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ABSTRACT: Antimicrobial silver nanoparticle coatings have attracted
interest for reducing prosthetic joint infection. However, few studies report
in vivo investigations of the biotransformation of silver nanoparticles within
the regenerating tissue and its impact on bone formation. We present a
longitudinal investigation of the osseointegration of silver nanoparticle-coated
additive manufactured titanium implants in rat tibial defects. Correlative
imaging at different time points using nanoscale secondary ion mass
spectrometry, transmission electron microscopy (TEM), histomorphometry,
and 3D X-ray microcomputed tomography provided quantitative insight from
the nano- to macroscales. The quality and quantity of newly formed bone is
comparable between the uncoated and silver coated implants. The newly
formed bone demonstrates a trabecular morphology with bone being located
at the implant surface, and at a distance, at two weeks. Nanoscale elemental
mapping of the bone−implant interface showed that silver was present
primarily in the osseous tissue and colocalized with sulfur. TEM revealed silver sulfide nanoparticles in the newly regenerated
bone, presenting strong evidence that the previously in vitro observed biotransformation of silver to silver sulfide occurs in vivo.
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1. INTRODUCTION

Additive manufactured (AM) open-porous titanium implants1,2

are increasingly used in orthopedic applications where bone
fixation and load bearing are required. These open-porous
implants allow desirable early bone ingrowth3 and more rapid
osseointegration.4,5 Unfortunately, the placement of prostheses
is also associated with the risk of prosthetic joint infection
(PJI),6,7 ultimately leading to delayed healing or implant failure.
It has been estimated that 2.5% of patients with primary knee
and up to 20% of revision knee replacements have been affected
by PJI.8,9 Treatment of such infection with antibiotics proves to
be ineffective due to biofilm formation with the ability of the
immune system to respond also being hampered.10,11 There-
fore, an antimicrobial surface aimed at preventing the bacterial
colonization and biofilm formation during surgery and in the
immediate postoperative period is highly desirable.
Silver-based antimicrobials are of particular interest due to

their broad antimicrobial spectrum and efficacy,12,13 allowing
them to inhibit both Gram-positive and Gram-negative bacteria
with very low silver concentrations. Nanoscale silver (nano-Ag)
such as silver nanoparticles (AgNPs) is more reactive than its
bulk counterparts due to the large surface area-to-volume

ratio.14 The interaction of AgNPs with moisture and body fluid
leads to the fast release of biologically active silver ions,15

binding to bacterial protein or DNA16 and thereby preventing
bacterial adhesion and biofilm formation. In addition, ultrathin
AgNP films have been successfully incorporated onto non-
planar surfaces and complex architectures by several
techniques.17−19 Atomic layer deposition (ALD), a sequential
and self-limiting process, provides a number of advantages for
depositing an AgNP surface layer, including texturing and
biocompatibility. The sub-angstrom control of silver deposition
coupled with the self-saturating reaction lead to the formation
of uniform sized AgNPs coated onto the additive manufactured
porous titanium.17 In a previous study, ALD of silver coated Ti
implants was shown to be effective in reducing major
pathogenic biofilm formation in vitro.20

The remarkable antimicrobial effects of AgNPs have led to
their application in a diverse range of orthopedic implants.
However, the close contact that exists between silver coated
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implants and bone21 also raises concerns regarding the
potentially harmful effect associated with the uptake of the
silver ions into bone and surrounding soft tissue.22 AgNPs can
readily penetrate the cell membrane,23 releasing ions locally to a
specific tissue24 and becoming internalized.25,26 Therefore, a
detailed study on the impact of AgNPs is required.
Considerable effort has been expended in examining the

biological effect of silver on bone using a variety of cell lines,
and it has been shown that the impact of AgNPs is both
size-27,28 and dose-dependent.29−33 These in vitro studies
provide an understanding of silver interaction with the specific
cell types involved in bone healing, revealing a potential
reduction in possible harmful effects by controlling the initial
total amount of silver. Further, recent in vitro evidence suggests
that the silver undergoes sulfidation to silver sulfide34 through
complex interactions with protein (serum) and cells.35 This
lead to the hypothesis that the biological toxicity of silver is
reduced through the biotransformation of silver into silver
sulfide, a more stable and less toxic compound.35 However, the
cellular response triggered by silver and its sulfidation to silver
sulfide in vitro cannot be directly used to predict tissue level
response in vivo. Bone healing, when augmented by implants, is
characterized by complex interactions between multiple cell
types and the osteoconductive properties of the material,36−39

all of which could be disrupted by silver.
In the majority of prior studies, there is a lack of information

dealing with the harmful effects of silver on bone regeneration
with apparent inconsistencies in the results obtained. Korani et
al.40 observed an abnormal inflammatory response in lamellar
bone following the dermal exposure of silver. On the contrary,
Marsich et al.41 found comparable bone healing patterns
without significant difference in bone contact. These contra-
dictory results may be explained by the differences in routes of
exposure (e.g., bone contact, blood contact, or inhalation) and
experiment end-point, inevitably raising doubts about whether
silver coating is detrimental to bone healing.
To date, only a few studies have focused on the effect of

silver on bone regeneration associated with implanted
materials.41,42 However, none have performed investigations
examining multiple time-points during incorporation of im-
plants nor have they assessed the uptake/distribution of silver
in tissue upon release from an implant. These aforementioned
experiments can provide particularly useful information
regarding the possible biological effect of silver on bone
healing and potential target tissue following the contact of new
bone and silver coated devices, respectively. For these reasons,
detailed in vivo studies are required to fully elucidate the impact
of silver on bone healing.
In the present study, the quantity and quality of bone

following surgical implantation of both silver coated and
uncoated titanium scaffolds were assessed using both X-ray
microcomputed tomography (μCT) and histological measure-
ments. The impact of silver coating was assessed after 2, 6, and
12 weeks in vivo to identify whether the presence of silver
affects bone healing or decreases new bone generation. The
distributions of released silver (107Ag−) in addition to 12C−,
40Ca16O−,31P12C−, and 32S− within adjacent tissues were
quantified using nanoscale secondary ion mass spectrometry
(NanoSIMS). Transmission electron microscopy (TEM) and
selected area electron diffraction (SAED) were combined to
examine the newly formed bone. Correlative imaging was used
to combine all of these complementary techniques to

investigate the bone−implant interface and the biotransforma-
tion of the silver.

