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ABSTRACT
The neurodegenerative disorder Alzheimer’s disease is characterised
by the formation of β-amyloid plaques and neurofibrillary tangles in the
brain parenchyma,which cause synapseand neuronal loss. This leads

to clinical symptoms, such as progressive memory deficits. Clinically,
these pathological changes can be detected in the cerebrospinal fluid
and with brain imaging, although reliable blood tests for plaque and
tangle pathologies remain to be developed. Plaques and tangles
often co-exist with other brain pathologies, including aggregates of
transactive response DNA-binding protein 43 and Lewy bodies, but the
extent to which these contribute to the severity of Alzheimer’s disease
is currently unknown. In this ‘At a glance’ article and poster, we
summarise the molecular biomarkers that are being developed to
detect Alzheimer’s disease and its related pathologies. We also
highlight the biomarkers that are currently in clinical use and include a
critical appraisal of the challenges associated with applying these
biomarkers for diagnostic and prognostic purposes of Alzheimer’s
disease and related neurodegenerative disorders, also in their
prodromal clinical phases.
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Introduction
Neurodegenerative dementias constitute a broad category of brain
diseases that are characterised by a typically gradual decline in
cognitive function, ultimately leading to increased mortality. The
most common type of dementia is Alzheimer’s disease (AD),
which accounts for 50-70% of prevalent neurodegenerative
dementia cases (Winblad et al., 2016). AD causes a progressive
loss of cognitive abilities with short-term memory impairment
being the most typical initial symptom. However, there are also
atypical clinical presentations of AD, such as logopenic variant
primary progressive aphasia (see Glossary, Box 1) or posterior
cortical atrophy (Mattsson et al., 2016a). Alongside AD, there are
many other dementia-causing neurodegenerative diseases that

might be important for differential diagnoses (Schott and Warren,
2012).

Traditionally, a dementia diagnosis is based on the history of
the illness, the pattern of cognitive deficits, and on additional
parameters assessed through clinical investigations, including blood
tests and structural imaging of the brain, to rule out nondegenerative
causes of the symptoms. Increasingly, and with the prospect of
disease modification, there has been a shift towards the use
of biomarkers (Dubois et al., 2014) to diagnose specific forms of
dementia earlier, also in the pre-dementia stages of the disease,
and with more specificity. Currently, a definite diagnosis of a
neurodegenerative dementia requires histopathological confirmation
at autopsy, as different degenerative dementia-causing brain disorders
are characterised by more or less distinct pathologies (Hyman et al.,
2012). A striking common feature of most neurodegenerative
dementias is the presence of aggregates or inclusions of misfolded
endogenous proteins in the brain extracellular matrix or within
neurons and other brain cell types (Kovacs, 2016). This common
feature classifies these dementias as proteopathies (Box 1) (Walker
and Jucker, 2015).

Neuropathologically, AD is characterised by: (1) neuronal loss in
specific brain regions – notably the medial temporal lobe structures
and the temporo-parietal association cortices (Box 1); (2)
intraneuronal neurofibrillary tangles composed of aggregated and
often truncated and hyperphosphorylated tau protein (Box 1); and
(3) extracellular neuritic plaques, which consist of deposits of
β-amyloid (Box 1) peptides, mainly its 42-amino-acid isoform
(Blennow et al., 2006) (see poster). There are other
neurodegenerative diseases with symptoms that might overlap
with AD, such as frontotemporal dementia (FTD; Box 1), in which
inclusions can consist of several different proteins, most typically
tau (MAPT) and/or transactive response DNA-binding protein 43
(TDP-43; TARDBP); Parkinson’s disease dementia (PDD; Box 1)
and dementia with Lewy bodies (DLB; Box 1), in which
α-synuclein inclusions represent an important part of the
pathology (Box 1). These neurodegenerative pathologies often
present with a considerable degree of co-morbidity, with several
different pathological changes co-occurring in the same brain tissue,
indicating that pathologically deposited proteins might interact and
be influenced by other factors to cause cognitive decline and other
clinical symptoms (Lashley et al., 2008). For example, cerebral
small vessel disease, which might be caused by several different
pathological processes, including lacunar infarction, diffuse
leukoaraiosis and cerebral amyloid angiopathy (Box 1), can both
cause dementia and co-exist with degenerative dementias, thus
influencing their severity and phenotype. Because clinical
phenotypes of dementia can be caused by different pathological
changes, sometimes interacting with each other, it is important to
develop biomarkers that can diagnose these changes to improve the
possibility to monitor and treat the underlying cause.

