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Abstract—Next-generation fiber-optic communications call for
ultra-reliable forward error correction (FEC) codes that are
capable of low-power and low-latency decoding. In this paper, we
propose a new class of polar codes, whose polarization units are
irregularly pruned to reduce computational complexity and de-
coding latency without sacrificing error correction performance.
We then experimentally demonstrate that the proposed irregular
polar codes can outperform state-of-the-art LDPC codes, while
decoding complexity and latency can be reduced by at least 30%
and 70%, respectively, versus regular polar codes, while also
obtaining a marginal performance improvement.

Index Terms—Polar coding, FEC, coherent fiber-optic commu-
nications, irregular degree, complexity/latency reduction

I. INTRODUCTION

CAPACITY-approaching forward error correction (FEC)
based on low-density parity-check (LDPC) codes [1]–

[8] have made a great contribution to increasing data rates
of coherent optical transceivers achieving beyond Tb/s [9]–
[13]. However, the pursuit of high FEC performance has led
to a significant increase in power consumption and circuit
size. Hence, attaining a good trade-off between performance
and computational complexity is of great importance. In
addition, recent high-performance FEC codes usually require
very large codeword lengths, typically longer than 30,000
bits, whereas shorter FEC codes are preferred for latency-
constrained systems including short-reach optical intercon-
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nects and front/back-hauls. This paper introduces reduced-
complexity polar codes as potential alternatives to LDPC
codes, with particular emphasis on short block lengths for
latency-constrained lightwave systems.

Polar codes [15]–[22] have drawn much attention in the
coding theory community due to their ability to achieve capac-
ity via low-complexity successive cancellation (SC) decoding
for any arbitrary discrete-input memoryless channels (DMCs).
However, in spite of the theoretical strength, polar codes have
not been adopted until recently in practical systems due to
their poor performance at short block lengths in compari-
son to LDPC codes. The recent breakthrough in algorithm
development of successive cancellation list (SCL) decoding
[18] has made polar codes competitive with state-of-the-art
LDPC codes, in particular for low-complexity and latency-
constrained systems [35]. In consequence, polar codes have
just been adopted in the fifth-generation wireless standards.

To date there have been relatively few studies [3] comparing
LDPC codes with polar codes in the optical research com-
munity. We first re-confirm that polar codes employing SCL
decoding can outperform recent LDPC codes [7] for latency-
constrained lightwave systems when the block length is below
10,000 bits. For comparison, we also consider turbo product
codes (TPC) [24]–[26], which employ iterative message pass-
ing for Bose–Chaudhuri–Hocquenghem (BCH) constituent
codes to achieve near maximum-likelihood performance.

We then propose a new family of polar codes, whose polar-
ization units are irregularly pruned to reduce the computational
complexity at both encoding and decoding. In the context of
LDPC codes, it is well-known that irregular codes with specific
degree distributions outperform regular ones. For polar codes,
there exist few investigations incorporating analogous irregu-
larity. Mixed-kernel polar codes [32] first showed the potential
of irregular substitution with different kernels, leading to high
flexibility. However, optimization of kernel mixtures has been
challenging due to the huge design space. Relaxed polar codes
[33] introduced a limited amount of irregularity, where some
polarization units are deactivated when the bit-channels are
sufficiently good or bad. However, relaxed polar codes [33]
do not consider all possible combinations of inactivation;
specifically once a polarization unit is inactivated, further
polarizations after the inactivated unit are not considered. This
limits the flexibility in the selection of polarization units that
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Fig. 1. Four-stage polarization with inactivated units: irregular polar codes
(16, 8) having 10 inactivations over 32 polarization units (10/32 = 31.25%
complexity reduction).

can be inactivated and does not exploit the possibility of
further complexity reduction.

In this paper, we propose fully irregular polar codes by
taking the non-uniform reliability of bit-channels into con-
sideration when performing inactivation of polarization units.
We show that performance can be slightly improved when
compared to conventional (regular) polar codes, while a sig-
nificant reduction in decoding complexity and latency can be
achieved. Experimental validation of the proposed irregular
polar codes is demonstrated over 400 km transmission of
Corning R© Vascade R© EX2000 fiber, for two 60 GBd subchan-
nels of dual-polarization 64-ary quadrature-amplitude modu-
lation (DP-64QAM) under full C-band loading [12].

The contributions of this paper are summarized as follows:
• Irregular inactivation of polarization units: We gener-

alize the idea in [33] to consider all possible selection of
the inactivated polarization units for significant reduction
of encoding/decoding complexity.

• Efficient code construction algorithm: We propose a
greedy algorithm to construct irregular polar codes that
minimize bit error rate (BER) through the use of extrin-
sic information transfer (EXIT) analysis [28] to jointly
optimize frozen bit and inactivation unit locations. The
proposed algorithm facilitates the complicated optimiza-
tion of mixed-kernel polar codes [32].

• Complexity and latency analysis: We analyze the com-
plexity and latency reductions of the proposed irregular
polar codes to verify the advantage in power-constrained
optical communications.

• Experimental validation: We experimentally demon-
strate that our irregular polar coding can offer better per-
formance than regular counterparts as well as state-of-the-
art LDPC codes in fiber-optic transmission measurement.