2. MATERIALS AND METHODS
2.1. Fabrication and Preparation of the Open-Porous

Implants. Open-porous titanium implants were fabricated by additive
manufacturing as previously described.43 Briefly, cylindrical shaped
titanium implants of 2.5 mm diameter and 1.5 mm height, as shown in
Figure 1a, were produced using a MCP Realizer 250 selective laser

melting (SLM) system (MCP Tooling Technologies, Lubeck,
Germany). The basic material used to fabricate implants was grade
1 commercially pure titanium (CP-Ti) powder with a modal particle
diameter of 28.5 μm (Sumitomo Corp., Tokyo, Japan).43 The powder
layer thickness used in the build process was 50 μm.43 The open-
porous implants were made with a nominal porosity of 65% and a strut
diameter of 180 μm.2

Following the SLM build process, the implants were cleaned in an
ultrasonic bath (VWR, Radnor, United States) with micro-90
detergent (Decon, Sussex, UK) diluted 1:20 in distilled water to
remove unfused powder. The samples were then rinsed in distilled
water and dried. Once cleaned, the samples were subject to heat
treatment in an inert atmosphere at 667 Pa and 1400 °C (for 3 h).
Before atomic layer deposition, the sintered implants were once again
sintered and cleaned using the process described above.

2.2. ALD of the AgNP Coating. Surface modification of the
implant samples with an ultrathin layer of silver was carried out using
direct liquid injection ALD in a customized Aixtron AIX 200FE AVD
reactor.20 The ALD process used has been shown to be controlled by
self-limiting surface reactions, enabling the production of highly
conformal nanotextured metallic silver films on complex three-
dimensional structures.44,17 The organometallic precursor and
c o r e a c t a n t u s e d i n t h e d e p o s i t i o n p r o c e s s w a s
(hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene) dissolved in
a 0.1 M anhydrous toluene solution (Sigma-Aldrich, Germany) and
propan-1-ol (HPLC grade/Fisher, Leics, UK), respectively. Each ALD
cycle consisted of a 4 step process, starting with a 4 s dose of the silver
precursors, followed by an 8 s argon (99.999%; BOC, UK) purge, a 4 s
propan-1-ol dose, and finally another 8 s argon purge. The silver
precursor solution was introduced into the reactor using direct liquid

Figure 1. (a) Macroscopic SEM-SE image of the additively
manufactured porous titanium scaffold. High-resolution SEM images
of (b) titanium scaffolds and (c) silver coated titanium scaffolds. (d)
Size distribution histogram of silver particles (125 °C for 500 ALD
cycles).
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injection at a rate of 17.5 μL/s and was volatilized at 130 °C, while the
propan-1-ol was delivered into the reactor from a vapor-draw bottle
held at room temperature (∼20 °C) using a Swagelok ALD valve.
Each sample was coated using 500 ALD cycles to give a nominal film
thickness (if uniform rather than particulate islands) of ∼13 nm, which
corresponds to a rate of 0.026 nm/cycle.
2.3. Scanning Electron Microscopy. The structure of the Ti and

Ti−Ag implants was characterized by scanning electron microscopy
(JEOL JSM-7001F FEG-SEM, Tokyo, Japan) in secondary electron
mode using a 10 kV accelerating voltage.
2.4. Sterilization. Before implantation, all samples were soaked in

ethanol for 2 h before sterilization with ultraviolet (UV) light in a
Class II biosafety cabinet (Esco, Canada).45

2.5. Surgical Implantation. A total of 36 adult male Wistar rats,
10−12 weeks old and weighting 300−400 g, were used for the in vivo
study. The experimental protocol was approved by the institutional
animal care committee at the University of Ulster and National (UK
Home Office) guidelines. In brief, an anesthetic drug (2.0 mL Ketaset,
100 mL/mg) and 1.0 mL Xylapan (20 mL/mg) diluted in 5 mL
phosphate buffered saline (PBS) (pH 7.4, 0.5 mL/100 g) was injected
to sedate the animals. For the surgical procedures, a 2.5 mm subcritical
size defect was created using a trephine bur. The circular defect
penetrated well into the marrow cavity. Rats were randomly divided
into two groups of 18 rats each implanted with titanium (Ti) or silver
coated titanium implants (Ti−Ag).
After healing periods of 2, 6, and 12 weeks, the animals were

sacrificed, and the implanted tibiae were subsequently fixed in a
solution of 10% buffered formal saline for X-ray μCT scanning.
2.6. Ex Vivo X-ray μCT. 2.6.1. Image Acquisition. Post-

implantation, all implanted tibiae (n = 36) were wrapped in Parafilm
M (Bemis, United States) and placed in an ABS plastic tube. The
scanning was performed using a laboratory-based μCT system
(Nanofocus, Phoenix|X-ray General Electric Company, Measurement
and Control, Wunstorf, Germany). To reduce beam hardening
artifacts,37 the μCT scanner was operated at 85 kV and 111 μA with
a 0.5 mm-thick copper filter. Images were reconstructed using the
Datos|x software (Phoenix|X-ray), resulting in an image matrix of 990
× 990 × 1000 pixels with an isotropic voxel size of 5 μm. The
reconstructed images were subsequently analyzed in Avizo software
(Avizo 8.0, FEI Visualization Sciences Group, Meŕignac Cedex,
France) and Matlab (Mathworks Inc., Natick, Massachusetts, United
States).
2.6.2. Segmentation. The segmentation procedure comprised an

image filter, a global threshold, and a local thresholding method.46 In
the first pass, the reconstructed data were normalized to a
predetermined reference histogram before undergoing smoothing
filters (edge preserving filter and anisotropic diffusion filter)47 to
reduce the influence of noise and artifacts. The filtered images were
first presegmented into a “mask” containing bone and implant areas
using an Ostu algorithm.46 After presegmentation, the bone was
segmented from the implant area using local thresholding.46 The
boundary between the bone and implant was smoothed using the
morphological operations of erosion (by one pixel) and dilation (by
one pixel).
2.6.3. Quantification of the Titanium Scaffold and Newly