In this ‘At a glance’ poster, we show the different
neuropathological changes that might underlie neurodegenerative
dementias, especially AD, and discuss the currently available
molecular fluid- and imaging-based biomarkers for each pathology.
We also discuss why biomarkers are necessary in the clinic, the
challenges encountered when using them clinically, which patient
populations the different biomarkers could serve, and the issues
relating to the implementation of standardised sampling and
handling protocols. The biomarker concept with special focus on
neurodegenerative dementias is detailed in the far-left panel of the
poster. The discussion of structural or functional imaging
biomarkers is beyond the scope of this article, but we refer the

Box 1. Glossary
Amyloid positron emission tomography: an imaging technique that
visualises amyloid senile plaques in the living human brain.
Axonal degeneration: a progressive degeneration and loss of axons.
β-amyloid: the cleavage product of amyloid precursor protein and the
main constituent of senile (amyloid) plaques in Alzheimer’s disease.
Cerebral amyloid angiopathy: a form of blood vessel disorder in which
amyloid deposits form in the walls of the blood vessels of the central
nervous system, affecting blood flow.
Cerebral β-amyloidosis: β-amyloid plaque pathology in the brain.
Creutzfeldt-Jakob disease (CJD): a rapidly progressive
neurodegenerative disease caused by self-propagating aggregation of
a normal brain protein (prion protein).
Dementia with Lewy bodies (DLB): a progressive brain disorder in
which Lewy bodies, deposits of the protein α-synuclein build up in areas
of the brain that regulate behaviour, cognition and movement.
Diffuse leukoaraiosis: an abnormal change in appearance of white
matter near the lateral ventricles of the brain.
Frontotemporal dementia (FTD): the clinical presentation of
frontotemporal lobar degeneration, which is characterised by
progressive neuronal loss predominantly involving the frontal or
temporal lobes.
Lacunar infarction: the most common type of stroke that results from
the occlusion of small penetrating arteries that provide blood to the
brain’s deep structures.
Logopenic variant primary progressive aphasia: a language disorder
that involves changes in the ability to speak, read, write and understand
what others are saying.
Parkinson’s disease dementia: Parkinson’s disease that later
progresses into dementia.
Progressive supranuclear palsy: a tauopathy that often starts with
Parkinson-like symptoms but then progresses to involve other brain
regions.
Proteopathies: a class of diseases in which certain proteins become
structurally abnormal, and thereby disrupt the function of cells, tissues
and organs of the body.
Senile plaques: extracellular deposits of β-amyloid.
Superficial central nervous system siderosis: a disease of the brain
resulting from chronic iron deposition in neuronal tissues associated with
cerebrospinal fluid.
Synaptic degeneration: a progressive degeneration and loss of
synapses.
Synucleinopathies: diseases in which α-synuclein inclusions accumulate
inside neurons and other cell types of the brain.
Tau: a structural protein in axons that may form neurofibrillary tangles if
truncated and hyperphosphorylated.
Tauopathies: neurodegenerative diseases in which abnormal inclusions
of tau accumulate inside neurons.
Temporo-parietal association cortices: the cerebral cortex outside the
primary areas in the temporal and parietal lobes.
Vascular dementia (VaD):a formof dementia caused by cerebrovascular
disease, resulting in neuronal injury and degeneration.
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interested reader to an excellent recent review on these biomarkers
(Rathore et al., 2017).

Biomarkers for β-amyloid pathology
The 42-amino-acid isoform of β-amyloid (Aβ42) is a major
component of senile plaques (Box 1) and contributes to cerebral
amyloid angiopathy in AD (Masters et al., 1985) (see poster). Aβ42
is a cleavage product of type I transmembrane amyloid precursor
protein (APP) with no known physiological function. It is released
from neurons when APP is cleaved by β- and γ-secretases in
synaptic vesicles. APP is metabolised by many cell types, but Aβ42
secretion is by far the highest from neurons; its neuronal secretion
also appears to depend on synaptic activity (Cirrito et al., 2005).

