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ABSTRACT
Here we present a novel iterative approach for tomographic
image reconstruction which improves image quality for
undersampled and limited view projection measurements.
Recently, the Total Generalized Variation (TGV) penalty
has been proposed to establish a desirable balance between
smooth and piecewise-constant solutions. Piecewise-smooth
reconstructions are particularly important for biomedical ap-
plications, where the image surface slowly varies. The TGV
penalty convexly combines the first and higher order deriva-
tives, which means that for some regions (e.g. uniform back-
ground) it can be more challenging to find a sparser solution
due to the weight of the higher order term. Therefore we pro-
pose a simple heuristic modification over the Chambolle-Pock
reconstruction scheme for TGV which consists of adding the
wavelet thresholding step which helps to suppress aliasing
artifacts and noise while preserve piecewise-smooth appear-
ance. Preliminary numerical results with two piecewise-
smooth phantoms show strong improvement of the proposed
method over TGV and TV penalties. The resulting images
are smooth with sharp edges and fewer artifacts visible.

Index Terms— Iterative reconstruction, regularization,
missing wedge, limited data, hard thresholding, wavelets

1. INTRODUCTION

Due to clinical restrictions on the acceptable level of radi-
ation dose, the number of projections, or/and the exposure
time should be kept to a minimum. This usually results in
poor signal-to-noise (SNR) ratio of reconstructed images. In
mathematical terms, the undersampled or limited view pro-
jection data inversion is an ill-conditioned ill-posed problem
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[1]. In the case of insufficient noisy measurements, regular-
ized iterative techniques can provide much better quality of
reconstructions than analytical methods. Additional regular-
ity on the solution can be imposed through smoothness (e.g.
Tikhonov quadratic `2-norm penalty) or one can assume a
sparser solution and use some approximation of `1 -norm,
such as the Total Variation (TV) semi-norm [2]. Although
TV-based undersampled reconstruction delivers impressive
results in removing noise and some artifacts it also produces
piecewise-constant images (the so-called “cartoon” effect)
even when the original object is smooth. The “cartoon” ap-
pearance can be particularly undesirable in emission tomog-
raphy (ET), where due to limited resolution of the imaging
system, reconstructed images are naturally blurred [3]. Since
the activity distribution is assumed to be piecewise-smooth,
the TV penalty can bias the subsequent clinical interpretation
of reconstructed images.

Various attempts have been made to reduce the “cartoon”
effect of the recovered images by coupling the first order
derivative term (e.g. the TV semi-norm) with higher order
derivatives (e.g. the second order as the Laplace operator) [4].
One of the most advanced recent approaches is the Total Gen-
eralized Variation (TGV) penalty which convexly combines
first and higher order derivatives with different weighting fac-
tors [5]. Weighting factors can be found empirically, however
we noticed that for some regions (e.g. the uniform back-
ground) it is difficult to achieve sparser solutions due to the
weight of higher order derivatives.

In this work, to improve the sparsifying properties of
the reconstruction with the TGV penalty we add an Iterative
Hard Thresholding (IHT) step where small wavelet coef-
ficients (which normally represent noise) are removed [6].
This modification aims at reducing aliasing artifacts from
undersampling, artifacts due to limited view and also sup-
pressing noise. The reconstruction algorithm is based on the
Chambolle-Pock (CP) primal-dual iterative method [7, 8],
which can also be adapted to the convex TGV formalism [4].



The IHT operation is applied on every iteration of the CP
algorithm using the Fast Wavelet Transform which is compu-
tationally efficient. We compare the proposed method Total
Generalized Variation Thresholding (TGVT) with the TGV
and the classical TV penalty.

2. METHOD

The problem of tomographic reconstruction can be formu-
lated as the regularized least squares (LS) minimization:

û = argmin
u

ψλ(u),

ψλ(u) =
‖Au− b‖22

2
+ λTGVs(u),

(1)

where b ∈ RM is a discrete function of the number of the
detector bins and the observation angles describing the pro-
jection data (sinogram), u ∈ RN is a function of spacial vari-
ables describing the observed object, A : RN → RM is a
sparse system projection matrix and λ is the regularization
parameter. The regularization functional TGVs is the Total
Generalized Variation semi-norm [5], which convexly com-
bines first and higher order derivatives (s ≥ 1) using positive
weighting parameters α = (α1, . . . , αs−1), given as:

TGVs(u) = sup{−
∫

Ω

udivsvdx}, (2)

v ∈ Csc (Ω,Syms(Rd)), ‖divlv‖∞≤ αl, l = (0, . . . , s− 1),

where Csc (Ω,Syms(Rd)) denotes the space of continuously
differentiable symmetric s- tensors with compact support in
Ω ⊂ Rd (in our case d = 2). The TGVs=2(u) can be also
written as:

TGV2(u) = α1

∫
Ω

|∇u− v|dx+ α0

∫
Ω

|E(v)|dx, (3)

where E(v) = ∇v+∇vT

2 is a symmetrized gradient op-
erator. Notably the TGV is equivalent to the TV penalty
TGV1(u) = TV(u) when v = 0 in (3). The TV penalizes
the norm of the gradient and recovery delivers piecewise-
constant solutions. Adding weighting by α0 the second-
order term can establish some trade-off between smooth and
discontinuous solutions. In this experiment we consider
TGV2(u) (3) and TGV1(u) for the TV penalty.