• Error pattern analysis: We also provide a brief analysis
of the Hamming weight spectrum and error patterns when
the polar codes have irregular inactivations.

We note that this paper is distinguished from our previous
reports [35]–[40] as follows. We previously studied interleaver

design for polar-coded high-order QAM in [35], achieving
a 0.5 dB gain. This work was extended with constellation
shaping for wireless fading channels in [36], [37], achieving
a 2.5 dB improvement. The concept of irregular polar coding
was first proposed for optical communications in [38], later
extended to wireless massive antenna systems in [39], and
applied to TPC for parallel decoding in [40] and [41] for
optical and wireless communications, respectively. In this
paper, we extend the preliminary report in [38] with more
detailed analyses of the decoding error union bound (UB),
decoding complexity, and latency, in addition to a description
of the code construction algorithm.

II. POLAR CODES WITH SCL DECODING

A. Polar Encoding

An (N, k) polar code with k information bits and N
encoded bits (N = 2n) uses an N ×N generator matrix F⊗n

for encoding, where

F =

[
1 1
0 1

]
(1)

is a binary kernel matrix and [·]⊗n denotes the n-fold
Kronecker power. Let u = [u1, u2, . . . , uN ]T and x =
[x1, x2, . . . , xN ]T respectively denote the vectors of input bits
and encoded bits. The codeword (for non-systematic polar
codes) is given by x = F⊗nBu, where the matrix multi-
plications are carried out over the binary field (i.e., modulo-2
arithmetic), and B denotes an N×N bit-reversal permutation
matrix [15]. Due to the nature of Kronecker product, polar
encoding and decoding can be performed at a complexity
on the order of O(N log2N) over the n-stage polarization
shown in Fig. 1. The multi-stage operation of the Kronecker
products gives rise to the so-called polarization phenomenon
to approach capacity in arbitrary DMCs [15].

The polar coding maps the information bits to the k most
reliable locations in u. The remaining N − k input bits are
frozen bits, fixed to values known to both encoder and decoder.
We use K and K̄ to denote the subsets of {1, 2, . . . , N} that
correspond to the information bit and frozen bit locations,
respectively. By means of various design methods, such as
Bhattacharyya parameter [15], density evolution (DE) [20],
[30], and Gaussian approximation [31], the locations in u with
the lowest reliability can be selected to be in K̄ for frozen bits.

For systematic polar codes, we employ an encoding pro-
cedure [17] which writes the k data bits into a vector u at
the bit-reversal permutation of the locations K, with the other
locations set to zero, and then applies the polar encoding
procedure twice, while setting the frozen bit locations in K̄
to zero on the intermediate result between the encodings. This
procedure for systematic coding can be expressed as follows:

x = F⊗nBφK̄(F⊗nBu), (2)

where φK̄(·) denotes the setting of the frozen bit locations in
K̄ to zero. We also use a concatenation of cyclic redundancy
check (CRC) to increase the minimum Hamming distance [23].



3

B. Polar Decoding

Let y = [y1, y2, . . . , yN ]T denote the vector of decoder
inputs. Assuming memoryless channels, the transition prob-
ability WN (y|x) between x and y is written as WN (y|x) =∏N
i=1W (yi|xi). The original SC decoding proposed in [15]

was recently improved by the SCL decoder in [18], which
incorporates list decoding and an embedded CRC code to
improve the performance for short-block polar codes. The SC
decoder proceeds sequentially over the bits, from index 1 to
N . For each index i ∈ {1, 2, . . . , N}, an estimate ûi for bit
ui is made as follows. If i /∈ K, then ûi is set to the known,
fixed value of ui, otherwise, when i ∈ K, ûi is set to the most
likely value for ui given the channel outputs, assuming that
the previous estimates [û1, û2, . . . , ûi−1] are correct.

The SCL+CRC decoder proceeds similarly to the SC de-
coder, except that for each data bit index i ∈ K, the decoder
retains both possible estimates, ûi = 0 and ûi = 1, in
subsequent decoding paths. To avoid handling an exponentially
increasing number of paths, the list-decoding approach limits
the number of paths to a fixed-size list of the most likely partial
paths. The SCL decoder also employs a CRC code embedded
in the data bits, which allows it to select the final decoding
as the most likely path with a valid CRC. The combination of
list-decoding with embedded CRC code to reject invalid paths
yields significantly improved performance [18].

C. Polar Codes vs. LDPC Codes

As reported in [17]–[19], polar codes can outperform turbo
codes and LDPC codes that are used in wireless standards
when SCL+CRC decoding is adopted. Moreover, it was shown
in [19] that polar codes with SCL+CRC decoding achieve
near the Polyanskiy bound for finite-length codes. In [35],
the authors verified the advantage of short block-length polar
codes in additive white Gaussian noise (AWGN) channels even
when compared to recently proposed Pareto-optimal LDPC
codes [7], which show the best trade-off between threshold
and decoding complexity by optimizing the degree distribution
for finite-iteration decoding via EXIT trajectory.