Cerebrospinal fluid biomarkers
Aβ42 concentration can be measured in the cerebrospinal fluid
(CSF) by antibody-based techniques, such as enzyme-linked
immunosorbent assay (ELISA), as well as by antibody-independent
techniques, such as mass spectrometry (Kuhlmann et al., 2016). AD
patients have decreased concentrations of Aβ42 in their CSF, a
finding that has been well verified and replicated by many studies
(Olsson et al., 2016). This decrease reflects the sequestration of Aβ42
in senile plaques in the brain, as evidenced by autopsy and by in vivo
amyloid positron emission tomography (PET) imaging (Box 1)
studies in patients (Blennowet al., 2015). Reduced levels ofAβ42 can
be detected in the CSF of patients with mild cognitive impairment
(MCI), as well as in the pre-clinical stages of AD (Bateman et al.,
2012; Olsson et al., 2016). A plaque pathology-associated decrease
in Aβ42 concentration in the CSF is also frequently seen in DLB,
another neurodegenerative dementia that is very commonly
accompanied by cerebral Aβ aggregation (Abdelnour et al., 2016).

Blood biomarkers
It has been difficult to establish robust blood biomarkers for Aβ
pathology. Aβ proteins can bemeasured in plasma, but their correlation
with cerebral β-amyloidosis (Box 1) is absent or weak when the latter
is assessed immunochemically (Olsson et al., 2016). Plasma Aβ
concentrations are probably influenced by its secretion from platelets
and from other extracerebral tissues (Zetterberg, 2015). Nevertheless,
three recent studies have reported a clinically significant correlation
between plasma Aβ concentrations and cerebral β-amyloidosis
measured by mass spectrometry (Kaneko et al., 2014; Nakamura
et al., 2018; Ovod et al., 2017). A similar result has been obtained
using an ultrasensitive assay (Janelidze et al., 2016). The results of
these papers are promising and warrant further validation. Other
studies have reported that various plasma proteins (including
pancreatic polypeptide Y, immunoglobulin M, chemokine ligand 13,
interleukin 17, vascular cell adhesion protein 1, α2-macroglobulin,
apolipoprotein A1 and complement proteins) are associated with Aβ42
burden in the brain, irrespective of the clinical stage of AD (Burnham
et al., 2016;Westwood et al., 2016; Voyle et al., 2015). However, these
data should be interpreted with caution, as they are derived from
multimarker panels and have not been replicated or examined in
relation to other neurodegenerative dementias. Further, we are
currently lacking a mechanistic understanding of these associations.

Biomarkers for PET
The first chemical probe for amyloid PET was an 11C-labelled
modified derivative of the amyloid-binding histological dye
thioflavin-T called Pittsburgh Compound-B (PiB, also known as
11C-PiB). This probe is retained in cortical brain regions of AD
patients compared with healthy controls, with retention in the

cerebellum used as a reference region (Klunk et al., 2004). The
increased retention of PiB in cortical brain regions of AD patients
has since been verified in many scientific reports (reviewed in
Blennow et al., 2015). However, the short half-life of 11C hinders
the use of 11C-PiB outside of expert research centres that have access
to an on-site cyclotron to generate the probe, as well as to
radiochemistry expertise. As a result, 18F-labelled probes have been
developed that have a half-life of ∼110 min. This longer half-life
enables the centralised production of this probe and its regional
distribution to medical centres that have a PET scanner. Three
18F-PET amyloid tracers are licensed for clinical use: 18F-florbetapir
(Amyvid), 18F-flutemetamol (Vizamyl) and 18F-florbetaben
(Neuraceq), all of which have shown good correlation with
amyloid plaque burden at autopsy (Morbelli and Bauckneht,
2018), although they generally show higher levels of nonspecific
binding to white matter compared with 11C-PiB.

Biomarkers for tau pathology
Abnormally phosphorylated and truncated tau proteins are the
major component of neurofibrillary tangles in AD and other
tauopathies (Box 1) (Grundke-Iqbal et al., 1986) (see poster). The
normal function of tau is to bind to and stabilise microtubules in
neuronal axons (Zetterberg, 2017), a process that is inhibited when
tau becomes phosphorylated.

CSF biomarkers
Tangle-containing neurons release phosphorylated tau, which can
be measured in the CSF by ELISA, using antibody combinations
that specifically recognise mid-domain phospho-tau (P-tau)
epitopes. AD patients have increased concentrations of P-tau in
their CSF (Olsson et al., 2016). However, P-tau concentration in
the CSF correlates weakly with neurofibrillary tangle pathology in
the brain of AD patients (Buerger et al., 2006; Seppala et al.,
2012). This finding was replicated in a recent tau PET
imaging study of AD patients (Chhatwal et al., 2016), although
the results are less clear than the association of CSF Aβ42 with
amyloid PET.