Formed Bone. After segmentation, the bone and titanium phases
from each individual sample were registered with a high resolution
tibia shape model and a cylindrical mask (2.5 mm in diameter and 1.5
mm in height), respectively. The overlapping of the shape model and
cylindrical mask were used to generate the region of interest (ROI) in
a reproducible fashion (Figure 2a). Microarchitectural parameters (1)
bone ingrowth (BI) [(bone area/ROI) × 100%], (2) bone contact
(BC) [(bone contact area/total scaffold area) × 100%), (3) specific
surface area (SSA) [(bone area/bone volume) × 100%], (4) bone
trabecular thickness (Tb.Th), and (5) trabecular separation (Tb.Sp)48

of the newly formed bone were analyzed within the defined ROI. Strut
thickness and porosity of the titanium scaffolds were measured.2,49

2.7. Histology and Histomorphometry. Histological prepara-
tion of rat tibiae containing titanium implants has been previously
described in detail.50 Briefly, 18 tibial specimens containing the

implants (n = 3 at 2, 6, and 12 weeks in the Ti and Ti−Ag groups)
were decalcified, dehydrated, infiltrated and embedded in LR white
resin (TAAB Laboratories Equipment Ltd., Berks, UK). The
polymerized blocks were trimmed of excess resin and glued onto
plastic microscope slides (EXAKT, Oklahoma City, United States). An
EXAKT Vacuum Adhesive Press was used to mount the samples for
UV treatment (5 min). Subsequently, one-half of the samples were cut
approximately from the center of the Ti implant using an EXAKT 310
Macro Band System with a diamond blade (EXAKT). The blocks were
ground successively with K800, K2500, and K4000 grinding paper
(EXAKT) using an EXAKT 400CS grinding system to yield ∼50−100
μm-thick sections. Finally, the sections were stained with Gill’s
Haematoxylin III (Fisher Scientific, Loughborough, UK) and multiple
staining solution before examination on a Zeiss Axiophot microscope
(Zeiss; Wetzlar, Germany). Histomorphometric analysis of new bone
consisted of a quantitative assessment of the BI.

2.8. Sample Preparation for Spectroscopic Analyses. Four
nondecalcified samples of tibia with implant (n = 1 at 2 weeks in the Ti
group; n = 1 at 2, 6, and 12 weeks in the Ti−Ag group) were washed
in distilled water and kept in a −80 °C freezer (New Brunswick

Figure 2. (a) X-ray μCT images of bone formation within the ROI.
Bone ingrowth was quantified at (b and c) 2, (d and e) 6, and (f and
g) 12 weeks postoperation. Arrows indicate the newly regenerated
bone in the uncoated (green) and silver coated group (red). (h) The
amount of bone ingrowth, expressed as the percentage bone volume
within ROI as measured by μCT. Statistical significance (*) was
considered where p < 0.05. Scale bars are 500 μm.
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Scientific, Enfield, United States) for 48 h. The frozen samples were
then freeze-dried in a CoolSafe 100-4 freeze-drier (Scanvac-Coolsafe,
Lynge, UK) for 48 h. At the end of the drying cycle, bone−implant
samples were mounted in LR white resin (Sigma-Aldrich, Dorset, UK)
and polished to a mirror finish using 1 μm diamond suspension paste
(Struers, Glasgow, UK). Immediately before NanoSIMS analysis, the
embedded samples were coated with 10 nm of platinum.
2.9. NanoSIMS. NanoSIMS images of the bone implant samples

were acquired using a CAMECA NanoSIMS 50L instrument (Cameca,
Gennevilliers Cedex, France). A 16 keV Cs+ primary ion beam with a
current of 1.8−2.6 pA was scanned over the surface to generate
negative secondary ions. The instrument was calibrated using
standards of high concentration to detect 12C−, 32S−, 31P12C−,
40Ca16O−, 48Ti16O−, and 107Ag−. To ensure that each imaged area
was at steady state and to remove the platinum coating, Cs+ ions were
implanted into the surface to achieve a dose of 1 × 1017 ions cm−2. Six
to eight regions of interest were imaged from each sample with an area
of 50 × 50 μm2 (512 × 512 pixels). A dwell time of 5000 μs/pixel was
used with an aperture size of 300 μm (D1 = 2). Image processing was
carried out using ImageJ software (United States National Institutes of
Health, Bethesda, Maryland, United States) with OpenMIMS plugin
(National Resource for Imaging Mass Spectrometry, Cambridge,
Massachusetts, United States).
2.10. Sample Preparation for Correlative Imaging. After the

NanoSIMS experiments, the surface that was analyzed with NanoSIMS
was polished using a 6 μm diamond suspension (Struers, Glasgow,
UK) and glued onto a glass slide (Thermo Scientific, Hudson, United
States). The other side of the sample was further ground using K1200
and P4000 grinding paper (Struers, Glasgow, UK) until the sample
was 70−90 μm thick. These sections were stained with Goldners
Trichrome (method adapted from ref 51). Briefly, the sections were
rinsed with distilled water for 15 min, and the nuclei were stained for
20 min using Weigert’s Haematoxylin (Sigma-Aldrich, Dorset, UK).
The sections were then rinsed with distilled water and stained with
0.01% azophloxine for 15 min. Sections were then rinsed with 1%
acetic acid followed by staining with 2% Orange G for 3 min and
rinsed again with 1% acetic acid. Lastly, they were stained with 0.2%
Light Green for 5 min followed again by rinsing with 1% acetic acid for
5 min. The sections were then blotted dry and imaged using Olympus
SZX16 stereoscopic microscope at a range of magnifications. The
histological appearance of tissues in the images is consistent with
mineralized bone staining green/dark green and fibrous tissue as
orange/orange red.
1.11. TEM Imaging. The Goldners trichrome stained histological

sections were polished to ∼30 μm using P4000 grinding paper
(Struers, Glasgow, UK). The section was then mounted in a 3.05 mm
Cu folding grid with a 1 mm circular hole in the center (Agar
Scientific, UK). To thin the section to electron transparency a
Fischione 1050 Ar+ mill was used. Thinning was performed at
successively lower beam energies and shallower angles (with respect to
the section plane). Initial beam conditions were 10 kV and ±10°. Final
thinning conditions were 4 kV and ±6°.
To differentiate the bone and fibrous tissue, the ion beam milled

bone implant sample was imaged using a stereoscopic microscope
(Olympus SZX16) at a range of magnifications. The sample was then
imaged using a JEOL 2100 TEM operated at 200 kV. Images and
diffraction patterns were acquired up to ∼5 μm from the implant
surface. For imaging, a 1 s camera exposure time was used. For
diffraction patterns, a ∼0.4 μm SA aperture and a 5 s camera exposure
time were used.

