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ABSTRACT 

Genetic discoveries underlie the majority of the current research and thinking in 
neurodegenerative disease. This influence stretches from our basic notions of 
the etiologic architecture of these diseases through to the identification of both 
viable therapeutic targets and the populations in whom these therapies should be 
applied. 

In large part this work has been driven by the significant gains made in identifying 
causal mutations, even when these have been rare causes of disease; however, 
the translation of genetic causes of disease into pathobiological understanding 
remains a considerable challenge. While there have been some successes in 
this regard, providing therapeutic targets in prominent diseases such as 
Parkinson’s disease and Alzheimer’s disease, the absence of an effective 
treatment shows that more needs to be done.  

Geneticists continue to make progress in monogenic forms of disease, and this is 
increasingly facilitated by the application of a second generation of genetics 
methods. These methods also allow the dissection of moderate and mild genetic 
risk factors for disease, an area that had previously resisted systematic 
investigation. This raises several challenges and requires new thinking in two key 
areas: what constitutes proof of pathogenicity, and how do we translate these 
findings to biological understanding. 

Here we describe the progress that has been made thus far in genetics, and the 
ongoing evolution of this field; for illustration we use examples of progress in 
Parkinson’s disease and Alzheimer’s disease. We describe a changing view that 
rejects the tradition that genetic proof has to be absolute before functional 
characterization, and centers on a multi dimensional approach that integrates 
genetics, reference data, and functional work. This effort aims to simultaneously 
prove pathogenicity and understand the disease process. We also argue that in 
large part, the initial functional challenges cannot be efficiently met by traditional 
mechanistic hypothesis driven methods, but that high content system wide efforts 
are required.  

 

Keywords: Alzheimer’s disease; Parkinson’s disease; Genetics; Genome wide 
association; Exome sequencing.  



Genetics as the basis for therapeutic development 

A core aim of human disease genetics is to facilitate the development of etiologic 
based treatments. The field’s approach has centered on the notion that 
identifying gene mutations will ultimately allow us to understand the molecular 
processes that initiate and sustain the disease pathogenesis. This knowledge in 
turn will allow the development of mechanism-based therapies (Figure 1). 

 

 

Figure 1. The simple schema underlying the development of mechanism 
based therapeutics 

 

There has been a great deal of success in the early parts of this schema. In a 
little over 20 years human disease genetics has moved from a backwater of 
biology, to the foundation of much of our understanding of complex biological 
questions. While this success has been hard won, the tools and skills needed to 
identify disease linked genes have improved so much that the route to disease 
gene identification is becoming clearer, more straightforward, and for certain 
types of risk variation, routine.  

While our success in genetics has been both tangible and substantial, translating 
this understanding to the development of mechanism-based therapies has been 
a much more difficult, and less productive endeavor. A common theme in the 
success of genetics is that the rate of progress has been dependent on the use 
of unbiased and system wide assays; when we have not relied on these tools 
and instead used our perceived knowledge of the disease to predict genetic 
targets,  our success has been less impressive. We argue here that until now the 
understanding of pathobiology has been limited by the absence of unbiased and 
system wide approaches for understanding molecular processes, and that the 
traditional approach to teasing apart pathogenic function is inefficient and often 
misleading. We suggest that in order to take advantage of the growing fund of 
genetic discovery in understanding the molecular basis of disease we will need to 
develop and use high content system wide approaches. 

 

Monogenic Forms of Disease 



The initial major successes in disease genetics were dependent on genetic 
linkage screens, a genome-wide and unbiased method of identifying segregating 
chromosomal regions. Linkage, followed by positional cloning was the primary 
tool of genetic discovery from the late 1980s and is still in use today. While these 
efforts involved a great deal of time and resources, they were reliable, and 
served as the mainstay of genetics for a number of years, identifying large 
numbers of genetic causes of monogenic disease (Bonifati et al., 2003; Goate et 
al., 1991; Kitada et al., 1998; Paisan-Ruiz et al., 2004; Polymeropoulos et al., 
1997; Rogaev et al., 1995; Sherrington et al., 1995; Valente et al., 2004; Zimprich 
et al., 2004). The prime method in the search for causes of monogenic disease is 
now second generation sequencing, usually whole exome sequencing (WES) but 
also whole genome sequencing (WGS). In the context of PD this has lead to the 
identification of the p.D620N mutation in VPS35 as a cause of disease and the 
nomination of DNAJC13 and CHCHD2 mutations as disease causing (Chartier-
Harlin et al., 2011, p. 1; Funayama et al., 2015, p. 2; Vilariño-Güell et al., 2014, 
2011, p. 35; Zimprich et al., 2011). Both WGS and WES will continue to provide 
insights into the causes of monogenic PD. In each of these approaches it was 
the development of methods to interrogate an entire system that was key to the 
success, whether the system comprised chunks of inherited DNA broken down 
by meiosis, as with genetic linkage studies, or the protein coding regions of the 
genome as with exome sequencing.  

