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Recent studies have demonstrated disrupted topological organization of brain
connectome in multiple sclerosis (MS). However, whether the communication efficiency
between different functional systems is affected in the early stage of MS remained largely
unknown. In this study, we constructed the structural connectivity (SC) and functional
connectivity (FC) networks in 41 patients with clinically isolated syndrome (CIS), 32 MS
patients and 35 healthy controls (HC) based on diffusion and resting-state functional
MRI. To quantify the communication efficiency within and between different functional
systems, we proposed two measures called intra- and inter-module efficiency. Based
on the module parcellation of functional backbone network, the intra- and inter-module
efficiency of SC and FC networks was calculated for each participant. For the SC
network, CIS showed decreased inter-module efficiency between the sensory-motor
network (SMN), the visual network (VN), the default-mode network (DMN) and the
fronto-parietal network (FPN) compared with HC, while MS showed more widespread
decreased module efficiency both within and between modules relative to HC and CIS.
For the FC network, no differences were found between CIS and HC, and a decreased
inter-module efficiency between SMN and FPN and between VN and FPN was identified
in MS, compared with HC and CIS. Moreover, both intra- and inter-module efficiency of
SC network were correlated with the disability and cognitive scores in MS. Therefore, our
results demonstrated early SC changes between modules in CIS, and more widespread
SC alterations and inter-module FC changes were observed in MS, which were further
associated with cognitive impairment and physical disability.

Keywords: multiple sclerosis, clinically isolated syndrome, diffusion MRI, functional MRI, graph theory, brain
network

Abbreviations: CIS, clinically isolated syndrome; DTI, diffusion tensor imaging; EDSS, Expanded Disability Status Scale;
MMSE, Mini-Mental State Examination; MRI, magnetic resonance imaging; MS, multiple sclerosis; PASAT, Paced Auditory
Serial Addition Test; rs-fMRI, resting-state functional MRI.
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INTRODUCTION

Clinically isolated syndrome (CIS) is the first manifestation
of most MS patients (Noseworthy et al., 2000; Miller et al.,
2005). The conversion rate of CIS to MS is highly variable from
8–80% depending on the clinical presentation, MRI features,
serum biomarkers and follow up period (Miller et al., 2012).
Many previous studies have demonstrated brain atrophy (Charil
et al., 2007; Barkhof et al., 2011), diffusion abnormalities
(Ciccarelli et al., 2008; Rovaris et al., 2008; Dineen et al., 2009;
Liu et al., 2012a), or functional alterations (Roosendaal et al.,
2010; Hawellek et al., 2011; Rocca et al., 2012; Tomassini et al.,
2012) in CIS and MS. However, the brain is an integrative
complex network that cannot be fully understood without proper
knowledge of the brain’s topology (Bullmore and Sporns, 2012;
Stam and van Straaten, 2012).

Both structural and functional network studies have
demonstrated altered network metrics such as decreased
global and local efficiency in MS (He et al., 2009a; Shu et al.,
2011; Liu et al., 2016), and its relationship with clinical disability
(Shu et al., 2011; Schoonheim et al., 2013). However, it is
still unknown how network changes on a functional level
relate to a structural level for MS, highlighting the need
for combined functional and structural network studies.
Furthermore, previous network studies have mainly focused
on global and regional topological properties (He et al., 2009a;
Shu et al., 2011; Schoonheim et al., 2013; Rocca et al., 2014;
Tewarie et al., 2015). The brain networks have also been
shown to be highly modularized (Bullmore and Sporns, 2009;
He et al., 2009b). Detection and characterization of modular
structure in the brain system can help us to identify groups
of anatomically and/or functionally associated components.
Alterations in the modular organization of the brain in CIS
and different MS subtypes have been also shown for structural
(Kocevar et al., 2016; Muthuraman et al., 2016) and functional
networks (Gamboa et al., 2014), even with longitudinal
approaches (Fleischer et al., 2017). These findings suggested
module-specific topological properties may be more sensitive
and specific than global and regional properties to reflect
brain alterations and predict the clinical disability in CIS
and MS.

Thus, the aim of the present study using diffusion and rs-
fMRI techniques combined with graph theoretical analysis was
to investigate: (i) whether the module efficiency of structural
and functional networks is affected in CIS, (ii) the differences of
structural and functional modules between CIS and MS, and (iii)
the relationship between structural and functional alterations and
their association with clinical variables.