A major outstanding research question is why other tauopathies,
including some forms of FTD and associated disorders like
progressive supranuclear palsy (Box 1), do not show increased
P-tau concentration in the CSF, at least not as robustly as in AD
(Zetterberg, 2017). It is possible that disease-specific
phosphorylation of tau occurs in these disorders, or that tau is
processed or truncated in a way that is not recognised by the
available assays. Another potential explanation for why increased
CSF P-tau is specific to AD is that this particular pathological
change is simply more extensive and severe in AD than it is in other
tauopathies. CSF P-tau is currently considered to be the most
specific biomarker for AD. Except for herpes encephalitis and
superficial CNS siderosis (Box 1), no other condition features a
systematic increase in this biomarker (Zetterberg, 2017).

Blood biomarkers
To date, no reliable blood biomarkers for neurofibrillary tangle
pathology have been identified. However, recent studies have
reported increased P-tau concentrations in blood-borne neuron-
derived exosomes (Shi et al., 2016; Winston et al., 2016). In this
assay, the exosomes are isolated from serum using antibodies
directed against neuron-enriched proteins. The isolated exosomes
are then washed and lysed and their tau content is measured using
immunochemical assays. Although new, this technique represents a
promising approach for P-tau measurements in blood.
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Biomarkers for PET
PET tracers (also known as probes) have been developed to visualise
tau inclusions in vivo in patients. One of these tracers, 18F-AV1451,
binds to tau aggregates in AD (Marquié et al., 2015), can differentiate
AD patients from healthy controls (Schöll et al., 2016) and correlates
with regional changes in brain metabolism in different clinical
variants of AD (Ossenkoppele et al., 2016) (see poster). However,
AV1451 does not reliably bind to all pathological isoforms of tau, nor
does its binding reliably correlate with pathological tau load (Sander
et al., 2016). Similar results have been published for other tau PET
probes, although they might recognise different forms of tau deposits
because of differences in their structure and binding properties (Kolb
and Andres, 2017). Preliminary evidence indicates that tau
measurements in the CSF and via PET correlate in the dementia
stage of AD, but less clearly in the preclinical and mild cognitive
impairment stages of the disease (Mattsson et al., 2017). However,
this correlation is not as well established as that between CSF and
PET biomarkers for Aβ pathology.

Biomarkers for axonal degeneration
Axonal degeneration (Box 1) is a key feature of AD, and is more
closely linked to the onset of cognitive decline than Aβ pathology is
(see poster, ‘Biomarkers’). In fact, according to some models, the
onset of neurodegeneration marks the beginning of the toxic phase
of Aβ pathology in the pathogenesis of AD (Jack and Holtzman,
2013).

CSF biomarkers
Total tau (T-tau), measured using antibodies against mid-domain
tau epitopes that are not phosphorylated, can be used as a general
marker of axonal degeneration or injury in AD. AD patients have
increased concentrations of T-tau in their CSF (Olsson et al.,
2016), and the higher the increase, the more intense the
neurodegenerative process (Wallin et al., 2010). However,
increased levels of CSF T-tau are not specific to AD; the
increase is also seen, for example, in Creutzfeldt-Jakob disease
(CJD; Box 1) (Riemenschneider et al., 2003) and following stroke
(Hesse et al., 2001). Assays have also been developed to quantify
visinin-like protein 1 (VLP-1; VSNL1) and members of the fatty
acid-binding protein (FABP) family in the CSF. VLP-1 and FABP
proteins are enriched in neurons, but their association with AD is
less strong than that of CSF T-tau (Olsson et al., 2016). Neuron-
specific enolase (NSE; ENO2) has also been proposed as a
candidate biomarker for neuronal loss in AD, but its association
with AD is weak and clinically irrelevant (Olsson et al., 2016). In
addition, the results of NSE tests are easily confounded by blood
contamination, because NSE (despite its name) is highly expressed
in erythrocytes (Ramont et al., 2005).
Another CSF biomarker for axonal degeneration is neurofilament

