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Participatory soundscape sensing 1 

ABSTRACT: Soundscape research offers new ways to explore the acoustic environment and 2 

potentially address challenges. A comprehensive understanding of soundscape characteristics 3 

and quality requires efficient data collection and analysis methods. This paper describes 4 

Participatory Soundscape Sensing (PSS), a worldwide soundscape investigation and 5 

evaluation project. We describe the calibration method for sound pressure levels (SPL) 6 

measured by mobile phone, analyze the PSS’s data temporal-spatial distribution 7 

characteristics, and discuss the impact of the participants’ age and gender on the data quality. 8 

Furthermore, we analyze the sound comfort level relationships with each class of land use, 9 

sound sources, subjective evaluation, sound level, sound harmoniousness, gender, and age 10 

using over a year of shared data. The results suggest that PSS has distinct advantages in 11 

enhancing the amount and coverage of soundscape data. The PSS data distribution is closely 12 

related to the temporal pattern of the human work-rest schedule, population density, and the 13 

level of cyber-infrastructure. Adults (19-40 years old) are higher-quality data providers, and 14 

women exhibit better performance with respect to data integrity than men. Increasing the 15 

proportion of natural source sounds and reducing the proportion of human-made sources of 16 

sound is expected to enhance the sound comfort level. A higher proportion of sound 17 

harmoniousness leads to higher sound comfort, and the higher proportion of subjective 18 

evaluation sound level does not lead to decreased sound comfort. We suggest that the 19 

crowdsourcing data with participatory sensing will provide a new perspective in soundscape 20 

investigation, evaluation, and planning. 21 
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1. Introduction 24 

Soundscape can be defined as the acoustic environment perceived, experienced, and/or 25 

understood by a person or people in a given context (ISO 12913-1, 2014), which places 26 
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emphasis on the perception, evaluation, and experience of the listeners. The urban soundscape 27 

approach considers the acoustic environment as a “resource” (Brown, 2012) with the goal of 28 

improving urban sound quality via design and planning. The main topics of the urban 29 

soundscape include sound source identification (Jeon & Hong, 2015), spatial-temporal 30 

variation (Hong & Jeon, 2017; Liu et al., 2013), indicators selection (Aletta et al., 2016), 31 

sound evaluation (Yang & Kang, 2005; Zhang et al., 2016), and soundscape design (Chung et 32 

al., 2016). Soundscape research methods, including pen and paper questionnaires, interviews, 33 

sound walks, and replaying of sound records in the lab, have been used to collect data, such as 34 

sound sources, sound pressure levels, location information, individual feelings, and 35 

demographic factors, among others (He & Pang, 2016; Kang, 2014; Liu et al., 2014), and 36 

most of these factors have significant costs and time investment. Lab tests mean that 37 

volunteers cannot feel the real soundscape directly and, moreover, a long test can easily tire 38 

the participants. As a result, current research projects are primarily conducted at a small scale, 39 

such as in a park or green space, which leads to results that are difficult to apply on a large 40 

scale. Because soundscape design includes multi-party participation and discussion, 41 

reasonable soundscape design requires additional participants (He & Pang, 2016). 42 

Participatory sensing (PS) is the process through which individuals and communities use 43 

the capabilities of mobile devices and cloud services to collect, analyze, and contribute 44 

sensory information (Estrin et al., 2010; Burke et al., 2006). Using the concept of PS, 45 

sound-recording and noise-monitoring mobile applications and online web survey software 46 

have been reported. Noteworthy is that some mobile phones’ accuracy for measuring noise 47 

pollution has been tested (Aumond et al., 2017), but few of them may be appropriate for noise 48 

measurement (Kardous & Shaw, 2014). The soundscape quality-related information, 49 

including such factors as sound pressure level (SPL), sound frequency, land use, or subjective 50 

evaluation, cannot be completely recorded (Becker et al., 2013; Cordeiro et al., 2013; Craig et 51 

