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Abstract 

This article considers the implications – for functional anatomy – of how we represent 

temporal structure in our exchanges with the world. It offers a theoretical treatment that tries 

to make sense of the architectural principles seen in mammalian brains. Specifically, it 

considers a factorisation between representations of temporal succession and representations 

of content or, heuristically, a segregation into when and what. This segregation may explain 

the central role of the hippocampus in neuronal hierarchies, while providing a tentative 

explanation for recent observations of how ordinal sequences are encoded. The implications 

for neuroanatomy and physiology may have something important to say about how self-

organized cell assembly sequences enable the brain to exhibit purposeful behaviour that 

transcends the here and now.  
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The principles of functional anatomy 

There are certain architectural principles of neuroanatomy that seem amenable to explanation 

from a purely theoretical perspective. These range from the existence of axonal processes that 

form neuronal connections, through to macroscopic organisational principles such as 

functional segregation [1]. A key example is the segregation of dorsal and ventral streams 

into what and where streams [2]. How might these architectural features be explained from a 

theoretical perspective? In what follows, we appeal to active inference and the Bayesian brain 

hypothesis [3, 4] to show that functional segregation is mandated for brains that navigate a 

world with deep hierarchical structure. We then consider the implications of this argument for 

a fundamental aspect of this navigation; namely, the trajectories or ordered sequences of 

states we encounter [5]. Our conclusion is that there should be a functional segregation 

between what and when – a conclusion that seems to explain a number of anatomical and 

physiological observations; particularly in the hippocampal system. 

 

Good enough brains and good enough models 

A key theoretical development in neurobiology is the appreciation of the brain as a predictive 

organ – generating predictions of its actions and sensations [4, 6-9]. These predictions rest on 

an internal or generative model of how sensory input unfolds. Indeed, one can understand 

much of neuronal dynamics and synaptic plasticity as an optimisation of (Bayesian) model 

evidence – as scored by proxies like free energy and prediction errors [9-11]. If one 

subscribes to this normative theory, the brain must be a good (enough) model of its 

environment, where recurring sequences of events are the rule. This is an old idea, dating 

back to notions of good regulators in self-organisation and cybernetics [12, 13]. In brief, the 

good regulator theorem states that any system that can control its environment must be a 

good model of that environment. So what constitutes a good enough model? 

Mathematically, a good enough model is simply a model that has high evidence, in light of 

the (sensory) data it has to explain. Evidence is the probability of sensory samples, under a 

model of how those samples were generated (See Box 1). In this sense, any brain can be 

understood as (self) organising itself to maximise model evidence. Here, we are implicitly 

appealing to the Bayesian brain hypothesis  [14], while gently sidestepping big questions 

about its utility and falsifiability: e.g., [15, 16]. In what follows, we assume that the 
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imperative to maximise model evidence is a truism and consider the implications for 

functional anatomy. Our focus is not on the Bayesian brain per se but on the notion of a mean 

field approximation that is an integral part of approximate Bayesian inference.  

A key conclusion – that follows from the Bayesian brain – is that the structure of a good brain 

will recapitulate the (statistical) structure of how sensations are caused. A simple but 

remarkable example is the very existence of neuronal connections. Why does the brain have 

connections, while the liver seems to operate perfectly happy without them? The answer to 

this is almost obvious when we consider that the brain has to model sparse dependences 

induced by causal structure in the world. In other words, a good enough (or sufficient) 

explanation for our sensory inputs is that they are generated by a small number of underlying 

causes that act upon each other (usually at a distance), in a lawful and structured way. This 

lawful structure requires a relatively sparse dependency among the causes; such as gravity 

causing things to fall or visual objects causing sensory impressions. In short, the causal 

structure of our world should, in principle, provide a sufficient explanation for the structure 

and fabric of any brain that is trying to model that world. One could apply this argument to 

other aspects of neuronal architecture. For example, our sensations are generated in a way 

that conforms to logarithmic rules (e.g., Weber’s law). These statistical rules may then be 

transcribed into the lognormal statistics of synaptic physiology [17] or the connectome that 

supports this physiology [18]. Simply noting that causal regularities in the world are 

transcribed into neuronal architectures is interesting (and perhaps self-evident). However, this 

conjecture does not get to the heart of principles such as functional segregation. To 

understand how maximising model evidence leads to functional segregation, we have to 

consider the constraints under which evidence is optimised. This brings us to the notion of 

approximate Bayesian inference (Box 1). 