light (NF-L; NEFL), which is a structural protein present in long
axons (Zetterberg, 2016). The concentration of NF-L is increased in
the CSF of AD patients, especially so in those with rapid disease
progression (Zetterberg et al., 2016). However, increased NF-L in
the CSF is not specific to AD, and is detected in other dementias,
with the highest concentrations seen in FTD and in vascular
dementia (VaD; Box 1) (de Jong et al., 2007; Landqvist Waldö
et al., 2013; Sjogren et al., 2000). These results were recently
confirmed in a large retrospective analysis of data from the Swedish
Dementia Registry (Skillback et al., 2014), as well as in atypical
parkinsonian disorders (Hall et al., 2012; Magdalinou et al., 2015).
The highest CSF concentrations of NF-L are seen in CJD, as is the
case for T-tau (Steinacker et al., 2016; van Eijk et al., 2010).

Blood biomarkers
CSF assays for T-tau and NF-L have recently been redeveloped into
ultrasensitive blood tests using single molecule array (Simoa)
technology (Andreasson et al., 2016). Serum and plasma NF-L
concentrations correlate with their concentrations in the CSF
(correlation coefficients of 0.75 to 0.97), and most measurements
in the CSF (increased NF-L concentrations in AD, FTD, VaD and in
atypical parkinsonian disorders) have been replicated in blood
(Zetterberg, 2016). For T-tau, such correlation is less clear, but
promising. First, for unknown reasons, tau concentrations are higher
in plasma than in serum (H.Z., unpublished). Second, the
correlation with the corresponding CSF concentration is either
absent (Zetterberg et al., 2013) or weak (Mattsson et al., 2016b). In
AD, plasma T-tau levels are increased, but less so than in the CSF,
and there is no detectable increase in the MCI stage of the disease
(Mattsson et al., 2016b; Zetterberg et al., 2013).

PET biomarkers
There are presently no PET probes for axonal degeneration. There
will likely not be any in the near future, as there are no targetable
molecular assemblies that are specific to axonal degeneration and
which could function as anchors for PET probe binding.

Fluid biomarkers for synaptic degeneration
In its earliest clinical phase, AD characteristically and consistently
causes memory impairment. Mounting evidence suggests that
memory impairment begins with subtle alterations to synaptic
efficacy in the hippocampus, prior to frank neuronal degeneration
(see poster). A reduction in synapse number is associated with
numerous brain disorders, and with AD in particular (Selkoe, 2002).

CSF biomarkers
Neurogranin (Ng; NRGN) is a dendritic protein enriched in neurons
that is involved in long-term potentiation of synapses, particularly so
in the hippocampus and the basal forebrain (Represa et al., 1990).
Recently, several independent studies have shown that the CSF
concentration of Ng is increased in AD (Hellwig et al., 2015; Kester
et al., 2015;Kvartsberg et al., 2015a,b; Thorsell et al., 2010), but not in
other neurodegenerative disorders (Wellington et al., 2016).
Moreover, studies showed a quantitative correlation between the
magnitude of Ng increase and the severity of cognitive decline, brain
atrophy and reduction in glucosemetabolism in the prodromal stage of
the disease (Portelius et al., 2015; Tarawneh et al., 2016). Currently,
CSF Ng is the best-established CSF biomarker for synapse loss or
dysfunction associated with AD, although other promising markers of
this pathological change are being characterised in single-centre
studies awaiting independent replication. These markers include
synaptosomal-associated protein 25 (SNAP25) and Ras-related
protein RAB3A (Bereczki et al., 2016; Brinkmalm et al., 2014).

Blood biomarkers
There are so far no reliable blood biomarkers for synaptic pathology.
Plasma Ng has been explored as a candidate marker in this context,
but its concentration remained unchanged in AD patients compared
with cognitively healthy controls (De Vos et al., 2015). Most likely,
the extracerebral expression of Ng constitutes the major source of
Ng in plasma (De Vos et al., 2015), confounding potential
differences between the healthy and AD groups.

PET biomarkers
In a recent report, the synaptic vesicle glycoprotein 2A (SV2A)
radioligand 11C-UCB-J combined with PET was used to quantify
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synaptic density in the living human brain (Finnema et al., 2016).
The probe had excellent imaging properties and was sensitive
enough to detect synaptic loss in patients with temporal lobe
epilepsy. Its utility in AD, however, remains to be established.
Another technique to monitor synaptic loss in neurodegenerative
dementias is 18F-2-fluoro-2-deoxy-D-glucose (FDG)-PET. This
method detects brain region-specific impairment of cerebral glucose
metabolism in neurodegenerative diseases (Payoux and Salabert,
2017). A recent systematic review and meta-analysis revealed
varying diagnostic accuracies of FDG-PET, with sensitivities
between 46% and 95%, while the specificities were between 29%
and 100%, and the conclusion was that the method in its current
stage of development cannot be recommended for clinical use in
AD, with more research recommended (Smailagic et al., 2015).