2.12. Statistical Analyses. The results from μCT (n = 6) and
histomorphometry analysis (n = 3) are presented as mean ± standard
deviation. Statistical comparisons were performed with a Mann−
Whitney U test. All statistical analysis was carried out using XLSTAT
(Addinsoft, Inc., United States) with statistical significance considered
when p < 0.05(*).

3. RESULTS

3.1. Characterization of the Open-Porous Titanium
Implants. The Ti implants (Figure 1a) were found to have a
porosity of 67 ± 5%, and the modal strut diameter was 170 ±
20 μm. This compares favorably with the original design, which
aimed to have 65% porosity and 180 μm struts.2 The selective
laser melting (SLM) of the pure Ti powders gives rise to
scaffolds (Figure 1b) with a rough surface, irregular shape, and
a large surface area. During the ALD deposition process,
metallic AgNPs (Figure 1c) are uniformly deposited on the
porous Ti surface. From the size distribution histogram (Figure
1d), an average particle size of 49 ± 3 nm could be estimated.

3.2. Analysis of Quantity of Bone Using Ex Vivo X-ray
Microcomputed Tomography. 3.2.1. Bone Ingrowth.
Three-dimensional μCT analysis of the entire implant was
performed on 2, 6, and 12 week samples of rat tibia containing
titanium scaffolds to assess bone ingrowth in a predefined ROI
(Figure 2a). Representative μCT images (Figures 2b−g)
qualitatively confirm bone formation progresses over time for
both the uncoated and silver coated titanium scaffolds. New
bone was observed at the edge and interior of the defect site at
2 weeks after implantation with 35 ± 10 and 31 ± 5% of void
space being replaced by irregular immature bone (Figures 2b
and c). At 6 weeks postimplantation, a higher proportion of
new bone was detected along the porous titanium implant from
the surface to the center (Figures 2d and e). After 12 weeks, the
implant pores were almost completely filled by newly formed
bone (Figures 2f and g). The results of the quantitative data
measured from μCT are summarized in Table 1 and Figure 2h.
No difference in bone ingrowth was observed between the Ti
and Ti−Ag groups. There were significant statistical differences
in bone ingrowth between 2 and 6 weeks and 2 and 12 weeks
postimplantation (p = 0.002 and 0.001, respectively).

3.2.2. Bone Contact. The contact area in the Ti (green) and
Ti−Ag (red) groups were shown in 3D (Figure 3a−f). An
increase in bone contact length was observed as the healing
period increased (from 2−12 weeks postimplantation) in both
groups. The BC of the Ti (56 ± 10%) and the Ti−Ag group
(44 ± 13%) at 6 weeks’ postimplantation was significantly
higher than at 2 weeks postimplantation (20 ± 6 and 14 ± 5%)
(p < 0.05). After 12 weeks implantation, up to 82% of the
implant surface was colonized by newly formed bone.
Significant differences in BC were not observed between the
titanium and silver coated groups. The quantitative measure-
ments of the BC for both groups are summarized in Table 1
and Figure 3g.

Table 1. BI and BC Measured from μCT and Histology

Ti Ti−Ag

μCT histology μCT histology

time (weeks) BI (%) BC (%) BI (%) BI (%) BC (%) BI (%)
2 35 ± 10 20 ± 6 31 ± 9 31 ± 5 14 ± 5 29 ± 8
6 66 ± 6 56 ± 10 42 ± 7 58 ± 7 44 ± 13 59 ± 15
12 76 ± 7 71 ± 11 77 ± 6 74 ± 6 73 ± 9 66 ± 10
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3.2.3. Bone Morphometric parameters. We observed an
increase in Tb.Th and a decrease in SSA and Tb.Sep as the
healing period increased in both groups (Figure 4 and Table 2).
The thickness of the newly formed bone was increased between
2 and 6 weeks and 2 and 12 weeks (p < 0.05). No significant
differences in SSA, Tb.Th, or Tb.Sep were found between the
uncoated and silver coated titanium groups. There was a
significant decrease in SSA between 2 and 6 weeks and 2 and
12 weeks (p < 0.05). In the titanium implant, there were
significant increase between 2 and 6 weeks (62 ± 8 and 102 ±
17 μm, p < 0.05) and 2 and 12 weeks (62 ± 8 and 122 ± 28
μm, p < 0.05) respectively for Tb.Th. In the silver coated
titanium implant, the increase in Tb.Th was observed only
between 2 (62 ± 24 μm) and 12 weeks (129 ± 25 μm).
3.3. Quality of Newly Formed Bone Using Histology

and Histomorphometry. In the 2 week samples from the Ti
and Ti−Ag groups, newly formed bone is seen on both the
periphery of the defect as well as the surface of the implant,

where trabecula tended to be smaller in diameter and
composed of woven bone (Figures 5a and b). At 6 weeks’
postimplantation, lamellar bone is more conspicuous (Figures
5c and d). By 12 weeks, the gap between the implant and defect
further decreased, and lamellar bone predominated (Figures 5e
and f).
The histomorphometrical assessment of BI in the Ti and Ti−

Ag group is summarized in Figure 5g and Table 1. In both
groups, BI increased significantly between 2 and 12 weeks
postimplantation (p < 0.05).