 

Box 1 about here 

 

Good enough brains and approximate Bayesian inference 

Any system or procedure that optimises (maximises) Bayesian model evidence can be 

regarded as implementing Bayesian inference. However, exact Bayesian inference is 
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generally impossible in the real world; especially when modelling data generated by 

hierarchically deep, dynamic and nonlinear processes. Almost invariably, this problem is 

solved with something called approximate Bayesian inference. Approximate Bayesian 

inference refers to optimisation in which an approximate representation (technically, a 

posterior probability distribution or ‘belief’) is made as similar as possible to the exact 

(Bayes-optimal) belief. There are many examples of approximate Bayesian inference. One 

popular example is Bayesian filtering (a.k.a. predictive coding [11]) that calls on a number of 

approximations. These include the assumption that probabilistic beliefs have a particular 

distributional form (usually a Gaussian or bell shaped distribution). Another important 

assumption – that is ubiquitous in statistical physics and data analysis – is referred to as a 

mean field approximation [19, 20]. Combining these two approximations leads to something 

called variational Bayes. The mathematical details here are unimportant – the key concept is 

that the brain is faced with an important choice in the way that it optimises the very structure 

of its generative model (the fabric of its connections) and associated beliefs (the physiology 

supported by this fabric). 

Put simply, the mean field approximation approximates dependencies among multiple factors 

with a product of marginal distributions that is much easier to deal with – in terms of 

encoding and updating. A key challenge for approximate Bayesian inference is to find the 

right factorisation or marginalisation of beliefs about the causes of sensory input. Each 

possible factorisation or marginal representation corresponds to a different mean field 

approximation and a different way of ‘carving nature at its joints’ [21, 22]. As scientists, we 

use this judicious ‘carving’ whenever we design a factorial experiment and test for 

interactions. In this case, the two factors represent a parsimonious hypothesis about how our 

data are caused, where the interaction reflects how one factor influences the expression of the 

other. Can this basic tenet of good statistical modelling be applied to neurobiology? 

There are two levels that immediately come to mind. The first is the perspective afforded by 

the Bayesian brain – and, in particular, the notion of perception as hypothesis testing [7]. In 

this instance, efficient perceptual synthesis reduces to an efficient and good factorisation of 

the putative causes of sensations. In other words, the brain has to learn about statistical 

independencies (technically, conditional independencies) to properly approximate the 

underlying causes of the sensorium. There is ample evidence to suggest that experience-

dependent plasticity and associated learning plays a huge role in this process [23]. However, 
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one can also regard evolution as playing exactly the same game: it is becoming increasingly 

evident that evolution can be formulated as learning statistical structure in the environment 

and distilling that structure into the phenotype [24-26]. Indeed, formal treatments of 

replicator dynamics and Fisher’s fundamental theorem demonstrate that these evolutionary 

processes are nothing more or less than Bayesian belief updating. Indeed, natural selection 

itself has been likened to Bayesian model selection, where adaptive fitness corresponds to 

(variational) free energy [9, 27] . 

 

Functional segregation and carving nature at its joints 

The second level at which a good (enough) factorisation might be expressed is in terms of 

functional anatomy and segregation. In short, millennia of evolutionary (Bayesian belief) 

updates have shaped the brain into an efficient (minimum free energy) mean field 

approximation that we know and study as functional segregation [1, 28, 29]. 

A compelling example – of the implicit division of labour – is the factorisation of syntax and 

lexico-semantic statistics of language [30]. Ample evidence demonstrates that Brodmann 

areas 45 and 47 respond not only to natural sentences in fMRI experiments but also to 

grammatically correct sentences without semantic content or meaning. This suggests a 

specialised role of these brain areas in syntactical organization of semantic information [31]. 

In contrast, several other neocortical areas respond selectively to meaningful sentences but 

not to grammatically correct sentences without semantic information [32].  

Perhaps the most celebrated example of transcribing statistical independencies into 

neuroanatomy is the segregation of dorsal and ventral visual processing streams [2, 33, 34]. 

The argument here is straightforward: if the causes of our visual sensations are visual objects 

that can be in different positions, the optimal way to factorise these causes is into where an 

object is and what an object is. The implicit conditional independence is simply a reflection 

of the fact that knowing where an object is does not (generally) tell you what it is. 