Biomarkers for glial activation
Glial cells in the brain are astrocytes, the star-shaped cells that
provide neurons with nutrients, form part of the blood-brain barrier
and take part in repair mechanisms following CNS injury, and
microglia, the resident macrophages of the brain, constituting the
main form of active immune defence in the CNS. Most often, both
cell types are activated in parallel, and glial activation has been
linked to deficits in neuronal function and to synaptic plasticity in
AD. The recent discovery of a genetic link between AD and variants
of the triggering receptor expressed on myeloid cells 2 (TREM2;
TREML2) gene (Guerreiro et al., 2013; Jonsson et al., 2013), which
is selectively expressed on microglia in the CNS (Lue et al., 2015;
Takahashi et al., 2005), has reignited the interest in identifying
biomarkers of glial activation (see poster).

Cerebrospinal fluid biomarkers
Recent reports suggest that the concentrations of the secreted
ectodomain of TREM2 are increased in the CSF of AD patients.
This increase is disease specific and correlates with elevated CSF
levels of T-tau and P-tau (Heslegrave et al., 2016; Piccio et al., 2016;
Suárez-Calvet et al., 2016). These findings are supported by
numerous studies that report the increased CSF concentrations of
several other astrocyte-, microglia- and/or macrophage-derived
proteins, including chitotriosidase (Mattsson et al., 2011; Watabe-
Rudolph et al., 2012), CD14 (Yin et al., 2009) andYKL-40 (CHI3LI)
(Craig-Schapiro et al., 2010; Olsson et al., 2013). Another glial
marker, the C-C chemokine receptor 2, is expressed on monocytes,
and one of its ligands, C-C chemokine ligand 2 (CCL2), which can be
produced by microglia, is also present in increased concentrations in
the CSF of AD patients (Corrêa et al., 2011; Galimberti et al., 2006a,
b). Most studies suggest that these increases in glial proteins in AD
are modest, with concentration ranges overlapping extensively
between cases and controls, particularly when compared with the
more prominent changes seen in ‘traditional’ neuroinflammatory
conditions, such as multiple sclerosis (Öhrfelt et al., 2016) or human
immunodeficiency virus (HIV)-associated neurocognitive
dysfunction (Peluso et al., 2017). It should also be noted that all of
the above-mentioned proteins, except TREM2, can also be released
from activated astrocytes. Thus, microglial and astrocytic activation
in AD are difficult to tease apart using only CSF-based biomarkers.
This problemmight not have any practical implications, as microglial
and astrocytic activation are tightly linked and, as markers of the two
processes, could potentially be used interchangeably to track AD.

Blood biomarkers
When biomarkers of microglial activation, such as those mentioned
above, are measured in plasma or serum, their concentrations are

similar to those in the CSF and not 100-fold lower as would have
been expected if they were CNS derived (Craig-Schapiro et al.,
2010). This probably reflects their release from monocytes and
macrophages in peripheral blood rather than reflecting CNS-related
changes. However, a few studies indicate that YKL-40
concentration is slightly increased in the plasma of AD patients
(Olsson et al., 2016); the overlap between AD patients and
cognitively normal controls was, however, too large for the
marker to be used clinically.

PET biomarkers
The mitochondrial translocator protein (TSPO) is known to be
upregulated in activated microglia. Accurate visualisation and
quantification of microglial density by PET imaging using the
TSPO probe [11C]-R-PK11195 has been challenging owing to the
limitations of the probe, mainly its low brain permeability and the
abundant expression of TSPO in extracerebral tissues. A number of
new TSPO probes (e.g. [18F]-DPA-714 and [11C]-PBR28) have
been evaluated in rodent and nonhuman primate models, but the
literature on their clinical usefulness remains scant (Lagarde et al.,
2017).

