
Supplementary 

Overview of modelling approach 

In a nutshell, the modelling approach includes two parts. Firstly, four possible health states for the 
progression of PCOS were defined and the transition probabilities between these states were 
estimated. The transition probabilities between the disease states (e.g. from probable to diagnosed 
PCOS) were based on a Poisson regression model (which is often used for modelling the count data, 
e.g. the number of events over a period of follow-up period). While the other transition probabilities 
(e.g. mortality rates) were based on UK census data and life table and some other empirical studies.  

As a second step, we used Markov model to simulate the population dynamics of PCOS based on a 
virtual cohort, whose size was estimated from the census data and prevalence rates in our previous 
database study (Ding et al., 2016) over a follow-up period of 25 years. For example, the number of 
PCOS patients aged 15-19 was calculated by the multiplication of the total number of women aged 
15-19 on the census data and the prevalence rates of PCOS for this age group. The simulations were 
performed to allow us to look at the change in the number of individuals ending up in each state 
with its associated proportions. We were most concerned about the proportion of individuals who 
develop diabetes over the follow-up period because they would incur significant amount of 
healthcare costs to the National Health Service in the UK and have substantial reduction in quality of 
life. Therefore, we recorded the economic and quality of life outcomes associated with each state at 
each time point (with discounting applied).  

 

Poisson regression model using Bayesian approach 

The model can be expressed as a Poisson log-linear model of the following form:  

𝑑𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖) 

𝑙𝑜𝑔(𝜆𝑖)  =  𝛽0  +  𝜷𝑿𝒊  +  𝑙𝑜𝑔(𝑡𝑖) 

where 𝑑𝑖  is the event indicator representing a Poisson process for individual patient during the 
entire follow-up period. The value for 𝑑𝑖  is either 1 (event) or 0 (censored); 𝛽0 is the baseline hazard 
rate and 𝜷 is the incremental effects of other variables on the baseline rate for the relevant 
covariates considered, as collected in the matrix 𝑿𝑖. In our case, we consider age groups and 
specifically set the group 40-44 as the reference. The coefficients 𝜷 represent the log incidence rate 
ratio of the other age groups compared to the baseline. The variable 𝑡𝑖 is the follow-up time for 𝑖-th 
individual and was included as a log offset in the linear predictor. This model was applied to estimate 
the incidence rates (𝜆12, 𝜆23, 𝜆13). These rates were then converted into transition probabilities (𝑝12, 
𝑝23 and 𝑝13 as shown in Figure 1 in the main text) across the disease states using the following 
formula (Gidwani, 2014):   

𝑝𝑟𝑠 = 1 − 𝑒−𝜆𝑟𝑠   𝑟, 𝑠 = 1,2,3. 

The underlying assumption is that the incidence rate is constant for a given age group over a Markov 
cycle of 1 year. We considered this reasonable as both PCOS and diabetes are chronic diseases and 
we do not expect the population-level incidence rate to change drastically over a short period of 
time such as 1 year.  

For the incidence rates between State 1 and State 2 (𝜆12) and between State 1 and State 3 (𝜆13), a 
minimally informative prior was used for the baseline incidence rate:  𝛽0~𝑁𝑜𝑟𝑚𝑎𝑙(0,100). 
However, for the incidence rates between State 2 and State 3 (𝜆23), different versions of prior were 
tested, based on the information from published studies. We considered three scenarios. 



Base case scenario: minimally informative prior for baseline incidence rate and incidence rate ratios 
in comparison with the other age categories: 

𝛽0, 𝛽1, 𝛽2, … , 𝛽5~𝑁𝑜𝑟𝑚𝑎𝑙(0,100). 

As all the parameters are on log scale, the prior is indeed vague (because the prior distributions have 
standard deviation of 10 on the log scale), so as not to exert undue influence on the results. 
Therefore, in this case, the results would be driven by the data only. In this model specification, we 
are not including other more or less formal knowledge we may have on the likely range of the rates 
in our analysis. This is particularly relevant if we consider that the data at hand may be characterised 
by some bias.  