al., 2017; Drosatos et al., 2014; Hedfors, 2013; Yelmi et al., 2016). Additionally, the quality 52 

and characteristics of these crowdsourced data lack detailed descriptions or discussion.  53 
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In this paper, we propose Participatory Soundscape Sensing (PSS), which is an ongoing 54 

worldwide soundscape investigation and evaluation project that engages the public in 55 

participatory sensing. We describe the PSS tools and the calibration method of SPL as 56 

measured by mobile phones. We analyze the temporal-spatial distribution characteristics of 57 

the PSS data; discuss the impact of the participants’ age and gender on the quality of data, 58 

including length of measurement time and soundscape records integrity; and analyze the 59 

sound comfort level relationships with each class of land use, sound sources, subjective 60 

evaluation sound level, sound harmoniousness, gender, and age. 61 

2. Methodology 62 

2.1. PSS tools development 63 

The PSS tools include SPL Meter and PSS Server. SPL Meter (which can be downloaded 64 

at http://www.citi-sense.cn/download) is a soundscape data investigation and analysis 65 

software package that can be installed on both Android and iOS operating systems. PSS 66 

Server runs on a cloud server and can analyze and visualize soundscape data online from 67 

around the world (http://pss.citi-sense.cn). 68 

Fig.1 shows the logical architecture of SPL Meter contains four main components, 69 

including SPL calculation, location and sound source identification, demographic information 70 

and time collection, and results storage and sharing.  71 
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Fig. 1. Logical architecture for SPL Meter 73 



 4 

SPL calculation. A continuous signal can be adequately sampled only if it contains 74 

frequency components greater than one-half of the sampling rate (Smith, 1999). The average 75 

human ear senses tones resulting from sound oscillation at frequencies between 20 and 20,000 76 

Hertz (Hz), and the most sensitive frequencies span the range of 2,000 Hz to 5,000 Hz. SPL 77 

Meter receives 16-bit PCM (pulse-code modulation is a digital representation of an analogue 78 

signal) at a speed of 44,100 Hz from its microphone. SPL Meter extracts the amplitude and 79 

frequency from the sampled signal using the Fast Fourier Transformation (FFT). For the 80 

purpose of this application, the calculation method of FFT comes from the ddf.minim.analysis 81 

package and the block size was set as 2,048 in FFT. The human ear does not respond to these 82 

frequencies equally well and is less sensitive to extreme high and low frequencies; therefore, 83 

an A-weighted SPL, which is modified by the A-weighting filter, is commonly used in noise 84 

dose measurement at work. The A-weighted equivalent continuous sound level (LAeq), 85 

maximum sound level (mLpa) and its corresponding frequency (mF), the sound level exceeded 86 

for 10% of the time of the measurement duration (L10), the sound level exceeded for 50% of 87 

the time of the measurement duration (L50), and the sound level exceeded for 90% of the time 88 

of the measurement duration (L90) can be calculated using A-weighted SPL. The calculation 89 

results are shown on the main screen of the SPL Meter by numeric representation or as a 90 

graph. 91 

Location and sound source identification. Differences in land use and sound sources can 92 

affect the perception of the soundscape (Kang, 2007). The information for land use and sound 93 

sources can be identified by the participants using a list in the evaluation interface of the SPL 94 

Meter app. The latest list of land use and sound sources is supplied when SPL Meter connects 95 

to PSS Server each time it starts. Each item of the land use and sound sources has a unique 96 

code. The lists are updated if new items (sound source or land use information) are added to 97 

the lists in PSS server. The location coordinates are collected using the mobile phone’s 98 

high-accuracy location service (GPS, WLAN, or mobile networks). 99 

Soundscape evaluation. The subjective evaluation of sound levels, sound comfort levels, 100 

and sound harmoniousness levels, which are widely used in soundscape evaluation (Aspuru et 101 
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al., 2016; Kang, 2007), can also be applied in SPL Meter, where each is divided into five 102 

linear scales that were standardized in noise surveys (Fields, et al., 2001). The level of 103 

harmonization between aural and visual perception has been defined as sound 104 

harmoniousness level in this study. Information related to the gender and age of the 105 

participants can also be collected if the user is willing to supply them. The local time, time 106 

zone, and UTC are obtained when SPL Meter is used to measure and evaluate the soundscape. 107 

