities are corrected for the number of reward outcomes observed for each image. Shaded areas: 95%

bootstrap CI.
maintained two sets of expectations, and therefore, two sets of

prediction errors should be reflected in physiological responses.

Third, themodel indicated that for the slow-learning process, the

subjective value of reward also varied, implying that prediction

errors should be computed with respect to this subjective value.

To account for these nuances in subjects’ learning, we derived

trial-by-trial prediction errors for each subject from the fast- and

slow-learning processes of the model, with parameters fitted to

that subject’s choices. We then measured the degree to which

each series of prediction errors was reflected in subjects’ phys-

iological responses by attempting to decode them from the

physiological data using support vector regression with radial

basis functions. The degree of success in decoding using this

nonlinear method provided us with a single measure of physio-

logical reward prediction error signaling that accounts not only

for simple effects of intensity, but also for individualized changes

in the shape, timing, and sign of the physiological response. To

prevent overfitting in this procedure, we decoded prediction

errors for each trial using a decoder trained on a separate set

of trials (i.e., using nested cross-validation), and we compared

the resultant decoding accuracy to that obtained by applying

the same procedure to randomly permuted data (see STAR

Methods).

We found that both heart-rate and EEG responses to out-

comes reflected the predictions errors generated by the slow-

and fast-learning processes of the model (Figure 3C). Moreover,

we found that the two components that compose prediction

errors, namely actual and expected outcomes, were each

separately decodable from subjects’ physiological responses

(Figure 3D). In addition, combining the decoding from the

heart-rate and the EEG responses yielded statistically significant

decoding accuracy (ppremutation < 0:05) for each individual sub-

ject for the slow process, and for 8 out 10 subjects for the fast

process. Since both processes learned from the same series
of choices and outcomes, and thus their prediction errors were

correlated (r = 0:75, pbootstrap < 10�5), we tested whether de-

coded prediction errors specifically reflected the learning pro-

cess from which they were derived. For this purpose, we exam-

ined the correlation between the decoded prediction errors of

one process and the prediction errors of the other process.

We found no such correlations for either the heart-rate or

EEG responses (all r < 0:006, pbootstrap > 0:6). Interestingly, by

computing decoding accuracy separately for each experimental

session, we found that decoding from heart rate was not signif-

icantly correlated across sessions with decoding from EEG, for

either the fast (r = 0:09, pbootstrap = 0:34) or slow (r = 0:03,

pbootstrap = 0:71) processes. However, for each of the two phys-

iological sources, decoding accuracies for the fast and slow pro-

cesses were correlated with one another (Heart rate : r = 0:28,

pbootstrap < 10�6; EEG : r = 0:24, pbootstrap = 10�5).

We next tested whether more robust physiological reward-

prediction-error signaling (i.e., high responsivity to reward) was

followed by improvement in subjects’ mood. For this purpose,

we tested the relationship between the decodability of prediction

errors in a given experimental session and how subjects’ self-re-

ported mood changed following the session. Thus, we examined

changes in self-reportedmood 4 hr following each session, when

subjects were next asked to report their mood. In addition, to

control for possible diurnal variations in mood [23], we also

examined mood 24 hr following each session. Since we were

agnostic as to which physiological source (heart rate or EEG)

would best reflect future mood change and what timescale of

mood change would be reflected (4 or 24 hr), we corrected for

the four possible combinations using Bonferroni correction for

multiple comparisons. We found that EEG signals reflecting the

reward prediction errors derived from the fast process predicted

4-hr mood changes (b = 0:025±0:009, pbootstrap = 0:003, linear

regression controlling for current mood; Figures 4A and 4B),
Current Biology 28, 1433–1439, May 7, 2018 1435
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Figure 3. Heart-Rate and EEG Responses

to Outcomes

n= 10 subjects.

(A) Similarity between heart-rate responses re-

corded in different sessions following different

types of outcomes. Similarity was computed as

the average temporal (Pearson) correlation be-

tween heart-rate responses for six types of out-

comes: reward and no-reward outcomes following

choices of images associated with a 0.25, 0.50, or

0.75 reward probability. Similarity was computed

separately for each subject and then averaged

across subjects.

(B) Similarity between EEG responses recorded in

different sessions following different types of out-

comes. See Figure S3 for time courses of heart-

rate and EEG responses for exemplar subjects.