MATERIALS AND METHODS

Participants
We recruited 41 CIS patients (optic neuritis, n = 18; spinal
cord syndrome, n = 16; brainstem syndrome, n = 5; cerebellar
syndrome, n = 2), 32 relapsing-remitting MS patients and
35 healthy controls (HC). All CIS patients were prospectively

examined within 6 months from onset with a single clinical
episode suggestive of MS (Miller et al., 2012) before steroid
treatment. Fifteen CIS patients fulfilled the 2010 modified
McDonald Criteria in space dissemination, while none fulfilled
the time dissemination. Other patients (n = 26) presented with
normal brain MRI. All RRMS patients were diagnosed according
to the 2010 modified McDonald Criteria (Polman et al., 2011) and
required to be relapse-free and without treatment with disease-
modifying medications or steroids in the 4 weeks prior to MRI
scanning. All of the participants were right-handed, as measured
by the Edinburgh Inventory (Oldfield, 1971). The study was
approved by the local Institutional Medical Ethics Committee
and all participants gave written informed consent.

Clinical Evaluation
The main demographic and clinical characteristics (Table 1),
including the Expanded Disability Status Scale (EDSS) score
(Kurtzke, 1983), the disease duration, the MMSE and the Paced
Auditory Serial Addition Test (PASAT2 and PASAT3 versions)
were assessed by an experienced neurologist (HD).

MRI Data Acquisition
The MRI data was acquired using a SIEMENS TRIO 3T
scanner in the Department of Radiology, Xuanwu Hospital.
All participants underwent high-quality MRI scanning, which
included a 3D T1-weighted MRI scan [176 sagittal slices, slice
thickness = 1 mm, repetition time (TR) = 1600 ms, echo time
(TE) = 2.13 ms, field of view (FOV) = 224 mm × 256 mm,
acquisition matrix = 224 × 256], a T2-weighted MRI scan (35
axial slices, slice thickness = 4 mm, TR = 5000 ms, TE = 87 ms,
FOV = 256 mm× 256 mm, acquisition matrix = 256 × 256), a
DTI scan (60 axial slices, slice thickness = 2 mm, 30 diffusion
directions with b = 1000 s/mm2, and an additional b0 image,
TR = 11000 ms, TE = 98 ms, FOV = 256 mm × 256 mm,
acquisition matrix = 128 × 128, average = 2) and a rs-fMRI scan
(40 axial slices, slice thickness = 3 mm, TR = 2000 ms, TE = 30 ms,
FOV = 220 mm × 220 mm, acquisition matrix = 64 × 64, 180
image volumes).

MRI Data Preprocessing
DTI Data Preprocessing
The preprocessing procedure for DTI data included eddy current
and motion artifact correction, estimation of the diffusion tensor
and calculation of the fractional anisotropy (FA). First, the eddy
current distortions and the motion artifacts in the DTI data
were corrected by applying an affine alignment of the diffusion-
weighted images to the b0 images. Accordingly, the b-matrix was
reoriented based on the transformation matrix. After this process,
the diffusion tensors were estimated by solving the Stejskal and
Tanner equation (Basser et al., 1994), and the reconstructed
tensor matrix was diagonalized to obtain 3 eigenvalues (λ1, λ2,
λ3) and their corresponding eigenvectors. The FA value of each
voxel was also calculated. The preprocessing of DTI data was
performed with the FDT toolbox in FSL1.

1http://www.fmrib.ox.ac.uk/fsl
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TABLE 1 | The demographic information and clinical characteristics of all participants.