For self-consistency, we here re-evaluate the bit-error rate
(BER) performance of short-block polar codes to compare
with state-of-the-art LDPC codes [7], [35] in AWGN channels
for 4QAM transmission, before moving on to investigating
irregular polar codes. Fig. 2(a) compares the BER performance
of Pareto-optimal LDPC codes and systematic polar codes.
Here, we use I = 32 iterations for LDPC layered decoding
algorithm (LDA) [6], and a list size of L = 32 for polar
SCL decoding (with CRC-8). The Pareto-optimal LDPC codes
[7] were further improved for LDA in [35]. We consider five
block lengths, N ∈ {256, 1024, 2048, 4096, 16384}. The code
rates are identical to be R = 0.8 (including CRC overhead).
As shown in Fig. 2(a), the BER performance can significantly
degrade when the block length is limited. It is also verified that
polar codes with SCL+CRC decoding can outperform LDPC
codes at block lengths shorter than 3,000 bits.

The BER performance depends on decoding complexity,
more specifically, constraints on the available number of
iterations I for LDPC codes and the list size L for polar codes.
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Fig. 2. BER comparison of LDPC codes with LDA BP decoding and polar
codes with SCL+CRC decoding for various short block lengths.

In Fig. 2(b), we compare BER curves for the lower complexity
cases of I = L = 4. Compared to the case of I = L = 32 in
Fig. 2(a), most curves shift by approximately 0.5 dB due to the
reduced decoder complexity. Nevertheless, the performance
loss of polar codes is relatively small when compared to that
suffered by LDPC codes. Consequently, LDPC codes perform
worse than polar codes for all block lengths we considered.
These results suggest that polar codes can be a viable FEC can-
didate for latency- and power-constrained lightwave systems.
We note that the considered LDPC codes have potential to
be improved further, e.g., by employing scattered EXIT [42],
to account for finite-length characteristics. Nonetheless, our
primary goal here is not to guarantee the absolute superiority
of polar codes against all possible LDPC codes but rather to
demonstrate that polar codes are able to compete with recent
LDPC codes by evaluating general trends over different block
lengths and decoding complexities.

For reference, Fig. 2 also presents the BER performance
of TPC [24]–[26], which has been studied for short-reach
optical interface, with I = 32 iterations for turbo decoding.
TPC is constructed with BCH codes as listed in Table I,
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TABLE I
TPC CONSTRUCTION PARAMETERS (TARGET RATE: 0.8)

Length BCH-TPC Actual rate
256 BCH(16, 11) × BCH(16, 11) 0.473

1024 BCH(32, 26) × BCH(32, 26) 0.660
2048 BCH(64, 57) × BCH(32, 26) 0.724
4096 BCH(64, 57) × BCH(64, 57) 0.732

16384 BCH(128, 113) × BCH(128, 113) 0.779

where code rates are chosen to be no higher than 0.8 from
narrow-sense BCH codes. We observe that the TPC suffers
more than a 1.5 dB loss relative to LDPC codes and polar
codes. This is because the short-length TPC constitutes of
even shorter and higher-rate BCH component codes, whose
minimum Hamming distance is small. Note that we considered
only narrow-sense BCH codes without any puncturing or
shortening and, hence, TPC has the potential to be further
improved, in particular for longer-length and lower-rate cases.
Further comparisons between polar and BCH codes to con-
struct moderate-size TPC codes will be discussed in [40], [41].

D. Computational Complexity

It is already known that short LDPC codes do not perform
well, e.g., in [43], where various other FEC schemes such as
tail-biting convolutional codes (TB-CC) are compared at short
block lengths. It was demonstrated that nonbinary (NB) LDPC
codes as well as TB-CC have excellent performance in such
cases. However, the computational complexity of NB-LDPC
codes is generally higher than binary counterparts, in particular
for large Galois field sizes. The complexity of TB-CC also
increases exponentially with the constraint length. Therefore,
we must consider computational complexity as well as BER
performance. We now evaluate the computational complexity
of SCL polar decoding to show that it is competitive to LDPC
decoding even in the sense of complexity.

The nonlinear complexity of polar SCL decoding (specifi-
cally, O[LN log2(N)/2]) is a major drawback in comparison
to the linear complexity of LDPC BP decoding (specifically,
O[2Id̄vN ]). Here, d̄v denotes the average degree of variable
nodes (VNs). Note that the factor of 2Id̄v comes from the
bidirectional message passing, whereas the SCL decoding uses
unidirectional message passing over N log2(N)/2 VNs. Due
to the nonlinear complexity, polar codes can eventually be less
effective than LDPC codes as we increase the block lengths.
However, this nonlinearity can become an advantage when
we aim to reduce the block sizes in order to decrease latency.
This is illustrated in Fig. 3, where complexity per coded bit
(i.e., divided by N ) is plotted as a function of block length
N for polar and LDPC codes. Because per-bit complexity is
constant depending on average degree d̄v for LDPC codes,
there is no motivation to decrease the block length. In contrast,
polar decoding becomes simpler when we reduce block sizes.
Moreover, polar decoding is more efficient than minimum-
complexity LDPC codes, that have the smallest possible degree
of d̄v = 2, at short block lengths of N < 256. Since such ultra-
sparse LDPC codes perform poorly in general, most typical
irregular LDPC codes have an average degree between 3 and

 0.1

 1

 10

 100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

C
o

m
p

u
ta

ti
o

n
a

l 
C

o
m

p
le

x
it
y
 p

e
r 

C
o

d
e

d
 B

it

Code Block Length N

Polar Code
UltraSparse LDPC Code (dv=2)

LDPC Code (dv=3)
LDPC Code (dv=5)

Typical Irregular LDPC

Fig. 3. Computational complexity per coded bit as a function of block length
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5. The LDPC codes used for 4 and 32 iterations in Fig. 2
have d̄v = 4.00 and 4.97, respectively. Therefore, the decoding
complexity of LDPC codes can be higher than polar decoding
at short lengths up to N < 65,000 and 106, respectively, for
the LDPC codes having d̄v = 4.00 and 4.97. This promotes
polar codes as a good candidate for latency-critical systems.