(C) Reward prediction errors (RPEs) of the fast-

and slow-learning processes were decoded from

the physiological response to outcomes. The

y axis denotes decoding accuracy, computed as

the correlation between decoded and actual

values. RPEs were derived using the model (see

Figure 2) and decoded with cross-validated sup-

port vector regression (see STAR Methods).

(D) Correlation between actual and decoded out-

comes and between actual and decoded expec-

tations for the slow and fast processes. In (C) and

(D), circles correspond to individual subjects.

Shaded areas: SEM (dark) and SD (light).

*: ppermutation < 0:01, NS: ppermutation = 0:2.
whereas EEG signals derived from the slow process predicted

24-hr mood changes (b = 0:053±0:021, pbootstrap = 10�4; Fig-

ures 4C and 4D). In both cases, higher prediction-error decod-

ability predicted more positive mood, and lower decodability

predicted worse mood. Neither of these predictive relationships

reflected fluctuations in task performance (pbootstrap < 0:009

when including task performance as a control regressor). In

contrast, the fast-process signals did not predict 24-hr mood

changes (b = 0:018±0:022, pbootstrap = 0:4; difference from

slow process: pbootstrap = 0:001), nor did the slow-process sig-

nals predict 4-hr mood changes (b = � 0:004±0:009,

pbootstrap = 0:7; difference from fast process: pbootstrap = 0:18).

Thus, we found a significant interaction between the timescale

of the learning process and the timescale of subsequent

mood changes (pbootstrap = 0:001). A complementary analysis

involving all time lags up to 24 hr showed similar results (Fig-

ure 4E). No such relationship was found between mood changes

and the heart-rate signals (pbootstrap > 0:1), which were also not

correlated with the EEG signals (pbootstrap > 0:1). These findings

establish a striking double dissociation between fast- and

slow-learning EEG signals in predicting fast and slow mood

fluctuations.

We have shown that responsivity to reward, manifesting as

reward prediction error signals in EEG, is predictive of subse-

quent mood changes. Moreover, this predictive relationship re-

flects multiple timescales in both reward learning and the dy-

namics of mood. The finding of multiple timescales adds to

previous theoretical accounts of mood as reflecting changes in

the availability of reward [3, 26], suggesting that fast and slow

changes in mood track short-term and long-term changes in

this availability. Future research could investigate whether the
1436 Current Biology 28, 1433–1439, May 7, 2018
distinction between fast- and slow-learning processes evident

here reflects the operation of separate brain systems [27, 28]

or complex multi-timescale dynamics arising within the same

neural population [21, 29]. More importantly, our results show

that people’s responsivity to reward prediction errors changes

from day to day and that greater responsivity is followed by

elevated mood, whereas lower responsivity is followed by

depressed mood. These findings suggest that day-to-day

changes in reward responsivity may play an important role in

the generation of natural daily mood fluctuations.

We found leading indicators of changes in mood over two

timescales. The precise psychological nature of these indicators,

which are based on EEG decoding accuracy, remains to be

determined. In the present experiment, these indicators did not

consistently reflect task performance (correlation with accuracy:

pbootstrapR0:27) nor long-term learning (correlation with model

parameter j: pbootstrapR0:34). Thus, the processes that impair

the accuracy of decoding, the influence of those processes on

momentary computations involving reward, and the interaction

between these processes and the internal thoughts and external

events that can influence subsequent mood become tempting

targets for future investigation. Importantly, we note that our re-

sults do not rule out the possibility that similar mood-predicting

signals also manifest in heart-rate responses or choice behavior

(Figures S2C and S2D).

Our EEG measures provide an ecological and scalable means

to assess fluctuations in reward responsivity that might prove

useful for investigating and predicting how pathological mood

episodes evolve—for instance, in major depression and bipolar

disorder. The therapeutic effect of existing drug and talk thera-

pies is suggested to reflect their impact on patients’ processing
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Figure 4. RPEs Evident in EEG and Subsequent Mood Changes
n= 10 subjects.

(A and C) Change in self-reported mood as a function of RPE decoding accuracy for the fast- (A) and slow- (C) learning processes. Decoding accuracy was

computed separately for each session (denoted by circles). Subjects are color coded, with the subject from (B) and (D) highlighted in dark red (A) and dark blue (C).

(B and D) Relationship between RPE decoding and mood in an exemplar subject for the fast- (B) and slow- (D) learning processes. Shifts in mood follow the fast

process’s PE signaling almost immediately but substantially lag the slow process’s signals.

(E) Average change inmood following each experimental session as a function of reward PE decoding. Magnitude of change is shown per one standard deviation

of decoding accuracy. d: difference from zero, A: difference between processes (pcorrected < 0.05). Shaded areas: SEM.