Controls (n = 35) CIS (n = 41) MS (n = 32) F/T/χ2/Z value P value

Mean Age (years) 35.0 ± 11.5 35.7 ± 10.7 34.8 ± 8.3 0.08# 0.92#

Gender (F/M) 23/12 26/15 24/8 1.17‡ 0.56‡

Mean MMSE 29.1 ± 1.3 27.6 ± 1.4 25.9 ± 1.8 36.44# <0.001#

Mean PASAT2 46.7 ± 9.2 39.4 ± 7.7 35.4 ± 9.8 14.14# <0.001#

Mean PASAT3 53.9 ± 6.2 47.5 ± 7.6 41.0 ± 8.7 24.38# <0.001#

Mean disease duration (months) − 2.6 ± 2.5 41.8 ± 28.7 8.73∗ <0.001∗

Mean TWMLL (ml) − 4.5 ± 10.6 10.3 ± 10.4 2.33∗ 0.023∗

Median EDSS (range) − 2.0 (0–6) 3.5 (0–6.5) 3.35§ <0.001§

CIS, clinically isolated syndrome; MS, multiple sclerosis; MMSE, Mini-Mental State Examination; PASAT = Paced Auditory Serial Addition Test; EDSS, Expanded Disability
Status Scale; TWMLL, Total White Matter Lesion Load. Data are mean ± standard deviation, except for EDSS presented in median (range). #P-value and F-value were
obtained by one-way analysis of variance among three groups. ‡P-value and χ2 value were obtained by χ2 test among three groups. ∗P-value and T-value were obtained
by two-sample t-test between CIS and MS groups. § P-value and Z-value were obtained by Wilcoxon rank sum test between CIS and MS groups.

rs-fMRI Data Preprocessing
The preprocessing of rs-fMRI data included motion correction,
brain extraction, spatial smoothing, band-pass filtered (0.01 –
0.1 Hz) the data and regressed out nuisance covariates, including
six rigid body motion parameters, volumes corresponding to
motion spikes, and average WM, cerebrospinal fluid (CSF), and
global time series. The first 10 functional volumes were discarded
to allow for stabilization of the initial signal and adaptation of the
participants to the circumstances. The preprocessing of rs-fMRI
data was performed with SPM82 and DPARSF software3 (Yan and
Zang, 2010).

Measurement of WM Lesion Load
Hyperintense white matter (WM) lesions of each patient
were manually delineated on the T2-weighted images by an
experienced radiologist (YL) who was blind to the clinical
details using MRIcro software4. Then the total WM lesion load
(TWMLL) for each patient was calculated.

Network Construction
Nodes and edges are the two fundamental elements of a network.
In this study, we constructed individual structural and functional
connectomes using the following procedures.

Network Node Definition
The Automated Anatomical Labeling (AAL) template (Tzourio-
Mazoyer et al., 2002) was used to define the network nodes.
Briefly, individual T1-weighted images were coregistered to the
b0 images in the DTI space. The transformed T1 images were
segmented into gray matter (GM), WM and CSF, and then non-
linearly transformed to the ICBM152 T1 template in the MNI
space. The inverse transformations were used to warp the AAL
atlas from the MNI space to the DTI native space. Using this
procedure, we obtained 90 cortical and subcortical ROIs (45 for
each hemisphere, see Table 2), each representing a node of the
network. To ensure the consistency of brain parcellation maps, all
rs-fMRI images were also coregistered with b0 image. The results
of coregistration were visually checked for each participant by

2http://www.fil.ion.ucl.ac.uk/spm/software/spm8
3http://restfmri.net/forum/index.php
4http://www.mccauslandcenter.sc.edu/mricro/mricro/mricro.html

an experienced neuroscientist (NS) with 10 years experience in
image analysis. All the procedure was performed using SPM8
software.

Structural Connectome
Diffusion MRI tractography was performed to reconstruct the
whole-brain fiber streamlines with Diffusion Toolkit5. All the
tracts in the dataset were computed by seeding each voxel with
an FA greater than 0.2. The tractography was terminated if it
turned an angle greater than 45 degrees or reached a voxel with
an FA less than 0.2 (Mori et al., 1999). Two brain regions were
considered structurally connected if there were at least three fiber
streamlines with two end-points located in these two regions
(Shu et al., 2011). Then, the number of the interconnecting
streamlines between two regions was defined as the weights of
the network edges. Therefore, for each participant, a weighted
90 × 90 structural connectivity (SC) network was constructed
(Figure 1).

Functional Connectome
Based on the brain parcellation map and coregistered rs-
fMRI images, the Pearson correlation coefficient of mean time-
series between any pair of ROIs (within GM voxels) and their
corresponding significance levels (i.e., p-values) were calculated.
For each participant, a weighted 90 × 90 functional connectivity
(FC) network was constructed (Figure 1). To remove the
spurious correlations in the FC networks, a thresholding
procedure was used to convert the correlation matrices derived
above to sparse, weighted networks. Specifically, we employed
network sparsity (S) (defined as the number of existing edges
divided by the maximum possible number of edges in a network)
as the thresholding measurement in this study. For example,
at a sparsity 10%, the strongest 10% correlations were filtered
and retained in individual networks while the others were set
to 0. Given the lack of a conclusive way to select a single
threshold, individual correlation matrices were thresholded over
a consecutive sparsity range of 0.05 < S < 0.40 (interval = 0.025).
All the above procedures were performed with the GRETNA6

(Wang et al., 2015) and DPARSF software (Yan and Zang, 2010).