Since we considered only VN processing without includ-
ing any extra operations (e.g., sorting), reduced complexity
techniques (e.g., [19], [45]), hardware architecture etc., the
actual computational complexity can vary greatly depending
on hardware implementation. Nevertheless, the general trend
described above holds at short block lengths, and most pro-
totyping studies such as [17] have already revealed that the
polar codes can compete favorably with LDPC codes in terms
of complexity. Note that the complexity of LDPC decoding
can be further increased when we include check node (CN)
processing because the average CN degree is large for high-
rate FEC, i.e., d̄c = d̄v/(1 − R) � 2, while polar codes
have only two incoming edges at CNs as shown in Fig. 4.
On the other hand, polar SCL decoding is not very amenable
to parallel implementation. Our irregular polar codes enable
partially parallel computation as in [17], [33]. The feasibility
of highly parallel polar decoding is discussed in [40], [41].

III. IRREGULAR POLAR CODES

A. Basic Concept of Irregular Polarization

In this section, we explain the basic idea of irregular polar
codes, which is to inactivate some polarization units to ob-
tain potential error-rate performance improvement in addition
to complexity reduction. Consider a polarization stage of
Fig. 4(a), which can be represented by a factor graph as shown
in Fig. 4(b). The upper-branch CN of each polarization unit has
three connected edges (thus degree-3). Each lower-branch CN
is degree-2, and no computation is required to pass messages
from right to left (or left to right). Our proposed polar codes
have irregular pruning as shown in Fig. 4(c), where the top CN
becomes degree-2 by disconnecting one of edges. By pruning
the edge, we can reduce the encoding and decoding complexity
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Fig. 4. Factor graph representation of polarization stage: (a) regular polar
units, (b) corresponding factor graph, (c) irregular pruning with degree-2 check
node, and (d) irregular polar with degree-4 check node.

without destroying the radix-2 Cooley–Tukey like factor graph
(and thus maintain the basic SCL decoding structure that has
complexity order O[N log2N ]). Because the degree of upper-
branch CNs are no longer all 3, we refer to the pruned polar
codes as irregular polar codes, analogous to irregular LDPC
codes. Many other types of irregular polar codes are possible,
such as the example shown in Fig. 4(d) in which the top
CN adds edges to be degree-4. Such irregularity (involving
size-4 mixed-kernels [32]) requires major modification of SCL
decoding and its computational complexity can be increased.
Therefore, in this paper, we focus on irregular polar coding
based on pruning (or inactivating) for complexity-constrained
fiber-optic communications. We first consider the conventional
Bhattacharyya parameter analysis [15] to discuss irregular
polar coding, and will later propose a more sophisticated code
construction method using EXIT [28] in the next section.

For an (N, k) polar code, there are n = log2(N) po-
larization stages, each of which contains N/2 polarization
units (thus NU , N log2(N)/2 polarization units in total),
as shown in Fig. 1 for N = 16. Polar codes exploit the
so-called polarization phenomenon, where each polarization
unit provides degraded and improved reliability. For example,
when the coded bits x1 and x2 have uniform reliability
having erasure rate (Bhattacharyya parameter) of 0.5, the
upper branch of the polarization unit becomes unreliable with
erasure rate of 0.75, whereas the lower branch improves the
reliability to 0.25. Conventional polar codes have no flexibility
in coding architecture except in the location of frozen bits.
To increase the design degrees of freedom while reducing
decoding complexity, our proposed irregular polar codes in-
activate some of the polarization units. Fig. 1 illustrates an
example with 10 inactivations among 32 polarization units.
For convenience of analysis, we next consider an example in
Fig. 5 for N = 4. We denote U(r, l) as the rth polarization unit
from top to bottom in the lth polarization stage from left to
right. For example, irregular polar codes in Figs. 5(b), (c), and
(d) have an inactivated polarization unit at U(1, 1), U(2, 1),
and U(1, 2), respectively. At an inactivated polarization unit,
the exclusive-or (XOR) operation is removed.

The key benefits of such inactivations are three-fold: i)
complexity reduction in encoding/decoding computations, ii)
decoding latency reduction, and iii) potential performance
improvement by adjusting the weight distribution. For the
code in Fig. 1, we can achieve a 10/32 ' 31% complexity

reduction since no computation is required for inactivated units
in both encoding and decoding. Note that careful choice of
polarization units to be inactivated can cause no performance
penalty, as discussed below.