The Chambolle-Pock (CP) primal-dual algorithm [7] is a
first-order convex optimization technique based on proximal
splitting and can be used to solve (1) [4, 8]. The resulting CP
algorithm for the TGV penalty is outlined in Alg. 1.

In Alg. 1, div∇,E are divergence operators of ∇ and E
operators respectively, and projections onto convex sets P and
Q are given as:

projα1,λ
P (p̂) =

p̂

max(λ, λ|p̂|α1
)
; projα0,λ

Q (q̂) =
q̂

max(λ, λ|q̂|α0
)

Algorithm 1 Pseudocode for the CPTGV algorithm
set λ, L, τ = 1/L, σ = 1/L, {u0,v, v̂,p, p̂, q, r} = 0
begin iterations (k1, . . . , kK)

1: pk+1 = projα1,λ
P (pk + σ(∇p̂k − v̂k))

2: qk+1 = projα0,λ
Q (qk + σ(E(v̂k))

3: rk+1 = proxσ(rk + σ(Aûk − b)); uold = uk

4: uk+1 = uk + τ(div∇p
k+1 −ATrk+1)

5: ûk+1 = 2uk+1 − uold; vold = vk

6: vk+1 = vk + τ(pk+1 + divEq
k+1)

7: v̂k+1 = 2vk+1 − vold
end iterations

The proximal mapping is given as proxσ(r̂) = r̂
1+σ . To en-

sure convergence of Alg. 1 we choose L = 16 [4, 7, 8].
We notice that it is important to choose weighting factors

α0,1 (3) carefully to establish a good quality of piecewise-
smooth reconstruction. Moroever, when the second order
term is amplified with a non-optimal choice of α0, the re-
construction in uniform areas is dominated by low frequency
oscillations. In this case, aliasing artifacts in the background
are more prominent in the recovery. To suppress artifacts and
further reduce noise we apply the sparsifying wavelet trans-
form on every iteration of the CPTGV algorithm and remove
small (unrepresentative) wavelet coefficients.

In [6] it was proposed to use a simple Landweber-like iter-
ation: uk+1 = Ψ(uk+µAT(Au−b)) to achieve the solution

of the non-convex optimization problem argmin
u

‖Au−b‖22
2 s.t.

‖u‖0≤ J . Here Ψ(·) is a hard thresholding (HT) operator that
keeps the largest (in magnitude) J elements of a vector. With
an appropriate choice of µ the IHT algorithm converges to a
sub-optimal solution. Here we choose the Dual-Tree Wavelet
Transform [9] H and some threshold t (found empirically in
our case): Ψt(x) = H−1HT(H). Next we embedded the IHT
operation into step 4 of the CPTGV algorithm which resulted
in the CPTGVT method (see Alg. 2).

Algorithm 2 Pseudocode for the CPTGVT algorithm
set λ, t, L, τ = 1/L, σ = 1/L, {u0,v, v̂,p, p̂, q, r} = 0
begin iterations (k1, . . . , kK)

1: pk+1 = projα1,λ
P (pk + σ(∇p̂k − v̂k))

2: qk+1 = projα0,λ
Q (qk + σ(E(v̂k))

3: rk+1 = proxσ(rk + σ(Aûk − b)); uold = uk

4: uk+1 = Ψt

(
uk + τ(div∇p

k+1 −ATrk+1)
)

5: ûk+1 = 2uk+1 − uold; vold = vk

6: vk+1 = vk + τ(pk+1 + divEq
k+1)

7: v̂k+1 = 2vk+1 − vold
end iterations

The thresholding step in the line 4 of Alg. 2 comes in
accordance with the IHT theory, however the method looses
its convexity and convergence is hard to prove. The algorithm
is heuristic but reliable in practice provided that τ is small.



3. NUMERICAL EXPERIMENTS

In this section we compare three CP reconstruction methods
using TV [2, 8], TGV (see Alg. 1) and TGVT (see Alg. 2)
penalties. All methods are implemented using the CP scheme
[7] and computer code (Matlab and C-OMP) is provided [10].
To test our techniques, two piecewise-smooth phantoms are
used: one is a simple analytical phantom and another phan-
tom is constructed from a real X-ray reconstructed image. All
reconstructions are made avoiding the “inverse crime”, i.e.
different pixel grids have been taken for projection generation
and reconstruction, also different projection models (strip and
linear) have been employed. Gaussian random noise (κ =
5% of noise to signal ratio) is applied to the simulated pro-
jection data. Presented figures and errors are provided after
thorough optimization for all parameters (λ, α0,1, t) for each
method with respect to the Normalized Root Mean Square
Error (NRMSE) ∆1. Notably parameters α0,1 for the TGV
method were kept the same for the TGVT method as well.