5http://www.trackvis.org/dtk
6http://www.nitrc.org/projects/gretna/
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TABLE 2 | Cortical and subcortical regions of interest defined in the study.

Index Regions Abbreviations Index Regions Abbreviations

(1,2) Precental gyrus PreCG (47,48) Lingual gyrus LING

(3,4) Superior frontal gyrus, dorsolateral SFGdor (49,50) Superior occipital gyrus SOG

(5,6) Superior frontal gyrus, orbital part ORBsup (51,52) Middle occipital gyrus MOG

(7,8) Middle frontal gyrus MFG (53,54) Inferior occipital gyrus IOG

(9,10) Middle frontal gyrus, orbital part ORBmid (55,56) Fusiform gyrus FFG

(11,12) Inferior frontal gyrus, opercular part IFGoperc (57,58) Postcentral gyrus PoCG

(13,14) Inferior frontal gyrus, triangular part IFGtriang (59,60) Superior parietal gyrus SPG

(15,16) Inferior frontal gyrus, orbital part ORBinf (61,62) Inferior parietal, but supramarginal and angular gyri IPL

(17,18) Rolandic operculum ROL (63,64) Supramarginal gyrus SMG

(19,20) Supplementary motor area SMA (65,66) Angular gyrus ANG

(21,22) Olfactory cortex OLF (67,68) Precuneus PCUN

(23,24) Superior frontal gyrus, medial SFGmed (69,70) Paracentral lobule PCL

(25,26) Superior frontal gyrus, medial orbital ORBsupmed (71,72) Caudate nucleus CAU

(27,28) Gyrus rectus REC (73,74) Lenticular nucleus, putamen PUT

(29,30) Insula INS (75,76) Lenticular nucleus, pallidum PAL

(31,32) Anterior cingulate and paracingulate gyri ACG (77,78) Thalamus THA

(33,34) Median cingulate and paracingulate gyri DCG (79,80) Heschl gyrus HES

(35,36) Posterior cingulate gyrus PCG (81,82) Superior temporal gyrus STG

(37,38) Hippocampus HIP (83,84) Temporal pole: superior temporal gyrus TPOsup

(39,40) Parahippocampal gyrus PHG (85,86) Middle temporal gyrus MTG

(41,42) Amygdala AMYG (87,88) Temporal pole: middle temporal gyrus TPOmid

(43,44) Calcarine fissure and surrounding cortex CAL (89,90) Inferior temporal gyrus ITG

(45,46) Cuneus CUN

The regions are listed in terms of a prior template of an AAL-atlas (Tzourio-Mazoyer et al., 2002).

FIGURE 1 | The flowchart of structural and functional connectome construction. (A) Individual T1 images and AAL template were used for automatic parcellation of
the cortex into 90 brain regions, forming the nodes of the individual brain networks. (B) Streamline tractography was applied to the DTI data to reconstruct the white
matter pathways. From the set of reconstructed streamlines, the streamlines that interconnected regions i and j from the set of 90 regions were taken as an edge
between nodes i and j in the structural brain network. The streamline count was taken to represent the weight of the connection and was aggregated into a
structural connectivity (SC) matrix (C). (D) Functional connectivity (FC) between nodes i and j was computed as the level of correlation between their rs-fMRI and
blood oxygenation level dependent (BOLD) time series, resulting in a matrix, FC (E). Module parcellation was performed based on the FC backbone to parcellate the
brain network into different modules (F). For details, see the Section “Materials and Methods.”

Module Parcellation of Functional Brain
Connectome
Through modular parcellation, the FC network can be divided
into different functional modules composed of regions with

similar functions (He et al., 2009b), while not for the SC
network. To investigate the SC and FC alterations in specific
functional systems, the module parcellation was only applied
to functional brain connectome. First, significantly positive FCs
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were detected by performing a non-parametric one-tailed sign
test and were assigned the average edge weight (FC strength)
across all participants to combine as a backbone network. Second,
based on the FC backbone, module detection was performed with
an optimized simulated annealing approach (Newman, 2006) to
parcellate the brain network into different modules. Briefly, the
aim of this module identification process is to find a specific
partition (p) which yields the largest network modularity, Q(p),
which quantifies the difference between the number of intra-
module links of actual network and that of random network in
which connections are linked at random. The modularity Q(p)
for a given partition p of the brain network is defined as (Newman
and Girvan, 2004):

Q(p) =

Nm∑
S=1

[
ls
L
−

(
ds

2L

)2
]

where Nm is the number of modules, L is the number of
connections in the network, ls is the number of connections
between nodes in module s, and ds is the sum of the degrees of
the nodes in module s.