B. BEC Analysis

In this section, we specifically focus on the binary erasure
channel (BEC) to exemplify potential benefits of irregular
polar coding, and later discuss a design method for generic
channels in the next section. The word error rate (WER)
of the irregular polar codes for the BEC can be expressed
via Bhattacharyya parameter evolution [15]. Starting from
the channel side (nth polarization stage), the Bhattacharyya
parameter Z [n]

i is given as

Z
[n]
i ,

∑
yi∈Y

√
Wi(yi|0)Wi(yi|1) = ε, (3)

where ε is the erasure probability of the BEC. Let Z [l]
rU and

Z
[l]
rL be the incoming Bhattacharyya parameters, respectively,

for upper and lower branches at polarization unit of U(r, l).
If a polarization unit U(r, l) is inactivated, the bit reliabilities
do not change:

Z [l−1]
rU = Z [l]

rU , Z [l−1]
rL = Z [l]

rL . (4)

On the other hand, for active polarization units, the evolution
of the Bhattacharyya parameters is given as follows:

Z [l−1]
rU ≤ Z [l]

rU + Z [l]
rL − Z

[l]
rUZ

[l]
rL , Z [l−1]

rL = Z [l]
rUZ

[l]
rL , (5)

where the equality holds in the BEC. Note that the above
evolution is identical to that of the original polar codes [15]
if the incoming Bhattacharyya parameters at upper and lower
branches of polarization units are equal, i.e., Z [l]

rU = Z
[l]
rL . In

order to account for possible non-uniformity of bit reliabilities,
we shall use the modified evolution in (5).

In fact, non-uniform bit reliabilities occur in various situa-
tions, e.g., when polar coding is used for high-order modula-
tion schemes [21], [35], and/or in frequency-selective channels
[36], [37]. Moreover, our proposed polar codes with irregu-
lar inactivation can inherently produce non-uniform reliabil-
ities even when channels are identical. This is illustrated in
Fig. 5(d), where an inactivated polarization unit at U(1, 2)
involves non-equal Bhattacharyya parameters for the first
polarization stage for U(1, 1) and U(2, 1).

Given the left-most Bhattacharyya parameters Z
[0]
i , the

WER Pε of SC decoding is upper-bounded as follows [29]:

Pε ≤ 1−
∏
i∈K

(
1− 1

2
Z

[0]
i

)
≤ 1

2

∑
i∈K

Z
[0]
i . (6)

The last inequality is known as the UB, which can be loose at
high erasure rates. In Fig. 5, we present the (tight) upper bound
of WER and the Bhattacharyya parameters at every polariza-
tion unit for a channel erasure rate of ε = 0.5. Note that the
exact WER and BER can be easily derived for such short polar
codes. The exact WER and BER of the conventional regular
polar code in Fig. 5(a) are Pε = ε2(1− ε2/4) = 0.234375 and
Pb = ε2(3− ε2)/4 = 0.171875, respectively. Whereas the ir-
regular polar codes in Figs. 5(b), (c), and (d) perform no worse
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Fig. 5. Examples of inactivated polarization units for (4, 2) polar codes with a corresponding WER of Pε at BEC channels with an erasure rate of ε = 0.5.
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than the regular polar code. For example, the code in Fig. 5(d)
has the exact BER of Pb = ε2(5− ε2)/8 = 0.1484375, which
is better than the regular one. It is more clearly shown in Fig. 6,
where simulated and analytical BER curves with SC decoding
are plotted for those two polar codes, i.e., Fig. 5(a) vs. (d), at
BEC channels. This indicates that with appropriate inactivation
of polarization units, irregular polar codes can outperform
regular polar codes. More importantly, since no computation
is required for inactivated polarization units during encoding
and decoding, the computational complexity of irregular codes
can be significantly reduced without any performance penalty.
Note that the systematic encoding procedure in [17] and SCL
decoding in [18] can be applied without major modifications
even in the presence of irregular polarization pruning.

C. Motivations

The above-mentioned benefits were partly discussed in anal-
yses and theories derived for relaxed polar coding [33], which
inactivates a series of polarization units when the incoming
Bhattacharyya parameters are sufficiently good or bad. For
example, the polarization unit at U(1, 1) in Fig. 5(b) already
has poor incoming reliability (Z [1]

1U
= Z

[1]
1L

= 0.75), and thus
no performance degradation is incurred from inactivation as u1

and u3 will be chosen to be frozen bits. For another example
in Fig. 5(c), the polarization unit U(2, 1) is inactivated since
the second polarization stage already created good messages

(Z [1]
2U

= Z
[1]
2L

= 0.25). This irregular code achieves not
only reduced complexity but also reduced latency without
sacrificing the WER performance because partially parallel
decoding is possible for u2 and u4.

However, relaxed polar coding [33] has limited flexibility
in inactivation patterns, preventing non-uniform reliabilities, in
order to accommodate conventional code construction methods
[15]. For example, relaxed polar coding excludes the case in
Fig. 5(d), where the first polarization units U(1, 1) and U(2, 1)
are still active even after inactivating the polarization unit at
U(1, 2). This irregular code achieves improved performance
while the complexity is reduced at the same time. Motivated by
this benefit, in this paper, we generalize the concept in [33] by
considering arbitrary irregular inactivation with the help of a
modified code construction method, which takes non-uniform
reliability into consideration, in order to further reduce com-
putational complexity. Our design method facilitates efficient
optimization of complicated kernel mixtures [32] in practice.