While a detailed discussion of the monogenic forms of these diseases is outside 
the remit of this review, a catalog of the dominant and recessive mutations for AD 
and PD can be found online (http://www.molgen.ua.ac.be/ADmutations/; 
http://www.molgen.vib-ua.be/PDMutDB/) (Cruts et al., 2012). 

 

Common Genetic Risk Factors for Disease 

While the success in genetic linkage and positional cloning is illustrative, so too 
are our failures during the same time. In part because of the broad availability 
and ease of PCR amplification, candidate gene association studies were widely 
applied during the mid/late 1990s and early 2000s, with the aim of identifying risk 
variability for complex disease. These methods were easy to apply, relatively 
cheap, and extensively used; yet they were also almost universally unsuccessful. 
With hindsight, the likelihood of nominating the correct gene to be tested and 
testing the right variants within it was vanishingly small; particularly as we later 
appreciated that the typical risk effect sizes associated with variants were too 
small to be seen by the majority of studies. Candidate gene association studies 
were in essence the antithesis of genome wide unbiased approaches. Our ability 
to guess at the molecules involved in the rather enigmatic cascade of events that 
constitutes disease was proven to be poor. 

The challenge of identifying common risk variability was eventually met, again by 
a system wide method: genotyping using whole genome single nucleotide 
polymorphism (SNP) arrays. The extremely high information content of SNP 
arrays, and our ability to predict the genotype of many millions of variants based 



on these data provided a revolutionary tool in risk variant identification: Genome 
Wide Association (GWA). In this arena, GWA tests broadly and comprehensively, 
common genetic variation for association with a trait, and once again the system-
wide nature of this method is a critical component of its success. GWA studies 
using these assays were initially controversial, but have proven remarkably 
successful in identifying the genetic basis of complex disease and traits. 

In the fields of AD and PD this work has been driven by large consortia. In 
Alzheimer’s disease there now exist a large number of GWA efforts that have 
identified more than 18 loci that contain risk alleles (Harold et al., 2009; 
Hollingworth et al., 2011; Lambert et al., 2009; Moebus et al., with Lambert et al., 
European Alzheimer’s Disease Initiative (EADI) et al., 2013; Naj et al., 2011; 
Seshadri et al., 2010). Likewise there are now a large number of published GWA 
studies in PD, and since 2009 these have reported reliable and replicable risk 
loci (Do et al., 2011; Edwards et al., 2010; Elbaz et al., Genetic Epidemiology of 
Parkinson’s Disease (GEO-PD) Consortium, 2011; Hamza et al., 2010; 
Hernandez et al., 2012; International Parkinson Disease Genomics Consortium 
et al., 2011; International Parkinson’s Disease Genomics Consortium and 
Wellcome Trust Case Control Consortium, 2011; Lill et al., 2012; Liu et al., 2011; 
Pankratz et al., 2012, p. 2; Pankratz et al., PSG-PROGENI and GenePD 
Investigators, Coordinators and Molecular Genetic Laboratories, 2009; Pihlstrøm 
et al., 2013; Saad et al., 2011; Satake et al., 2009; Sharma et al., 2012; Simón-
Sánchez et al., 2011). In the latest meta-analysis of PD GWA studies 28 
independent risk loci have been identified and confirmed (Nalls, 2014). Like most 
GWAS hits, individually these PD loci confer only modest risk for disease. If we 
examine these loci collectively however, the 20% of individuals with the highest 
burden of genetic risk are about 3.5 times as likely to get disease than those 20% 
of individuals with the lowest burden of risk. 