Communication Efficiency Within and
Between Modules
Topological efficiency within and between specific functional
modules was proposed by us for the first time to quantify
the local information processing within modules and the
information exchange between modules, respectively. If each
module was considered as a subgraph, the intra-module efficiency
measures the efficiency of information processing within this
subgraph, which reflects the extent of functional segregation
within different modules. Inter-module efficiency reflects the
efficiency of information exchange between different modules,
which reflects the extent of functional integration across modules.

Intra-Module Efficiency
The intra-module efficiency measures the global efficiency of the
parallel information transfer within the same module, which can
be computed as follows:

Eff (M) =
1

N(N − 1)

∑
i6=j∈M

1
Lij

where N is the number of nodes in module M, i and j are the
nodes in module M, and Lij is the shortest path length between
node i and node j within the same module M. The shortest path
length, Lij, is defined as the sum of the edge lengths (the reciprocal
of the edge weight, 1/wij) along the path between node i and node
j with the shortest length.

Inter-Module Efficiency
The inter-module efficiency measures the global efficiency of
the parallel information transfer between two different modules,
which can be computed as follows:

Eff (Mpq) =
1

Npq(Npq − 1)

∑
i∈Mp,j∈Mq

1
Lij

Where Npq is the total number of nodes in modules Mp and Mq,
i and j are the nodes in modules Mp and Mq respectively, and
Lij is the shortest path length between node i and node j in two
different modules. All code for module efficiency is available upon
request.

As the modular structure based on the FC backbone was
identified, we applied this modular parcellation into both SC
and FC networks, and calculated the intra- and inter-module
efficiency for both SC and FC networks individually. For the FC
network, the module efficiency was calculated at each sparsity
level, resulting in curves or functions of the sparsity threshold.
Then, the area under curve (AUC) values of the module efficiency
were calculated for each participant.

Statistical Analysis
Demographic factors, including age and gender, among the three
groups were compared using ANOVA or the χ2 test. For the
group comparisons of the module efficiency, we performed one-
way ANOVA, and post hoc pairwise comparisons were performed
using two-sample t-test if ANOVA yielded significant results
(p < 0.05, corrected). To investigate the relationship between
structural and functional alterations in module efficiency, partial
correlation analysis was performed across all patients, while
including the group effect as a covariate. Additionally, correlation
coefficients between the altered module efficiency and clinical
variables (EDSS, disease duration, PASAT and MMSE) were
calculated in each patient group. We chose p < 0.001 as the
threshold of significance to correct for multiple comparisons.
All of the above statistical analyses were implemented using the
Matlab program (The MathWorks, Inc.).

RESULTS

Demographic and Clinical
Characteristics
There were no significant differences in age (p = 0.92) or gender
(p = 0.56) among the three groups. As for neuropsychological
tests, both patient groups showed lower MMSE, PASAT2 and
PASAT3 scores than the HC, and the MS patients exhibited lower
MMSE and PASAT scores than the CIS group. Eight CIS patients
(8/41; 19.5%) and 19 MS patients (19/32; 59.4%) had abnormal
PASAT3 performance, and 3 CIS patients (3/41; 7.3%) and 8 MS
patients (8/32; 25.0%) had abnormal PASAT2 performance, by
defining ≥ 2SD below the average score of HC as abnormal.
In addition, MS patients had larger TWMLLs, longer disease
durations and higher EDSS scores than CIS patients (Table 1).

Modular Organization of Functional
Brain Connectome
A significant modular architecture of the FC backbone network
across all participants was identified (Qmax = 0.56), separating the
brain into five different modules (Figure 2). Module I consists
of 22 regions mostly from sensory-motor, parietal and temporal
cortices, such as bilateral precentral and postcentral gyrus,
supplementary motor area, paracentral lobule, supramarginal
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FIGURE 2 | Modular organization of the functional brain connectome. Five functional modules were identified based on the functional backbone network, which are
represented in five different colors overlaid on the cortical surface (A) and are shown on the backbones of SC and FC networks with different colors in nodes (B)
(red: SMN; green: VN; blue: DMN; cyan: FPN; magenta: SUB).