The state of the earphone is necessary to judge whether the internal or external microphone 108 

is used. Other hardware and software variations might exist if an external microphone of 109 

unknown properties is used, but we can expect that most mobile phones’ internal microphone 110 

typically has a sensitivity of -50 dB. The notification of the PSS server can be shown on the 111 

top of the main interface, which is useful for PSS project maintenance. Measurements can be 112 

stored in the mobile phones or they can be shared with the PSS server.  113 

Participatory results visualization. Real-time measurements are submitted by the 114 

participants and analyzed on PSS server, and the subsequent analytical results are illustrated 115 

on the website using maps, pie charts, and histograms. Information on the interface includes 116 

the number of total participants and records; the proportion of place types, sound sources, age, 117 

and gender; and evaluation of sound level, sound comfort, and sound harmoniousness. The 118 

media of SPL, maxSPL, equivalent SPL, and frequency are also presented on the web page, 119 

as illustrated in Fig. 2. 120 

 121 

Fig. 2. PSS online analysis and visualization website  122 
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2.2. SPL data calibration 123 

The sensitivity of the mobile phone microphone is much lower than that of a purpose-built 124 

sound meter (e.g., the sensitivity of HS5633T is -31.7 dB). Microphones from different 125 

mobile phone companies have different sensitivities and should be calibrated before 126 

measuring the SPL. Kardous and Shaw (2014) used pink noise with a 20 Hz to 20,000 Hz 127 

frequency range, at levels from 65 dB to 95 dB, and Aumond et al. (2017) used white noise 128 

from 35 dBA to 100 dBA to calibrate their mobile phones. In this study, firstly, four different 129 

model types of mobile phones equipped with SPL Meter and a sound pressure meter (SPM) 130 

(HS5633T/Heng Sheng Electronics) that meet the National Verification Regulation of Sound 131 

Level Meters (JJG188-2002) were put together in the same sound field. The distance between 132 

the phones’ microphone and the speaker was 1 meter. Secondly, we generated different 133 

frequency noise with 20 Hz to 20,000 Hz noise to test our phones and SPM at the same time, 134 

and calculated the correlation parameters with SPM at levels from 35 dBA to 90 dBA using 135 

the linear regression method. Finally, these calibrated mobile phones were used outdoors to 136 

measure the equivalent SPL three times, with each measurement lasting for 20 minutes. 137 

Additionally, a 94 dBA consistent sound source device (HS6020/Heng Sheng Electronics) 138 

was used before and after each measurement to control the error of SPM (not exceeding 0.5 139 

dBA). 140 

2.3. Data quality analysis 141 

After more than a year of operation (from March 1st, 2016 to August 31st, 2017), we 142 

obtained the PSS data temporal variation, spatial distribution and accuracy of GPS, and 143 

analyzed the participants’ age and gender impacts on the data quality, including the ratio of 144 

shared measurements, length of measurement time, and integrity of measurement records. 145 

The records integrity describes the proportion of each soundscape related indictor recorded: 146 

for example, if there are 50 GPS records in 100 measurement activities, the integrity of GPS 147 

indicators is 50%. In addition, we analyzed the sound comfort level relationships with each 148 

class of land use, sound sources, subjective evaluation sound level, sound harmoniousness, 149 

gender, and age. 150 
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3. Results and discussion 151 