Technically, installing this conditional independence into functional anatomy enables the 

brain to maximise (Bayesian) model evidence. The alternative would be to have neuronal 

representations of every object in every location. Clearly, this would lead to a complex 

generative model with redundant degrees of freedom (connections) – provided our world 

does indeed comprise objects in various locations (Box 2). 
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Box 2 about here 

Technically, finding the right way to carve nature into the best factors ensures that the 

variational free energy is a better approximation to model evidence. In this view, the 

functional segregation of what and where streams embodies the fact that it is more efficient to 

encode where an object is and what an object is – as opposed to encoding every combination 

of what and where. The predictions of current sensations then involve multiplying the 

probability distribution over where an object is by the probability distribution over what an 

object is (we will return to the importance of this multiplication or interaction later). One 

could take this sort of argument much further, in terms of hierarchal representations and 

special cases of variational inference cast in terms of information theory; leading to the 

principle of minimum redundancy, the principle of maximum efficiency, imperatives for 

sparse coding and so on [35-38].  

From a neurobiological perspective, this statistical carving (factorisation) corresponds to 

functional segregation [1, 28]. If correct, this means that conditionally independent causes of 

our sensations correspond to the attributes that define functional specialisation; for example, 

motion, colour, form and so on [39]. In other words, natural selection, epigenetics and 

experience-dependent plasticity equip the brain with the right sort of mean field 

approximation to infer the factors causing sensations. For example, knowing an object’s 

colour does not (generically) determine its motion and so on. One could pursue this approach 

right down to the level of classical receptive fields [38, 40] and their contextual modulation 

(extra classical receptive field effects) implied by the multiplication of marginal distributions 

to form precise posterior (probabilistic) beliefs. However, here, we want to consider another 

potentially more fundamental carving of statistical independencies that speaks, not to what 

and where streams but to what and when systems – a dissection that may provide organising 

principles for the brains of higher animals. 

 

What and when – functional segregation of the neocortex and hippocampus 

It is almost self-evident that the most pervasive and simplest conditional independence – that 

we deal with at all the time in perceptual synthesis and spatial navigation – is the temporal or 

ordinal succession of events [41]. Here, succession per se can be separated from the 

constituent events. In other words, the very concepts of "first", "last", "quick" and "fast" do 
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not specify what is happening and are not content-bound. This suggests a fundamental 

conditional independence between the temporal structure of succession (i.e. when) and the 

events that succeed each other (i.e., what). In exactly the same way that the brain may 

factorise hidden causes of sensations into what and where, it may apply the same 

marginalisation to what and when. This distinction may be more pervasive than what and 

where – it might apply at multiple levels of abstraction – and the very unfolding of 

experience itself. In other words, the attribute of where is limited to certain causes of our 

sensations; however, social and physiological narratives (which may not be located to a 

particular point in extrapersonal space) always have a sequential aspect; e.g., music and 

language. 

Box 3 about here 

To paint this picture heuristically, consider two ways of encoding sequences. First, we could 

have a repertoire of sequential states for every sequence encountered; in other words, a 

separate representation for every state at each point in a sequence. This would be like having 

a library of sentences that we could call on to make sense of written text. The alternative to 

activating sequences of representations would be to have representations of sequences whose 

content could be read sequentially: see Box 3 and [42]. This distinction is exactly the same as 

the distinction between the joint and marginal representations of what and where considered 

above. This distinction may sound subtle; however, the marginal (mean field) approximation 

is substantially less complex. This is because instead of having to represent hidden states or 

causes for every sentence (i.e., number of words in the sentence times the number of 

sentences) we just have to represent a preconfigured sequence and each sentence (i.e., the 

number of words per sentence plus the number of sentences). If a what and when distinction 

holds, there are some important predictions about the encoding of sequences in the 

hippocampus that we now briefly unpack. 

If we call on a mean field approximation (functional segregation) of what and when, one 

would anticipate a generic architecture embodying the associated functional segregation. The 

natural candidate for this architecture is the distinction between the brain structures of 

temporal succession [43], such as the hippocampus and cerebellum, from (neocortical) 

structures encoding content. It also suggests that structures such as the hippocampus (when) 

should have the greatest divergent and convergent connectivity with representations of 

content (what). This may explain why the hippocampus is a hub with far-reaching 



Anatomy of time 

 

8 

 

connectivity [44]; as opposed to more modular neocortical areas. This connectivity places the 

hippocampus and paralimbic cortex at the centre of (centrifugal) hierarchical cortical 

connectivity [45, 46]. 

