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Abstract—Reducing the energy consumption of software systems though optimisations techniques such as genetic improvement is
gaining interest. However, efficient and effective improvement of software systems requires a better understanding of the code-change
search space. One important choice practitioners have is whether to preserve the system’s original output or permit approximation with
each scenario having its own search space characteristics. When output preservation is a hard constraint, we report that the maximum
energy reduction achievable by the modification operators is 2.69% (0.76% on average). By contrast, this figure increases dramatically
to 95.60% (33.90% on average) when approximation is permitted, indicating the critical importance of approximate output quality
assessment for code optimisation. We investigate synergy, a phenomenon that occurs when simultaneously applied source code
modifications produce an effect greater than their individual sum. Our results reveal that 12.0% of all joint code modifications produced
such a synergistic effect though 38.5% produce an antagonistic interaction in which simultaneously applied modifications are less
effective than when applied individually. This highlights the need for more advanced search-based approaches.

Index Terms—search-based software engineering, search space, energy consumption, genetic improvement, synergy, antagonism,
oracle, approximation

F

1 INTRODUCTION

R EDUCING energy consumption is an increasingly im-
portant software engineering concern. In 2010, large

server clusters consumed 1.12%–1.50% of global energy
consumption [30]: an amount equivalent to the entire en-
ergy consumption of the United Kingdom in 2015 [12].
Environmentally unfriendly sources generate much of this
energy: in 2013, 67% of global energy consumption derived
from burning fossil fuels, with 41% generated from the
most highly-polluting of all sources, coal [6]. Using a va-
riety of search techniques [23], recent studies have shown
how to reduce the energy consumption of software given
reasonable assumptions about the end-use of the improved
software system such as the likely input data [15], network
usage information [39], and tolerance to less desirable user-
interfaces [42].

Reducing energy consumption via the search-based
modification of software systems is an instance of ‘Ge-
netic Improvement’ (GI) [52]. To genetically improve a
program, search techniques modify software with the goal
of constructing related versions that retain some important
properties while improving others. GI research, hitherto,
has been dominated by three operators: delete, copy, and
replace applied to source code lines1 [34], [35], [53]. The delete
operator deletes a line of code; copy copies a line of code to
another location; and replace replaces a line of code with
another. The challenge in GI research is designing search
techniques to select a subset of all possible modifications
that may then be applied to the target software to produce

1. Other GI work also modifies software at the binary and assembly
levels [32], [55].

an optimal (or near optimal) solution. Until now, there
has been little effort put to analysing the search space
these operators produce, and that must be subsequently
traversed, when optimising software’s energy consumption.
This is unfortunate as, at present, GI practitioners design
search techniques blindly, despite the obvious advantage of
knowing the characteristics of these search spaces.

The delete, copy, and replace operators generate an infinite
search space, bounded by the number of copy operator
applications. Even when restricted to a single operation, the
search space remains large. For a program with N lines of
code, every line can be deleted (N ), copied into the program
before existing lines (N2), or replaced with any other line
but itself (N2 − N ). In this study, the smallest application
we investigate, Bodytrack, has 1,030 modifiable lines of code
and, thus, over 2 million possible variants generated by a
single application of an operator. GI techniques typically
restrict the search by selecting a subset of the software
system for modification. This subset is usually chosen by
an expert with intimate knowledge of the system or via pro-
filing; selecting lines/files/components/etc. based on their
likelihood of impacting the target non-functional property.
In practice, even this restricted search space remains vast.
The necessity for well-designed search techniques is clear.
though the information required to effectively design one is
not presently available.

The aim of this investigation is to gain greater under-
standing of the search space and considerations researchers
should take when optimising software’s energy consump-
tion using GI.

When software is optimised using GI, an oracle must be
provided. An oracle verifies a modified software’s correct-
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ness [8]. It is often a well-designed test-suite, though it can
be anything which conforms to this definition. In this work,
we focus on opportunities for energy improvement under
two different test oracles — exact and approximate. An exact
test oracle requires the original and improved programs to
produce identical output, while an approximate test oracle
uses a more relaxed notion of whether the output from the
improved program is acceptable. In this investigation, we
use test suites to determine the correctness of an application
and, therefore, we wish to emphasise that, when we say
‘exact’ or ‘approximate’, it is exact or approximate modulo a
test suite. Each of these test oracles produce their own search
space, both applicable to GI research and both worthy of
study. Approximate test oracles permit trading quality at-
tributes against energy consumption, which previous work
on energy improvement (using GI and other techniques)
has shown effective. For example, a mobile application can
trade the aesthetics of a user-interface [42] while a graphics-
based application can trade image quality [57]. In such cases,
deviation from the precise output of the original may be
tolerable if a decrease in energy consumption is observed.
In a survey of software engineers responsible for systems in
which energy consumption is a concern, the majority (80%)
were willing to sacrifice certain requirements for reduced
energy consumption [43].

For this study, we analyse the search space of four
systems — 7zip, Bodytrack, Ferret, and OMXPlayer. For
each, we define, justify, and investigate approximate oracles
that make domain-specific trade-offs between energy con-
sumption and solution quality. We are interested in knowing
at what frequency effective modifications exist in this search
space, what impact they are capable of producing, and how
this varies between exact and approximate test oracles.

Most previous energy optimisation work in software
engineering has used indirect measures of energy consump-
tion. Examples are tools which estimate energy by logging
processor states [15], monitoring bytecode execution [16],
or via simulation of hardware [61]. They interpolate energy
from correlated measurements. Indirect measurements are
typically close to actual energy consumption, but their error
is often unknown. Given that improvements reported hith-
erto are relatively modest (in the range of a few percent to a
few tens of percent), it is important to quantify measurement
error. To this end, we conduct our experiments on a suite of
6 MAGEEC energy measurement boards [2], connected to a
cluster of 25 Raspberry Pi devices [4]. The use of MAGEEC
boards allows us to take direct energy measurements. That
is, energy is measured directly rather than through a proxy.
We chose to study the Raspberry Pi as it is a simple, cheap,
widely available, and easily configurable platform.

This Raspberry Pi cluster enables us to distribute soft-
ware variants across different physical devices. We are not
the first to use direct energy measurements; the GreenMiner
project used direct energy measurements to determine the
energy consumption of Android mobile applications [27],
for example. However, we are, to the best of our knowledge,
the first to evaluate energy consumption in this distributed
format. As such, we can take many more measurements
than we would be able to do otherwise and can thereby
quantify statistical error, like ‘background noise’, by report-
ing the averages found over many runs. A key finding of

ours is that individual devices exhibit systematic error [58].
We find energy changes reported in Joules can vary con-
siderably across different devices even when the statistical
error within a single device is small. In future work, it is
paramount that such systematic error is properly addressed.
Within our investigation, we find the proportional change in
energy measurements is stable across all devices and there-
fore report results as proportional increases or decreases.

This setup enables us to understand the properties of
the energy search space by measuring the energy consumed
when running software modified by the delete, copy, and
replace operators. We can analyse both the local neighbour-
hood (a single modification) and beyond (multiple modifi-
cations), allowing us to give insight to GI practitioners.

If we were to find that the local search space is flat (i.e.
a single modification is incapable of, or rarely produces,
a significant proportional change in energy consumption),
then we could conclude that either the delete, copy, and
replace operators are relatively ineffective or a highly ex-
plorative search technique is required to optimise software.
Alternatively, if we find the local search space to be on a
steady gradient, then the search-based algorithm should be
based on exploitation (such as a hill-climbing algorithm)
and, depending on the incline, may suggest that GI re-
searchers intuitions are correct — the delete, copy, and replace
are effective.

The nature of the wider search space can be determined
by combining modifications and noting their interaction.
In our investigation, we observe instances when adding or
removing a set of modifications produces a good solution
but adding or removing a subset of those changes produces
a much less effective solution. We refer to this as synergy,
a specific form of interaction where the improvement of
simultaneously applying multiple modifications exceeds the
sum of applying each in isolation [9]. We also observe
antagonism, another form of interaction that is the opposite
of synergy. This occurs when the effectiveness of a solution
worsens as modifications are combined in comparison to
when they are applied individually. If antagonism is in-
frequent, then a greedy approach would be sufficient in
combining modifications; simply sample modifications at
random, evaluate them and, if they are found to be effective,
add them to a list of good mutations to then be applied en-
masse at the end of the process. In our investigation we find
that antagonism occurs in 38.5% of all modification pairings
— a frequency high enough to justify more advanced search
techniques.

We investigate the search space and provide consider-
ations researchers should take when optimising software’s
energy consumption using GI. This paper makes three main
contributions:

1) The investigation shows how real-world energy
measures can be made while taking into account the
effects of per-device statistical error and systematic
error across devices.

2) Software testing traditionally relies on exact oracles
that do not tolerate output deviations; we show that
approximate oracles, which tolerate output devia-
tions, open the door to greater energy savings via
genetic improvement.
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1 Property getProperty ( L i s t <Summary> summaries ) {
2 L is t < int > values ;
3 for (Summary s in summaries ) {
4 values . add ( s . getValue ( ) ) ;
5 }
6
7 return new Property (
8 / / Mod_1 : aggregate → sample

9 new aggregate ( values )
10 ) ;
11 }
12
13 i n t sample ( L i s t < int > input ) {
14 input= s o r t ( input ) ; / / Mod_2 : D e l e t e t h i s l i n e
15 return input . get ( random ( 0 , input . s i z e ( ) ) )
16 ∗ input . s i z e ( ) ;
17 }

Fig. 1: Two software modifications: aggregate consumes more
energy than sample; Mod_1 replaces aggregate with sample,
which does not need sorted inputs, so Mod_2 combines with
Mod_1 to further reduce energy consumption.

3) Software changes that alter an application’s energy
consumption may interact: sometimes synergisti-
cally and sometimes antagonistically. We show that
this phenomenon is ubiquitous and implies that
sophisticated search must be used when optimising
software’s energy efficiency.

2 MOTIVATING EXAMPLE

The key to understanding the search space of energy-
efficient software optimisations is to know at what fre-
quency effective modifications occur, what impact they are
capable of producing, and whether synergy and antagonism
are common. We find these using both approximate and ex-
act test oracles. This section provides a motivating example
to explain these concepts.

In Figure 1, ‘Mod_1’ swaps a method that aggregates
a list (at line 9) with one that samples. This increases
the approximation of getPropery’s output but may achieve
considerable energy savings because of sampling’s relative
efficiency. This is the type of modification that an approxi-
mate test oracle allows.