3.4. Elemental Mapping of Newly Formed Bone Using
NanoSIMS. NanoSIMS analysis of the samples revealed local
element distributions at the bone−implant interface at two
weeks postimplantation in both the Ti (Figures 6a−e) and Ti−
Ag groups (Figures 6f−j). Brighter regions of the images
indicate higher counts for that elemental signal. Strong
40Ca16O−, 31P12C−, and 32S− signals were observed in the
bone tissue; 48Ti16O− signals were highest from the titanium
implant, and 12C− was observed in certain areas at the bone−
implant interface and presumably originates from organic
fragments in the bone as well as the resin.
The heterogeneous distribution of 40Ca16O− and 31P12C−

(Figures 6c−d and h−i, respectively) observed at 2 weeks’
postimplantation over the trabecular network, represents a
different degree of maturity of the newly formed bone. Bone
growth in direct contact along the entire surface of the implant
(contact osteogenesis) was observed in both groups, revealing
osseointegration at early time points (Figures 6c and h).
The NanoSIMS elemental maps of 48Ti16O−, 40Ca16O−, 32S−,

and 107Ag− signals are given in Figure 7. The maps demonstrate
the distribution of Ti (Figure 7i), Ca (Figure 7ii), S (Figure
7iii), and Ag (Figure 7iv), while the merged images (Figure 7v)
of Ti, Ca, and Ag at the implant interface for 2 weeks for Ti and
2, 6, and 12 weeks for Ti−Ag show the interactions. As before,

Figure 3. μCT images of bone to titanium scaffold contact with and
without silver coating at (a and b) 2, (c and d) 6, and (e and f) 12
weeks postimplantation. (g) Bone contact, expressed as the percentage
of bone implant contact within the ROI as measured by μCT.
Statistical significance (*) was considered where p < 0.05. Scale bars
are 500 μm.

Figure 4. Bone morphometric parameters. (a) SSA, (b) Tb.Th, and
(c) Tb.Sep as measured by μCT. Representative μCT images are inset
in panel a. Statistical significance (*) was considered where p < 0.05.
Scale bars are 200 μm.
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Ca and S intensities are highest at the bone tissue. Silver was
detected in the Ti−Ag samples at all time points (Figures 7b−
d(iv). The merged images (Figure 7v) reveal that silver is
slowly released from the implant surface, as expected, but
interestingly, some becomes confined within the newly formed
osseous tissue. Furthermore, colocalization of silver and sulfur
was observed, where the silver signal indicated by red arrows in
Figures 7b−d(iv) was highest in regions with the high intensity
sulfur signal (yellow arrows in Figures 7b−d(iii). Additionally,
2 weeks postimplantation, silver in the osseous tissue was
observed both at the surface of the implant as well as in the
trabecula away from the implant. But at 6 and 12 weeks, silver
was found only at the bone attached to the surface of the
implant (yellow arrowhead in Figure 7d(iii), red arrowhead in
Figure 7d(iv)).

3.5. Correlative Imaging Using μCT, Histology, and
NanoSIMS. Correlative multimodal imaging was used to
quantify bone tissue within the whole defect site, to identify
different tissues present in the bone-tissue interface, and to
visualize their elemental makeup.
At 2 weeks postimplantation, the trabecular structure of the

newly formed bone is clearly observed in the μCT image
(Figure 8a). The histology image (Figure 8b) shows both the
woven bone (green/dark green) and fibrous tissue (orange).
The inset of histology (Figure 8b) shows a high magnification
image of a 50 μm2 region, and the corresponding NanoSIMS
images of this region are shown in Figures 8c−g, revealing the
Ti, Ca, S, and Ag maps within the implant and the newly
formed tissue. Calcium and sulfur are observed in the newly
formed bone, colocalized with silver content (107Ag−) both near
and distant from the implants.
At 12 weeks postimplantation, the void space around the

porous implant is filled by newly formed bone with significantly
increased thickness revealed by the μCT image (Figure 8h). A
region of less attenuating tissue was observed at the bone−
implant interface (white arrowhead) which, when correlated to
the magnified histology image (Figure 8i), reveals that fibrous
tissue is still present at the interface. The colocalization of silver
and sulfur in NanoSIMS images is observed only at the region
near the bone−implant interface (Figures 8c−g).

3.6. TEM and SAED. TEM images and SAED patterns were
collected from the bone implant interface region. Figure 9a
shows a low magnification image of a region of silver coated
titanium scaffold with tissue attached to the surface of the
implant. The dotted purple line delineates the interface
between titanium implant and tissue. Inset of Figure 9a
shows the histological image of an electron transparent tissue
region near the silver coated implants. Both bone (green) and
fibrous (orange) tissues were identified in close proximity to
each other adjacent to the implant surface. TEM micrographs
from the bone region (white box, inset in Figure 9a) shows the
distinctive ∼10 nm width fibrillar structures (yellow arrows,
Figures 9b and c) with particles (red arrows, Figures 9b and c)
within these areas. Electron diffraction pattern (Figure 9d)
from the area bounded by the circle reveals the crystalline
nature of the sample.

4. DISCUSSION
Prosthetic joint infection (PJI) remains a serious complication
after orthopedic surgery, which has led to a number of
approaches being developed to modify bacterial adhesion and
growth on the surfaces of implanted devices. AgNPs are
effective in preventing bacterial adhesion, biofilm formation,
and subsequent PJI.14,16,20 An investigation by Liu et al.63 into
in vitro dissolution of AgNPS in biological medium showed a
fast silver release profile up to 12 h of incubation; this is the
most critical period for the development of PJI (from the time
of surgery). However, AgNPs are also known to be cytotoxic in
vitro27,29,31,33 and at high concentrations have neurotoxic
effects in vivo.52 A previous study20 on AgNP coated titanium

Table 2. Bone Morphometric Parameters Measured from X-ray μCT

Ti Ti−Ag

time (weeks) SSA (μm−1 ‰) Tb.Th (μm) Tb.Sep (μm) SSA (μm−1 ‰) Tb.Th (μm) Tb.Sep (μm)

2 65 ± 6 62 ± 8 139 ± 21 58 ± 7 62 ± 24 163 ± 37
6 23 ± 2 102 ± 17 109 ± 20 29 ± 2 92 ± 9 121 ± 44
12 21 ± 3 122 ± 28 108 ± 16 19 ± 3 129 ± 25 120 ± 30