gyrus, insula, rolandic, superior temporal gyrus and heschl’s
gyrus that are mainly associated with the somatosensory, motor
and auditory functions (sensory-motor network, SMN). Module
II is composed of 14 regions from occipital lobe, including
bilateral superior, middle and inferior occipital gyrus, calcarine
fissure, cuneus, lingual gyrus and fusiform gyrus that are
primarily specialized for visual processing (visual network,
VN). Module III includes 36 regions from medial frontal
and parietal regions and lateral temporal cortices, such as
bilateral superior frontal gyrus, orbital part of middle and
inferior frontal gyus, anterior and posterior cingulate cortices,
precuneus, angular gyrus, hippocampus and parahippocampal
gyrus, middle and inferior temporal gyrus, which are key
components of the default-mode network (DMN) (Raichle
et al., 2001). Module IV is composed of 8 inferior frontal and
parietal regions, including bilateral inferior frontal gyus (both
opercular and triangular parts), superior parietal gyrus and
inferior parietal lobule that are known to be predominantly
involved in attention processing (fronto-parietal network, FPN).
The final Module V includes 10 paralimbic and subcortical
regions, such as bilateral middle cingulate gyrus, thalamus,
caudate, putamen and palladium that are mainly composed
of the subcortical system (subcortical network, SUB). Notably,
the bilateral homotopic regions were parcellated into the same
module. The modular structure of functional brain network is
highly consistent with the findings of previous studies (He et al.,
2009b).

Group Differences in Module Efficiency
of Structural and Functional
Connectomes
For the module efficiency of the SC network, we found
significant group differences within SMN, within VN, between
SMN and VN, between SMN and FPN, between FPN and
SUB, and between DMN and all other modules (all p < 0.05,
Bonferroni correction) (Figure 3A). A trend of group difference
between SMN and SUB (p = 0.004) was also identified. Post
hoc analyses revealed that MS patients had decreased values
in all of the above intra- and inter-module efficiency relative

to both HC and CIS patients (all p < 0.05). Furthermore,
the CIS patients showed decreased inter-module efficiencies
between SMN and VN (p = 0.0088), between SMN and
DMN (p = 0.025), between SMN and FPN (p = 0.014) and
between VN and DMN (p = 0.017) when compared with
controls.

For the module efficiency of the FC network, significant group
differences were found between SMN and FPN and between VN
and FPN (all p < 0.005, uncorrected) (Figure 3B). MS patients
showed decreased values relative to both HC and CIS patients in
all of those inter-module efficiencies. No differences were found
between CIS patients and the HC (all p > 0.05).

For the relationship between SC and FC alterations across
all patients, we found that the decreased inter-module efficiency
between SMN and FPN of the FC network was significantly
correlated with the decreased inter-module efficiency between
FPN and SUB (r = 0.33; p = 0.0005) and that between SMN
and SUB (r = 0.33; p = 0.0006) of the SC network (Figure 3C).
For each patient group (CIS or MS), similar correlation results
between structural and functional alterations were found.

Relationship Between Decreased
Module Efficiency and Clinical Variables
For the MS patients, module efficiency in the SC network was
significantly correlated with the EDSS, PASAT2 and PASAT3
scores (all p < 0.001) (Figure 4). Specifically, increased EDSS
scores were correlated with decreased module efficiency of the
SC network within SMN (r = −0.58; p = 0.0006), and between
SMN and VN (r = −0.58; p = 0.0007). The decreased PASAT2
scores were correlated with the decreased module efficiency of
the SC network between VN and SUB (r = 0.58; p = 0.0004).
The decreased PASAT3 scores were correlated with the deceased
module efficiency of the SC network within VN (r = 0.62;
p = 0.0002), between VN and SUB (r = 0.62; p = 0.0001),
and between DMN and FPN (r = 0.56; p = 0.0008). No
significant correlations were identified between altered module
efficiency and disease duration. Furthermore, no correlations
with clinical variables were found in the CIS group (all
p > 0.05).
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FIGURE 3 | Decreased module efficiency of the SC and FC networks in CIS and MS patients. The bar and error bar represent the mean values and standard
deviations of the module efficiency in each group. (A) Significantly reduced module efficiency of the SC networks was observed in both CIS and MS patients relative
to the controls (all p < 0.05, corrected). (B) Significantly decreased inter-module efficiency was found in the FC networks in MS patients relative to controls and CIS
patients. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.005. (C) Significant correlations were identified between the decreased module efficiency of the SC network and FC
network across all patients (p < 0.001). ModEff, module efficiency; FCN, functional connectivity network; SCN, structural connectivity network.