 

What Lies Beneath 

Following the considerable success of GWAS, one question that remains is how 
much genetic influence is left to find? An analysis of the heritability of PD using 
genetic sharing estimates suggests ~30% of the risk for PD can be attributed to 
genetic factors. This is likely a significant underestimate, because very rare 
variants are difficult to capture using this method, and this approach, which 
estimates narrow sense heritability (or the proportion of trait variance that is due 
to additive genetic factors), does not take into account other genetic factors such 
as those that are dominant or multiplicative in effect. Notably, however, these 
analyses show that to date GWAS have identified only one tenth of this narrow 
sense heritable component: thus we can be sure that there is much left to find 
(Keller et al., 2012). The next question then, is where to look? Undoubtedly there 
are common risk loci for AD and PD that remain undiscovered and extending the 
size of current GWA studies is one approach that will yield results, as will 
performing GWA in diverse populations, and using alternate data mining 
methods to prioritize loci. A limiting factor in identifying additional common risk 
loci through GWA centers both on sample availability and cost. Most of the 



previous efforts have centered on marginal increases in sample sizes and meta-
analysis of existing datasets, however, in large part this pool of extant data has 
been exhausted. The continued search for such loci will therefore likely require 
large increases in sample size, and it is unlikely in the current funding climate 
there will be much appetite for such a substantial resource investment. Thus, 
gains in this area are likely to be less dramatic than in previous years. However, 
it is also likely that some of this missing heritability exists in risk alleles that are 
too rare to detect using traditional GWAS methods, and this is an area of much 
interest and investigation. 

Some success has already occurred in identifying rare risk alleles in AD. In 2012 
Guerreiro and colleagues identified homozygous mutation of TREM2 as a cause 
of frontotemporal dementia (R. J. Guerreiro et al., 2012). Mutations in TREM2 
were previously shown to cause Nasu-Hakola disease, a rare disease 
characterized by bone cysts and early onset progressive dementia (Paloneva et 
al., 2002). We had previously predicted that variability at genes causing young 
onset autosomal recessive neurological diseases would contribute to late onset 
neurological diseases (Singleton and Hardy, 2011). Because of the involvement 
of TREM2 in recessive diseases with a neurological component, this gene was a 
natural candidate for investigation in AD. Our work, and that of others revealed 
that indeed rare variants at TREM2 confer moderate risk for AD (R. Guerreiro et 
al., 2012, p. 2; Jonsson et al., 2013). In both instances, the foundation for this 
discovery was next generation sequencing data (both WGS and WES), and it is 
likely that this method will be the primary means for discovery of additional rare 
risk loci. The majority of variants that confer moderate risk for disease (OR>2) 
discovered thus far have altered the amino acid sequence of a protein and this, 
coupled with the lower price of WES compared to WGS, means that it is often 
argued that WES will remain the dominant methodology for some time to come. 
This argument is quite circular, because thus far attempts to look at non-coding 
sequence for rare risk variants have been quite limited, and it is difficult to 
interpret the consequences of such variants. Inevitably, as the true cost of whole 
genome sequencing approaches that of WES, whole genome sequencing will 
become the dominant approach. Interpretation of non-coding variability will 
remain a challenge, however as our understanding of the functional relevance of 
non-coding motifs and regions increases, this will improve. We predict that WGS 
will become a standard, and that advances in technology will center on more 
efficient generation of WGS, and the use of single molecule, low error, and long 
read sequences. 

What is notable in the genetic architecture of PD is that the same loci show up 
under different risk categories i.e. some loci contain an allelic series across a 
range of frequencies and functional impact. A notable example exists at the gene 
encoding alpha-synuclein. SNCA point mutations are a rare and highly penetrant 
cause of young onset PD, SNCA dosage mutations are also rare and penetrance 
is linked to copy number (Singleton and Gwinn-Hardy, 2004), and common 
variability at SNCA increases risk for PD by only a modest amount (Odds 
Ratio~1.5) (figure 2). Likewise, the p.G2019S mutation in LRRK2 occurs in about 
2% of North American Caucasian PD patients and is moderately penetrant by 



late age. There also exist common protein coding variants in LRRK2 that 
increase risk for disease ~2 fold, and, lastly, there are common non-coding 
variants at the LRRK2 locus that increase risk for disease ~1.2 fold. This 
phenomenon of pleomorphic risk does not yet appear generalizeable to every 
disease or locus, but it is reasonable to suggest that the known risk loci should 
be investigated for other types of disease risk. Again, second generation 
sequencing provides an opportunity to address this question with the use of 
targeted resequencing. In such an approach an entire genomic locus can be 
sequenced in a very large number of samples. This method has the potential to 
answer several questions; first, it can be used to fine map association signals 
identified by GWAS; second, it can be used to identify rare coding, non-coding, 
and copy number variants associated with disease independent from the GWA 
signal that nominated the locus; and third, in the identification of a coding variant 
associated with disease, this effort reveals the gene that is the biologic effector at 
a particular locus (Figure 2). 