Figure 5. Representative histology images of hematoxylin and multiple
stained bone−titanium implant sections at (a and b) 2, (c and d) 6,
and (e and f) 12 weeks postimplantation. (g) Bone ingrowth in Ti and
Ti−Ag groups (n = 3) is measured from histomorphometry. Statistical
significance was considered where p < 0.05. Scale bars are 200 μm.
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Figure 6. NanoSIMS elemental images of bone−implant interface in (a−e) titanium and (f−j) silver coated titanium implants after two weeks of
implantation. The NanoSIMS images (50 × 50 μm2) were acquired using CAMECA NanoSIMS 50L instrument equipped with Cs+ primary ion
beam. Images reveal the colocalization of sulfur (measured as 32S−) and Ca/P (measured as 40Ca16O− and 31P12C−, respectively). The arrows
highlight the direct contact between the newly formed osseous tissue (measured as 40Ca16O− and 31P12C−, respectively) and implants (measured as
48Ti16O−) in both groups. Scale bars are 10 μm.

Figure 7. NanoSIMS elemental images of bone−implant interface after (a and b) 2, (c) 6, and (d) 12 weeks of implantation. The NanoSIMS images
of 48Ti16O− (i), 40Ca16O− (ii), 107Ag− (iii), 32S− (iv), and merged (v) (superposition of 48Ti16O−, 40Ca16O−, and 107Ag−) were used to determine the
uptake of silver. A comparison of images in Ti and Ti−Ag groups at 2 weeks postimplantation (aii, aiv, bii, biv) reveals that the silver (measured
as107Ag−) is taken up into the osseous tissue (measured as 40Ca16O−). At 2 weeks postimplantation, the NanoSIMS images of 107Ag− (red arrows)
and 32S− (yellow arrows) reveal the colocalization of silver and sulfur in the newly formed bone. At 6 and 12 weeks postimplantation, colocalization
of 107Ag− (red arrowhead) and 32S− (yellow arrowhead) is observed only at the region near the periphery of the implant. Scale bars are 10 μm.
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implants showed reduced bacterial (Staphylococcus epidermidis)
recovery and biofilm formation in vitro. It also showed
qualitatively in vivo bone formation and neovascularization
within the pores of the implants. Although several studies have
reported the use of silver coated devices for orthopedic
applications, the uptake/distribution of silver in tissue upon
release from an implant and its impact on new bone formation
is poorly studied. As nanoscale silver is readily ionized and
bioavailable, there is a need to understand the uptake by local
osteogenic cells and potentially harmful effects of silver on bone
formation. The present study quantifies the impact of AgNP
coating on bone formation in addition to determining the

nanoscale distribution of silver within tissues adjacent to the
AM implant.
AgNPs, via the tissue fluid mediated release of metallic silver

particles or Ag+ ions,23,29 are known to be involved in the
generation of reactive oxygen species,31 apoptosis,28 as well as
replacing ions that are essential for cellular function (e.g., Ca2+

and Mg2+).33 In the present study, we describe a selective laser
melted porous Ti scaffold on which a uniform and metallic
nanoparticulate Ag coating was deposited by ALD.17 Ultra-
structural examination of the coating revealed discrete and
narrow size distributions (49 ± 3 nm) with no discernible
particle aggregation (Figures 1c and d). Growth of ultrathin Ag
films (nominal thickness 13 nm, if it were uniform rather than

Figure 8. (a−n) Correlative imaging of μCT, Goldners trichrome stained histology, and NanoSIMS show different tissue types and the uptake of
silver. At 2 weeks postimplantation, the newly formed bone is observed in both (a) μCT and (b) histology images. Correlative (b) histology and (c−
g) NanoSIMS images show the woven bone and fibrous tissue at the bone−implant interface. The colocalization of silver and sulfur occurs in the
newly formed woven bone. At 12 weeks postimplantation, the void space of the porous implant is filled with more matured bone, as shown in (h) the
μCT image. Correlative (i) histology and NanoSIMS images (j−n) show the lamellar bone and fibrous tissue at the bone−implant interface.
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particulate islands) allows near atomic scale control over the
particle size as well as the total amount of silver in the coating.
The impact of AgNPs on biological behavior is both size27,53

and dose-dependent;29−31 these results coupled with the
complex 3D geometries required for a range of orthopedic
implants necessitates an exacting atomic scale control of the
silver deposition that can be readily achieved with the ALD
process.
Implants and the Extent of Osteogenesis. Here, we

show by multimodal correlative imaging techniques and
quantitative histological studies at the 2 week time point an
equivalent extent of bone ingrowth into the implanted Ti and
Ti−Ag scaffolds. Specifically, after 2 weeks, bone ingrowth was
observed both within the surface of the scaffold as well as the
MC (Figures 2a and b). Normal bone healing is largely
mediated by osteogenic cells (principally osteoblasts and
osteoclasts) in addition to mesenchymal stem cells provided
by the adjacent periosteum and marrow cavity.54 In the 6 and
12 week samples, less newly formed bone was detected within
the marrow cavity (Figures 2c−5f), most likely mediated by
osteoclastic resorption on the inner surface of the regenerated
cortical bone.55

μCT and histology measurements reveal a time-dependent
increase in bone formation with and without silver coating,
which is associated with a significant decrease in SSA and
marked thickening of trabeculae between the 2 and 6 week
samples (Figures 2b and c; Figure 4a). Trabecular thickening
and areas of contiguous ingrowth within either Ti or Ti−Ag
scaffolds is conspicuous, and 2D μCT images reveal pixel
intensities that are consistent with adjacent cortical bone from
12 week samples (Figures 2f and g and 3e and f). While
correlative imaging techniques employing μCT and histology to
quantify bone ingrowth in AM open-porous titanium implant50

are useful for confirmation of tissue morphology at the
micrometer scale, these techniques have neither the resolution
nor the sensitivity to investigate nanoscale osseointegration and
uptake of metallic ions by regenerating bone. To address this