Biomarkers for TDP-43 pathology
Hyperphosphorylated TDP-43 proteinopathy occurs in ∼50% of
FTD patients and has recently been described both in studies of
ageing and in association with the cognitive impairment of ageing
patients, especially in the context of tau and Aβ pathology (James
et al., 2016), providing some overlap with AD (see poster).

CSF biomarkers
Total TDP-43 can be measured in the CSF but, unfortunately, most
of the protein appears to be blood derived, as it is ubiquitously
expressed throughout the body. Thus, its concentration in the CSF
does not reflect the presence of TDP-43 proteinopathy in the brain.
Moreover, its levels in the CSF of FTD patients are also unaltered
(Feneberg et al., 2014), further disqualifying this protein as a
potential CSF biomarker.

Blood biomarkers
No reliable blood test for TDP-43 pathology in the CNS exists.
Given the ubiquitous expression of TDP-43 throughout the body,
brain inclusion-specific pathologic forms of TDP-43 would have to
be targeted in the blood for this to become a feasible biomarker
project.

Biomarkers for PET
There are presently no PET probes for TDP-43 inclusions. In 2016,
the Amyotrophic Lateral Sclerosis Association announced a Grand
Challenge grant to develop TDP-43 inclusion probes but, so far,
there are no published data on this topic.

Biomarkers for α-synuclein pathology
The presynaptic neuronal protein α-synuclein can misfold and form
seeds that can aggregate further into inclusions that are called Lewy
bodies. These inclusions are characteristic of Parkinson’s disease
(PD) and of DLB (Mollenhauer et al., 2010), but also often feature
in AD (Schneider et al., 2009) (see poster).

Cerebrospinal fluid biomarkers
In PD and in other synucleinopathies (Box 1), α-synuclein
concentrations in the CSF are typically lower than in healthy
controls (Hall et al., 2012; Mollenhauer et al., 2011), whilst in AD
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and CJD, its concentrations are increased and correlate with T-tau,
indicating that α-synuclein might also be a nonspecific marker of
neurodegeneration (Mollenhauer et al., 2011; Öhrfelt et al., 2009;
Slaets et al., 2014; Tateno et al., 2012; Wennström et al., 2013).
Increased CSF levels of α-synuclein have also been reported in
DLB, where a competition might exist between the aggregation of
α-synuclein into Lewy bodies and its release from the degenerating
synapses, which complicates data interpretation (Kapaki et al.,
2013). In agreement with this hypothesis, a recently published
multiple reaction monitoring mass spectrometry assay revealed
significantly increased CSF concentrations of α-, β- and γ-synuclein
in AD and CJD, but not in the ‘classical’ synucleinopathies like PD
(Oeckl et al., 2016). Currently available assays for α-synuclein
measure the total amounts of the protein and not the Lewy body-
specific isoforms. The availability of sensitive and specific assays
for these pathogenic isoforms would resolve the issue of having the
biomarker results influenced or confounded by the release of native
α-synuclein from degenerating synapses. However, there are some
preliminary reports of increased concentrations of α-synuclein
oligomers in the CSF of PD patients (Hansson et al., 2014; Tokuda
et al., 2010). Recent studies described sensitive assays that detect the
amplified biochemical signal of α-synuclein seeds that might be
Lewy body derived in the CSF from PD patients but not in that from
healthy controls (Fairfoul et al., 2016; Shahnawaz et al., 2016),
opening a promising avenue for using CSF α-synuclein as a
biomarker.

Blood biomarkers
Because α-synuclein is highly expressed in red blood cells, blood
contamination during CSF collection might limit its diagnostic
value (Barbour et al., 2008; Hong et al., 2010). For the very same
reason, blood tests for α-synuclein pathology in the brain might lack
the specificity needed for it to be an informative clinical biomarker.
Nevertheless, as peripheral Lewy body pathology, such as in the
salivary gland and the gut, has been reported in PD (Uchihara and
Giasson, 2016), blood or salivary tests for α-synuclein seeds might
be worth exploring in the future as a biomarker of PD and other
dementias associated with Lewy bodies, such as AD.