See Figures S2C and S2D for a similar analysis with respect to heart-rate responses and reward sensitivity.
of reward [30, 31], and this may serve as a target for the develop-

ment of new therapeutic approaches.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
10 human subjects, aged 20 to 29, 8 female, completed the experiment. Subjects were recruited from a subject pool at University

College London (UCL). Before being accepted to the study, each subject was asked whether they satisfy any of the study’s inclusion

or exclusion criteria. Inclusion criteria included fluent English and possession of an Android smartphone that could connect to wear-

able sensors via Bluetooth Low Energy. Exclusion criteria included age (younger than 18 or older than 30), impaired color discrim-

ination, use of psychoactive substances (e.g., psychiatric medications), and current neurological or psychiatric illness. Subjects

received £10 per day for participation and 6 pence for each coin they collected in the experimental task, which together added

up to an average sum of £151.04 (±£1.77 SD). The experimental protocol was approved by the University of College London local

research ethics committee, and informed consent was obtained from all subjects.

METHOD DETAILS

Experimental design
To study the temporal relationship between reward responsivity and mood, we had subjects regularly report their mood, while also

performing a reward learning experimental task, over a period of one week, using a mobile phone platform that we developed for this

purpose. Since we aimed to characterize a longitudinal process that manifests in most people, we opted to study a relatively small

group of 10 subjects but to collect a very large dataset from each. Thus, each subject made 2316 choices in the experimental task

while their physiological responses were being recorded. Due to the novelty of the experimental measures, this sample size was not

determined based on a quantitative power analysis. However, the amount of data collected from each subject was an order of magni-

tude greater than the amount of data that comprise a typical learning study. Due to the size of this dataset, we exercised particular

caution in determining whether subjects’ physiological responses reflected reward prediction errors. To this end, we separated

between training and testing data, we tested statistical significance using permutation tests, and we replicated the finding of

physiological prediction error signals separately for each individual subject (see Physiological responses decoding below). In addi-

tion, due to the relatively small number of subjects, we only tested main effects across the whole study sample.

Mobile platform
To allow a longitudinal study of reward learning processes, associated physiological responses, and their interaction with mood fluc-

tuations, we developed an app for Android smartphones using the Android Studio programming environment (Google, Mountain

View, CA). The app asks users to perform experimental tasks according to a pre-determined schedule, while it records electroen-

cephalographic (EEG) and heart rate signals derived from wearable sensors connected using Bluetooth. Additionally, we equipped

the app with additional features designed to probe changes in a person’s mental state, including regular mood self-report question-

naires and life events and activities logging. Motor activity was tracked via the phone’s accelerometer and global positioning system

(GPS). Subjects also completed a temperamental trait questionnaire. All behavioral and physiological data were saved locally on the

phone as SQLite databases (The SQLite Consortium), which were regularly uploaded via the phone’s data connection to a dedicated

cloud storage space.

Daily schedule
Subjects first visited the lab to receive instructions, test the app on their phones, and try out the experimental task (see Initial lab visit

section below). Starting from the next day, subjects performed two experimental sessions a day, one in the morning and one in the
e1 Current Biology 28, 1433–1439.e1–e7, May 7, 2018
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evening, over a period of 7 days. Each session began with a 5-minute heart rate measurement during which subjects were asked to

remain seated, report their mood, and perform a circle drawing task (see details below). Following this, subjects put on the EEG

sensor and played two games of the experimental task. The app allowed subjects to perform the morning session from 8AM and

the evening session from 4PM. In addition, subjects were asked to report their mood twice more, at 12PM and 8PM. Subjects

were allowed to adjust the timing of the sessions according to their daily schedule, but were required to ensure a gap of at least

4 hr between successive sessions. On average, subjects performed the morning session at 9:06AM (mean SD ± 25min) and the eve-

ning session at 5:21PM (mean SD ± 32min), and provided additional mood self-reports at 12:44PM (mean SD ± 19min) and 20:23PM

(mean SD ± 60min). One subject was not able to perform the experiment on Day 2, and thus all her subsequent taskswere postponed

by one day.

Experimental task
To test for fluctuations in reward processing, we had subjects perform regularly a trial-and-error learning task over a period of one

week. On each trial, subjects chose from one of two available images, and then collected a coin reward with a probability associated

with the chosen image (Figure 1A). Each game consisted of 48 such trials involving a set of 3 images with reward probabilities of 0.25,

0.5 and 0.75. The probabilities were never revealed to the subjects, though subjects were instructed that each image was associated

with a fixed probability of reward. Subjects played four games a day, two during the morning session and two during the evening

session.