issue, correlative multimodal imaging was further augmented
using NanoSIMS and TEM to investigate elemental mapping of
the bone−implant interface across multiple length scales.
Medium resolution (∼10 μm) μCT imaging allowed non-
destructive 3D quantification quantity of regenerated bone
within the porous implants. The higher resolution (∼3 μm) of
histological images permits reliable distinguishing of host and
regenerated bone in addition to other types of connective
tissue. The high lateral spatial resolution (∼200 nm) afforded
by NanoSIMS allowed mapping with high elemental sensitivity
and resolution of thin trabecular bone (∼1 μm-thick) in the
vicinity of implants (Figures 6a, 7b, and 8g).
Bone growth occurs within the pores of the scaffold via thin

trabeculae (Figures 2b and c) as well as directly on the surfaces
of Ti and silver coated Ti implants (Figure 6b and g). These
two types of bone growth are termed distance (from defect to
implant surface) and contact (from implant surface to defect)
osteogenesis,56 respectively, and lead to bone formation in
opposite directions and faster osseointegration as evidenced
during the 2−12 week time points we examined (Figures 2b−
h). The extent of bone growth along titanium surfaces
(measured via bone contact percentage; Figure 3g) is not
significantly different between the Ti and Ti−Ag groups,
indicating that coating of Ti surfaces with AgNPs does not
impact osteoconduction within open-porous titanium implants.
Eriksson et al.57 employed time-of-flight SIMS (TOF-SIMS),

finding that, after 4 weeks of implantation in rat tibiae,
hydroxyapatite fragments were present at the bone−implant
interface. In our study, strong signals from 40Ca16O− and
31P12C− were observed at 2 weeks postimplantation, providing
further confirmation of contact osteogenesis on the surface of
Ti implants coated with AgNPs.

Silver Nanoparticle Sulfidation in Osseous Tissue.
NanoSIMS results indicate that by 2 weeks, silver from the
implant surface is released, and local dissemination results in
uptake by adjacent osseous tissue (Figure 7b(iv) and Figure 8f).

Figure 9. (a) TEM image of a region containing a silver coated titanium scaffold and surrounding tissue at 2 weeks postimplantation. The dotted line
delineates the interface between titanium implant and regenerated tissue. Inset (from boxed area) is a histological image of an electron transparent
tissue region adjacent to the implant that shows mineralized bone (stained green) next to fibrous connective tissue (stained orange). Higher
magnification TEM images (b and c) from the area of bone identified in the inset reveals distinctive ∼10 nm width fibrillar structures (yellow
arrowheads) and nano-particles (red arrowheads). The association of the fibrillary structures with the electron dense particles is conspicuous (c).
SAED pattern of the encircled area in panel b was performed using a selected area aperture size of ∼400 nm. The concentric rings (d) imply the
presence of a crystalline nanoparticulate phase. The SAED pattern observed matches the standard silver sulfide pattern (dotted arc line in red),
strongly supporting the hypothesis that the particles in the TEM images are silver sulfide. Scale bars are 10 μm in panel a and the inset. The other
scale bars are (b) 100 nm, (c) 20 nm, and (d) 5 nm−1 (in reciprocal space).
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Macrophages, the primary phagocytic cell, arrive after 24−72 h
at the site of bone injury and are capable of rapidly solubilizing
metallic silver extracellularly and then accumulating silver−
sulfur nanocrystals within minutes in lysosome-like structures
in vitro.33 A similar process has been observed following
ingestion of silver coated nanowires by human type 1 alveolar
epithelial cells, suggesting that complexing of silver−sulfur is a
possible detoxification mechanism for short-term accumulation
of free Ag+.34 A recent study demonstrated that the formation
of silver sulfide nanocrystals mediated through strongly
adsorbed protein coronas on silver nanoparticles leads to
reduced toxicity.35 Because the silver we detected in this study
was associated with sulfur, it is likely that a similar pathway of
detoxification occurs in regenerated bone tissue adjacent to the
implant surface. This mechanism is consistent with our data
showing colocalization of silver with sulfur (Figure 7b(v), and
our TEM and SAED results showing its biotransformation to
silver sulfide nanoparticles (Figures 9b and c and SAED Figure
9d) over large sections of bone tissue. The combined
NanoSIMS and TEM/SAED results provide strong evidence
of the mechanism by which AgNP detoxification occurs within
regenerating bone. The association of silver sulfide only within
the osseous tissue could be explained by the abundance of
sulfur containing proteins (i.e., albumin)58 and/or sulfur
compounds (i.e., H2S) generated during tissue forma-
tion.34,59−61

Because silver sulfide is less soluble than silver ions, the
effective antimicrobial activity of the silver-coated implants will
be influenced by the biotransformation process. However,
further study is required to investigate the efficacy, mode and
mechanism of antimicrobial action.
The measured SAED pattern (Figure 9d, dashed red lines)

closely matches the theoretical nanocrystalline Ag2S pattern.62

However, some elemental silver was also indexed, and
unindexed lines suggest the presence of other crystalline
species such as hydroxy apatite. In addition to this, artifacts
introduced during sample preparation (e.g., material sputtered
from other regions) will also complicate the analysis.
Distinctive ∼10 nm width fibrillar structures (yellow arrow-
heads, Figures 9b and c) are also visible, which we hypothesize
to be collagen type I, as it is observed in the newly regenerated
bone.
In vitro, the uptake of silver is considered harmful due to the

internalized AgNPs being released as silver ions,63 which could
generate reactive oxygen species (ROS) and cause cell death.29

Of significance is that AgNPs are actively endocytosed by
numerous human cell types such as mesenchymal stem cells
(MSC),31 alveolar epithelial type I cells,34 HaCaT keratino-
cytes,25 and peripheral blood mononuclear cells (PBMC)26

consistent with the hypothesis that the endolysomomal
compartment is the route for detoxification of silver in vitro.
Additionally, it is well-described that the effects of AgNPs are
dependent on both their size and cell type being investigated in
vitro: for example, low concentrations of smaller size particles
(around 50 nm) (similar to the particle size observed on the
surface of our ALD coated Ti-implants) are relatively benign in
L929 fibroblasts,28 hMSC,26,31 human PBMC,26 and HaCaT
keratinocytes.25 However, at high concentrations, small size
AgNPs are toxic, as demonstrated in 2 human osteosarcoma
cell lines,30 mouse primary osteoblast and osteoclasts,27 and
hMSC.29