If we further assume the input to the method sample is
sorted, then line 14, input = sort (input);, is not required.
The software engineer responsible for this line may have in-
cluded it to ensure robustness or due to a lack of knowledge
about the contract that the sample method obeys. Regardless,
guided by a sufficiently adequate test suite, GI can remove
such redundancies when using an exact test oracle. In pre-
vious GI work by Petke et al. [53] and later Bruce et al. [15],
such optimisations were found when deleting complex as-
sertions in MiniSAT’s Solver.c class. The ‘Mod_2’ example is
similar; an exact test oracle can find the modification, since
it does not affect the software’s output, only its target non-
functional property.

It is tempting to pursue the modifications found by the
exact oracle exclusively, as they produce benefits without
cost. However, if we permit the quality of output to degrade
(i.e. permit approximate output), then this should increase
the set of valid solutions in the search space and facilitate

the search for even more energy-efficient solutions. We are
the first to quantify the frequency of these modifications and
measure their interactions. Figure 1 demonstrates synergis-
tic software modifications. ‘Mod_1’ decreases the number of
times in which the more energy inefficient method aggregate

executes by replacing it with sample while ‘Mod_2’ increases
the efficiency of sample.

The equations below explain the basic mathematics of
this synergistic interaction. The energy consumed by the
program mp equals the sum of mg , the energy consumed
by getProperty, multiplied by Ng , the number of runs, and
ms, the energy consumed by sample, multiplied by Ns, the
number of samples. In our example, Ng ≥ 1 and Ns ≥ 1.
Activity outside these methods is assumed to be constant
and is represented by mo and thus we have

mp = msNs +mgNg +mo.

‘Mod_1’ changes getProperty to call sample instead of
aggregate. The energy consumption of getProperty thereby
includes the energy of a single iteration of sample plus the
remainder of getProperty minus the call to aggregate, ma. So
when Mod_1 is applied, mg → mg −ma +ms and we have

mp = msNs + (mg −ma +ms)Ng +mo

‘Mod_2’ decreases the energy consumption of sample, ms.
With ‘Mod_1’ present, energy is reduced in both msNs, and
in getProperty, formally mgNg is now (mg − ma + ms)Ng .
Without ‘Mod_1’, ‘Mod_2’ only affects the energy consumed
in sample, however, with ‘Mod_1’, ‘Mod_2’ may reduce en-
ergy consumption in both functions. In this investigation,
we wish to understand how frequent these synergistic (or,
the opposite — antagonistic) interactions occur within the
search space.

3 METHODOLOGY

In this section, we explain the design and implementation
of our measurement framework. We then discuss our source
code representation and how we modify it before explaining
how we compare the effectiveness and energy efficiency of
an original program and one of its variants, under both
exact and approximate test oracles. Finally, we introduce our
system for classifying interactions between modifications.

3.1 Measurement Framework
Given a set of modifications, we seek to measure the effect
on the energy consumption when each is applied to the
target application. In theory, the setup is simple: take a
program (modified or otherwise) along with an input and
measure its energy consumption during execution. In prac-
tice, however, it is not so simple: one must choose between
direct and indirect measurement and contend with the cost
of taking a measurement, since program execution can be
expensive.

Most previous search-based approaches to optimising
the energy efficiency of software have estimated energy
consumption [15], [16], [61]. These estimates can miss im-
portant high or low energy events thereby directing the
search away from an optimal solution. The only guaranteed
way to capture these events is to ensure the framework
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makes direct energy measurements rather than relying on
either estimates or simulation.

Programs are one component of a larger system: the
computer that executes them. At present, one cannot di-
rectly measure the energy consumption of a program, be-
cause existing devices do not expose the coupling points
between hardware components or operating system’s pro-
cesses. One can, however, directly measure the energy con-
sumption of the entire computing system; this is what we
choose to do in this investigation. Measuring the whole
system carries with it the challenge of contending with
statistical measurement error due to events external to the
program, like OS background processes. We mitigate these
effects by taking multiple measurements and averaging the
results.

Directly measuring the energy consumption of a pro-
gram entails running it, and, as we have just argued, the
system that hosts it. Thus, taking multiple direct measure-
ments exacerbates measurement cost. It thereby follows that
our framework must be efficient and scalable. For instance,
the experiments outlined in Section 6 require the evalu-
ation of 28,000 modifications, across 4 applications, with
each modification run multiple times against a test suite.
Some modification evaluations take up to five minutes to
complete. Fortunately, this task is easily parallelisable. Our
framework exploits this fact: it is a cluster of individual com-
puter systems, each of which can measure its own energy
consumption. Jobs (programs, modified or otherwise, along
with input data) are sent from a client to the cluster’s master
node, which then distributes jobs to nodes (a maximum of
one job running on any given node at any one time). This
node then measures its energy consumption while running
this job. The energy measurement, along with the output of
the job, is then returned to the client. Figure 2 shows our
framework’s layout with 2 nodes.

The nodes in this cluster are Raspberry Pi 2 Model B
devices [4], each running Raspbian OS [5], a GNU/Linux
OS based on Debian. The Raspberry Pis were chosen as
they provide a cheap computer system representative of a
real-world system in terms of architecture and their running
of a Unix-based operating system. Each Raspberry Pi node
can measure its own energy consumption via a MAGEEC
Energy Measurement Board [2].

The MAGEEC Energy Measurement boards are simple,
inexpensive devices which sample the voltage drop across
a resistor inline to the target’s power supply (i.e. the Rasp-
berry Pis’ power cable in our case) at a sustained rate of
2MHz. A micro-controller on the MAGEEC Energy Mea-
surement board listens for start and stop commands over
a USB connection. When a start command is received the
micro-controller begins sampling measurements and sends
readings across the USB connection until a stop command
is received. The MAGEEC board is controlled by a separate
Raspberry Pi device (we refer to this as the ‘measurement
board controller’) that is responsible for issuing the start
and stop requests and reading energy data from the USB
connection. As all the Raspberry Pi devices (nodes and
measurement board controllers) are on the same network,
nodes send requests to their respective measurement board
controller to start, stop, and receive energy measurements.
Each MAGEEC board can measure up to three targets at

Fig. 2: Diagram of the energy measurement cluster, showing
two nodes measured by a single energy measurement board.

once and, therefore, the ratio is three Raspberry Pi nodes to
every MAGEEC board plus an additional Raspberry Pi (the
measurement board controller) to manage the readings, and
the start and stop commands.

For clarity, here is an abstracted view of how a job is run
from the point of view of a node:

1) Receive a job from the master node.
2) Setup the job environment (typically decompressing

files and moving them to the correct directories).
3) Send a message to the measurement board con-

troller to begin energy readings.
4) Run the job.
5) Send a message to the measurement board con-

troller to stop energy readings.
6) Request the total energy reading from the measure-

ment board control.
7) Send the output of the job and the energy reading

back to the master node.

This setup mitigates the costly process of evaluating
many thousands of modifications and can easily be ex-
panded if needed. The relatively inexpensive components
are an advantage compared to alternative approaches, al-
lowing for more nodes than would otherwise be possi-
ble. As we discuss in Section 6.1, these MAGEEC energy
measurement framework is incapable of producing results
with the level of accuracy that we would deem acceptable
for most investigations and, as such, have had to report
proportional measurement increases/decreases which we
find are reliable. As in most endeavours, there is a clear
trade-off between quantity and quality of hardware.

3.2 Producing Variants

As previously noted, we use three genetic improvement
operators: copy, delete, and replace, each of which is applied at
the source code line level. We apply these to a simple tagged
representation of source code; a representation specially
created for GI research, first introduced by Langdon and
Harman in 2010 [33] and later utilised in a variety of other
GI work [34], [35], [53]. We refer to this format as the Langdon
format.
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<LzFind_259> ::= " if" <IF_LzFind_259> " \n"

<IF_LzFind_259> ::= "(p->keepSizeAfter >= 0)"

<LzFind_261> ::= "{\n"

<LzFind_262> ::= "" <_LzFind_262> "\n"

<_LzFind_262> ::= "MatchFinder_ReadBlock(p);"

<LzFind_265> ::= "}\n"

Fig. 3: A snippet from LzFind.c, a 7zip file, in the Langdon
format. Lines starting with <LzFind are unmodifiable.

#DELETE line 262

<_LzFind_262>

#REPLACE if condition in line 259 with if

#condition in line 307

<IF_LzFind_259><IF_LzFind_307>

#COPY line 299 and insert above line 325

<_Solver_325>+<_Solver_299>

#REMOVE line 262 and REPLACE if condition

#at line 259 with if condition in line 307

<_LzFind_262> <IF_LzFind_259><IF_LzFind_307>

Fig. 4: Four examples of modifications that may be applied
to LzFind.c.

To translate code to the Langdon format each line is
labelled with a unique identifier. These identifiers indicate
whether a line is modifiable or not. Unmodifiable identifiers
begin with <{FILE}. Opening and closing curly brackets, vari-
able initialisations, and function declarations, are unmodifi-
able. In the case of IF, WHILE, and FOR, only the conditions,
and the pre- and post-statements in the case of FOR, can be
modified. Figure 3 shows a snippet of source code in the
Langdon format.

At present, tools to transform code into the Langdon
format exist only for C/C++ code so we target only C/C++
applications in this investigation. As the operators to be
applied operate on source code lines, the targeted code is
formatted so that each statement is on its own separate line
to avoid modifications being applied to multiple statements.
Opening and closing curly brackets are moved to their own
line so any modifications to lines containing a statement do
not interfere with program scopes. In order to reduce er-
rors, we also ensure the bodies of bracketless one-statement
FOR/WHILE/IF are refactored to be enclosed by curly brackets.

Once converted to the Langdon format the source
code can be modified by simply deleting, replacing, or
copying a tag, taking into account the aforementioned re-
strictions. It can then be expanded back to the original
source code by taking the unmodifiable lines then ex-
panding them. For example, in Figure 3 <LzFind_262>, an
unmodifiable line, references <_LzFind_262>. When converted
back to source code <LzFind_262> is expanded to produce
MatchFinder_ReadBlock(p);\n.

Figure 4 shows an example of how modifications gener-
ated by the copy, delete, and replace operators are represented
and combined. A modifiable identifier alone, <LINE_ID>, is
a delete; a modifiable identifier followed, without a space,

by another, <LINE1_ID><LINE2_ID> is a replace that replaces the
former with the latter; and two identifiers separated by +,
<LINE1_ID>+<LINE2_ID>, is a copy operation that copies one line
(the latter) to another area of the source code (above the
former). A space separates multiple operations.

We replace the condition of an IF, FOR, and WHILE statement
only with the condition of a matching statement, i.e., an IF’s
conditional can only be replaced by another IF’s conditional,
etc. A FOR’s pre-statement can only replace another FOR’s pre-
statement, the post-statement another FOR’s post-statement.
When the delete operator is applied to a conditional clause, it
replaces the conditional with false; this is equivalent to the
deletion of the IF, FOR, or WHILE body. For example, the delete
operator transforms if(i < 10) to if(false).