As discussed in [33], irregular polar codes with pruned
polarization units are partly related to a simplified SC (SSC)
decoding [17], [45], in which partially parallel decoding is
enabled by pruning/merging tree branches, involving either
frozen or information bits, to avoid unnecessary computation.
However, our work directly modifies the degree distribution of
the generator matrix to significantly reduce both encoding and
decoding complexity without limitation of the tree structure,
regardless of frozen bit locations. Therefore, our approach has
the flexibility to incorporate any other methods including SSC
to reduce the decoding complexity further.

IV. DESIGN METHOD FOR IRREGULAR POLAR CODING

A. EXIT Evolution with Non-Uniform Reliability

We now describe a design method to construct fully ir-
regular polar codes, where there are a maximum of NU =
N log2(N)/2 polarization units that can be inactivated. We
address how to accommodate the non-uniform bit reliability
to design irregular polar codes by appropriately inactivating
polarization units, that leads to the best performance and
minimum complexity. As discussed in the previous section,
the conventional construction methods [15], [20], [30], [31]
assuming uniform bit reliability cannot be directly applied to
optimize polar codes in the presence of irregular inactivation
(and/or high-order modulations). Motivated by the fact that
polar codes can be represented by a factor graph as shown in
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TABLE II
JOINT INACTIVATED POLARIZATION AND FROZEN BIT LOCATION DESIGN

1: activate all polarization units
2: while Ninact ∈ {1, 2, . . . , NU} do
3: for all active polarization units do
4: inactivate the target polarization unit
5: I′ = UpdateMI(I) according to (7)
6: select frozen bits K̄ having the N − k smallest I′

7: calculate the upper bound Pe according to (9)
8: reactivate the target polarization unit
9: end for

10: inactivate the polarization unit having smallest Pe

11: end while
12: return best frozen bit and inactivated polarization unit locations achiev-

ing the smallest Pe

Fig. 4, we propose to introduce EXIT analysis [28] for tracking
the non-uniform mutual information at every polarization unit.

Letting I [l]
rU and I [l]

rL denote mutual information of the upper
and lower branches at the rth active polarization unit of lth
stage, we use the following evolution:

I [l−1]
rU = 1− J

(√[
J−1(1− I [l]

rU)
]2

+
[
J−1(1− I [l]

rL)
]2)

,

I [l−1]
rL = J

(√[
J−1(I [l]

rU)
]2

+
[
J−1(I [l]

rL)
]2)

,

(7)

where J(·) is ten Brink’s J-function [28], defined as

J(x) = 1−
∫ ∞
−∞

e−(t−x2/2)2/2x2

√
2πx2

log2(1 + e−t) dt, (8)

and J−1(·) is its inverse function. For inactive polarization
units, mutual information is propagated without modifica-
tion. Note that in [28] the closed-form approximations of
the forward and inverse J-functions are derived through the
Marquardt–Levenberg algorithm.

We perform the EXIT evolution in (7) iteratively to trace the
mutual information of each stage until we obtain the output
mutual information I [0]

i for all i ∈ {1, 2, . . . , N}. Once the
output mutual information I [0]

i are obtained, the UB of error
rate Pe is calculated as below:

Pe =
1

|K|
∑
i∈K

Q
(1

2
J−1(I [0]

i )
)
, (9)

where Q(·) is the Q-function defined as

Q(x) =
1√
2π

∫ ∞
x

exp
(
− t2

2

)
dt. (10)

Note that the EXIT evolution in (7) assumed SC decoding,
where extrinsic information at the (l− 1)th polarization stage
are not propagated back to the lth polarization stage. Nonethe-
less, the EXIT evolution can be readily modified for polar BP
decoding as well.

B. Joint Inactivation and Frozen Bit Design

We describe our proposed design method of irregular polar
codes in Table II. Given an input mutual information array
I = [I

[n]
1 , I

[n]
2 , . . . , I

[n]
N ] for every bit of modulated symbols

si in fiber-optic channels having an equivalent signal-to-noise
ratio (SNR) ρ, the algorithm performs joint optimization of

inactivation and frozen bit locations to minimize the UB for
Pe. Since a brute-force search for all possible inactivations is
unrealistic (i.e., the maximum search space for such a two-
kernel mixture is scaled to 2NU = NN/2, which becomes
more than 10308 even for a short block length of N = 256),
we use a greedy method, which looks for the best polarization
unit to be inactivated in a successive manner until we have
inactivated Ninact polarization units.

For each candidate for inactivation, the mutual informations
I are updated to obtain the output mutual informations I ′ ac-
cording to evolution in (7). The frozen bit locations K̄ are de-
cided by choosing the N−k indices having the smallest values
in I ′. For each iteration up to Ninact, the next polarization unit
to be inactivated is successively decided by analyzing the UB
for Pe. Through the iterations over successive inactivations,
we finally select the best irregular polar code with the set of
inactivated units as well as frozen bit locations, that result
in the minimum Pe as the output of algorithm in Table II.
Although the global optimum is not guaranteed, excellent
performance is empirically observed using this greedy method.
In [39], the authors also extended the greedy algorithm to
jointly optimize the frozen bit locations and inactivations as
well as the interleaver for wireless multi-antenna channels.