To examine changes in subjects’ learning throughout the week, we had each image appear with reward feedback only in two suc-

cessive sessions. This way, subjects learned about each given image during a specific part of the week, and this allowed us to probe

fluctuations in the effect of learning by later asking subjects to choose between images they had learned about during different parts

of the week. To prevent new learning during this probing, outcomes were not revealed on such trials but subjects were informed that

they would be rewarded for their choices as before (at the end of the entire experiment). Each game included 24 such no-feedback

trials (every 3rd trial), 12 of which involved choosing between images associated with the same reward probability. The no-feedback

trials primarily allowed us to measure subjects’ rate of forgetting, since they involved familiar images re-appearing following variable

lags after subjects had learned about them. In addition, the interleaving of feedback trials involving new images with no-feedback

trials involving familiar images allowed us to dissociate fluctuations in how subjects learned from fluctuations in how subjects formed

their decisions (see Modeling sections below).

In the first two days, familiar images were taken from the session performed during the initial lab visit. Thereafter, familiar images

were those subjects learned about during the week. The app dynamically populated the no-feedback trials of each game to ensure

the following criteria: 1. No pair of images appeared more than once in a given game. 2. The app prioritized pairs of images that had

previously appeared fewer times. 3. Out of pairs that had appeared a similar number of times, the app prioritized pairs of images

about which the subject learned in dissimilar moods. To compute mood during learning about a given image, the app computed

the average timing of all revealed outcomes associated with the image and linearly interpolated between the mood self-reports pre-

ceding and following this timing. The last 4 games of the experiment consisted solely of no-feedback trials involving familiar images,

with 48 such trials per block. Thus, the evening session on Day 7 consisted of 3 such games, and another such gamewas played prior

to that in Day 7’s morning session.

Modeling: learning and forgetting
To identify the computations that guided subjects’ choices in the experimental task we compared a set of computational models

in terms of how well each model fitted subjects’ choices. We were first interested in determining how subjects learned from the

outcomes associated with each image, and whether the learned information decayed as a function of time.

To this end, we compared the following four models:

Model 1 (fixed learning; Equations 1, 2, and 3) learns the expected value of each image by adjusting its expectation following each

outcome as follows:

Qt +1ðst;ctÞ=Qtðst;ctÞ+ hdt; (Equation 1)

where st;ct is the image chosen at trial t, QtðsÞ is the expected outcome for image s (initialized as Q0ðsÞ = 0), h is a fixed learning rate

parameter between 0 and 1, and dt is the prediction error at trial t:

dt =Rt �Qtðst;ctÞ; (Equation 2)

computed as the difference between the outcome and the expected outcome (a reward outcome corresponds to R= 1 and no-re-

ward toR = 0). On each trial, themodel chooses either the left image ðct = 1Þ or the right image ðct = 2Þ, according to the expectations

it has learned:

pðct = iÞ= ebQtðst;iÞ
P2

j = 1e
bQtðst;jÞ; (Equation 3)

where st;1 and st;2 are the left and right images, respectively, the subject can choose on trial t, and b is an inverse temperature

parameter.
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Model 1 has a fixed learning rate, and thus, it assigns greater weight to more recent outcomes (i.e., ‘leaky integration’). In contrast,

Model 20s (dynamic learning; Equations 2, 3, 4, and 5) learning rate changes as a function of the number of observed outcomes ðNtÞ
for the chosen image:

Qt + 1ðst;ctÞ=Qtðst;ctÞ+atdt; (Equation 4)
at =
1

ε+Ntðst;ctÞ
; (Equation 5)

where ε is a free parameter that determines the initial learning rate. Here, the learning rate gradually decreases asymptotically

toward zero so as to compute an average of observed outcomes in which all outcomes are similarly weighted. ε > 0 slows down

initial learning, and its impact is similar to that of a prior expectation that all expected outcomes equal Q0, with the precise value

of ε reflecting the strength of this prior.