Sensitivity analysis 1: informative prior for baseline incidence rate and incidence ratios were 
included based on external evidence from published studies. In this scenario, we referred to the 
incidence of type 2 diabetes in the general population by age and the relative risk of diabetes 
comparing PCOS patients and the general population to act as prior distributions. Firstly, we 
considered the incidence rate of type 2 diabetes in the general population aged 40-44; we assumed 
this to follow a Normal distribution with a mean of 3 per 1000 person-year (PY) with some variability 
as suggested by Sharma et al. (Sharma et al., 2016). Here, we used 𝛽𝑝𝑜𝑝 to denote this quantity and 

assumed the prior distribution below (the mean of 3 per 1000 PY was converted on log scale, which 
results in the value -5.809): 

𝛽𝑝𝑜𝑝~𝑁𝑜𝑟𝑚𝑎𝑙(−5.809, 0.01). 

We then defined the relative risk of type 2 diabetes comparing PCOS patients and the general 
population, following the assumption that PCOS patients are 3 times more likely to develop diabetes 
(Morgan 2012), which corresponds to the following distribution: 

𝜌~𝑁𝑜𝑟𝑚𝑎𝑙(0.81, 0.001) 

for the parameter 𝜌, representing the relative risk. Therefore, the baseline incidence rate of women 
with PCOS aged 40-44 can be computed as:  

𝛽0 = 𝛽𝑝𝑜𝑝 × 𝜌. 

We further defined the relative risk of diabetes comparing the rest 5 age groups with the reference 
group (represented by 𝛾1, 𝛾2, … , 𝛾5). Therefore, the incidence rate of the rest age groups on a log 
scale (𝛽1, 𝛽2, … , 𝛽5) can be calculated using the following formula: 

𝛽𝑖 =  𝛾𝑖 × 𝛽0 , 𝑖 = 1,2, … ,5. 

Finally we defined the priors for 𝛾1, 𝛾2, … , 𝛾5 to encode the assumption that, compared with the 
reference group, the relative risk of diabetes for women aged 15-19, 20-29 and 30-39 are 0.09, 0.37 
and 0.63, respectively (Sharma et al., 2016) (M. Sharma et al. 2016). Here we made the assumption 
that the risk of diabetes in women with PCOS across different age groups follows the same pattern 
as that for the general population.  

𝛾1~𝑁𝑜𝑟𝑚𝑎𝑙(0.504, 0.001) 

𝛾2, 𝛾3~𝑁𝑜𝑟𝑚𝑎𝑙(0.203, 0.001) 

𝛾4, 𝛾5~𝑁𝑜𝑟𝑚𝑎𝑙(0.096, 0.001) 

Sensitivity analysis 2: similarly, the prior distributions in this model were informed by external 
evidence but in a slightly different way. We identified a case-control matched study using the 
General Practice Research Data (GPRD) in the UK to examine the incidence rate of type 2 diabetes in 
PCOS population from 1990 to 2010 (Morgan et al., 2012). The structure of GPRD is similar to THIN 
and therefore, results from this study were considered to be relevant and appropriate to inform our 



model. The overall rate of diabetes (5.7 per 1000 PY) in this GPRD study, denoted as 𝛽𝑝𝑟𝑒𝑣 (on log 

scale), was used to obtain the baseline rate for the reference group and this was achieved by 
proportional weighting: 

exp(𝛽0 + 𝛽1) × 𝑤1 + exp(𝛽0 + 𝛽2) × 𝑤2 + ⋯ + exp(𝛽0 + 𝛽5) × 𝑤5 + exp(𝛽0) × 𝑤6 = exp(𝛽𝑝𝑟𝑒𝑣) 

where 𝛽𝑝𝑟𝑒𝑣 represents the overall rate on log scale estimated from the GPRD study; 𝛽0 is the 

baseline rate for the reference age group and 𝛽1, 𝛽2, … , 𝛽5 were defined as the relative risk of 
diabetes comparing the rest age groups with the reference age group; 𝑤1, 𝑤2 … , 𝑤6 are the 
proportion of women in each age group estimated from our THIN cohort.  

By rearranging the formula, we obtained an equation that can be used to compute the baseline rate 
for the reference group: 

𝛽0 = 𝛽𝑝𝑟𝑒𝑣 − log {∑[𝑤𝑖 × exp (𝛽𝑖)] + 𝑤6

5

𝑛=1

} . 