 

Physiological support for model predictions 

If temporal succession or ordinal structure is a (conditionally) independent statistical 

construct, one would expect to see sequential dynamics encoded by hippocampal neurons that 

are not bound to their content [47]. Self-generated sequences of neuronal firing patterns have 

been reported in the hippocampus [48], prefrontal cortex [49] and parietal cortex [50]. Thus, 

it appears that the brain is genetically equipped with neuronal architectures that encode 

canonical or preconfigured sequences, prior to those sequences being associated or imbued 

with (bound to) any particular content [51]. This provides a somewhat counterintuitive 

prediction that one should see sequential dynamics prior to any particular experience, in 

systems like the hippocampus [51]. This fits comfortably with recent observations that the 

neurons showing the greatest (sequential) firing rate modulations are impervious to the 

particular sequence of events experienced in the recent past [52]. Furthermore, experience 

with multiple sequences with different content, may be expected to engage the same 

canonical sequences, in the same way that the encoding of a spatial target in terms of its 

location is independent of its attributes [53].  

These predictions also fit heuristically with the notion of fast firing units (‘choristers’) 

providing a canonical tempo for temporal succession, while slow firing neurons (‘soloists’) 

provide a context-specific content that may mediate the (plastic and context-sensitive) 

mapping to extra-hippocampal representations [54]. This perspective also explains the 

emergence of multiple place cells in the sequential encoding the pure attributes of temporal 

succession; i.e., the temporal order or sequence [55]. See [56] and [57] for compelling 

treatments of context in the Bayesian setting. In short, the picture that emerges here is of a 

neuronal representation of temporal succession that adumbrates any particular sequence, such 

that content-free sequences are associated with a particular content – through the use of 

auxiliary units that show a greater plasticity and context-sensitivity [58].  
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The statistics of neuronal encoding 

An interesting aspect of a mean field approximation is that marginal probabilities have to be 

multiplied to generate joint distributions or distributions over outcomes. Indeed, in statistics, 

a ubiquitous scheme for evaluating marginal distributions – known as belief propagation – is 

also called sum-product message passing. This is important because the realization of the 

product of independent positive random variables is a lognormal process (this follows from 

the central limit theorem in the log domain). The implication for the statistics of neuronal 

encoding is that we might expect to see lognormal distributions of synaptic strengths, firing 

rates and burst probabilities – under the assumption that spiking encodes the probability or 

expectation of occupying hidden states [18]. 

 

Predictions of the ‘what and when’ distinction – the remembered present 

There is something quite distinct about representations with and without factorisation over 

time and content. An inspection of the figure in Box 3 reveals that the representations of 

context do not change with time. In contrast, with an exhaustive representation of both what 

and when, there is no temporal invariance and expectations cascade with the progress of time. 

Put simply, the first word in it sentence is always the same word before or after reading it. 

This means that sequential (when) states do all the heavy lifting incurred by temporal 

succession, endowing contextual (what) representations with a form of translational 

invariance, not in space but over time. Effectively, this converts a sequence of representations 

into the representation of a sequence. Heuristically, this means the representation of a 

narrative, trajectory or sequence of states is no longer tied to the present; enabling – or indeed 

mandating – an explicit representation of the past (i.e. memory) and future [59-63]. This 

intuition might explain why brain structures associated with memory are also implicated in 

planning [64-66]. This fits comfortably with the fact that mental travel into the past and 

future engages the same anatomical substrates and algorithms deployed for spatial navigation 

in the present [67-70]. 

In short, the factorisation into what and when necessarily entails a working memory that can 

accommodate postdiction and prediction. In this setting, postdiction corresponds to the 

accumulation of evidence for any particular content (sequence); namely, updating beliefs 

about the past – and, simultaneously, predictions about the future. For example, this predicts 
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that there are neuronal populations in the brain that encode the current sentence, in a way that 

necessarily predicts its conclusion. This representation changes much more slowly than the 

(e.g., predictive coding) processing of graphemes and word forms that are engaged by 

saccadic eye movements [71-73]. In this sense, carving the world into canonical sequences – 

and the context under which those sequences unfold – provides a deep and hierarchical 

representation of time, as exemplified by the nested nature of the multitude of brain rhythms 

[74]. See also [75, 76]. See Figure 1 for simulated hippocampal responses during saccadic 

eye movements, under a mean field assumption. 