Model 3 (‘fixed + dynamic learning’; Equations 2, 3, 4, and 6) combines Models 1 and 2 in that its learning rate is composed of fixed

and changing components, implying that the learning rate gradually decreases to an asymptote that is larger than zero:

at = h+
1� h

ε+Ntðst;ctÞ
; (Equation 6)

Model 4 (‘fixed learning + decay’; Equations 1, 2, 3, and 7), Model 5 (‘fixed & dynamic learning + decay’; Equations 2, 3, 4, 5, and 7),

andModel 6 (fixed & dynamic learning + decay’; Equations 2, 3, 4, 6, and 7) are similar toModels 1, 2, and 3, except that expectations

decay back to zero as a function of time, both during and in between sessions. To implement this decay, we updated all model

expectations at the beginning of every trial as follows:

QtðsÞ)QtðsÞe�gðTt�Tt�1Þ ; (Equation 7)

where Tt is the time at trial t, measured in units of days, and g determines the rate of decay.

Out of these six models, we found that the model that best fitted subjects’ choices was Model 6 (‘fixed & dynamic learning +

decay’), and thus, in the next step we tested variants of this basic model.

Modeling: multiple timescales
Since learning within a single session, over a timescale ofminutes, might involve different processes than learning over a whole week,

we tested whether subjects’ choices could be better explained by allowing the model to operate over two different timescales. For

this purpose, we compared Model 6 with a combination of two such models, each with its own set of expectations (Q and Q
0
) and

parameters (h and h
0
, ε and ε, g and g

0
, b and b

0
). This combined model (Model 7, ‘Two dynamic-learning processes’; Equations 2, 4,

6, 7, and 8) simultaneously learns two sets of expectations, updating both in the same manner but with different learning and decay

rates. Importantly, in the iterative model fitting procedure described below (Model Fitting subsection), the learning and decay rate

parameters of the two processes spontaneously differentiated so as to form one fast process and one slow process. Themodel forms

its decisions by combining the two sets of expectations:

pðct = iÞ= ebQtðst;iÞ+ b
0
Q
0
tðst;iÞ

P2
j = 1e

bQtðst;jÞ+b
0
Q
0
tðst;jÞ: (Equation 8)

Model 8 (’two processes: dynamic + fixed; Equations 1, 2, 4, 6, 7, and 8) is a variant of Model 7, also involving two independent

learning processes, except that in this model one of the processes has a fixed learning rate (as in Equation 1).

Since Models 7 and 8 fitted subjects’ choices significantly better than a single-process model, we next tested whether an addi-

tional set of expectations was indeed necessary. To this end, we tested whether subjects’ choices can be better fitted with more

complex single-process algorithms that allow for multiple timescales but only maintain a single set of expectations. Specifically,

we designed the following four models:

Model 9 (‘single process: multiple learning dynamics’; Equations 2, 3, 4, 7, and 9) allows for more complex learning-rate dynamics,

since its learning is composed of one fixed component (h) and two separate dynamic components (ε and ε

0
):

a
0
t = h+

uð1� hÞ
ε+Ntðst;ctÞ

+
ð1� uÞð1� hÞ
ε
0 +Ntðst;ctÞ

; (Equation 9)

where 0 < u < 1.

In Model 10 (‘single process: multiple forgetting dynamics’; Equations 2, 3, 4, 6, and 7) expectations decay at a different rate within

(g) and between (g
0
) sessions and, in addition, the expected value of each image is multiplied by a positive factor (g

00
) once learning

about the image concludes.

Model 11 (‘single process: multiple decision temperatures’; Equations 2, 3, 4, 6, and 7) forms its decisions with different inverse

temperature parameters (b and b
0
) depending on whether the trial involves new images (b; ‘feedback’ trials involving images the

model is still learning about) or familiar images (b
0
; ‘no feedback’ trials involving images about which learning has concluded).
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Model 12 (‘single process: two full sets of parameters’; Equations 2, 3, 4, 7, and 9) combines all of the enhancements featured by

Models 12 to 14.

We found that none of the single-process models fitted subjects’ choices nearly as well as the best two-process model (Model 8)

and therefore we used Model 8 as a basis for the last model comparison.

Modeling: session-to-session variability
In the models described so far, all parameters of an individual subject are sampled from a group-level distribution and remain fixed

throughout the subject’s sessions. To test whether (and in what way) a subject performed the task differently in different sessions, we

compared Model 8 with six variants of this model in which either the learning rate, or the subjective value of reward outcomes during

learning (modeled as R
0
t = jRt), or the inverse decision temperature (b), was allowed to vary across sessions for one of the learning

processes. For this purpose, for the value of the variable parameter was determined as before, but was then multiplied by a session-

specific scaling parameter. The natural logarithm of this scaling parameter was sampled from a subject-specific normal distribution

with a zero mean and a standard deviation that was sampled from a group-level gamma distribution.