FIGURE 4 | Correlation between decreased module efficiency and clinical variables. Plots showing the linear correlation between altered module efficiency of the SC
networks with EDSS (A), PASAT2 (B), and PASAT3 (C) scores in MS patients (all p < 0.001).
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Effect of TWMLL on Modular Analysis
To exclude the TWMLL effect on the module analysis, we
have repeated the statistical analyses by adding the TWMLL as
a covariate. Most of the results remained largely unchanged,
but less significance of group differences in the intra- and
inter-module efficiency were found, which may be due to part
contribution of TWMLL to the group differences in module
efficiency. The detailed results of group differences and clinical
correlations were as follows:

Between-Group Differences
For the module efficiency of the SC network, we found significant
group differences within SMN, within VN, between SMN and
VN, between VN and SUB, between FPN and SUB, and between
DMN and all other modules (all p < 0.01, uncorrected). A trend
of group difference between SMN and FPN (p = 0.02), between
SMN and SUB (p = 0.03) and within DMN (p = 0.03) was
also identified. Post hoc analyses revealed that MS patients had
decreased values in all of the above intra- and inter-module
efficiency relative to both HC and CIS patients (all p < 0.05).
Furthermore, the CIS patients showed decreased inter-module
efficiencies between SMN and VN (p = 0.01), between SMN and
DMN (p = 0.04), between SMN and FPN (p = 0.03) and between
VN and DMN (p = 0.03) when compared with controls.

For the module efficiency of the FC network, significant group
differences were found between SMN and FPN (p = 0.008) and
between VN and FPN (p = 0.01). MS patients showed decreased
values relative to both HC and CIS patients in all of those
inter-module efficiencies. No differences were found between CIS
patients and the HC (all p > 0.05).

Clinical Correlations
For the MS patients, module efficiency in the SC network was
significantly correlated with the EDSS, PASAT2 and PASAT3
scores (all p < 0.05). Specifically, increased EDSS scores were
correlated with decreased module efficiency of the SC network
within SMN (r = −0.40; p = 0.030), and between SMN and
VN (r = −0.42; p = 0.023). The decreased PASAT2 scores
were correlated with the decreased module efficiency of the SC
network between VN and SUB (r = 0.61; p = 0.0004). The
decreased PASAT3 scores were correlated with the deceased
module efficiency of the SC network within VN (r = 0.62;
p = 0.0003), between VN and SUB (r = 0.61; p = 0.0004), and
between DMN and FPN (r = 0.52; p = 0.003). No correlations
were found in the CIS group (all p > 0.05).

DISCUSSION

In the present study, we investigated the alterations in the module
efficiencies of structural and functional networks in CIS and MS
patients by combining DTI and rs-fMRI with graph theoretical
approaches. Our results demonstrated the following: (i) at the
earliest stage of MS (CIS), structural network changes were
mainly located in inter-modules without significant functional
network alterations; (ii) more widespread and severe alterations
in structural and functional networks were observed in MS; (iii)

the correlation between decreased SC and FC connections were
mediated by a subcortical network; and (iv) the reduced module
efficiency of structural networks was associated with cognitive
impairment and physical disability in MS.

Recent brain network studies have consistently revealed that
the modular structure is a non-trivial property of the brain
connectome, which supports for the functional specialization and
segregation of the human brain (Bullmore and Sporns, 2009).
By detecting the modules of the functional connectome, we
parcellated the brain into different functional systems, which are
comparable with previously reported modular decompositions
of rs-fMRI networks (He et al., 2009b; Wang et al., 2013).
Importantly, the concept of module efficiency was proposed here,
which is used to quantify the communication efficiency within
and between different functional systems based on the structural
or functional connectivity network. The loss or reorganization
of the SC or FC in disease populations can be detected by the
alterations of the module efficiency, and can be specified to
different functional systems.