PET biomarkers
Efforts to develop PET probes for α-synuclein inclusions are
ongoing but are still in their infancy. One of the compounds
currently investigated for imaging α-synuclein inclusions is the
18F-labelled compound BF-227 that was reported to bind to both
synthetic α-synuclein aggregates as well as β-amyloid fibrils in vitro
(Fodero-Tavoletti et al., 2009). A histopathological study
demonstrated that BF-227 could stain α-synuclein-containing glial
cytoplasmic inclusions in postmortem tissue (Fodero-Tavoletti
et al., 2009). Moreover, a PET study with 11C-labelled BF-227
showed its ability to detect α-synuclein deposits in the living brains
of patients with multiple system atrophy (Kikuchi et al., 2010).
However, the high affinity of this radiotracer for Aβ plaques limits
its usefulness for differential diagnosis (Kikuchi et al., 2010).

Pros and cons of the different biomarker modalities
A biomarker can be defined as ‘a characteristic that is objectively
measured and evaluated as an indicator of normal biological
processes, pathogenic processes or pharmacologic responses to a
therapeutic intervention’ (Strimbu and Tavel, 2010). Biomarkers for
AD should, thus, reflect the core pathogenic findings in the brain,
i.e. plaque and tangle pathology, as well as the associated
pathophysiological mechanisms, i.e. axonal and synaptic

degeneration (Box 1) and frequent co-pathologies, including
TDP-43 and α-synuclein pathologies (see poster, ‘Brain
imaging’). We have discussed three broad categories of biomarker
modalities in this ‘At a glance’ paper: CSF, blood and PET, and they
differ in terms of accessibility and how closely they reflect the
changes in the brain (see poster). In regards to the fluids, the CSF is
closer to the brain and has a lower intrinsic protease activity than
blood. However, the CSF is less accessible, as sampling requires a
lumbar puncture. Regarding PET, this is a much more costly
method. Further, it involves injecting a radioactive probe into the
blood. This probe will cross the blood-brain barrier and remain
bound to its target pathologies for an unknown time period. This
technique can thus also be regarded as invasive. In regards to plaque
pathology, the diagnostic accuracies of the CSF and PET tests are
comparable (Blennow et al., 2015). However, for the other
pathologies, prospective studies that directly compare the different
biomarker modalities are needed to determine whether any one
marker is better at reflecting the extent of the pathology than
another. Regarding blood tests, one biomarker stands out as being
particularly promising: NF-L, for which robust CSF and plasma/
serum correlations have been established. For this particular protein,
virtually the same information can be gathered from a CSF test and a
blood test (Zetterberg, 2016). For the other blood tests, more
research is needed before any of these could replace the
corresponding CSF or PET test (see poster). For biomarkers,
fluid- and imaging-based alike, to be implemented in clinical
practice, the measurement techniques have to be well standardised
and give stable results over time. For CSF Aβ42 measurements,
there are now certified reference methods and a reference material is
under production (Kuhlmann et al., 2016). Similar work is ongoing
for the CSF-based tau biomarkers. Pre-analytical standard operating
procedures for CSF sampling and storage have been published
(Blennow et al., 2010), and guidelines on how to interpret the results
in different clinical stages of the disease are being developed
(Herukka et al., 2017; Simonsen et al., 2017). Similarly, reliable
quantitative analysis of amyloid PET scans acquired at multiple sites
and over time requires rigorous standardisation of the acquisition
protocols, subject management, tracer administration, image quality
control, and image processing and analysis methods. Approaches to
address these issues have been published (Schmidt et al., 2015). For
most of the other candidate biomarkers discussed in this paper, such
work is pending and will be required prior to the transition of these
biomarkers into routine clinical practice.

Conclusions
Disease biomarkers have been developed into clinically available
methods to detect tangle and plaque pathology in the CSF and
brains of AD patients, and there are also promising biomarkers to
detect synaptic loss and dysfunction. Tau and Aβ biomarkers can
help to diagnose AD pathology in both the prodromal and the
dementia stages of the disease. Moreover, a number of additional
biomarkers have been identified that detect pathological changes
common to AD and other neurodegenerative proteopathies,
although reliable and accurate biomarkers for TDP-43 and Lewy
body pathology remain to be identified. If identified in the future,
such biomarkers could be employed in longitudinal studies to track
the temporal development of different pathologies during
neurodegenerative disease progression, and to assess how their
interactions lead to clinical symptoms. As multimorbidity appears
to be common not only in AD but also in other neurodegenerative
dementias, one potential future scenario is that these biomarkers
could be used to subclassify the clinical syndromes in individual
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patients according to their pathological signature, allowing for
personalised treatment.
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Hansson, O., Hall, S., Öhrfelt, A., Zetterberg, H., Blennow, K., Minthon, L.,
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