 

Figure 1 about here 

 

An important insight that can be drawn from what and where and what and when 

formulations (c.f., Box 2 and Box 3) is that the representational roles of where and when 

become conflated in navigation (i.e., spatial sequencing). This is remarkable since every 

principal neuron in the hippocampus can be regarded as either a ‘place cell’  [77] or ‘time 

cell’ [78] – as opposed to assigning time or space to distinct subsets of neurons. Whether 

cells in the hippocampus and entorhinal cortex ‘code’ for position versus absolute time – or 

distance versus duration – depends largely on the testing conditions and the theoretical 

perspective of the observer [79-82].  Indeed, one might anticipate that the what versus where 

distinction is (statistically and anatomically) conflated with the what versus when distinction; 

especially when dealing with trajectories in extrapersonal space. Whether its space or time, 

the ordinal sequences in the hippocampal system can ‘index’ the items (what) in the 

neocortex [83]. A marginal encoding of ordinal sequences (where and when) and the 

semantic meaning of the ordered items (what), make the division of labour analogous to the 

role of a librarian (hippocampus; pointing to the items) in a library (neocortex; where 

accumulated semantic knowledge is stored). The organized access (in spatiotemporal 

trajectories) to the neocortex-stored stored items (what) then becomes episodic information 

[84]. 

One could argue that we are simply putting a Bayesian gloss on the fact that the hippocampus 

encodes sequences of events. However, our proposition is somewhat simpler and subtler: the 

hippocampus – in contrast to other organs of succession such as the basal ganglia and 
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cerebellum – has a privileged role; it encodes the very essence of sequences, without 

reference to particular events. The content of the sequence depends on how events are 

‘bound’ to content-free sequences, through context-sensitive and activity-dependent changes 

in synaptic efficacy. If this view is right, one would expect to see intrinsic (sequential) 

dynamics in hippocampal activity, even "in the absence of any external memory demand or 

spatiotemporal boundary" [82] – a prediction that is now attracting empirical attention [47, 

82]. The broader empirical implication presents an avenue for falsifying the mean field 

hypothesis (see also [85]); namely, if a subset of hippocampal neurons encode the marginal 

probability of where they are in a sequence, one should be able to identify cells that are 

‘repurposed’ for trajectories (e.g., in linear mazes) that insensitive to the particular 

environment or direction of travel. In other words, they should show a context-invariance that 

speaks to conditional independence. 

 

Concluding remarks – Active inference and narratives 

Many interesting predictions follow from this perspective. For example, place cell activity is 

typically identified by correlating neuronal responses with the current location of an animal. 

However, if the hippocampus encodes both time (when) and space (what), the activity of cells 

encoding the first and subsequent places visited should accumulate evidence over the 

duration of the sequence. This means one should be able to find neurons whose activity is 

predicted not by the current location but by where the animal started – and where it is going. 

A second interesting corollary of this perspective on mnemonic representation of sequences is 

that beliefs about the future are tied to beliefs about the past. If we act upon these beliefs, 

then we create a (non-Markovian, i.e., history-dependent) world with rich temporal structure. 

This follows because, in the absence of any action of the brain on the world, the succession of 

worldly states can be predicted completely by the laws of nature (e.g., Hamilton’s principle 

of least action, classical mechanics, and so on). Crucially, these laws are compatible with a 

Markovian world in which the next state depends only on the previous state. However, if we 

now put mnemonic agents into the mix – whose action depends upon the past – the world 

becomes much more interesting. Indeed, hippocampal firing sequences continue to evolve 

even in the absence of continuous sensory inputs [47]. In short, the way we represent 
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temporal succession and the implicit narratives that predict and explain our senses leads 

inevitably to behaviour that transcends the rules of classical physics. 
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Box 1: approximate Bayesian inference 