The assumption here is that the age distribution of PCOS cohort is similar between our study and the 
GPRD study. This was considered reasonable because the GPRD also collects primary care data from 
practices across UK and the structure of the database is largely similar to THIN. The following prior 
distribution was included for 𝛽𝑝𝑟𝑒𝑣, which corresponds to an incidence rate of 5.7 per 1000 PY with 

limited variability (i.e. a variance of 0.01): 

𝛽𝑝𝑟𝑒𝑣~𝑁𝑜𝑟𝑚𝑎𝑙(−5.167, 0.01). 

We further defined a prior for the relative risk of diabetes across age groups and the distributions 
below indicate that the relative risk of diabetes is 0.09, 0.37 and 0.63 for women aged 15-19, 20-29 
and 30-39, respectively, compared with the reference group: 

𝛽1~𝑁𝑜𝑟𝑚𝑎𝑙(−2.408, 0.001) 

𝛽2, 𝛽3~𝑁𝑜𝑟𝑚𝑎𝑙(−0.994, 0.001) 

𝛽4, 𝛽5~𝑁𝑜𝑟𝑚𝑎𝑙(−0.462, 0.001) 

It should be noted that the small variances of the prior distributions we included for Scenario 2 and 3 
are consistent with the data provided in the published studies. Moreover, we have used forward 
sampling to graphically verify the mean and the associated 95% CI for all the prior distributions to 
ensure that they are in line with the published studies. Given the large sample size in both our study 
and the previous study (e.g. population study), we would expect low uncertainties in our model 
parameters.  

 

Model convergence 

We ran this model with two Markov chains starting at arbitrary values for convergence purpose. A 
total of 50,000 simulations per chain were generated and the first 5,000 in burn-in period were 
discarded. The number of thinning was set to be 90 to reduce the autocorrelation so the final 
number of simulations saved are 1000. The model convergence was assessed based on the Gelman-
Rubin diagnostic statistics, which were provided for all parameters in the model in the plot below. 
For the Gelman-Rubin statistic, there is a cut-off point of 1.1, values below which indicate 
convergence of the MCMC procedure to the target posterior distributions.  

 

 



Rationales for Markov model 

The baseline year was set to be 2014. Therefore, the number of patients in each state at the baseline 
year was estimated using the census data in mid-2014 multiplied by the prevalence rates in 2014 
(Ding et al., 2016).  

The initial distribution of cases over states was assumed to be consistent with that from the 
database we used for this analysis (i.e. THIN, as introduced in the main text). For example, 18.2% of 
the diagnosed cases had a prior diagnosis of diabetes and these women would start in State 3 (PCOS 
with diabetes) rather than State 2 (Diagnosed PCOS).  

The follow-up period was set to be 25 years. The rationale is that this time period was considered to 
be relatively long to examine the transition from PCOS to diabetes for younger women in our cohort. 
There is evidence that the incidence of type 2 diabetes increases dramatically for women aged 50-70 
(Sharma et al., 2016) and after 25 years of follow-up, the majority of our study population was 
expected to be within this age range.  

As the rates estimated from THIN data are only for reproductive-aged women, we assumed that 
patients who exceed the age of 45 during the follow-up develop diabetes at the same rate as those 
aged 40-45. Probable cases were assumed to be no longer able to receive a confirmed diagnosis 
after the age of 45 because the major symptom of PCOS (i.e. menses) disappears after menopause.  

Two scenarios were considered. In the first scenario, a closed cohort with PCOS population aged 15-
44 was simulated. In the second scenario, we considered an open cohort model with females aged 1-
14 in 2014 gradually entering the study population in the follow-up period. The total number of 
cases aged 1-14 was calculated as the sum of probable and diagnosed cases and the prevalence used 
for calculation is consistent with that for the age group of 15-19. The assumption here is that women 
aged 1-14 are diagnosed at same rates as the youngest age group once they reach the age of 15 and 
similarly, the distribution of patients over states after they enter into the “observable" period is 
consistent with that from THIN as explained previously.  