 

Figure 2. Circular representation of the genome with genes and loci 
associated with PD indicated. Genes that contain causal mutations are 
shown in blue; genes that contain moderate effect protein coding risk 
alleles are shown in red; GWA identified loci that contain modest effect risk 
alleles are represented by proximal gene symbols in black.  

Thus we can see that the likely advances in PD and AD genetics will center on a 
combination of WGS, WES, deep resequencing of known loci, and GWA studies.  

There are many challenges left in understanding the genetic basis of AD and PD 
and much work to do; however there are other challenges that we must face in 
parallel. First, how can we efficiently move from a locus to a gene; second, when 
we have genes, how do we build an accurate picture of pathogenesis; and last, 



as we move toward potential therapies how do we test these in an efficient 
manner? See figure 3.  

 

 

Figure 3. The application of genetic methods to discovery of novel genetic 
causes and contributors to disease. These methods, which center on 
unbiased and largely genome wide approaches, have enabled the majority 
of our understanding of the etiology of disease 

 

Translating Gene to Pathobiology: Inefficient Success 

Insight into the mechanisms underlying disease has been achieved using 
traditional hypothesis driven functional approaches. In the context of Alzheimer’s 
disease the most prominent example of this effort has come from translating 
amyloid precursor and presenilin mutations into an understanding of the amyloid 
cascade hypothesis. This represents more than two decades of hard won 
functional effort (Scheuner et al., 1996). While this progress has been absolutely 
critical in formulating novel therapeutic approaches for Alzheimer’s disease, it 
has come at a substantial cost. The majority of the pathogenic hypotheses tested 
have either been shown to be wrong, or ultimately revealed to be true, true and 
unrelated. The approaches used to test these ideas were, out of necessity, 
performed almost exclusively using traditional hypothesis testing reductionist 
experiments. In the context of these approaches, we have become used to a 
scientific culture of failure, punctuated by rare significant success. We argue here 
that much of the initial work characterizing the biology of disease implicated 
proteins, could be more efficiently performed using the burgeoning hypothesis 
generating whole –ome screening methods. Such an approach does not remove 
the likelihood of chasing false leads, but it may minimize it, and notably it would 
do so at the earliest stages of investigation. Importantly, this effort does not seek 
to remove the need for traditional functional work, but simply to refocus it based 
on largely unbiased hypotheses (or more accurately those without the perception 
of understanding).  

 



Comprehensive screening and big data integration 

Because the early success in human disease genetics was in the identification of 
gene mutations that underlie monogenic forms of disease, our approaches to 
understanding the pathobiologic role of disease genes and their products has 
centered on manipulating systems using protein coding mutations. These 
approaches are difficult to apply to alleles that confer only low to moderate risk. 
For most disease-associated loci identified by GWA the effector gene is 
unknown, so any attempt to understand pathobiology must initially include an 
assessment that will reveal the gene and protein of interest. For many loci the 
underlying risk allele (which is often unknown) confers only minor risk for 
disease, and one might predict that the pathobiological effect is also either minor, 
or is not evident under basal conditions. Lastly, the majority of low to moderate 
risk alleles are not associated with protein coding variants, and thus they must 
confer an effect through altering expression of a transcript. These constraints 
represent considerable challenges, and they certainly require a rethinking of our 
approach to understanding pathobiology and a retooling of functional research 
groups. However, we believe that the return on meeting these challenges is likely 
to be so meaningful that we must prepare to meet and best them.  

There already exists a large number of datasets that can help in this regard, and 
these have the potential to reveal pathobiology and identify the causal gene at 
risk loci. A seminal example of this approach was recently published in the field 
of hereditary spastic paraplegia (HSP) genetics (Novarino et al., 2014). In this 
work the authors used the large number of known HSP genes and existing 
protein interaction databases to build an HSPome - a protein interaction network 
centered on HSP proteins. The construction of this network helped nominate 
proteins/genes for involvement in the molecular pathogenesis of HSP. Taking 
this information they were then able to reexamine exome-sequencing data 
generated in HSP patients, and were able to identify novel genetic causes of this 
disease. This work illustrates the power of integrating large-scale genetic and 
functional data, and shows that the combination of these has the power to inform 
at both the genetic and pathobiological level. Implicitly, this work also answers a 
common criticism of continued genetic work: Why continue to find low risk genes, 
when we don’t know how the genes we have are involved in the disease 
process? In short, the answer is: we believe the larger the number of genes and 
loci that we have, the better chance we have of connecting their protein products 
in a pathologic network; in turn allowing us to build a complete picture of the 
pathogenic process. Work along these lines has been attempted in both AD and 
PD, most prominently featuring efforts to perform pathway based analysis of 
GWA implicated genes. This work centers on mining interaction or literature 
based datasets in an attempt to reveal if the GWA genes collectively highlight 
pathways of pathobiological relevance. Within both AD and PD the immune 
system has been highlighted using this approach, although notably there does 
not appear to be a strong shared genetic component between these two 
diseases (Dickson et al., with Guerreiro et al., International Parkinson’s Disease 
Genomics Consortium (IPDGC), 2015; Holmans et al., 2012; International 