Bayesian inference refers to optimising beliefs about a model or its hidden states (s) in the 

light of outcomes (o) or evidence. Formally, this can be expressed as minimising a variational 

free energy bound on Bayesian model evidence [86], with respect to beliefs about hidden 

states encoded by a probability density ( )Q s  (with expectation: [ ( )]E Q s  s ) 

( , ) [ ( ) || ( | )] ln ( ) ln ( )

[ ( ) || ( )] E [ln ( | )]

relative entropy log evidence log evidence

Q

complexity accuracy

F o D Q s P s o P o P o

D Q s P s P o s

  

 

s
1 4 4 2 4 4 3 1 2 3 1 2 3

1 44 2 4 43 1 44 2 4 43

 

Here, the model is specified by a joint distribution over outcomes and their causes or hidden 

states: ( , ) ( | ) ( )P o s P o s P s . The first expression for free energy shows that when free 

energy is minimised, the relative entropy or Kullback-Leibler (KL) divergence attains its 

minimum (zero) and free energy becomes the negative logarithm of model evidence. In other 

words, when free energy is minimised, the approximate posterior beliefs become the true 

posterior beliefs (i.e., the distribution of hidden states given outcomes) and free energy 

becomes negative log evidence.  

Another way of conceptualizing free energy is in terms of accuracy and complexity – as 

shown in the second equality. This equality shows that minimising free energy minimises 

complexity. Here, complexity is the KL divergence between posterior beliefs and prior 

beliefs (prior to any outcomes). In other words, complexity reflects the degrees of freedom – 

above and beyond prior beliefs – needed to provide an accurate account of observed data. It is 

easy to show that when one is absolutely certain about the hidden states causing data, the 

complexity increases with the number of hidden states entertained by the model.  

The imperative to minimise complexity is known as Occam's principle and is the basis of 

approximations to model evidence provided by the Akaike and Bayesian information criteria 

[87]. The role of complexity will become important later, when we consider models with a 

large number of states encoding joint distributions over two factors, relative to parsimonious 

models (with greater model evidence) that just encode the factors or marginal densities (see 

Box 2). In terms of the equations above, this distinction can be expressed as the mean field 

approximation ( ) ( ) ( )where whatQ s Q s Q s   
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Box 2: mean field approximations in the brain 

Box 1 figure about here 

This schematic illustrates two ways of encoding a moving object in the visual field. In both 

cases, the visual input corresponds to an ‘H’ moving downwards. The left panels show a 

generative model encoding a joint representation over what an object is and where it is. To 

generate a sequence of observations, the generative model uses state transitions, from one 

state to the next – where each hidden state determines the observed outcome. The B matrices 

encode state transitions, while A encodes a probabilistic mapping from states to outcomes. In 

the right-hand model, there is a separate representation for each object in every position and 

object motion simply entails transitions from the current object in one location to another 

(usually the same) object in the next location. 

The left panel shows the equivalent model but under a mean field approximation, in which 

the joint distribution is approximated by the product of marginal distributions over the factors 

what and where. Here, motion is generated by transitions from one location to the next, while 

the object’s identity remains unchanged. Crucially, the outcome rests on a product or 

multiplication of the two marginal representations. This is denoted by the Kronecker tensor 

product . 

So which is the better model? If observations are generated by a world in which objects are 

invariant, then the mean field approximation provides an accurate explanation for observed 

outcomes with the least complexity. This is because there are fewer hidden states (or degrees 

of freedom) than in the joint representation. Because the same accuracy is obtained with a 

lower complexity, this model will have more evidence and will be selected during natural 

(Bayesian model) selection (see Box 1). Conversely, in a magical or ambiguous world – in 

which the identity of a moving object can change instantaneously – the joint model will be 

necessary to generate accurate predictions. For example, an instantaneous switch from ‘H’ to 

’T’ after the first observation cannot be modelled under the mean field approximation 

(indicated by the red arrow). In this magical world, the joint model will justify its extra 

complexity by providing more accurate explanations for observations. However, in a real 

world, it is overly complex – with a redundant or inefficient parameterisation [35]. 
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Box 3: what and when architectures 

Box 2 figure about here 

The schematic uses the same form as Box 2. However, we have replaced where with when 

(and letters with words). The argument for a mean field (factorised or marginal) 

representation is exactly the same but in this context we are generating sequences over time 

at the same location. The joint representation (left panel) has an explicit representation of 

every possible sequence (labelled A, B,…). A complicated probability transition matrix then 

mediates jumps among hidden states to generate a sequence of outcomes. 