In vivo studies examining administration via various routes
(inhalation, intravenous, and intraperitoneal) have also high-

lighted the importance of dose and AgNP size to their toxicity.
Inhalation of lower doses of AgNPs results in no measurable
genotoxicity in bone marrow.64 High doses of orally
administered AgNPs result in accumulation in the kidneys as
well as liver damage65 in addition to quantifiable bone marrow
cell genotoxicity.66 Similarly, intravenous or intraperitoneal
delivery of a high dose of AgNPs results in an increased
frequency of polychromatic erythrocytes in bone marrow,67

functional suppression of the immune system,68 or a combined
hepatotoxicity and genotoxicity.69 When AgNPs are dispersed
within DL-lactic-co-glycolic acid,70 incorporated into nano-
tubes,71,72 or immobilized on Ti73 prior to implantation into
bone, the scaffolds are osteoconductive, well-integrated, and
show antimicrobial activity and no evidence of toxicity. Similar
to these aforementioned studies, the AgNP particle size we
used in our in vivo analysis was both small (∼43 nm average)
and restricted to the area of regenerating bone adjacent to the
implant, resulting in excellent osseointegration with no signs of
toxicity.

5. CONCLUSIONS
Our in vivo experiments enabled the assessment of bone tissue
regeneration within an uninfected rat tibia defect in response to
an antimicrobial silver nanoparticle surface coating. The silver
nanoparticle-coated porous titanium implants showed bone
formation and osseointegration comparable to that of the
uncoated implants following 2−12 weeks of implantation.
Correlative imaging with NanoSIMS, histomorphometry, and
3D X-ray microcomputed tomography was used to analyze
silver content in tibiae implanted with these scaffolds. The
results demonstrated that silver accumulation primarily occurs
within the osseous tissue immediately adjacent to the surface
and was colocalized to sulfur. Transmission electron micros-
copy and selected area electron diffraction patterns reveal the
sulfidation of silver, forming less toxic Ag2S nanoparticles
within the newly formed bone.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: peter.lee@manchester.ac.uk.
ORCID
Peter D. Lee: 0000-0002-3898-8881
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was made possible by the facilities and support
provided by the University of Manchester and Research
Complex at Harwell (RCaH), funded in part by the EPSRC
(EP/I02249X/1). The AgNP ALD work was partly funded by
EPSRC through the Liverpool Knowledge Transfer Account
(EP/H500146/1). We are also grateful for the support and
helpful comments provided our colleagues Dr. Kamel Madi, Dr.
Yiqiang Wang, Dr. Amy Nommeots-Nomm, and Dr. Robert
Atwood together with Dr. Shilei Zhang (Oxford). Data
statement: Representative data from the experiments is
presented in the graphs in this manuscript; the underlying
data is not provided due to its huge size.

■ REFERENCES
(1) Amin Yavari, S.; Loozen, L.; Paganelli, F. L.; Bakhshandeh, S.;
Lietaert, K.; Groot, J. A.; Fluit, A. C.; Boel, C. E.; Alblas, J.; Vogely, H.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.7b05150
ACS Appl. Mater. Interfaces 2017, 9, 21169−21180

21178

mailto:peter.lee@manchester.ac.uk
http://orcid.org/0000-0002-3898-8881
http://dx.doi.org/10.1021/acsami.7b05150


C. Antibacterial Behavior of Additively Manufactured Porous Titanium
with Nanotubular Surfaces Releasing Silver Ions. ACS Appl. Mater.
Interfaces 2016, 8, 17080−17089.
(2) Kim, T. B.; Yue, S.; Zhang, Z.; Jones, E.; Jones, J. R.; Lee, P. D.
Additive Manufactured Porous Titanium Structures: Through-Process
Quantification of Pore and Strut Networks. J. Mater. Process. Technol.
2014, 214, 2706−2715.
(3) Braem, A.; Chaudhari, A.; Cardoso, M. V.; Schrooten, J.; Duyck,
J.; Vleugels, J. Peri-and Intra-Implant Bone Response to Microporous
Ti Coatings with Surface Modification. Acta Biomater. 2014, 10, 986−
995.
(4) Xiu, P.; Jia, Z.; Lv, J.; Yin, C.; Cheng, Y.; Zhang, K.; Song, C.;
Leng, H.; Zheng, Y.; Cai, H. Tailored Surface Treatment of 3D Printed
Porous Ti6Al4V by Microarc Oxidation for Enhanced Osseointegra-
tion Via Optimized Bone in-Growth Patterns and Interlocked Bone/
Implant Interface. ACS Appl. Mater. Interfaces 2016, 8, 17964−17975.
(5) Zhang, Z.; Jones, D.; Yue, S.; Lee, P.; Jones, J.; Sutcliffe, C.; Jones,
E. Hierarchical Tailoring of Strut Architecture to Control Permeability
of Additive Manufactured Titanium Implants. Mater. Sci. Eng., C 2013,
33, 4055−4062.
(6) Arciola, C. R.; Campoccia, D.; Speziale, P.; Montanaro, L.;
Costerton, J. W. Biofilm Formation in Staphylococcus Implant
Infections. A Review of Molecular Mechanisms and Implications for
Biofilm-Resistant Materials. Biomaterials 2012, 33, 5967−5982.
(7) Zimmerli, W.; Trampuz, A.; Ochsner, P. E. Prosthetic-Joint
Infections. N. Engl. J. Med. 2004, 351, 1645−1654.
(8) Kaltsas, D. S. Infection after Total Hip Arthroplasty. Ann. R. Coll.
Surg. Engl. 2004, 86, 267.
(9) Meehan, J.; Jamali, A. A.; Nguyen, H. Prophylactic Antibiotics in
Hip and Knee Arthroplasty. J. Bone Joint Surg. Am. 2009, 91, 2480−
2490.
(10) Jennison, T.; McNally, M.; Pandit, H. Prevention of Infection in
External Fixator Pin Sites. Acta Biomater. 2014, 10, 595−603.
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