Genomics of Alzheimer’s Disease Consortium (IGAP), 2015; Jones et al., 2010; 
Moskvina et al., IPDGC and GERAD Investigators, 2013). Additionally it has 
been argued that cholesterol metabolism may also be a pathway of significance 
in AD (Jones et al., 2010).  

A more commonly used data integration method centers on using quantitative 
trait locus data, where the quantitative trait is a biologic measure. Most typically 
this aims to provide broad maps of the genetic control of effects proximal to 
genetic variability such as gene expression, protein levels, and DNA methylation. 
These maps can then be used to map the immediate biologic effects of variants 
linked to disease. It is now fairly typical to combine expression quantitative trait 
locus (QTL) work with GWAS. There are some limitations to this work; primary of 
which is that association between a biologic trait and a risk variant does not 
necessarily imply this effect is disease related. For example, an early identified 
risk locus for Parkinson’s disease was nominated on the short arm of 
chromosome 1, and denoted as PARK16 (Satake et al., 2009; Simon-Sanchez et 
al., 2009). Initial work suggested the risk alleles were also highly significant 
QTL’s for expression of NUCKS1 and DNA methylation at PM20D1, with a less 
significant expression QTL for RAB7L1 (now RAB29) (International Parkinson’s 
Disease Genomics Consortium and Wellcome Trust Case Control Consortium, 
2011).; Nevertheless, subsequent functional evidence strongly suggests that 
RAB29 is the disease related gene at this locus. 

There are also limits that depend on the biological source used for the QTL map; 
for example a typical expression QTL map would examine the relationship 
between genetic variability and gene expression from a tissue, such as human 
brain. While quite general genetic effects on constitutive expression are likely to 
be detectable in such a tissue, expression changes that only occur in a particular 
cell type, or those that are only evident after induction of expression (for example 
in response to cell stress) will not be detected. It is notable that for many loci 
identified by GWA, no QTL effect has been identified. 

To date much of the work in the field of expression has relied on array based 
assays, which have considerable limitations, such as being relatively insensitive 
to splice changes, unable to detect unknown/ unassayed transcripts, and having 
a narrow dynamic range for detection. While the resolution of this approach is 
likely to improve with the application of transcriptome sequencing, the problem of 
tissue specific and induced expression will remain, and may need to be 
addressed with reference experiments aimed at recapitulating these effects, such 
as QTL mapping in differentiated iPSc. 

It is notable that analysis of expression as an effector of GWAS signals is being 
taken a step beyond correlative studies and into mechanistic investigation; this 
work has shown clearly the complexity of gene regulation and serves as a 
warning that the most obvious association may not be disease relevant. A prime 
example comes from the investigation of the FTO locus, where genetic variability 
is strongly associated with risk for obesity and diabetes; notably FTO expression 
is also linked with obesity, and it was believed that the genetic risk at this locus 



was mediated through FTO. Recent work has suggested however that this may 
not be the case (Claussnitzer et al., 2015; Smemo et al., 2014). A critical 
resource in this type of mechanistic approach is data derived from the ENCODE 
project (Encyclopedia of DNA Elements), which aims to build a comprehensive 
list of functional elements within the human genome. The data underlying 
ENCODE comes from a wide variety of experimental approaches and tissues, 
and provides data regarding RNA transcripts, chromatin states, and 
transcriptional regulation. Such data allow investigators to rapidly take the first 
steps toward understanding the role of genetic variability linked to disease in the 
context of altered gene regulation. Likewise public sources of gene expression 
and genetic data such as that in the GTEx, Braineac, UKBEC, and NABEC data 
allow the integration of genetics, transriptomic, and regulatory data in order to 
better understand the genetic control of gene expression in the context of 
disease (GTEx Consortium, 2013; Nalls et al., International Parkinson’s Disease 
Genomics Consortium (IPDGC), The Wellcome Trust Case Control Consortium 2 
(WTCCC2), North American Brain Expression Consortium (NABEC) and the 
United Kingdom Brain Expression Consortium (UKBEC), 2014). This work is 
being extended in creative ways not only to understand the function of disease 
linked variants, but also to identify new disease linked genes previously 
undiscovered in traditional GWA studies (Nicolae et al., with Gamazon et al., 
GTEx Consortium, 2015). 