C. Union Bound and Latency Analysis
We now evaluate our greedy design method in Fig. 7, where

the UB and decoding latency reduction versus the number
of inactivated polarization units are shown for low-rate and
high-rate polar codes (256, 168) and (256, 240). Note that the
number of inactive units Ninact = 0% corresponds to the
conventional (regular) polar codes, whereas Ninact = 100%
corresponds to the uncoded case. Decoding complexity can
be linearly decreased by pruning polarization units, whereas
decoding latency is not always be reduced by pruning. More
specifically, pruning the polarization units in the latter stages
usually does not reduce latency unless the former stages in
the decoding tree are all pruned as in Fig. 1. For example,
the irregular pruning in Fig. 5(c) can reduce latency since
decoding u4 does not need to wait for decoding u2, whereas
the pruning in Fig. 5(d) does not reduce latency.

It is confirmed in Fig. 7(a) that our proposed irregular
polar codes can reduce computational complexity by at least
35% with a small improvement in the UB. The corresponding
latency reduction can be 72%. More than 35% pruning of
polarization units rapidly degrade the UB towards the uncoded
BER. In this figure, we also present the UB and latency
analysis of relaxed polar codes [33] for comparison. We can
see that the relaxed polar codes degrade the UB if pruning
exceeds 25%. This confirms that our irregular polar codes
are more advantageous in reducing complexity and latency by
exploiting higher degrees of design freedom in the selection
of inactivations. It should be noted that the complexity and
latency reduction can be more significant for higher code
rates. Specifically, 57% complexity reduction and 87% latency
reduction are achieved by (256, 240) irregular polar codes as
shown in Fig. 7(b). This is because there are lower interactions
between the frozen bits and information bits, resulting in less
impact on the UB by the selection of polarization pruning.
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Fig. 7. BER upper bound and latency reduction for irregular polar codes:
(a) improved UB by up to 35% pruning for an overhead of 52.4% and (b)
improved UB by up to 57% pruning for an overhead of 6.7%.

V. EXPERIMENTAL PERFORMANCE VALIDATION

A. Experimental Setup

For performance validation of our irregular polar codes,
we use an experimental setup with dual-carrier 60 GBd DP-
64QAM transmission [12], whose schematic is shown in
Fig. 8. A digital root-raised cosine (RRC) filter with 0.1%
roll-off was used for 64-QAM signals, and pre-emphasis was
applied to compensate for the frequency response of the
transmitter components (achieving approximately a 16.5 dB
SNR ceiling). The signals were transmitted by four synchro-
nized 92 GS/s digital-to-analog converters (DACs). The radio-
frequency (RF) signals were then amplified by 30 GHz band-
width modulator drivers. Two external cavity lasers (ECLs)
with 100 kHz nominal linewidth and 62 GHz spacing were
used as carriers for two independent I/Q modulators, with
bandwidth of approximately 25 GHz. The combined attenua-
tion of the DAC, RF drivers and modulators was approximately
7.3 dB at 30 GHz. The wavelength channels were combined,
and polarization multiplexing emulated with an interferometer
with 14.1 ns delay between arms. Spectrally shaped amplified
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Fig. 8. Experimental setup [12] for dual-carrier 60GBd DP-64QAM. Full
C-band loading is emulated by ASE [34].

spontaneous emission (SS-ASE) noise was used as an ultra-
broadband source to emulate fully-loaded C-band transmission
[34]. The SS-ASE source had a bandwidth of 4.5 THz and a
notch centered at 1550 nm with a bandwidth of 140 GHz was
carved out to accommodate the channel of interest (see inset
Fig. 8). A 9 GHz guard-band on each side of the 122 GHz
dual-carrier signal was used to minimize linear crosstalk [34].

For transmission, a recirculating loop was used, with a loop-
synchronous polarization scrambler (PS), and a single span of
101.39 km of Vascade R© EX2000 fiber with a total loss of
16.2 dB. The span was followed by an Erbium-doped fiber
amplifier (EDFA) with 18 dBm output power and 5 dB noise
figure to overcome fiber attenuation. A third ECL with 16 dBm
output power and 100 kHz nominal linewidth was used as local
oscillator in the optical receiver. Detection was carried out
by balanced photodetectors with 70 GHz electrical bandwidth
and without trans-impedance amplifiers. Finally, the received
signals were captured by a real-time digital oscilloscope with
an analog electrical bandwidth of 63 GHz at 160 GSa/s.
The receiver digital signal processing (DSP) was of the same
structure as that described in our previous work [12]. We used
a training sequence followed by pilot-aided equalization [11]
with a pilot overhead of 1.43%.