In line with previous uses of the Langdon format, we
limit the search space by restricting the copy and replace
operations to a single file, e.g., a line from file X can only
be copied to another location in file X . This restriction
significantly decreases the number of compilation errors
related to out-of-scope variables and methods.

3.3 Assessing Individual Modifications

As we noted in our introduction, the search space of possible
modifications is vast, too vast to analyse exhaustively. We
therefore choose to uniformly sample it.

Formally, we define a modification as follows:

Definition 1 (Program Modification). A program modification
is a pair δ = (e,~l) where e ∈ {copy,delete,replace} and ~l is a pair
of program locations.

Remark. We require locations ~l to be a pair, since copy and
replace operations require two program locations.

We apply modifications chosen uniformly at random to
lines tagged as modifiable in the Langdon format (let this
number be n). We then add individual modifications that
compile to what we refer to as the Modification Set until the
cardinality of this set is 2n.

Algorithm 1 The Filtering Step
Input: E, a set of modifications (Def. 1)

P , the target software
T , the set of testcases
N , the number of energy measurements

1: t← uniformSelection(T )
2: MP ← {} # A set of energy measurements
3: for 1..N do
4: MP ←MP ∪ {m(P (t))}
5: end for
6: [bl, bh] =CI(MP ) # We discard bh; CI defined in text
7: E′ ← {}
8: for δ ∈ E do
9: P ′ ← applyMod(P , δ)

10: J ← m(O′p← P ′(t))
11: if testOracle(O′P , t) ∧ J < bl then
12: E′ ← E′ ∪ {δ}
13: end if
14: end for
15: return E′
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Even when sampling, we cannot evaluate every vari-
ant against all available testcases. Variants that are inert,
produce software that breaks hard-constraints or increase
energy consumption are uninteresting. In previous work,
we observed that these variants make up the majority of
any given local search space [15]. Therefore, we filter them
out.

Algorithm 1 presents our filtering algorithm. The algo-
rithm evaluates members of the modification set, E. First, it
uniformly selects a testcase t from a the set of testcases T .
Then, at lines 3 to 5 the algorithm runs the original program
P using test t with its energy measured via function m for
N times (100 in this case). The set of energy measurements
MP is then used to determine the 95% confidence interval
lower bound, bl. In lines 8 to 15, for each modification δ
in the modification set E, we apply the modification to the
program thereby creating a program variant P ′. We then
record the output of the program O′p, and measure the en-
ergy consumption, J (Joules), of this program variant. If the
variant passes the testcase (validated using an oracle) and its
energy consumption is less than the 95% confidence interval
(CI) of the mean lower bound, we add the modification to
the Candidate modification set, E′. After this filtering step,
the Candidate modification set contains those modifications
for which we can say, with statistical confidence, that an
improvement in energy efficiency has been observed while
still passing the testcase.

It should be noted that ‘passing’ a testcase in this in-
stance does not necessarily mean producing the same out-
put as the original, it may be approximated. For example, in
the case of 7zip to pass a testcase, the application must com-
press the testcase in a manner that it may be decompressed
to its original state though the compressed file generated by
a program variant is permitted to differ from that produced
by the original application. Section 5 precisely describes
the criteria used for the exact and approximate test oracles.
These criteria determine whether the software variants pass
or fail for a given input.

Algorithm 2 presents the pseudocode that explains how
we gather data to evaluate the candidate modification set.
For each testcase, t, the unmodified software is run N times
(N is 30 in our investigation) with its energy, J , measured
on each iteration via function m (line 5). Then, again for
each testcase, in line 9 each candidate modification δ is
applied to the unmodified software to produce the modified
variant, P ′. The modified variant then processes the testcase
with its energy J measured and its output O′P recorded for
N iterations. We subsequently use this data to determine
whether a modification produces a statistically significant
reduction in energy consumption, using the Mann-Whitney
U test (for the α level 0.05).

At line 13 of the algorithm, we record whether the
software variant has passed the testcase, and, at line 14, we
determine the Approximation Value, a, our unified approach
to recording values from both exact and approximate ora-
cles. We also determine whether the software variant has
passed the testcase, p. The formula for both the approxi-
mation value and what passing a testcase means for each
application is defined in Section 5.

In all cases, an approximation value of zero denotes
satisfaction of the exact oracle — that is, the output of the

Algorithm 2 The Evaluation Step
Input: E′, the set of modifications (Def. 1)

P , the target software
T , the set of testcases
N , the number of energy measurements

1: D ← {} #Collection of modification data
2: for t ∈ T do
3: OP ← P (t)
4: for 1..N do
5: J ← m(P (t))
6: D.addRecord(⊥, t, J , 0, true)
7: end for
8: for δ ∈ E′ do
9: P ′ ← applyMod(P , δ)

10: for 1..N do
11: J ← m(O′p← P ′(t))
12: p← testOracle(t, O′P )
13: a← getApproxVal(OP , O′P )
14: D.addRecord(δ, t, J , a, p )
15: end for
16: end for
17: end for
18: return D

modified program correspond to the output of the origi-
nal program (modulo the testcases). However, the results
of the approximation value can be non-zero, with higher
approximation values corresponding to greater degrees of
approximation. The calculation of the approximation value
is unique to the application domain and therefore approxi-
mation values from different applications cannot be directly
compared. If a new application were to be introduced, the
calculation of that application’s approximation value would
have to be created by an expert with domain knowledge.
This common terminology serves to combine very different
measures of approximation. We define the four domain-
specific approximation criteria we use in this investigation
in Section 5.

3.4 Classifying Interactions of Multiple Modifications
With this investigation, we wish to study how modifications
interact. In obtaining the data to do so, we take two effective
modifications (those known to pass all tests and reduce
energy consumption) and measure their energy when ap-
plied to a piece of software both individually then when
combined. The difficulty lies in interpreting the results.
In order to do so, we label an interaction in accordance
to its place within an Interaction Spectrum outlined in the
following definitions.

Definition 2 (Patch). A patch ∆ is a non-empty sequence of
modifications δ (Def. 1).

Remark. In the case where a location within the software is
modified, and that location is subsequently used by another
modification later in the sequence, the new value of that
location is used (i.e. the value of that location after the
preceding modifications have been applied). For example,
if line X is deleted via the delete operation, and then line Y
is replaced with the value of line X via the replace operation,
it is a deleted (i.e. blank) line that line Y is replaced with.
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Definition 3 (Interaction Spectrum). Let r(P∆) denote the
reduction in energy measurement when patch ∆ is applied to
program P . Formally, r(P∆) = m(P )−m(P∆), where m is our
energy measurement function. Two patches ∆1 and ∆2 interact
when the measure of their joint and independent application
differs. Formally, r(P∆1∆2

) 6= r(P∆1
)+r(P∆2

). Figure 5 shows
this interaction spectrum partitioned into three categories:

Synergy : r(P∆1∆2
) > r(P∆1

) + r(P∆2
)

Weak Antagonism : r(P∆1∆2
) < r(P∆1

) + r(P∆2
)

∧ r(P∆1∆2
) > max(r(P∆1

), r(P∆2
))

Antagonism : r(P∆1∆2
) < r(P∆1

) + r(P∆2
)

∧ r(P∆1∆2
) < max(r(P∆1

), r(P∆2
))

Remark. We classify an interaction as synergistic when the
joint application of two patches has a greater effect than
assuming no interaction. When weak antagonism occurs,
we accept that the patches interact in a way as to dilute their
effects but not in a manner that precludes their joint appli-
cation. When interactions exhibit synergy or weak antago-
nism, both patches should be applied because the reduction
in energy from their joint application exceeds either applied
alone; if the patches exhibit strong antagonism, the most
effective patch should be chosen and the other discarded.

4 RESEARCH QUESTIONS

Any attempt to improve energy consumption, search-based
or otherwise, relies on the ability to reliably measure energy.
Our first question therefore investigates the degree to which
our energy measurements are sufficiently reliable to assess
energy improvement:
RQ1, Measurement: What variance occurs when measuring
energy consumption?

As with all forms of real-world measurement, energy
measurements are vulnerable to a number of different
sources of variation. With this in mind, we wish to establish
the degree of variance to expect, both for a single energy
measurement device and across multiple devices. Even on a
single device, the amount of energy consumed may vary
when, on different occasions, exactly the same software
system is executed with exactly the same test suite; we wish
to understand the magnitude of this variance. If the variance
is high, then we have no foundation upon which to make
reliable measurements. We argue that any experimental
work on energy assessment or improvement should, as a
preliminary step, report results for such variance, in order to
exclude a serious potential threat to validity of the scientific
findings. This motivates our first research question:
RQ1a: What is the variance when measuring using a single
energy measurement device?

To answer this question, we choose a node within our
cluster as a test target. Then for each application, we uni-
formly select a testcase and execute the application 30 times
on the target node, recording the energy consumed during
each iteration. We use this data to measure within device
variance. This variance informs us of the statistical error in
the measurements we obtain.

Even if the variance is small when executing within a
device, there may be variance between different devices.
Several previous studies of energy assessment and im-
provement have reported results based on only a single
device [7], [41], [44]. This leaves open another potential
threat to the validity of the findings, which would occur
if different instances of the same device type give highly
different readings for the same software system and test
suite. While RQ1a informs us of the statistical error, we may
miss detecting a form of systematic error where different
devices give different measurements for the same process.

This motivates RQ1b:
RQ1b: What is the variance in direct energy measurements
across multiple devices?

To answer RQ1b, we uniformly select an application and
a corresponding testcase. We then run that application and
testcase pair on all the devices in the cluster, 100 times,
measuring the energy consumption each time. We use box-
plots (one box-plot per device) to determine if there is
variance in energy measurements across the devices.

Our goal in answering RQ1b is to find whether there
is systematic error across different devices. This error can
be tolerated if it is consistent as we are only interested
in the proportional differences in energy consumption when
assessing energy improvement, not the absolute measure of
energy consumed.

This motivates RQ1c:
RQ1c: What is the variance in proportional energy changes
across multiple devices?

To answer RQ1c, we uniformly select an application and
all of its testcases. We then run the application and with
all of its testcases on every device in the cluster. For each
device, starting with the testcase which consumed the small-
est amount of energy, we record the proportional increase
in energy consumption between it and the next smallest
testcase. We then create a box-plot for each of these pro-
portional increases across all devices to show whether these
proportional figures are reliable across our cluster. Once we
have determined the suitability of our energy measurement
cluster, we may begin evaluating our applications and the
variants produced by applying modifications to them.