Another broad scale screening approach, in this instance combining genetic and 
protein interaction data, was recently performed in PD, and we believe this 
illustrates the power of integrating big data, and a likely path forward for complex 
disease research (Olszewski et al. with Beilina, Rudenko, et al., International 
Parkinson’s Disease Genomics Consortium and North American Brain 
Expression Consortium, 2014). In this work the authors performed unbiased high 
content screens for interactors of the known PD protein, Lrrk2. As with most high 
content screens, a large number of potential interactors were identified, and the 
prioritization of proteins for follow up would typically have been centered around 
factors such as putative function, and cellular expression. However, the authors 
used a different approach: combining GWA results with the hits from the Lrrk2 
interactor screen showed that two of the hits were encoded by genes under GWA 
peaks (Pankratz et al., PSG-PROGENI and GenePD Investigators, Coordinators 
and Molecular Genetic Laboratories, 2009; Satake et al., 2009; Simon-Sanchez 
et al., 2009). These two proteins, GAK and Rab-7L1 (RAB29) were subsequently 
shown to form a complex with Lrrk2 that promotes clearance of Golgi-derived 
vesicles through the autophagy-lysosome system (figure 4).  



 

Figure 4. The application of both unbiased genetics methods and high 
content protein-protein interaction assays revealed the interaction between 
Lrrk2, GAK, and Rab7L1. Not only did this work establish GAK and RAB7L1 
as the pathologically relevant genes at these GWA identified risk loci, but it 
also considerably expanded our understanding of Lrrk2 function, a critical 
aim in PD research. 

 

 
Figure 5. The primary challenge following gene identification remains 
understanding the pathobiological process; typically this problem has 
been tackled using limited scale and reductionist methods, which require 
some a priori hypotheses regarding potential mechanism of action. We 
suggest here that this understanding can be greatly facilitated using 
burgeoning high content screening technologies and large-scale data 
mining. Not only does this have the ability to implicate specific processes 



in disease, but it can also aid in further mapping of the genetic basis of 
disease. 
 
What we hope to have illustrated is that these high content data have the ability 
to be informative about the molecular etiology of disease.  This is particularly 
relevant when integrated with a large list of genes/loci. Notably such experiments 
have the benefit that they both provide information regarding the molecular 
etiology of disease, and support the nomination of particular genes within known 
risk loci, creating a self propagating knowledge generator (figure 5). 
 
Understanding Genetic Uncertainty 
As outlined above, we have rapidly moved into a space where the majority of 
genetic loci associated with disease are not represented by coding mutations that 
cause disease, but rather by common genetic risk variability with unknown 
consequences. As second generation sequencing progresses, there will be an 
additional class of genetic variability, rare protein coding and non-protein coding 
risk alleles. Notably, because these changes are rare and confer risk rather than 
cause disease, proving pathogenicity is a considerable challenge. In the context 
of data heavy genetic approaches the topic of proving pathogenicity is of 
considerable focus (MacArthur et al., 2014). Several schema for evaluating 
disease association have been proposed, in general including integration of 
existing published data, a statistical likelihood based assessment 
(association/linkage) and, notably the generation of functional evidence 
(MacArthur et al., 2014). Indeed it is unlikely that the burden of proof for disease 
involvement can be fully met by genetics alone. Thus, we are rapidly finding 
ourselves in a situation where alleles of uncertain pathogenic relevance will be 
commonplace in the literature. In order to move such alleles into an unequivocal 
category of risk or benign variant, it is absolutely critical that those involved in 
functional characterization of genetic variants understand the uncertainty 
surrounding these findings. Further it is extremely important to understand the 
power and potential bias of the approaches they employ in order to avoid lending 
false support of these candidates as disease linked genes. The literature in a 
field can build momentum, which is sometimes inappropriate; for example a very 
large body of work has been performed on ubiquitin C terminal hydrolase 1, 
despite the fact that the initial genetic evidence implicating this gene in PD was 
extremely weak, and remains unsubstantiated (Leroy et al., 1998). The naming of 
UCHL1 as a genetic locus for PD persists despite this lack of evidence, and a 
simple pubmed search of “UCHL1” and “Parkinson’s disease” reveals 121 
manuscripts on this topic.  