In the earliest stage of MS (CIS), the predominant decreased
module efficiency of SC networks is located between modules
of the SMN, VN, DMN and FPN, which indicates that a
long-distance connection was mainly involved at the earliest
stage of disease. This is consistent with the previous findings
with long WM fibers, such as the corpus callosum damage
in CIS (Ranjeva et al., 2003), inducing structural inter-module
disconnection. Various pathological factors such as axonal
damage, demyelination and gliosis may contribute to the inter-
module disconnection (Ciccarelli et al., 2014). In MS, much
widespread and severe SC reduction was identified, especially
in intra-module connections. The intra-module disconnection
is mainly caused by short WM fiber damage or cortical
demyelination. This result revealed the dynamic changes of the
structural network from inter-modules to widespread changes,
including both inter- and intra-modules with disease progression.

No significant alterations in the FC network were identified
in CIS, implying that the functions were relatively preserved in
CIS although structural disconnections were observed. For MS,
inter-module disruptions between the SMN, VN and FPN of the
FC network were identified, and SC changes were also observed
in these inter-module connections. This finding supports the
notion that SC damage may precede functional changes and
need to achieve a threshold to cause functional impairment.
According to previous studies with controversial findings in CIS
and MS patients, decreased or increased functional connectivity
or regional spontaneous activity was identified (Roosendaal et al.,
2010; Bonavita et al., 2011; Hawellek et al., 2011; Liu et al.,
2011, 2012b; Rocca et al., 2012). However, most of these studies
used independent component analysis (ICA) or amplitude of low
frequency fluctuation (ALFF) methods; our finding using a graph
analysis approach suggested decreased FC in both CIS and MS
patients from system level, which reflect impaired information
processing within and between modules. The different analysis
methods (different aspects of brain functional alterations) or
the heterogeneity of patients (cognitively preserved or impaired,
different disease phases, etc.) may help explain the discrepancies
among the different studies.
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The widespread structural network changes, in contrast to
the relatively mild/limited functional network changes, indicate
the partial disassociation between the structural damage and
functional impairment/reorganization observed in MS patients.
As suggested by previous studies, the relationship between
structural and functional connectivity in the healthy human brain
is complicated and is not a simply one-to-one correspondence
(Honey et al., 2010; Hermundstad et al., 2013; Goni et al.,
2014). In disease states, the relationship between brain structure
and function may be more complicated. Quantitative analysis
revealed that decreased FCs of the SMN-FPN are correlated with
reduced SCs of the SMN-SUB and the FPN-SUB in patients,
highlighting the subcortical network as a key mediator for
structural and functional association, and suggesting the possible
structural substrate of functional deficits. Subcortical structures,
such as the thalamus, play an important role in signal relay
and regulation to the cerebral cortex. Additionally, subcortical
damage has been well demonstrated in MS patients (Liu et al.,
2015; Tewarie et al., 2015). The relationship between indirect
structural connections between the SMN and FPN through
the subcortical structures and the functional synchronization
between regions of the SMN and FPN should be further
studied.

Importantly, both intra- and inter-module efficiencies of SC
networks were associated with cognitive scores in MS, suggesting
that the SC module efficiency may provide potential biomarkers
for assessing and monitoring cognitive impairment in patients.
SC module efficiency especially in the SMN module, also showed
a moderate correlation with EDSS, indicating that SC networks
should also be assessed to evaluate physical disability in MS.
A clinical correlation was observed in module efficiency of SC but
not FC network, implying that SC is a more robust biomarker
for clinical deficits. No significant correlations between module
efficiency and clinical variables were observed in CIS patients,
implying the module changes in CIS may represent a transitional
phase, which need to be validated by a large sample study.

Several limitations should be addressed. First, the samples
were obtained from a cross-sectional design, whereas future
studies with longitudinal MRI data will be required to validate
the findings. Second, deterministic tractography was used for
the reconstruction of WM tracts, which may result in the loss
of existing fibers due to WM lesions in the patients or the
“fiber crossing” problem (Mori and van Zijl, 2002). Future
studies should employ more advanced tractography techniques
to define the network edges. Third, we only used the anatomical
AAL atlas to define network nodes, the test-retest validity of
our findings should be examined with some other parcellation
schemes with more precise anatomical or functional boundary
of the brain regions and more even regional size. Finally,
the cognitive assessment only includes PASAT in the current

study; comprehensive neuropsychological tests for CIS and MS
patients should be examined to evaluate the relationship between
alterations of module efficiency and cognitive impairment in
different cognitive domains in future studies.

CONCLUSION

Our results demonstrated early structural network changes
between modules without functional alterations were identified
in CIS patients, while more widespread and severe alterations
in structural networks and disrupted inter-module efficiency in
functional networks were observed in MS patients. The structural
network changes were associated with cognitive impairment and
physical disability.
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