When assessing whether an improved program is ac-
ceptable or not, we need a test oracle that determines
whether the behaviour of the improved program is accept-
able with respect to the behaviour of the original. In soft-
ware testing, more generally, this is an instance of the oracle
problem which, though significant, is largely unsolved [8].
However, one of the advantages of genetic improvement is
that the original version of the program can act as the test
oracle, against which improved versions are compared [24],
[60]. For a given candidate program variant, we compare
the behaviour of the original program with that of the candi-
dates to check whether it has deviated from the behaviour of
the original, and therefore should be discarded. This raises
the fundamental question of how much deviation from the
behaviour of the original can be tolerated.

For some application scenarios, no deviation can be
tolerated, but, in many other scenarios, exact replication
of the behaviour of the original is unnecessary. Previous
work on genetic improvement has shown that genetically
modified programs may improve not only targeted non-
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Fig. 5: The interaction spectrum (Definition 3) used in this investigation when studying the effects of two energy-saving
software modifications in respect to the energy consumed by the original software.

functional properties of interest, but also the functionality
of the original program [34]. In such situations, the original
program’s behaviour only acts as a guide to the desired
behaviour of the genetically improved program.

Furthermore, even when functional improvement is not
possible, the genetically modified program may need only
approximate the behaviour of the original, sacrificing some
degree of result quality for improvements in non-functional
characteristics. For example, work on graphics shaders in-
herently involves a precision-speed trade off that genetic
improvement techniques may exploit, producing image ren-
ders of lower quality in more limited time budgets [57]. Of-
ten minor quality degradation is imperceptible or acceptable
to the end user, making such trade-offs highly desirable.
Much of the work on energy improvement falls into this
category [28], [42], [47].

This motivates RQ2, which investigates using an approx-
imate test oracle that allows us to trade solution quality
against energy improvement:

RQ2, Improvement: What additional energy improvement
can be achieved when using approximate test oracles in
place of exact test oracles?

In answering RQ2, we investigate the degree to which
energy efficiency can be improved by sacrificing solution
quality, guided by a domain-specific approximate test oracle
in each case. We also investigate the effect of approximate
test oracles on the frequency and impact with which the
different genetic operators affect energy consumed and the
trade-off between energy consumption and solution quality.

Finally, we consider the way in which different genetic
improvement modifications to the original program com-
bine to improve energy efficiency. The motivation for this
research question derives from the way in which search-
techniques typically combine lower-level building blocks of
partially fit solutions in order to arrive at fitter combined
solutions [19], [25], [46]. In RQ3, we therefore study the
interactions of combinations of individual modifications,
reporting the frequency of different kinds of synergistic
effects:

RQ3, Synergy: How frequently do synergistic and antago-
nistic effects occur when combining known effective modi-
fications?

To answer RQ3, we perform a pairwise investigation of
the modifications found to reduce energy. We take 15% of
all possible pairings from the set of effective modifications
found in answering RQ2 (those found when using the
approximate test oracle). We evaluate each and report the
frequency of synergy and antagonism observed in accor-
dance to the interaction spectrum outlined in Section 3.4.

5 TEST SUBJECTS AND THEIR ORACLES

In order to answer these Research Questions, we chose four
test subjects using the following selection criteria.

5.1 Selection Criteria
The tool used to generate the Langdon format required
all software to be C/C++ with license permitting its use
for experimental purposes. As evaluation takes places on a
Raspberry Pi device running the Raspbian OS, the software
had to be compilable within this environment.

Due to inevitable overheads associated with sending
energy measurement start and stop commands over a net-
work [36], [37], we chose applications that have a non-trivial
execution time, which we have defined to be greater than
5 seconds. The larger the execution time, the smaller the
overheads are as a percentage of total energy consumption.

We limited the selection further to applications that can
be run via command line, have testcases (or applications in
which they can easily be generated), provide a deterministic
output for any given input and, once execution has started,
do not require further user interaction. We imposed these
requirements to aid in the automation of experiments.

In choosing these applications, we consulted relevant
literature on energy optimisation and found the PARSEC
benchmark suite has been utilised frequently [28], [55].
We therefore decided that applications from these suites
should make up part of our selection. To avoid selecting
from a single source, we limited selection from the PARSEC
benchmark suite to two applications then searched open-
source repositories, such as GitHub and SourceForge, for
the remainder. In addition to the criteria outlined above, we
diversified the application domains in our corpus, searching
until we found applications in each of the following applica-
tion domains: file compression, video processing, database
processing and image processing.

We selected from these domains as they are both im-
portant and popular, thus mitigating any concerns that our
findings are not representative of real-world software. Fur-
thermore, we believed these domains were likely to satisfy
our aforementioned requirements, particularly in that they
are all domains known to have non-trivial execution times
for inputs that can be easily obtained or generated.

Table 1 shows the applications’ domain, their lines of
code (LOC), the number of lines modifiable in the Langdon
format, and the number of modifications we generate and
study. In the following subsections, we summarise each
application, focusing on the technical or implementation
details relevant to our investigation.

5.2 7zip
7zip Version 9.38.1 (Unix/Linux port) [1] is an open source
file archiver with its own 7z archive format. It consists of
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App Domain LOC Modifiable LOC No. of Modifications
7zip Compression/decompression 136,828 2,524 5,000
Ferret Image Search-Engine 13,260 5,032 11,000
Bodytrack Body tracking 3,020 1,030 2,000
OMXPlayer Media Player 14,164 5,184 10,000
Total 28,000

TABLE 1: Number of modifications investigated for each application studied.

136,828 lines of C/C++ code spread over 400 files. For the
experiments outlined in this paper, we concerned ourselves
only with the core Lzma compression and decompression
algorithms for optimisation. Excluding files associated with
user I/O behaviour, we identified 6 files (7zCrcOpt.c, LzFind.c,
Lzma2Dec.c, Lzma2Enc.c, LzmaDec.c and LzmaEnc.c) that accounted
for over 99% of execution time when compressing and
decompressing a 50MB text file. We chose to optimise these
files exclusively due to their dominant role in the applica-
tion. These files contain 6,258 lines of C code, 2,524 of which
are modifiable in the Langdon format. For our experiments,
we generated a modification set of size 5,000.

7zip is evaluated by measuring the total energy required
to compress and then decompress a testcase. For a testcase
to pass, the testcase must be compressed and then decom-
pressed to its original state. The approximation value is
calculated using the compression ratio. Equation 1 shows
how this approximation value is calculated. The original
program P compresses a testcase, t, with the size of the
compressed testcase recorded (we overload | · | to denote file
size). We do the same with the modified program P ′. The
approximation is the size of the compressed file produced
by the modified program divided by the compressed file
produced by the original. This ratio has one subtracted so
that a value of zero is returned when there is no change in
compression rates. A higher approximation value indicates
worse compression while a lower approximation value in-
dicates better compression in the modified software.

We use 40 testcases to evaluate 7zip: 10 audio files,
10 text files, 10 image files, and 10 large files. The
latter includes files and directories which range from
22.2MB to 64.4MB while the other three categories con-
tain files with sizes ranging from 546KB to 12MB. These
testcases covered 42% of all modifiable statements. We
ran 7zip using ./7za a test.7za {test} to compress and
./7za x test.7za -o ./output/ to decompress.

|P ′(t)|
|P (t)|

− 1 (1)

5.3 Ferret

Ferret is an image search engine. The program takes an im-
age database and an image query as inputs. It then searches
the databases for images similar to the input image and
returns the top candidates ranked by relevance (the number
dependent on configuration). Ferret is part of Princeton’s
PARSEC Benchmark Suite [10] and has previously been
used as a candidate for genetic improvement at the machine-
code level by Schutle et al. [55]. We are using the most up-to-
date version of Ferret at the time of writing; that contained
within Parsec 3.0. Ferret is made up of 52 C/C++ files (ex-
cluding libraries) which contain 13,260 lines of code. When

the Langdon format is used, 5,032 lines of code are deemed
as modifiable. Due to Ferret’s relatively small size, we have
chosen to optimise the entire application. We generate a
modification set consisting of 11,000 modifications.

We use the ‘simlarge’, ‘simmedium’, and ‘simsmall’ test-
cases provided as part of the PARSEC Benchmark Suite. The
‘simlarge’ runs 256 image queries on a database of 34,973;
the ‘simmedium’ runs 64 images queries on a database of
13,787 images; and ‘simsmall’ runs 16 image queries on
a database of 3,544 images. Without alteration, these will
return the top 10 from the ranking. In our work, we increase
this so that the top 50 are returned to achieve greater
granularity in the approximation value. For a testcase to
pass, a non-null ranking must be returned by the applica-
tion. We found our testcases covered 41% of all modifiable
statements.

The calculation of the approximation value is shown in
Equations 3 and 4. The output rankings produced by the
original software P is compared against that produced by
the modified software P ′.

For each query (q ∈ Q), the ranks are compared us-
ing Kendall’s τ ranking statistic, τ . For equal rankings,
Kendall’s τ returns one and tends to negative one for more
unequal rankings produced. Our approximation value rules
require zero to be returned when no approximation has
taken place and tend higher for more approximate solu-
tions. Equation 3 manipulates the Kendall’s τ statistic to
conform to this by incorporating a stretch factor s which
we set to 5,000. This results in K, our modified ranking
statistic, ranging from 0 for equal rankings to 10,000 for
completely unequal rankings. The interval arithmetic [26]
for K is shown in Equation 2. The approximation value is
the average over all queries. If an image was ranked in the
top 50 for the original output but not the modified output
then it is added to the end of the modified ranking. We run
Ferret using ./parsecmgmt -a run -p ferret -i {test}.

τ(L1, L2) = [−1, 1] #Range of τ
[0, 2] = [−1, 1] + [1, 1] #Shift interval

[0, 2s] = [0, 2] ∗ [s, s] #Stretch by s ∈ R+

2s− s(τ(L1, L2) + 1)

= [2s− 2s]− [0, 2s] #Complement by 2s

(2)

K = 2s− s(τ(L1, L2) + 1) (3)

1

|Q|

Q∑
q

K(P (q), P ′(q)) (4)
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5.4 Bodytrack
Bodytrack is a computer vision application that tracks a
human body through an image sequence. The application is
capable, without markers or human involvement, to recog-
nise body position from an array of cameras over a series of
frames. It then adds boxes to mark it for a human-readable
output. It is part of Princeton’s PARSEC Benchmark Suite
[10], version 3.0. Excluding libraries, Bodytrack consists
of 23 C++ files that, in total, contain 3,020 lines of code.
When the Langdon format is applied 1,030 lines of code
are modifiable. A modification set of 2,000 was created to
investigate Bodytrack.