We view that, largely, the testing of the involvement of genes/variants for their 
involvement in pathways implicated in disease as a dangerous approach toward 
establishing pathogenicity. The majority of such efforts use rather blunt 
overexpression or knockout models, and the low n associated with most 
functional experiments, means that it is too easy to ascertain a positive effect on 
any pathway, regardless of whether this is a true biological effect or not. In this 
regard, once again the power of unbiased system wide methods is critical. Such 



work has the ability to test for an effect of a variant/gene on the background of 
effects seen across the whole genome, and thus to understand what is noise 
versus what is true signal. 

 

Next Steps for Genetics 

Cataloging more risk 

As discussed above, there is clearly more genetic risk to be identified for AD and 
PD, and there exists a compelling rationale to invest time and resources to find it. 
For both AD and PD GWAS have been successful, however, also for both, tens 
of thousands of samples have been genotyped, and it is unclear that there will be 
significant support available to extend this genotyping to ever-increasing cohorts. 
There will likely be more that can be extracted from the extant data, through 
simply digging deeper into the sub-significant hits, and through alternative data 
mining approaches, such as pathways based analysis. Further, it is likely that as 
we build a greater understanding of the disease network, we will be able to 
specifically test genes in that network using these existing GWA data. 

Second generation sequencing is increasingly accessible to the research 
community, not only because of reducing costs per base pair, but also with the 
development of standardized analytical tools. WES continues to be the prime 
method for gene discovery, and while most of the success has been in identifying 
disease causing mutations, the accumulation of WES data in large cohorts 
facilitates the identification of risk alleles using population based efforts. Because 
the majority of common variants that confer risk should have been identified by 
GWAS, the remaining risk variants are likely to be rare, and/or to impart very 
minor alterations in risk. What this means for sequence based risk discovery 
approaches is that the sample size will need to be high. While GWAS started to 
identify loci in PD and AD when applied to ~2000 cases, it is likely that exome, 
genome, and targeted sequencing approaches will need to be applied to tens of 
thousands of samples in order to reliably find risk alleles without a priori 
understanding. To date there are no studies that have reached this type of 
sample size for AD/PD; however, these are now underway for AD and being 
planned for PD.  

One approach that has been used in several diseases, although not yet in AD/PD 
at a large scale, is resequencing, where candidate genes/loci are sequenced in 
very large numbers of cases. The genes and regions selected typically include 
known disease genes and GWA linked loci. This design allows the systematic 
investigation of nominated genes, including non-protein coding regulatory 
sequence, quickly and efficiently. The advantage of this approach is not only the 
speed with which it can be applied, but that it provides genetic information at 
multiple layers: it is a critical step in fine mapping of a GWA signal, and the 
identification of the functional risk allele(s); it allows the identification of additional 
risk at the same locus (for example rare risk alleles at a GWA locus); and, 
because the sequence is usually very deep, copy number variants are more 
easily detected. 



While WES and resequencing are available now, and offer many benefits such 
as speed, low costs, and standardized analysis, it is inevitable that these 
methods will be supplanted by WGS; it is clearly a question of when not whether 
we will perform extremely large scale whole genome analysis in these diseases. 
Notably as sequencing reads become longer and contain less error, the 
alignment and analysis of sequence data will be more routine and less 
burdensome; such an advance will also lead to a greater resolution of the genetic 
basis of risk and the consequences of risk in the context of gene expression. 

 

The role of genetics in overcoming other barriers to therapeutic 
development 

Both AD and PD are late onset, progressive, and genetically complex diseases, 
and the nature of these diseases present significant challenges to therapeutic 
design and testing.  
 