We found that the model that best fitted subjects’ choices was the model with variable subjective value of reward for the slow

process (Model 18). Since this subjective value is learned, it has a lasting impact in future sessions when the probe images are

presented without feedback. We used this model for all results displayed in the main text, and we produce its graphical model in

Figure S4.

Additional alternative models
Along with the model comparisons described above, we testedModel 18 against several additional alternative models that did not fit

subjects’ choices as well. These included variants of Model 18 with the addition of a fixed choice bias (iBIC = 21085) or a persever-

ation bias (iBIC = 21084) [34], or where the expectations of the slow and fast processes are combined to form a single prediction

(and thus lead to a single prediction error; iBIC = 21155) [35], a model that makes choices based on sampling of previously observed

outcomes [36], where the probability of sampling an observation decays with time according to a power law (iBIC = 24310), a model

that allows for asymmetry in the rate of learning frompositive and negative prediction errors (iBIC = 21083) [37], and amodel that uses

Bayesian inference to determine which one of the three possible reward probabilities is associated with each stimulus (iBIC = 24022).

Equations describing these algorithmic elements are provided elsewhere.

Heart rate data collection
Inter-heart-beat intervals were recorded using a Polar H7 chest strap (Polar Electro, Kempele, Finland). The chest strap senses and

analyzes electrocardiographic (ECG) signals, and reports the detected inter-beat (R-R) intervals as well as a derived heart rate mea-

surement once every second via Bluetooth Low Energy (BLE). Its measurements have been shown to be highly reliable in comparison

with clinical ECG (error rate lower than 0.01%; intra-class correlation coefficient (ICC) > 0.97) [38]. To ensure that subjects started the

experimental task at a relatively similar state of rest, subjects wore the heart rate sensor 5 min prior to each session during which a

resting heart ratemeasurement was taken. Subjectswere asked to remain seated throughout this time aswell as while performing the

task. The app allowed subjects to perform the experimental task only while heart-beat intervals were being received and the sensor’s

heart rate measurement was not lower than 30 or higher than 250. Due to communication errors and conflicts between the exper-

imental app and the other apps installed on the subjects’ phones, heart rate data from 5.0% of trials were not saved.

Heart rate preprocessing
All data analysis was carried out in MATLAB (Mathworks, Natick, MA). Since the heart rate sensor sends a message once every sec-

ond, we first identified and corrected the timing of messages that were received with a delay of more than 100 ms. Correction was

applied only when the delay affected a single isolatedmessage and thus therewas no ambiguity with respect to its correct timing. The

timing of each message indicates a window of one second within which the inter-beat intervals reported in the message have

concluded. To time heart beats more precisely, we found the timings that best minimize the discrepancy between the cumulative

sum of consecutive inter-beat intervals and the timings of the messages containing these intervals. This procedure narrowed

down the timing of each heart beat to a 4.5 ms window on average, the center of which was considered as the heart beat’s precise

time. We then converted the sequences of precisely timed intervals into unsmoothed 20 Hz heart-rate signals, where the heart rate

at any given moment is estimated as the inverse of the corresponding interval. The heart rate response to an outcome in the

experimental task was assessed based on the heart rate signal recorded from 1 s preceding the outcome to 10 s following the

outcome. This provided one 221-feature vector per outcome. Features were z-scored across trials and used for the decoding

analyses (see Decoding below). Heart rate responses for which the standard deviation of the signal across time was higher than

5 times the median standard deviation (0.6% of responses) were considered noisy and excluded from further analysis.

EEG data collection
EEGwas recorded during the experimental task using Brainlink Lite (Neurosky, Hong Kong), a single-channel 512Hz EEG headband.

The headband senses electrical signals via 3 dry electrodes placed on the forehead, and reports 512 rawmeasurements per second

as well as several derived measures via Bluetooth. Signals recorded using similar sensors from the same manufacturer have been

shown to successfully discriminate subjects’ cognitive and affective states in a range of scenarios [39–43]. The app allowed subjects
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to perform the experimental task onlywhile EEGdata were being received and the sensor’s signal-quality assessment was lower than

50 (on a scale of 0 and 100, where lower is better). Due to communication issues and software conflicts, EEG data from 1.0% of the

trials were not saved.