Bodytrack comes with three test sets: ‘simsmall’,
‘simmedium’, and ‘simlarge’. The ‘simsmall’ test set con-
sists of 4 cameras, each of which take 1 frame of footage.
‘simmedium’ has 4 cameras and takes in 2 frames of footage.
‘simlarge’ has 4 cameras and takes in 4 frames of footage.
The output for each is a series of points which can be
plotted on the input frames to highlight the location of a
body within it. For a testcase to be passed, Bodytrack must
return the same number of points (of non-null value) as the
original, unmodified application. These testcases covered
66% of all modifiable statements.

Algorithm 3 calculates Bodytrack’s approximation. It
averages the differences between the points produced by
the original software, lP , and the points produced by the
modified software l′P (both contain 1..N points) for any
given input. The difference between two points is the sum
of the difference in the x component plus the difference in
the y component. An approximation value of zero means
the output is identical to the original and gets higher as the
results become more approximate. We run Bodytrack using
./parsecmgmt -a run -p bodytrack -i {test}.

Algorithm 3 Bodytrack’s Approximation Calculation
1: lP ← P (t)
2: l′P ← P ′(t)
3: assert(lP .size() == l′P .size())
4: N ← lP .size()
5: while lP 6= {} do
6: (x, y) = lP .dequeue()
7: (x′, y′) = l′P .dequeue()
8: s← s+ |x− x′|+ |y − y′|
9: end while

10: return s
N

5.5 OMXPlayer
OMXPlayer [3] is a Video Player operated via command-
line interface. It takes in a video file and outputs the nec-
essary data to the HDMI port. Of particular interest for
this investigation is that OMXPlayer has been specifically
designed with the Raspberry Pi hardware in mind, taking
advantage of the Raspberry Pi’s GPU. It thereby differs
from the other candidates that exclusively interact with the
traditional computer architecture.

OMXPlayer consists of 14,164 lines of code spread over
24 C++ files. This excludes the FFmpeg package which, though
included in the source code and necessary for execution,
functions as a third-party library to the application. The

number of lines tagged as modifiable using the Langdon
format is 5,184 and a modification set of 10,000 modifica-
tions was generated.

The tests for OMXPlayer consist of MP4 video clips gath-
ered from https://archive.org. The videos’ average length is
14.7 seconds with a minimum of 13.0 seconds and maximum
of 15.0 seconds. These testcases covered 38% of all modifi-
able statements. In order to evaluate modified versions of
OMXPlayer, the application is modified to copy the data
that would be sent through the HDMI interface to a text
file; one HDMI packet per line. As this writing to file may
have some impact on energy consumption, all OMXPlayer
variances are run twice. Once with the HDMI-to-textfile
functionality and again without. The latter is when the
energy measurement is taken; the former is used to evaluate
the approximation value. For a testcase to pass a non-null
output must be written to the text file.

As equation 5 shows, the approximation value for any
given test is calculated by taking the number of lines re-
turned by a POSIX diff on the output generated by the origi-
nal software, LP , in comparison with the output of the mod-
ified software, L′P , for a given testcase. This is then divided
by the total number of lines the original output. Therefore,
zero is returned when the outputs are identical and tends
higher the more approximate the output becomes. We use
this as a proxy for video quality. The more HDMI packets
that differ from the original, the more lines will be returned
by POSIX diff and the higher the approximation value will
be. We run OMXPlayer using ./omxplayer -p -o hdmi {test}.

|diff(LP , L
′
P )|

|LP |
(5)

6 RESULTS

We measure energy consumption for both the original and
all the 28,000 software variants (see Table 1) of the four test
subjects presented in Section 5, using the methodology out-
lined in Section 3. Having thereby identified a set of effective
(i.e., energy reducing) modifications, we uniformly sample
15% of all possible pairwise combinations. We apply these,
in turn, to the four applications under test and measure the
energy consumption to check for synergistic or antagonistic
effects. We summarise our results and answer the research
questions posed in Section 4 as follows.

6.1 RQ1: Measurement

The first research question is concerned with the reliability
of energy measurements within our Raspberry Pi cluster. In
particular, we ask: what variance occurs when measuring energy
consumption?

RQ1a asks “What is the variance when measuring using
a single energy measurement device?”. To answer this, we
plot the variance in energy measurement, within a single
device, across all applications studied. This results in the
box-plots found in Figure 6. The mean for 7zip is 48.45J
with a standard deviation of 0.31, for Bodytrack, 100.19J
with a standard deviation of 1.17, for Ferret, 363.25J with a
standard deviation of 1.26, and for OMXPlayer, 57.17J with
a standard deviation of 0.18. We therefore conclude that the
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Fig. 6: The variance in measurements that occurred when
running each application (unmodified) 30 times on the same
device on a uniformly chosen testcase.

precision of the energy measurement setup is sufficiently
high for the needs of our investigation.

RQ1b asks “What is the variance in direct energy measure-
ments across multiple devices?”. To answer this we measure
the energy consumption of each node running 7zip (chosen
uniformly at random from the four applications studied)
on a single, uniformly chosen testcase (in this case, ‘The
Complete Works of William Shakespeare’, a 5.6MB file).
The box-plots in Figure 7 show the distribution of energy
readings for each Raspberry Pi device. As can be seen,
the measurements vary noticeable between devices but are
consistent within each device. In answering this research
question, we also observed that restarting a node in the
cluster can result in different readings compared to those
given before its restart. This did not interfere with our
experiments as readings between restarts were consistent.
A survey of the relevant literature unearthed analysis by
Kalibera et al. [29] which describe this phenomenon as
a little known, but none-the-less near-universal, problem
when taking measurements of modern computer systems.
The significant differences that can occur when rebooting
is primarily due to non-deterministic properties in mod-
ern operating systems, particularly memory management
which can have a knock-on effect on cache hit-rates. In line
with our findings, the measurements are consistent between
restarts.

Therefore we conclude that this approach to measuring
energy consumption produces result that lack accuracy but
have good good precision [58]. As Figure 7 shows, it is impos-
sible for each reading to be accurate, but within each device,
the readings are precise. This inaccuracy, however, is only
relevant if we want to obtain energy reductions or increases
in Joules which, in this investigation, we do not. In our

Fig. 7: The variance in measuring the same program with
the same input across different devices.

investigations, we wish to obtain the proportional change
between software variants and, therefore, it is important to
show that the proportional change observed in one device
is consistent across all devices.

It is for this reason RQ1c asks “What is the variance in pro-
portional energy changes across multiple devices?”. To answer
this, we ran Bodytrack (uniformly chosen from all applica-
tions studied) with each of its three testcases (‘simsmall’,
‘simmedium’, ‘simlarge’) on all devices in the cluster and
recorded the proportional increases in energy consumption
between simsmall and simmedium, and simmedium and
simlarge for each device within the cluster.

The box-plots in Figure 8 show these proportion in-
creases between the three Bodytrack testcases. The dif-
ference between the simsmall and simmedium averages
56.64% with a standard deviation of 1.03, and the difference
between simmedium and simlarge averages to 38.46% with
a standard deviation of 1.01. Given this small standard
deviation, we believe that proportional increase or decrease
between two measurements within the same devices is con-
sistent across all devices. Thus, any observed proportional
increase or decrease is reliable across the cluster.

6.2 RQ2: Improvement
We are concerned with the trade-off between energy con-
sumption and solution quality produced by modified soft-
ware, which we obtain using the delete, copy and replace
search operators. Therefore, we ask: what additional energy
improvement can be achieved when using approximate test oracles
in place of exact test oracles?

In order to obtain a baseline measurement, we first inves-
tigate the question: what is the frequency and impact of energy-
efficient modifications in the local neighbourhood when using ex-
act test oracles? To answer this, we extract the data generated
from the experimental procedure outlined in Section 3. We
only consider a modification to be successful when it, on
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Fig. 8: The variance in proportional energy change across
different devices for Bodytrack’s simsmall, simmedium, and
simlarge testcases.

Application +ve Mods %age Mods Max Average
7zip 0 0.00% N/A N/A
Ferret 0 0.00% N/A N/A
Bodytrack 6 0.30% 2.69% 1.54%
OMXPlayer 4 0.04% 2.32% 1.51%
Average 2.5 0.09% 1.25% 0.76%

TABLE 2: Each application with the number and percentage
of modifications that reduced energy consumption accord-
ing to an exact test oracle. The average and maximum
magnitude of these modifications is also included.

average, reduces energy consumption across 30 runs with
this effect observed to be statistically significant (p < 0.05
according to the Mann-Whitney U test) for each testcase. As
we use exact test oracles in answering this research question,
we exclude any modifications that have an approximation
value not equal to zero.

Table 2 shows the results obtained to determine the
frequency and magnitude of effective modifications in the
local search space (i.e., defined by the delete, copy and replace
operators), assessed using exact test oracles. The most strik-
ing finding is the frequency of modifications that reduce
energy consumption (i.e. ‘+ve mods’); averaging only 0.09%
across all cases. The impact of these is an average decrease of
1.25% across all applications with a maximum of 2.69%. This
is a striking finding as it indicates only small improvements
can be found in the one-step local neighbourhood when
using an exact test oracle.

Table 3 reports results obtained when approximate out-
puts are permitted. We analyse the same dataset but allow
modifications with a non-zero approximation value. As dis-
cussed in Section 5, a higher approximation value for 7zip
means less compression; for Ferret, a greater inaccuracy in
the search engine result rankings (using the original ranking
as the baseline); for Bodytrack, a larger error in the plotting
of the body’s location within a series of images; and for

Application +ve Mods %age Mods Max Average
7zip 8 0.16% 48.24% 13.16%
Ferret 157 1.43% 79.88% 51.13%
Bodytrack 72 3.60% 33.69% 8.17%
OMXPlayer 24 0.24% 95.60% 63.15%
Average 65.25 1.36% 64.35% 33.90%

TABLE 3: Each application with the number and percentage
of modifications that reduced energy consumption accord-
ing to an approximate test oracle. The average and maxi-
mum magnitude of these modifications is also included.

Fig. 9: The output from two versions of the Bodytrack
application. The image on the left is generated from the
original application and the image on the right is generated
from a modified variant. The ‘body tracking’ on the right is
approximated but takes 33.69% less energy to compute.

OMXPlayer, a greater proportion of incorrect, or misplaced,
HDMI packets. As our approximate oracles permit a sig-
nificant degradation in output quality, it should be noted
that the solutions which make up the averages in Table 3
may not be applicable in many real-world environments.
As an example, a valid approximation for 7zip could be an
alteration which results in it producing compressed files of
equal or greater size than what was input. Evidently such
a result would not be of use in any conceivable domain.
What we wish to demonstrate here is that approximation
is an avenue for more optimisations; that the more a GI
practitioner permits approximation, the more energy saving
solutions can be found.