A more parsimonious generative model – that predicts the same sequences – is shown on the 

right. Here, there is no explicit representation of content but simply a representation of the 

ordinal structure or sequence per se (e.g., a sentence or context). All the heavy lifting – in 

terms of predicting the next outcome – is done by the connections from each representation 

of the sentence and their interactions with connections from representations encoding 

sequential transitions. As in the what and where example, the what or context factor (e.g., 

sentence) does not change in time. Crucially, this means the representation of a sequence is 

not a sequence of representations. It is this architecture (mean field approximation) that 

enables sequential representations to transcend the passage of time.  
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Figure legends 

Box 1 figure – no legend 

Box 2 figure – no legend 

Figure 1: Simulated electrophysiological responses. This figure illustrates the 

electrophysiological responses predicted by approximate Bayesian inference under a mean 

field assumption. These data report simulations of saccadic eye movements during reading, 

using the scheme described in [88]. In brief, we simulated saccadic eye movements sampling 

four successive ‘words’, under the hypotheses that the words were generated by one of six 

sentences. The generative model used to accumulate evidence was based on a mean field 

approximation that included marginal distributions over the order of words (when) and the six 

alternative sentences (what). A: (hippocampal responses) shows responses based upon a 

gradient descent on free energy for when expectations, while B: (cortical responses) shows 

the equivalent responses for what expectations. In this example, the first sentence was 

correctly inferred after the third word. The upper left panels show the activity (firing rate) of 

units encoding hidden states in image (raster) format, over the five epochs preceding saccades 

(A: four ordinal states. B: six sentences). The first column reports all hidden states, over all 

future time points, at the beginning of the sequence, while the rows encode each hidden states 

over time. This means the lower diagonal entries effectively encode the future, while the 

upper diagonal expectations encode beliefs about the past (i.e., memory). The upper right 

panels plot the same information to illustrate evidence accumulation and the resolution 

uncertainty about the context (i.e. sentence). The simulated local field potentials (i.e. the rate 

of change of neuronal firing) are shown in the lower right panel. The lower left panels show 

average local field potentials over all units before (dotted line) and after (solid line) bandpass 

filtering at 4 Hz, superimposed upon its time frequency decomposition. The important thing 

to take from these simulated neuronal responses is that they possess many features of 

empirical activity; for example, there is a natural theta-gamma coupling [89-91] due to fast 

(gamma) activity elicited by each cue that is sampled at a slower (theta) frequency (lower left 

panels). One can also see a characteristic phase precession [92] as predictions about the 

future are confirmed by sensory evidence. These simulations can be reproduced with the 

DEM toolbox, available from http://www.fil.ion.ucl.ac.uk/spm.   

http://www.fil.ion.ucl.ac.uk/spm
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Glossary of (Bayesian) terms 

Bayesian belief updating: the combination of prior beliefs about the causes of an observation and the 

likelihood of that observation to produce a posterior belief about its hidden causes. This updating 

conforms to Bayes rule. 

Likelihood: the probability of an observation under a generative model, given its causes. 

Prior belief: a probability distribution over the hidden causes of observations, before they are 

observed. 

Posterior beliefs: a probability distribution over the hidden causes of observed consequences, after 

they are observed. 

Hidden causes or states: the unobserved (possibly fictive) causes of observed data 

Generative model: a probabilistic specification of the dependencies among causes and consequences; 

usually specified in terms of a prior belief and the likelihood of observations, given their causes. 

Expectation: the mean or average (the first order moment of a probability distribution). 

Approximate Bayesian inference: Bayesian belief updating in which approximate posterior 

distributions are optimized by minimizing variational free energy. The approximate posterior 

convergences to the true posterior when free energy is minimized. 

Variational free energy: a functional of a probability distribution (and observations) that upper 

bounds (is always greater than) the negative log evidence for a generative model. This negative log 

evidence is also known as surprise or self information in information theory. 

Bayesian model evidence: this is the probability that some observations were generated by a model. 

It is also known as the marginal or integrated likelihood because it does not depend upon the hidden 

causes. 

Complexity: the difference or divergence between prior and posterior beliefs. The complexity of a 

model reflects the change in prior beliefs produced by Bayesian belief updating (also known as 

Bayesian surprise) 
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