EEG preprocessing
The EEG response to an outcome in the experimental task was assessed based on the EEG signal recorded from 500 ms preceding

the outcome to 1500ms following the outcome. EEG responses for which the standard deviation of the signal across time was higher

than 5 times the median standard deviation (0.3% of responses) were considered noisy and excluded from further analysis. Time-

frequency analysis of the EEG responses was performed using the FieldTrip toolbox [33] multitaper method with 4-cycle-long Han-

ningwindows for the following eight frequencies: 1, 5, 9, 13, 17, 21, 25, and 29Hz. Frequencies higher than 30Hzwere excluded so as

to mitigate the effects of muscle artifacts. The resulting time-series were downsampled to 15 Hz, providing one 353-feature vector

per outcome. These vectors were z-scored across trials and used for the decoding analyses.

Physiological responses similarity
We tested how consistently outcomes and expectations affected subjects’ heart rate and EEG responses by examining the degree to

which physiological responses from different sessions were correlated. To isolate the effect of outcomes and expectations on

physiological responses, we z-scored responses within each session across trials, and then computed the average response for

6 types of outcomes: reward and no-reward outcomes following choices of three types of image (reward probabilities 0.25, 0.50

and 0.75). Consistency of both heart rate and EEG responses were measured within and between subjects as the average pairwise

temporal correlation between responses to similar types of outcomes from different sessions.

Physiological responses decoding
To test whether heart rate and EEG responses to outcomes reflected a subject’s prediction errors (which were inferred using the

model from the subject’s choices), we trained and tested support vector machines that decoded these prediction errors from the

physiological responses. To avoid over-fitting, training and testing were performed on separate sets of trials following a 5-fold cross

validation scheme. Training and testing sets were stratified such that the different sets included similar distributions of prediction

errors. This analysis was performed using LIBSVM’s implementation [32] of the n-SVR algorithm [44], whose parameters were fitted

to each training set using a nested 5-fold-cross-validated grid search among the following settings: n = [0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.8 0.9] andC = [0.25 0.5 1 2 4]. Decoding accuracy was computed as the correlation between actual and decoded prediction errors.

Mood self-reports
The app regularly asked subjects to rate on an analog scale howwell they were feeling (Figure S2A). Naturally, subjects did not report

their mood at precisely the same times. Consequently, to assess a subject’s mood at a particular time of interest, we computed a

weighted average of all the subject’s mood ratings with weights determined by a Gaussian filter centered on the time of interest

with a 4-hour standard deviation (approximating the time between mood reports). In addition, following each mood rating, subjects

had to report at least one event or activity that may have affected their mood since the last time they were asked, as well as how

strong this effect was and whether it was good or bad. No subject reported that performing the experimental task affected their

mood. Finally, subjects were also asked to predict how well they expect to feel over the next several hours.

Movement tracking
The app tracked subjects’ movement throughout theweek bymeans of the phone’s accelerometer. Movement datawere recorded in

terms of number of steps and distance with a temporal resolution of 0.2 Hz (except for one subject whose phone did not allow that).

Subjects were asked to carry their phones with them at all times unless they were engaged in an activity that precludes that

(e.g., swimming). Movement exceeding 20 m or 20 steps was detected during only 6 games out of the 350 games that subjects

played in total.

Circle drawing
At the beginning of each session, we asked subjects to trace a circle (15mmdiameter) with their thumb asmany times as possible for

a period of 30 s. This task wasmodeled after Mergl et al. [45] who showed that patients with depression differ from healthy controls in

the kinematics of their strokes. This raises the possibility that stroke regularity could serve as an implicit measure of a person’s mood

state. However, we did not analyze performance on this task since subjects reported that the kinematics of their strokes were signif-

icantly affected by howmoisturized their hands happened to be at the time (this was not an issue in the original study since there a pen

was used for this task).

Initial lab visit
Subjects first arrived at theWelcome Trust Centre for Neuroimaging in University College London to receive instructions and have the

app installed and tested on their phones. In the lab, subjects played 6 games, each consisting of 48-feedback trials involving a unique