B. Back-to-Back and Transmission Performance

In our previous experiments [12], a 1 Tb/s transmission
was demonstrated using a high-power LDPC code with very
long block size of 52,800 bits at a code rate of 0.71.
Because the scope of this paper is low-power and low-
latency systems, we focus on relatively short FEC codes with
N ∈ {256, 1024, 4096}. We compare irregular polar codes
(having 33%, 37%, and 31% inactivations of polarization units,
respectively, for N = 256, 1024, and 4096) with state-of-the-
art Pareto-optimal LDPC codes [7] (whose analytical threshold
at infinite length is within 0.5 dB of the Shannon limit) at a
code rate of 0.625. Although the code rate of 0.625 is relatively
low compared to typical lightwave systems, such a mid-rate
FEC plays an important role in maximizing spectral efficiency
for various modulation formats including DP-64QAM, as
discussed in [44]. Random interleaving was carried out across
all bit positions, polarizations and wavelength subchannels
although a well-designed interleaver suited for polar codes can
offer additional gain as investigated in [21], [35]–[37]. The
LDPC decoder used the 32-layer LDA with I = 8 iterations,
whereas the polar decoder used SCL decoding with CRC-8
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Fig. 9. Experimental BER in back-to-back configuration.

and a list size of L = 32. An outer hard-decision high-rate
BCH code [12] (whose threshold is 5× 10−5) is assumed to
realize a BER below 10−15.

The back-to-back results are shown in Fig. 9. Note that
when measurements with no bit errors are observed after
decoding, those are plotted straight down towards the BER
limit of 0. It was verified that polar codes outperform LDPC
codes, since LDPC codes do not perform well for short block
lengths and a limited number of iterations [35]. Our irregular
polar codes can further improve the BER performance against
regular polar codes while reducing decoding complexity and
latency significantly. Specifically, measurements at an optical
signal-to-noise ratio (OSNR) above 17 dB resulted in no
errors with irregular polar codes of N = 4096 over the
approximately 3× 106 bits in a single capture, whereas errors
were observed for regular polar codes.

The results after transmission over 300 km and 400 km
are shown in Figs. 10 and 11, respectively. The experimental
results demonstrate that the system margin to realize the BER
underneath the BCH threshold can be significantly improved
by polar codes versus LDPC codes. In particular for 400 km,
the Pareto-optimal LDPC code cannot reach the target BER be-
low the BCH threshold even for the block length of N = 4096
bits, whereas the polar codes achieved the target at a shorter
block length of N = 1024. Although the system margin
was not significantly improved by irregular polar coding
compared to the regular counterparts, the remarkable reduction
in decoding complexity and latency is of great advantage for
high-throughput fiber-optic communications.

C. Burst Error Analysis

We assumed that an outer BCH code at a very high rate
and with sufficiently long interleaving is employed. However,
shorter interleaver depth is preferred in practice. Moreover,
the error behavior of polar codes is less well-understood to
date, compared with LDPC codes. Due to the nature of SCL
decoding, potential error propagation may cause long burst
errors. This section analyzes the burst error behavior.
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Fig. 10. Experimental BER in 300 km transmission.
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Fig. 11. Experimental BER in 400 km transmission.

In [23], [46], the Hamming weight spectrum of polar codes
was analyzed by using SCL decoding with a very large list
size. Fig. 12 illustrates the weight spectrum of regular and
irregular polar+CRC codes (256, 160) via the same method. It
was found that the regular codes have relatively larger distance
compared to the irregular codes. As shown in experiments, this
does not immediately mean that irregular polar codes perform
worse because the Hamming distance larger than necessary
does not always contribute to improving BER performance.

Fig. 13 shows empirical density of the number of bits
in error per erroneous block for the regular and irregular
polar+CRC codes. We consider SCL decoding with L = 1
and 32 for systematic and non-systematic codes. The SNR is
adjusted for different list sizes so that the BER is roughly
comparable to the BCH threshold of 5× 10−5. From Fig. 13,
we observe the following points:
• Systematic codes have a concentrated error distribution,

whereas non-systematic codes have a broad error distri-
bution. Similar results were well-explained in [46].

• For systematic codes, irregularity does not cause degra-
dation of the burst error distribution.

• For non-systematic codes, irregular codes have slightly
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less-disperse distribution.
• Larger list sizes result in a more dispersed error distribu-

tion. This may be because a larger list can improve BER
sufficiently under noisier channel conditions.

These results suggest that we should use systematic codes to
constrain burst errors, not only to reduce the BER by half, that
is known in [16]. The limited lengths of bit errors can relax
the requirement of interleaver depth for outer BCH codes. We
leave detailed analysis of practical interleaver and outer BCH
design to remove burst errors as future work.

VI. CONCLUSIONS

We proposed a novel class of polar codes called irregular
polar codes, which inactivate some of the polarization units.
With careful inactivation of polarization units, the compu-
tational complexity for encoding and decoding can be sig-
nificantly reduced, while the BER performance is slightly
improved. We introduced an EXIT-based greedy code con-
struction method addressing non-uniform bit reliability to
jointly optimize inactivation and frozen bit locations. With
the proposed design method, greater than 30% complexity
reduction and 70% latency reduction were achieved without
degrading BER performance. We experimentally demonstrated
that irregular polar codes can outperform conventional regular
polar codes and state-of-the-art LDPC codes, when codeword
lengths and decoding complexity are constrained for high-
speed optical communications. Note that the heuristic design
method proposed in this paper is applicable for optimizing
general mixed-kernel polar codes.
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