Note that sensitivity analysis was performed to assess the likely impact of incidence rates estimated 
based on different model assumptions (i.e. base case scenario, Sensitivity analysis 1 and 2) on the 
outcome (i.e. proportion of patients who develop diabetes by the end of follow-up).  

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure I Convergence assessment for model estimating the incidence rates 
from probable PCOS (State 1) to diagnosed PCOS (State 2). The convergence diagnostics 
(Gelman-Rubin statistic) for all the parameters are provided: beta_i and rate_prob_diag_i 
(i=1,2,…,6) represents the incidence rates on natural and log scale estimated from the 
model for the six age groups, respectively. Note that the cut-off point of Gelman-Rubin 
statistic is 1.1 and values below indicate that the model converges.  

 

 

 

 

 

 

 

 

 

 



Supplementary Figure II Convergence assessment for model estimating the incidence rates 
from diagnosed PCOS (State 2) to diabetes (State 3). The convergence diagnostics 
(Gelman-Rubin statistic) for all the parameters are provided: beta_i and rate_diag_diab_i 
(i=1,2,…,6) represents the incidence rates on natural and log scale estimated from the 
model for the six age groups, respectively. Note that the cut-off point of Gelman-Rubin 
statistic is 1.1 and values below indicate that the model converges. 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure III Convergence assessment for model estimating the incidence 
rates from probable PCOS (State 1) to diabetes (State 3). The convergence diagnostics 
(Gelman-Rubin statistic) for all the parameters are provided: beta_i and rate_prob_diab_i 
(i=1,2,…,6) represents the incidence rates on natural and log scale estimated from the 
model for the six age groups, respectively. Note that the cut-off point of Gelman-Rubin 
statistic is 1.1 and values below indicate that the model converges. 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table I: Transition probabilities between states in the Markov model. 

Parameter Definition Source of data 
𝒑𝟏𝟐 Transition probabilities from 

probable PCOS to diagnosed 
PCOS 

Estimated from the PCOS cohort extracted from THIN 

𝒑𝟏𝟑 Transition probabilities from 
probable PCOS to diabetes 

Estimated from the PCOS cohort extracted from THIN 

𝒑𝟐𝟑 Transition probabilities from 
diagnosed PCOS to diabetes 

Estimated from the PCOS cohort extracted from THIN 
with prior informed from published studies 

𝒑𝟏𝟒, 𝒑𝟐𝟒 Transition probabilities from 
probable and diagnosed PCOS 
to death 

Assumption based (PCOS itself does not increase 
mortality and mortality rate is estimated using rates 
for the general population), refer to mortality rates in 
female population by age in the UK 

𝒑𝟑𝟐 Transition probabilities from 
diabetes to death 

Mortality rates in diabetes population, refer to 

published studies (Mulnier et al., 2006) 

 

Supplementary Table II. Cumulative proportion of cases receiving relevant prescriptions 
for PCOS within 1 year after their diagnosis (by case definition). 

Treatment Percentage of cases receiving prescription 

Probable cases Diagnosed cases 

Combined oral contraceptives 12.8% 17.5% 

Progestogen oral 
contraceptives 

4.8% 5.9% 

Metformin 1.7% 17.8% 

Eflornithine 1.8% 4.6% 

Weight loss/control drug 0.63% 2.3% 

Acne drugs 24.9% 11.1% 

 

Supplementary Table III Recommended dose and treatment instruction for each drug 
considered.  

Treatment Dose and instruction 

Combined oral 
contraceptive/Progestogen 
oral contraceptives 

One tablet daily for 21 days and repeat for each menstrual cycle 
until menopause 

Metformin 500-1000mg daily to start with for the first week and then 1000-
1500mg daily for the second were and 1500-2000mg daily if 
tolerated thereafter for 3-6 month 

Eflornithine Apply twice daily and should be discontinued in the absence of 
improvement after treatment for 4 months. 

Weight loss/control drug Orlistat: 120mg for maximum 3 times daily and continue treatment 
beyond 12 weeks only if weight loss since start of treatment exceeds 
5% 

Acne drugs Most are topical cream or gel including erythromycin, benzoyl 
peroxide, tretinoin and isotretinoin. Apply 1-2 times daily and 
review at 8 weeks. Treatment may take up to 6 months or beyond 
depending on severity. 
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