3-image set. In addition, the last three games included 12 no-feedback trials (every 5th trial) involving familiar images from the first

three games. Subjects also performed the circle drawing task once in the lab, and filled out one mood self-report and a standardized
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questionnaire (short version of TEMPS-A) designed to measure five temperamental traits (cyclothymic, dysthymic, irritable, hyper-

thymic, and anxious) [46]. Before allowing subjects to perform the experiment for a whole week, we verified that subjects succeeded

in choosing images associated with higher reward probabilities at above-chance levels, and that the heart-rate and EEG data were

recorded and saved to the cloud without significant losses.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model fitting
To fit the parameters of the different models to subjects’ decisions, we used an iterative hierarchical expectation-maximization

procedure [47]. We first sampled 104 random settings of the parameters from predefined group-level prior distributions. Then, we

computed the likelihood of observing subjects’ choices given each setting, and used the computed likelihoods as importance

weights to re-fit the parameters of the group-level prior distributions. These steps were repeated iteratively until model evidence

ceased to increase (see Model Comparison below for how model evidence was estimated). This procedure was then repeated

with 104½ samples per iteration, and finally with 105 samples per iteration. To derive the best-fitting parameters for each individual

subject, we computed a weighted mean of the final batch of parameter settings, in which each setting was weighted by the likelihood

it assigned to the individual subject’s decisions. Fractional parameters (h, h
0
, u) were modeled with Beta distributions (initialized

with shape parameters a = 1 and b = 1). Expectation decay rates (g, g
0
) and decision parameters (b, b

0
, l) were initially modeled

with normal distributions (initialized with m = 0 and s = 1) to allow for both positive and negative effects, but were then re-fitted

with Gamma distributions if all fitted values were positive. All other parameters were modeled with Gamma distributions (initialized

with k = 1, q = 1).

Session-by-session parameter fits
To estimate the best-fitting setting for j for each session of a given subject, we sampled 105 random settings from its posterior dis-

tribution given the fitted group-level prior and all of the subject’s choices. We then computed a weighted mean of the 105 parameter

settings, where theweight of each setting was determined by the likelihood it assigned to the subject’s choices on all ‘feedback’ trials

within the session as well as on ‘no feedback’ trials from subsequent session that involved images about which subjects learned dur-

ing the session.

Trial-by-trial prediction errors
We derived reward prediction errors for each observed outcome by instantiating the model with the parameter settings that best

fitted the individual subject’s choices.

Model comparison
We compared between pairs of models in terms of how well each model accounted for subjects’ choices by means of the integrated

Bayesian Information Criterion (iBIC) [48, 49]. To do this, we estimated the evidence in favor of each model (L) as the mean likelihood

of themodel given 105 random parameter settings drawn from the fitted group-level priors. We then computed the iBIC by penalizing

the model evidence to account for model complexity as follows: iBIC = � 2 lnL + k ln n, where k is the number of fitted parameters

and n is the number of subject choices used to compute the likelihood. Lower iBIC values indicate amore parsimoniousmodel fit, and

the log Bayes Factor [50] comparing two models can be estimated as their iBIC difference divided in half. We validated this model

comparison procedure by generating simulated data using each model, and applying our model comparison procedure to recover

the model that generated each dataset (see Table S2).

Physiological responses decoding
Statistical significance of decoding accuracies was measured using a one-tailed permutation test. For this purpose, we generated a

null distribution based on 100 random permutations of the data, permuting each subject’s behavior-derived prediction errors with

respect to that subject’s physiological responses. We then applied the full decoding procedure to each permutated dataset and

measured the resulting accuracy.

Regression Analyses
Weused linear regression to test the relationship between reward-prediction-error decoding from the physiological responses to out-

comes during an experimental session andmood change following the sessions. For this purpose, we examined howmood changed

4 hr after each experimental session, when subjects were next asked to report their mood. In addition, to control for diurnal variations

in mood [51], we examined how mood changed 24 hr following each session. To account for possible ‘regression to the mean’

effects, we included the current level of mood (i.e., during the experimental session) as a control regressor. To control for multiple

comparisons for the two physiological source (heart rate or EEG) and the two timescales of mood change (4 or 24 hr), results

were considered statistically significant below a Bonferroni-corrected threshold of p = 0:0125. A complementary analysis similarly

assessed the relationship between reward-prediction-error decoding and subsequent mood change following any integer number of

hours between 1 and 24. Here we corrected p values for multiple comparisons across all possible lags using false-discovery-rate

(FDR) adjustment [52].
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Logistic regression was used to test the relationship between the subjective value of reward during a session in which an image

appeared with reward feedback and later choices involving the image. Here the number of observed rewards for each image served

as a control regressor. For both types of regression, statistical significance of regression coefficients was computed at the group level

using a two-tailed bias-corrected and accelerated bootstrap test [53] with default MATLAB options.

DATA AND SOFTWARE AVAILABILITY

All experimental data and analysis scripts are available upon request by contacting the Lead Contact, Eran Eldar (e.eldar@ucl.ac.uk).
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