We found that approximation increased the frequency of
effective modifications in the local search space to 1.36%; a
15-fold increase compared to those found when using the
exact test oracle. This increase in frequency was mirrored in
the increase in impact the average modification was capa-
ble of producing. While the average effective modification
energy consumption reduction when using the exact test
oracles was 1.25%, an average reduction of 33.90% was
achieved when using approximate test oracles.

As previously mentioned, these statistics assume any
level of approximation is acceptable. Therefore, Table 4 pro-
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vides Pareto fronts for each of the applications investigated
which show the energy reduction vs. output quality trade-
off. The approximation value in each case is calculated using
the formulæ presented in Section 5. For each, we describe
what each Pareto optimal solution produces when run. We
also sample a single approximate solution for each applica-
tion and attempt to explain why the modification reduced
energy consumption and reduced the output quality.

In the case of 7zip, the Pareto front contains 4 solutions,
ranging from a 5.08% energy reduction with an approxi-
mation value of 3.93× 10−4 to a 48.30% reduction with
an approximation value 0.741. The latter translates to the
compressed file generated by the modified software being,
on average, 74% larger than if compressed using the unmod-
ified version of 7zip. This variant of 7zip is still performing
non-lossy compression but less effectively. We analysed this
solution in greater detail and found the modification deleted
a line in LzmaEnc.c, which initialised the a variable declaring
dictionary size (an unsigned 32 bit integer) to zero. There
is then a method that follows which sets the dictionary size
variable to 8MB if the dictionary size variable was initialised
to zero. Otherwise, the dictionary size variable is kept at its
specified non-zero value. As uninitialised integers produce
undefined behaviour in C, the value of the dictionary size
varies between runs though, from our observations, this was
always significantly below the 8MB figure. The highest we
observed was 4KB. A lower dictionary size inevitably leads
to less compression and a shorter execution and, therefore,
less energy consumed overall.

For Ferret, there are 6 Pareto optimal solutions. This
ranges from a 43.19% reduction in energy, for an approx-
imation value of 0.154, to a 79.88% reduction in energy,
for an approximation value of 6221.220. In the former case,
the approximation value translates to a Kendall’s τ of 0.73.
The next solution on the Pareto front achieves a 60.79%
energy reduction with an approximation value of 39.873.
This approximation value translates to a Kendall’s τ of -0.95,
a value close to the Kendall’s τ ‘worst case’ of -1. Therefore,
five of Ferret’s six Pareto optimal solutions produce solu-
tions close to random (i.e. with very high inaccuracy). We
sampled the solution with a 43.19% energy reduction and
an approximation value of 0.154. This modification applied
the delete operator to the condition of a FOR loop within emd.c

(i.e. turned it to false). This turned off an energy intensive
branch within Ferret’s EMD (Earth Mover’s Distance) algo-
rithm. The EMD algorithm computes the distances of colour
histograms; Ferret uses it a metric to show how similar two
images are. With this modification, this distance is more
approximate and therefore leads to a different ranking of
images output for any given target.

Bodytrack has 5 Pareto optimal solutions. These range
from a 2.69% reduction where there is no approximation to
a reduction of 33.69% with an approximation value of 0.452.
Figure 9 shows the most energy-efficient solution’s output
compared to that produced by the original, unmodified
software. We sampled the instance with a 33.69% energy
reduction and a 0.452 approximation value. Bodytrack func-
tions by iteratively generating models (configurations of the
wire-frame body, like that shown in Figure 9), assigning
them weights proportional to their likeness of the body
within the image. A subset of models are selected pro-

portional to these weights and these models are ‘mutated’
by incrementing their parameters by random amounts as
determined by the Gaussian distribution. This process is
repeated until the maximum number of iterations is met
or until the the search converges on a model that has a
sufficient likeness to the body within the image. Bodytrack
determines the likeness of a model to the input image
via an error function. The modification responsible for the
33.69% reduction in energy consumption deletes a line in
Bodytrack’s ImageMeasurements.cpp file which interferes with
how this error is calculated, effectively lowering it. This
allows Bodytrack to converge on a more approximate model
earlier, reducing execution time and, by extension, energy
consumption.

Finally, the OMXPlayer Pareto front contains 5 Pareto
optimal solutions. We visually inspected the video output
when these modifications were applied. We found the three
most approximate solutions did not produce video output
which was viewable (a black screen with no audio). The next
most approximate solution achieved a 78.45% reduction
with an approximation value of 0.003. This approximation
value means, on average, 0.15% HDMI packets differed
from the output of the original application. We found
that this solution was viewable but played video files at
increased speed and with distorted audio. The solution
with no approximation and a 2.32% reduction in energy
consumption, when visually inspected, was identical to the
original as expected. We sampled the instances of observing
a 78.45% reduction with an approximation value of 0.003.
We found that this was due to a copy operation in OMX-
Player’s OMXPlayerAudio class; modifying an IF statement’s
condition, turning its condition to true. This resulted in
declaring audio to be ‘passed through’. Pass-through is
an option available in media players to turn off audio
decoding and, instead, output encoded. This is desirable
when the user wishes to offload decoding to more advanced
hardware, such as home stereo setups. This explains why
audio was so distorted in our inspection of this modifica-
tion. It also partway explains the energy reduction as this
modification removes costly audio decoding. We also found
the speed of the video increases due to this modification.
The reason for this is less clear but appears to be due to
how OMXPlayer processes video along side audio. Each
are allocated their own thread and, to ensure these threads
remain in-sync, the video is sped up or sped down to
keep in-sync with the audio. Normally, these corrections
would be unnoticeable to the user, speeding up or slowing
down video stream by a small amount for a small period
of time. As this modification results in the audio being
passed through instead of processed, the audio thread runs
considerably faster and thus the video speed is increased in
a futile attempt to remain in-sync. If the user specifies audio
pass-through when running the program via the command
line interface, checks are done to ensure the audio is passed-
through to external decoders. If these checks fail, the user’s
decision is overridden. This modification bypasses these
checks. We believe this increased video speed explains most
of the energy reduction as it simply results in the total
execution time of the video player decreasing.

Using the data gathered in this investigation, we were
able to determine how frequently each of the search op-
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Energy Reduction Approximation Value
5.08% 3.93× 10−4

12.29% 0.072
13.17% 0.102
48.30% 0.741

(a) 7zip

Energy Reduction Approximation Value
43.19% 0.154
60.79% 39.873
75.53% 78.800
75.55% 1550.200
76.21% 2669.710
79.88% 6221.220

(b) Ferret

Energy Reduction Approximation Value
2.69% 0.000

19.26% 0.131
27.97% 0.170
29.13% 0.192
33.69% 0.452

(c) Bodytrack

Energy Reduction Approximation Value
2.32% 0.000

78.45% 0.003
92.70% 0.637
95.53% 1.002
95.60% 1.043

(d) OMXPlayer

TABLE 4: Pareto fronts for the four subjects investigated showing trade-off between energy consumption and solution
quality.

delete copy replace
7zip 5 0 3
Ferret 81 7 69
Bodytrack 44 1 27
OMXPlayer 8 3 13
Percentage 52.9% 4.2% 42.9%

TABLE 5: Number of effective modifications using the delete,
copy and replace search operators across all applications.

erators occur in energy-saving modifications. Forest et al.
[20] and Le Goues et al. [38] evaluated the delete, copy,
and replace operators in the context of automated software
repair. They found that delete is the most effective at ‘fixing’
bugs (Qi et al. have since shown that many of these ‘fixes’
reduced symptoms rather than repaired bugs [54], however,
this form of pseudo-repair may be sufficient in some cir-
cumstances), followed by replace with copy being consider-
ably less successful. We find this trend largely holds when
applied to genetic improvement for energy consumption.
Table 5 shows the frequency of effective modifications, for
each application studied, broken down by operator type.
delete, followed closely by replace, are most likely to produce
an effective solution. Table 6 shows the average and median
energy reduction per operator type. This table shows that
when copy is effective (albeit rarely as shown in Table 5) it
can have the biggest impact, followed by delete, then replace.

In viewing these results, we were motivated to discover
how many of the replace operations were, in effect, delete
operations; replace operations in which the same effect could
be obtained via a single delete operation. We uniformly
sampled 20% of the effective replace modifications (those
that reduced energy consumption and passed the tests,
with approximation permitted) from each application and
manually inspected them2. Our manual inspection process
involved two software engineering researchers who exam-
ined each replace operation independently and classified
them as either ‘delete-by-proxy’ when it was decided the
same effect was possible via the application of a single
delete operation, or as ‘genuine replace’ when this was not

2. We sampled a minimum of one, for applications with less than 5
effective replace modifications.

possible. We reserved classification ‘unknown’ if there was
insufficient evidence from manual inspection of the source-
code to make a decision. Once both manual inspectors
completed their classifications, the inspectors met and com-
pared their classifications. Where there were conflicts in a
modification’s classification, the inspectors discussed their
reasoning for their respective classification with the goal of
coming to an agreement. In this case, the two inspectors
reached agreement on all modifications.

We record the findings of this study in Table 7. Half of
all replace operations could have occurred through a single
delete operation, though a substantial minority, 38%, were
genuinely replace operations which could not be recreated
using a single delete. Referring back to Table 5, which shows
52.9% of all effective modifications were delete with 42.9%
being replace, we can add more weight to the argument
that delete is most effective as half of all replace are effective
deletions.

6.3 RQ3: Synergy and Antagonism
This research question asks How frequently do synergistic
and antagonistic effects occur when combining known effective
modifications? We answered this question by selecting a
subset (random uniform selection at 15%) of all available
pairs of effective modifications (approximation permitted),
evaluating them, then classifying them according to our
interaction spectrum, as defined in Section 3.4.

Table 8 shows the distribution of the interaction clas-
sifications. As can be seen, at 49.5% of all pairings, weak
antagonism is the most common classification. 12.0% of all
pairings were found to exhibit synergy though this figure
is skewed by Bodytrack where 35.3% of all pairings were
classified as having a synergistic interaction.

In total, 38.5% of modification pairings produce antag-
onistic behaviour. To obtain the most optimal solutions,
it is evident that effective modifications must be selected
carefully and therefore greedy approaches will rarely pro-
duce superior solutions. Though 61.5% of modification pairs
are worth combining, the rate of antagonism is high. For
this reason, we advocate the usage of evolutionary search
techniques such as GAs. They are capable of building com-
plex solutions by testing the interaction of components. Bad



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2827066, IEEE
Transactions on Software Engineering

15

delete copy replace
7zip 16.60% (12.29%) 0.00% (0.00%) 7.42% (5.08%)
Ferret 56.45% (73.64%) 64.74% (75.17%) 43.50% (37.23%)
Bodytrack 8.27% (4.70%) 0.16% (0.16%) 8.31% (7.09%)
OMXPlayer 57.01% (71.09%) 71.86% (78.40%) 64.92% (78.44%)
Average 34.58% (40.43%) 46.59% (38.43%) 31.04% (31.96%)

TABLE 6: The mean and median (bracketed) impact of effective delete, copy, and replace modifications, in terms of % of
energy reduction, across all applications.