3.1. SPL data validation  152 

During the study period, we received observations from 470 model types belonging to 45 153 

mobile phone manufacturers. Certain models that we have were calibrated, while others can 154 

be calibrated in a similar manner. Fig. 3 shows that these mobile phones have good 155 

correlation with SPM. Table 1 shows the average error between each of the mobile phones 156 

and SPM is 0.3 dBA (HTC Desire), 0.8 dBA (HTC Wildfire), 1.2 dBA (HTC Incredible), and 157 

0.7 dBA (SAMSUNG I9000), meaning that the calibrated mobile phones are suitable for 158 

measuring SPL. 159 

 160 

Fig. 3. Different mobile phones compared with SPM 161 

Table 1 162 

The LAeq values of SPM and mobile phones in the same outdoor environment (dBA)  163 

ID SPM 

error of SPM 

(before, after) 

HTC Desire 

(error) 

HTC 

Wildfire 

(error) 

HTC 

Incredible 

(error) 

SAMSUNG 

I9000 

(error) 

1 49.2 0.4 (94.3, 93.9) 49.5 (0.3) 49.8 (0.6) 50.4 (1.2) 49.9 (0.7) 

2 49.0 0.1 (94.2, 94.3) 49.2 (0.2) 49.9 (0.9) 50.2 (1.2) 49.5 (0.5) 

3 49.1 0.4 (94.2, 94.6) 49.4 (0.3) 50.0 (0.9) 50.4 (1.3) 50.1 (1.0) 

3.2. Data temporal-spatial distribution  164 
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The number of participants has continuously increased since the release of SPL Meter on 165 

the app market (e.g., Google Play, iTunes, Baidu, QQ, anzhi, etc.) in March 2016. Over 166 

11,326 downloads were recorded at the end of August 2017, and approximately 5,601 167 

participants shared 25,471 measurement records. Wi-Fi is the main channel for data sharing 168 

(Android: 60.78%, IOS: 64.22%). Fig. 4 shows that measurements were mainly concentrated 169 

from 9:00 am to 11:00 pm, which is closely related to the temporal pattern of the human 170 

work-rest schedule. The number of women was less than the number of men (women: 9.8%, 171 

men: 90.2%), which may explain why the daily variation of women is uneven. 172 

The measurement sites gradually spread around the world at the end of August 2017, as 173 

indicated in Fig. 5. Numerous populations, ubiquitous networks, and plentiful numbers of 174 

mobile application markets make the measurement sites in China and USA much more 175 

numerous than in other locations.  176 

 177 

Fig. 4. Daily variation of measured activities 178 
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 179 

Fig. 5. Map of measured sites and percentages in each country 180 

3.3. Data quality impacted by gender and age 181 

A complete measurement record includes information on LAeq, mLpa, mF, L10, L50, L90, land 182 

use, GPS, gender, age, sound sources, and subjective sound evaluation level (level, comfort, 183 

and harmoniousness). The first six physical indicators described the sound and are not 184 

impacted by the participants’ demographic biases. The subjective soundscape evaluation, 185 

sound sources, and class of land use identification, which require knowledge other than 186 

gender and age, are uneven in the differences among participants’ demographic biases. Fig. 6 187 

shows the record integrity for participants under 12 years old was much lower than that of 188 

other age groups. Women show better performance in data integrity (completing the recording) 189 

than men. The accuracy of GPS is easily affected by the surroundings, but most distances 190 

(81.5%) are less than 50 meters. 191 

 192 
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Fig. 6. Gender and age impacts on record integrity 193 

 194 

Fig. 7. Gender and age impacts on measured time 195 

The longer the measurement time, the more meaningful the results are. Fig. 7 shows the 196 

length of each use of SPL Meter time was mainly (90.3%) concentrated in the range of 10 197 

seconds to 101 seconds and half of the measurement activities (50.7%) were initiated by 198 

participants 19 to 40 years of age. The ratio of participants whose ages are under 12 years old 199 

decreased most rapidly with increased measurement time as shown in Fig. 7, which suggests 200 

that these participants have more difficulty in supplying richer records than the other age 201 

groups. The percentage of men was significantly higher than women in the different 202 

measurement time (The p-value is 0.006 in t-Test at p< 0.01 level). 203 

3.4. Sound comfort evaluation 204 

When the sound comfort level is shifted from very uncomfortable to very comfortable, Fig. 205 