It is clear that both AD and PD occur for a number of years before the patient 
presents with clinical signs and symptoms, and that by the time the patient 
comes to clinic, the disease has progressed considerably, affecting multiple 
systems. It is most likely that effective therapies will focus on slowing or halting, 
rather than reversing, the disease process. It is also reasonable to assume that 
the earlier stages of disease are likely to be more refractory to etiologic based 
therapeutic intervention, than later, more widespread stages. One challenge 
therefore lies in identifying patients that are likely to get disease well before the 
signs and symptoms appear, with the ultimate aim of being able to apply 
preclinical therapeutic intervention, but with a more immediate aim of identifying 
cohorts of patients for clinical trials. This is already being pursued in AD, with a 
current clinical trials of the anti beta-amyloid therapy crenezumab in 
asymptomatic subjects who carry the PSEN1 p.E280A mutation. There exist a 
number of causal or highly penetrant gene mutations for both AD and PD, and 
carriers of these mutations may likewise be recruited into preventative clinical 
trials. The establishment of multinational networks such as DIAN (Dominantly 
Inherited Alzheimer Network; http://www.dian-info.org/) aims to study overtly 
asymptomatic carriers of dominant causal gene mutations in an effort to 
understand the disease process and identify early indicators of disease onset 
and progression. Such studies are ideally positioned for the execution of early 
clinical trials, and indeed the DIAN study has been extended to include such a 
component, with the testing of gantenerumab and solanezumab in this cohort 
(https://www.clinicaltrials.gov/ct/show/NCT01760005). 
 
A greater challenge however, lies in the identification of individuals who will go on 
to become affected with disease, but who do not have a simple genetic cause. It 
is hoped that genetic risk profiling will help in this regardby estimating risk based 
on an individual person’s burden of known risk alleles. Progress in refining these 
pure genetic risk models is modest but steady. The use of genetic risk modeling 
alone is unlikely to identify soon to be affected patients within the near future. 



This does promise however to improve, and it will surely be part of a battery of 
tests aimed at predicting disease likelihood, onset, and course. A recent example 
of the success of integrating diverse accessible data types to predict disease 
comes from our efforts in PD [Nalls et al in press 2015]. In this work age, sex, 
family history of disease, anosmia status, and cumulative genetic risk score were 
combined to assign individuals an overall risk for PD. Using this model we were 
able to show an area under the receiver operator curve of ~0.92 across several 
studies, a remarkable predictive power. Perhaps even more interestingly, this 
predictive model was able to show that the PD patients who failed to show 
dopaminergic deficit at presentation represented two distinct risk groups, and that 
those with the higher risk profile were more likely to progress to show 
dopaminergic deficit.  
 
Likewise, any efficient clinical trial will require quantitative markers of 
progression, which perform better than current clinical instruments. Markers of 
progression will be particularly important in preclinical trials, where changes over 
a short period are likely to be very subtle; without these, trials would stretch over 
many years with an associated cost that would be a disincentive to risk averse 
pharmaceutical companies. As with risk profiling, genetics is likely to form a part 
of biomarker work, not only in defining high risk individuals for cohorts being used 
in the development of biomarkers, but also in subsetting of groups of patients 
who have different biomarker profiles over the course of disease. This latter point 
touches on a more general theme in disease, subtyping. Our current 
pathognomonic classification of disease may be too coarse, and it is plausible 
that there are subtypes with different, or at least not entirely overlapping 
pathogeneses. This would implicitly suggest that discernable subtypes may 
require different therapeutic approaches, may respond differently to treatment, 
and need to be defined and identifiable as a part of clinical trials and biomarker 
studies (figure 6). 
 

 
 
Figure 6. Genetics can be applied as a tool to facilitate therapeutic trials 
and ultimately treatment. This includes genetic identification of at risk 
individuals, use in defining biomarkers, and defining sub-types of both 



disease and response to treatment.  It can also be used as part of the 
process of identifying people in the prodrome of the disease before clinical 
symptoms become apparent, which is precisely when one would want to 
start mechanistic treatment. 
 
A large barrier to the identification of disease subtypes, developing tools to aid in 
prognosis, and the discovery of biomarkers is cohort availability. Much of the 
genetic work to date has been appropriately carried out in cross sectional patient 
collections, where numbers are very high, but clinical details are low. Detailed 
longitudinal clinical studies are required; these are time consuming, and 
extremely expensive, however there are several attempts to collect such cohorts 
in PD and AD including two well know studies, the Parkinson’s Progression 
Markers Initiative (PPMI) and the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) (Mueller et al., 2005; Parkinson Progression Marker Initiative, 2011). 
 

Summary 
The continuation of an interrogation of the genetic basis of disease is a key step 
toward effective therapeutic strategies. Genetics will continue to inform 
researchers and to drive etiologic and clinical research. Critically we argue that in 
order to take full advantage of these data, a sea change is required in the way in 
which the field performs functional characterization of disease linked genetic 
variability. The generation of large unbiased functional datasets that can be 
integrated with the growing fund of genetic knowledge is a necessary step, and 
one that should occur before typical reductionist cell biology. In adopting this 
approach we can more efficiently move toward true disease altering therapeutics. 
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