Delete-by-proxy Genuine Replace Unknown
7zip 0 0 1
Ferret 7 4 1
Bodytrack 4 2 0
OMXPlayer 0 2 1
Total 13 (50%) 10 (38%) 3 (12%)

TABLE 7: A 20% sample of all effective replace operations
manually classified as either effective delete operations, le-
gitimate replace operations or unknown effect

App synergy weak antagonism antagonism
7zip 0.9% 60.4% 38.7%
Ferret 9.2% 48.8% 42.0%
Bodytrack 35.3% 40.1% 24.6%
OMXPlayer 2.6% 48.7% 48.7%
Average 12.0% 49.5% 38.5%

TABLE 8: The percentage of effective modification pairings
within the Interaction Spectrum (Def.3).

interactions incur a fitness penalty thereby disincentivising
their combination in the population even when individually
they are of benefit.

We chose to investigate an instance of synergy and an in-
stance of antagonism to better understand the phenomenon.
7zip has one instance of ‘synergy’ and was the first found
in this investigation. We therefore dedicated some time to
investigating the synergistic interaction.

The two modifications responsible for synergy in the
case of 7zip altered lines in two separate classes, LzmaEnc.c

(shown in Figure 10) and LzFind.c (shown in Figure 11).
We monitored the control flow of the LzmaEnc.c class when
running without any modification, modification just in
LzmaEnc.c, modification just in LzFind.c, and, finally, when
both classes were modified. We observed that the control
flow in LzmaEnc.c is the same whether the LzFind.c modifi-
cation is applied exclusively or no modification is applied.
When the LzmaEnc.c modification is solely applied it results
in the skipping of a large portion of a frequently iterated
for-loop. This is shown Figure 10 where line 40 is deleted
thereby leaving numAvailFull uninitialised. In our analysis
this resulted in the IF condition at line 46 being true at
a much higher frequency than it would when numAvailFull

was initialised. When both modifications are present, the
LzmaEnc.c maintains this behaviour but, in addition, the like-
lihood of returning at Line 35 also increases.

The modification in LzFind.c, in Figure 11, achieves
this additional, synergistic behaviour. This modifica-
tion, the application of a delete operation at line
40, turns while (++len != lenLimit) to while (false) in the
Hc_GetMatchesSpec method. We found this results in the value
returned by Hc_GetMatchesSpec having a higher likelihood of
being a lower value. This is passed, via GetMatches, to the

1 s t a t i c UInt32 ReadMatchDistances ( CLzmaEnc ∗p ,
2 UInt32 ∗numDistancePairsRes )
3 {
4 UInt32 lenRes = 0 , numPairs ;
5
6 . . .
7
8 numPairs = p−>matchFinder . GetMatches (
9 p−>matchFinderObj , p−>matches ) ;

10
11 /∗
12 ∗ C a l c u l a t i o n d e t e r m i n i n g
13 ∗ t h e v a l u e o f l e n R e s
14 ∗ /
15
16 . . .
17
18 return lenRes ;
19 }
20
21 s t a t i c UInt32 GetOptimum ( CLzmaEnc ∗p ,
22 UInt32 pos i t ion , UInt32 ∗backRes )
23 {
24 . . .
25
26 lenEnd = ReadMatchDistances ( p , &numPairs ) ;
27
28 . . .
29
30 for ( ; ; ) {
31 UInt32 numAvailFul ;
32
33 cur ++;
34 i f ( cur == lenEnd ) {
35 return Backward ( p , backRes , cur ) ;
36 }
37
38 . . .
39
40 numAvailFull = p−>numAvail ; / / Mod : D e l e t e
41 UInt32 temp = kNumOpts − 1 − cur ;
42 i f ( temp < numAvailFull ) {
43 numAvailFull = temp ;
44 }
45
46 i f ( numAvailFull < 2)
47 continue ;
48
49 . . .
50
51 }
52 }

Fig. 10: Synergy Modification (LzmaEnc.c).

ReadMatchDistance method in LzmaEnc.c. This value is then
used to calculate a variable, lenRes, the value of which
ReadMatchDistance eventually returns and assigns to lenEnd in
getOptimum at line 26. Though other factors feed into this
calculation, a lower value returned by GetMatches results in
a lower value returned by ReadMatchDistances. Ultimately, the
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1 UInt32 GetMatches ( CMatchFinder ∗p ,
2 UInt32 ∗d i s t a n c e s )
3 {
4 UInt32 o f f s e t ;
5 curMatch = p−>hash [ hashValue ] ;
6 o f f s e t = ( UInt32 )
7 ( Hc_GetMatchesSpec ( lenLimit ,
8 p−>hash [ hashValue ] ,
9 MF_PARAMS( p ) ,

10 dis tances , 2 ) − ( d i s t a n c e s ) ) ;
11 return o f f s e t ;
12 }
13
14 s t a t i c UInt32 ∗ Hc_GetMatchesSpec (
15 UInt32 lenLimit ,
16 UInt32 curMatch , UInt32 pos ,
17 const Byte ∗cur , CLzRef ∗son ,
18 UInt32 _ c y c l i c B u f f e r P o s ,
19 UInt32 _ c y c l i c B u f f e r S i z e ,
20 UInt32 cutValue ,
21 UInt32 ∗dis tances , UInt32 maxLen )
22 {
23
24 . . .
25
26 for ( ; ; )
27 {
28 UInt32 d e l t a = pos − curMatch ;
29 i f ( cutValue−− == 0
30 || d e l t a >= _ c y c l i c B u f f e r S i z e )
31 return d i s t a n c e s ;
32 const Byte ∗pb = cur − d e l t a ;
33 curMatch = son [ _ c y c l i c B u f f e r P o s
34 − d e l t a
35 + ( ( d e l t a > _ c y c l i c B u f f e r P o s )
36 ? _ c y c l i c B u f f e r S i z e : 0 ) ] ;
37 i f ( pb [ maxLen ] == cur [ maxLen ] && ∗pb == ∗cur )
38 {
39 UInt32 len = 0 ;
40 while (++ len != lenLimit ) / / Mod : D e l e t e
41 i f ( pb [ len ] != cur [ len ] )
42 break ;
43 i f ( maxLen < len )
44 {
45 ∗d i s t a n c e s ++ = maxLen = len ;
46 ∗d i s t a n c e s ++ = d e l t a − 1 ;
47 i f ( len == lenLimit )
48 return d i s t a n c e s ;
49 }
50 }
51 }
52
53 . . .
54
55 }

Fig. 11: Synergy Modification (LzFind.c).

smaller the value of lenEnd the quicker the return statement
is encountered at line 35.

We find this modification reduces the execution fre-
quency of the more expensive false branch of the IF state-
ment by 15.7%. Individually, the LzmaEnc.c modification
achieves a 24.7% reduction in energy consumption. Like-
wise, in the case of the LzFind.c modification a 17.5% reduc-
tion in energy reduction is found. When both are combined
a 43.4% reduction is achieved. The synergistic effect results
in an ‘additional’ saving of 1.2%.

In a similar vein, we investigated an antagonistic reac-
tion. In Bodytrack, we found two modifications that both
deleted parameter declarations in Bodytrack’s CameraModel.c

class. One deleted mc_ext(1,1) = Rc_ext[0,1] and another
deleted mc_ext(1,2) = Rc_ext[1,2]. Known as the 3D Displace-
ment Matrix, mc_ext is utilised frequently in Bodytrack. In
both cases, when these matrix values are left undefined,
energy consumption reduces. When applied together, a
smaller energy consumption is measured than when either
is applied individually. We cannot fully explain this effect as
both modifications work by leaving these matrix values as
uninitialised; undefined behaviour in C. However, the effect
on energy consumption differs depending on whether either
or both values are uninitialised. We found that application
of the first delete operation alone results in a 17.6% reduc-
tion in energy consumption. The second delete operation,
when applied alone, reduces energy consumption by 13.8%.
However, when applied simultaneously, we found energy
reduces by only 11.6%, lower than when either are applied
individually.

7 DISCUSSION

In RQ1, we showed that the measurement framework we
use in this investigation is sufficient to understand the en-
ergy optimisation search space in GI. However, we showed
that our energy measurement framework did not produce
reliable results between devices. We also observed that, in
line with observations from other researchers [29], node
restarts can effect energy readings. Despite this, we have
shown the proportional difference in energy readings be-
tween devices is consistent, and believe it is important that
those working in energy optimisation research are aware
of these issues. The seemingly simple task of being able to
measure what is being optimised remains a significant hur-
dle in energy optimisation research [11] and, thus, care and
consideration is needed when planning experiments. The
Raspberry Pi/MAGEEC board setup is an abstract repre-
sentation of ‘real-world’ systems, which researchers can use
to gain insight into energy consumption in a manner which
controlled, low cost, and easily expandable. We acknowl-
edge that more accurate results may be obtained with more
expensive devices, though this would come at the cost of
having less devices running in parallel, limiting the amount
of data that may be gathered in a given timescale. We believe
the setup we use can be used in a variety of other energy op-
timisation activities, such to training models which could be
translated, via transfer learning techniques [50], to optimise
more advanced software systems.

With this energy measurement setup, we analysed what
was possible with the application of a single modification
in RQ2. We conclude from this data that the delete, copy,
and replace operators are largely ineffective at optimising
energy consumption with only 0.09% capable of producing
a statistically significant reduction in energy consumption
while preserving output quality in GI. Evaluations of code
modifications are typically costly, as checks must be done
to ensure functionality has been preserved. On top of this,
testing must determine the modifications’ effect on the
target property (in our case, energy consumption). We have
shown that less than one in every thousand modifications is
effective. Though evaluations of ineffective modifications is
expected in GI, this rate is extremely high. Some practition-
ers of GI who target energy optimisation have had success
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with more bespoke operators, such as swapping of Java
Collection implementations [44], or alteration of colours in
GUI interfaces to reduce the energy consumption of OLED
Smartphone screens [42]. We argue this is a good avenue
for research as our findings suggests the ‘standard set’ of
operators discussed in this paper are far from ideal.