8 shows the proportion of natural sources continuously increases (from 15.23% to 41.02%) 206 

and the proportion of human-made sources continuously decreases (from 68.42% to 36.21%), 207 

but the proportion of music (which is one of the human-made source sounds) increases. The 208 

proportion of human activity sources increases from a very uncomfortable level to a 209 

comfortable level but decreases at the very comfortable level. Water sounds are the most 210 

likely to make people feel more sound comfortable as compared to other natural source 211 

sounds. In addition, machine sound is the most unwelcome sound. 212 
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 213 

Fig. 8. Percentage of sound sources and land uses at different sound comfort levels 214 

Most of the measurement activities were conducted in a residential area (R). The categories 215 

of business area (B), industrial area (M), and road, street, and transportation area (S) have 216 

lower proportions at the highest sound comfort level.  217 

Based on the results, we find that increasing the proportion of natural source sounds and 218 

more reasonable land use configurations that reduce the proportion of human-made source 219 

sounds can be expected to enhance the sound comfort level. However, increasing human 220 

activities source sound does not decrease sound comfort. 221 

 222 

Fig. 9. Percentage of subjective evaluation sound level and sound harmoniousness at different 223 

sound comfort levels 224 

When the sound comfort level is shifted from very uncomfortable to very comfortable, Fig. 225 

9 shows the sound harmoniousness level is also enhanced, whereas the subjective evaluation 226 
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sound level does not decrease, which means that the sound harmoniousness levels are more 227 

valuable than the subjective evaluation of sound level.  228 

In addition, we find that, when the sound comfort level is shifted from very comfortable to 229 

very uncomfortable, the ratio of participants that are women and older than 60 years 230 

continuously increases. The women’s ratio increased by a factor of five (from 4.22% to 231 

22.54%), and the ratio for the age group older than 60 years increased by 7% (from 2.21% to 232 

9.21%). The results show that elderly people and women may be more easily negatively 233 

affected by environmental noise. 234 

4. Conclusions 235 

PSS assigns the task of standardized data collection and calculation to citizens around the 236 

world with the aid of SPL Meter and mobile networks. Citizens can be involved at any time 237 

and any location with their smart devices, and a long-term research network can be easily and 238 

quickly formed with more participants, which is highly useful for improving data collection 239 

efficiency and accumulating large data sets for soundscape research, design, and planning. 240 

The PSS data temporal-spatial distribution is closely related to the temporal pattern of the 241 

human work-rest schedule, population density, and level of cyber-infrastructure. The data 242 

quality primarily depends on the knowledge of the individuals or communities and the 243 

capabilities of their devices, which is different from that of data from questionnaires guided 244 

by interviewers in situ. Rich and specific classification of sound sources and land use is 245 

expected to supply more valuable data, but it might decrease the user experience and lead to 246 

complicated operation or even abandonment of the tools. As a result, the question of how to 247 

help citizens from different cultures and knowledge levels to understand the terminology and 248 

to simplify and standardize the operation of software and devices will be a great challenge in 249 

the future.  250 

Because the sound comfort level has a close relationship with demographic biases and land 251 

use, sound pressure level control is an important method used to improve the sound comfort 252 

level, whereas other methods, including enhancing the ratio of natural source sounds (water, 253 

insects, etc.), more reasonable land use configurations to reduce the ratio of human-made 254 
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source sounds, and enhancing the sound harmoniousness level, are expected to be helpful in 255 

improving the sound comfort level.  256 
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