We have shown that permitting a degradation in output
quality can aid in the optimisation of energy efficiency. We
observe that the number of modifications that can reduce
energy consumption increase from 0.09% to 1.36% when
approximation is permitted; a 15-fold improvement in the
number of effective modifications. We appreciate that a lot
of these approximate solutions are undesirable and that,
in most cases, there are limits on how approximate an
output can be. However, we can find no evidence that
permitting approximation will have any negative effect on
reducing energy consumption. Many multi-objective opti-
misation methods are available [45] and have already seen
adoption in genetic improvement research [13], [14], [42],
[62]. We believe integrating ‘output quality’ as an objective
can significantly benefit future projects.

In RQ3, we explored the wider search-space by analysing
the effectiveness of combining modifications. Our analysis
shows that both synergy and antagonism are present in the
search space. If there was low antagonism, we could advo-
cate a greedy approach as the combination of any effective
two modifications rarely produced a non-linear negative
effect. However, we did not observe this. In fact, 38.5% of
modifications produced some form of antagonism. For this
reason, we advise more advanced search techniques such
as genetic algorithms, though any search that effectively
tests combinations of modifications would be sufficient.
Simply combining any and all effective modifications will
not produce the sums of their parts in all cases.

In answering RQ1, we showed that, with careful analysis
and understanding, we can report reliable results. We could
have reduced variance more by running applications on
a bare machine, thereby removing interference that may
emerge from the operating system. This may produce results
of greater interest as running on a bare machine is more
common in embedded systems which, unlike the Raspberry
Pi devices studied, may be battery powered, making the
goal of reducing energy consumption more important. The
‘Internet of Things’ is likely to constitute of many small
embedded systems powered by batteries that are expected
to run for a certain time before depletion. It would therefore
be useful to explore this area in future; however, in this
work, we focused on a more typical architecture — that
with an application working on top of an operating system.
The primary motivation for this is that there is considerably
more open-source software available for optimisation in
such an environment.

Our measurement cluster can expand indefinitely, thus
allowing more modifications to be evaluated in parallel. We
have explored a very small area of each respective search-
space. In future work, it may be of value to explore the wider
search space (i.e. interaction between many modifications).

8 THREATS TO VALIDITY

The work presented here uses direct energy measurements.
Though this results in more reliable evaluations compared

to the ones based on simulation, these direct energy mea-
surements inevitably also contain variance. We have quan-
tified this in answering RQ1 but it means that modifi-
cations which produce very small but positive changes
are undetectable. While we detected energy decreases as
small as 0.009%, there may be modifications that produce
even smaller changes that are simply undetectable with
our framework. Our investigations, however, show that
modifications which produce detectable, non-trivial, energy
reductions are rare.

In this investigation, we have been careful to ensure that
any modifications reported as being effective truly are. To
achieve this aim, our requirements for what constitutes an
‘effective modification’ have been strict. For a modification
to be classified as effective, it must produce a solution in
which we observe a statistically significant decrease across
all testcases. While we believe this to be the most honest
approach to presenting the data, it may not be representative
of real-world genetic improvement where modifications can
be seen as effective if they cause improvements in only a
proportion of testcases. Determining at what point we may
classify a modification as effective is subjective and thereby
left to the GI practitioner’s discretion. We have chosen to
be strict rather than risk being too lenient, thereby avoiding
publication of results that may not be applicable to all those
in the GI research community.

All the applications we have chosen to study have user-
level parameters which may be modified. Some of these
parameters may be used to further approximate output
quality while reducing energy consumption. We have not
experimented with traditional application parameter tuning
and have therefore not made comparisons between the
results presented here and what may be achievable through
other techniques. Such a study is outside of this investiga-
tion’s scope but we acknowledge there are other established
methods to trading application output quality for reductions
in energy consumption.

As we only target Raspberry Pi devices running the
Raspbian OS, we cannot ensure that the conclusions drawn
from this investigation are universal across all software
systems. We acknowledge that results are likely to be dif-
ferent when investigating hardware that utilises complex
I/O components such as wireless network interfaces which
are known to consume large amount of energy in mobile
devices [40]. More research will be needed to investigate
such platform and system-specific variations.

We chose to investigate the copy, delete and replace search
operators because of their frequent use in state-of-the-art
genetic improvement work [34], [35], [53]. Other search
operators may function better in the context of energy con-
sumption; however, our aim was to investigate the nature
of the search space produced in modern GI research.

9 RELATED WORK

While improved hardware performance can ameliorate soft-
ware systems’ energy consumption, recent work on search-
based approaches to software improvement has demon-
strated that software engineers also have an important role
to play. White et al. [61] were among the first to automati-
cally search for modified versions of existing programs to re-
duce energy consumption, trading functionality for energy
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reduction. More recently, we have witnessed an explosion
of activity in this area.

In this investigation, we have focused on the delete, copy,
and replace operators. Though popular [34], [35], [53], there
are other methods to modify software to improve software’s
energy efficiency. Schulte et al. [55] introduced the Genetic
Optimisation Algorithm (GOA) that reduced the energy
consumption of existing software systems by an average of
20%. Their investigation modified software systems at the
machine code level. A similar investigation was also used to
fix bugs at this level [56]. There is an argument that working
at lower levels may produce more fruitful results [49] at the
cost of introducing changes that can be hard for humans to
understand. This is part of the reason most research in GI
has focused on human-readable source-code.

Li et al. [42] demonstrated that by sacrificing some
degree of usability, energy savings of up to 40% could
be achieved for (battery-restricted) smartphones. Their ap-
proach searched for contrast-preserving changes in screen
colours to reduce energy consumed by a smartphone dis-
play. In this case, the genetic improvement algorithm simply
toggled the colour settings of an Android application’s
interface.

Manotas et al. [44] used a constrained exhaustive GI for
modifications to existing open source Java systems, report-
ing energy improvements of between 2% and 17%. Their
approach used an operator that changed Java Collection
API implementations. The delete, copy, and replace operators
studied in this investigation work at a higher granularity
than Manotas et al.’s course-grained operator yet is capable
of reducing energy with considerably less effort. This idea
of swapping subclass implementations to find those that
are most optimal was later used by Burles et al. to reduce
the energy consumption of Google Guava’s ImmutableMultimap

class by 24% [16].
Hoffman et al. dynamically tuned parameters to limit

power spikes in server clusters [28]. They traded the quality
of their applications’ outputs in response to the power
budget; when power was plentiful, the applications would
produce high quality solutions and when power was scarce,
the applications would produce lower quality solutions.
This work differs from ours in that they tuned parameters
directly exposed by software developers that were already
known to trade off execution time for output quality. It
would be possible to expose optimisations found in source-
code to a level in which they may be tuned as if they
were ‘traditional’ parameters. This is part of a growing
area within genetic improvement known as ‘deep parameter
tuning’, which has been used to optimise the execution time
and memory consumption of C standard library’s malloc

function [62], optimise a face-detection algorithm’s execu-
tion time while permitting a degradation in its accuracy [13],
[14], and reduce the energy consumption of Google Guava’s
CacheBuilder class [17].

In GI, it is increasingly common to optimise software for
specific hardware targets. Typically, this takes the form of
tuning parameters. CLBlast [48] is an example of a library
which incorporates an auto-tuning component to optimise
its OpenCL BLAS library to the target hardware. Due to this
tuning, CLBlast typically outperforms its direct competitor
clBLAS, up to a factor of two in some cases. Paone et al.

introduced a technique to auto-tune OpenCL kernels for tar-
get devices with up to 60% performance improvements [51].
Their technique tackles the problem of a large search space
by identifying parameter constraints and then developing
a feasible subset of parameters. They find this reduced the
search space to 0.1% of it’s original size.

Not all changes have to occur in software; hardware itself
may be optimised. Zhang et al. [63] observed that up to 50%
of an embedded system’s energy was consumed by cache
memory. They noted that a direct mapped cache is more
efficient per access than one that is is set-associative but only
if the cache hit-rate is high — something which is dependent
on the software being run. Similarly, there are decisions to
be made regarding the cache’s size. Smaller caches are more
energy efficient but exhibit poorer hit rates. Zhang et al.
resolved this problem by creating a special cache that can
have its size set and be toggled as either directly mapped,
two-way, or four-way set associative. In evaluating this
configurable cache they found it was capable of reducing
cache energy consumption of by 40% when correctly tuned
for specific work-loads.

While optimisations may be made at the software or
hardware level, we cannot ignore the benefits of compiler
optimisations. GCC has approximately 100 flags exposed
for tuning and the optimal combination of these flags differ
depending on the target hardware. Typically, compiler op-
timisation techniques take an iterative approach by setting
some compiler flags, evaluating the quality of the compiled
product/products, then using this feedback to produce a
better set of flags [18], [21], [31]. This approach echoes the
iterative approach typical in GI research and, as in GI,
this approach is costly as the iterative process is required
for every new hardware. In 2011, Fursin et al. introduced
‘Milepost GCC’ [22], which uses machine learning to build a
model that identifies GCC parameters for a hardware target.
They find that using Milepost GCC can improve execution
time by up to a factor of two in some cases (11% on average),
without the need for costly iterative processing. Though
typically targeting execution time, there have been effort to
tune parameters to reduce energy consumption [59].

10 CONCLUSIONS

We investigated software system’s energy optimisation
search space, focussing on three most widely used modifica-
tion operators: copy, delete, and replace. We show that when
using exact test oracles, modifications to source code that
produce more energy-efficient solutions occur 0.09% of the
time on average; a flat search space that would be difficult
to traverse without a highly explorative search technique
though when approximation of output is permitted this
figure grows to 1.25%, a 15-fold increase.

In terms of impact, when using the exact test oracle
an average decrease of 0.76% is observed but when using
the approximate test oracle the average impact increases
to 33.90%. This finding points to the critical importance of
approximation for evolutionary energy optimisation. For-
tunately, many energy optimisation applications support
exactly this kind of optimisation as studied in the work
reported here.
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We used direct energy measurements to obtain these
results and show that the energy measurement framework
used in this investigation was precise but lacked accuracy;
highlighting an important systemic error in energy mea-
surements. However, we found any proportional energy
measurements were reliable and, as such, advocate their use
when carrying out such research.

We produced findings which, in line with previous
research from non-energy-based optimisation problems,
demonstrate that the delete and replace mutation operators
are the most likely to be effective with copy modifications
rarely producing energy reductions. However, as finding
effective modifications was rare for any operator, we advise
future researchers to focus efforts into developing more
specialised genetic improvement operators for energy op-
timisation.

We also investigated the effects that energy-efficient
modifications produce when combined. We found that
61.5% of pairings were worthwhile. That is, the pairing’s
impact was greater than that of its most effective member
with 12.0% exhibiting synergy. The remaining 38.5% of mod-
ification pairs were antagonistic and thereby conclude there
is no guarantee that two good modifications will always
produce an energy-efficient software variant. It is evident
that more advanced search techniques are required.
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