First we test our reconstruction techniques using an ana-
lytical phantom (No.1) which consists of two Gaussians, two
parabolas and a rectangle (see Fig. 1 (top row)). For op-

Fig. 1. Top row: phantom No. 1 of 512×512 pixels size; bot-
tom row: reconstructions from 30 projections with TV, TGV
and TGVT methods; Note the significant improvement of the
TGVT method in removing background oscillations compare
to the TV and TGV reconstructions.

timized parameters we performed 1000 iterations to demon-
strate convergence plots of ∆1 with respect to iteration num-
ber for the TV, TGV and the TGVT algorithms (see Fig. 2
(left)). It can be seen that the TGVT method has the lowest er-
ror for reconstruction from only 30 projection angles (see Ta-
ble 1) and the convergence speed is also improved. The recon-
structed images are shown in Fig. 1 (bottom row). Recon-
struction with the TV penalty results in a rugged piecewise-
constant appearance, while both TGV and TGVT methods
provide desirable piecewise-smooth recovery. Some ringing
artifacts are visible in the background of the TGV recovery
(influence of the second order gentle penalization) while the

Table 1. NRMSE values for TV, TGV and TGVT methods
TV TGV TGVT

Phantom 1 (30 proj.) 0.071 0.055 0.039
Phantom 2 (90 proj.) 0.156 0.153 0.142
Phantom 2 (75 proj., la) 0.231 0.234 0.213
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Fig. 2. Convergence plots for the TV, TGV and the TGVT
methods; left: model 1; right: model 2.

TGVT method removes them very well (which also results in
the substantially lower total error).

The next experiment involves the reconstruction of the
more realistic phantom which was constructed from the high
resolution scan of the bone-bioglass sample acquired at the
DLS Diamond-Manchester Branchline (see Fig. 3 (top row,
left)). The original high resolution image was reconstructed,

Fig. 3. Top row: The original image and the phantom No. 2
of 512×512 pixels size; middle row: reconstructions from 90
projections; bottom row: limited angle reconstructions from
75 projections when 30 angles missing in [0, π) angular range.

denoised and segmented into three phases (air, bone and bio-
glass). The bone structure with some pieces of bioglass (high



absorption material) is then cropped to form phantom No. 2
(see Fig. 3 (top row, right)).

The phantom No. 2 was reconstructed using 90 full pro-
jections and 75 limited angle (30 angles missing in [0, π) an-
gular range) projections (see Fig. 3). Random noise (κ = 5%)
has been added to the projections. The TV reconstructions
are again quite blocky and many smooth features, such as
the bioglass inclusions, are of “cartoon” appearance. The
TGV method provides a much better recovery of smooth fea-
tures, however some streak artifacts (due to missing wedge)
are more emphasized than with the TV method. The TGVT
method successfully suppresses background oscillations and
reduces streak artifacts. The total error is again less with the
proposed method as it can be seen from the Table 1. Conver-
gence plots for phantom No.2 are presented in Fig. 2 (right).
To better appreciate the differences in quality of reconstruc-
tion, the magnified images are shown in Fig. 4. The TGVT
reconstruction is smooth and almost artifacts free.

Fig. 4. The magnified images reconstructed with the TV,
TGV and the TGVT methods (cropped from the middle row
of Fig. 3). The background oscillations are suppressed bet-
ter with the TGVT method while resolution is maintained and
the piecewise-smooth nature is preserved.

4. DISCUSSION AND CONCLUSIONS

Since the proposed method is heuristic and does not attached
to any specific cost function minimization it is difficult to
draw conclusions regarding its convergence properties. Each
IHT step is a projection of the problem onto one of several
subspaces where the problem is convex, the main difficulty is
to show that we do not switch spaces ad infinitum. However,
as long as we iterate within the subspace convergence is en-
sured (provided optimal τ ). Ultimately, for sparser solutions
with the TGVT method we pay the price of non-convexity.

Wavelet recovery is piecewise-smooth and it fits well to
our assumptions of the object. However, wavelets might not
be the best choice of basis functions to minimize limited an-
gle streak artifacts. Usually those streaks are related to the
scanning positions and therefore directional. Curvelets might
be a better choice to further suppress these artifacts since they
consider various geometrical orientations of a signal. Overall,
the method is simple and the use of the fast wavelet transform
does not add any substantial computational cost to it.

In this paper we presented a novel reconstruction ap-
proach which combines the state-of-the-art TGV penalty and
IHR techniques within the CP primal-dual iterative method.
The proposed modification is a one-step operation which fits
well the CP reconstruction strategy. Our preliminary exper-
iments show that the aliasing artifacts can be reduced and
noise influence can be further minimized without any loss
of resolution (preserving the piecewise-smooth nature of the
recovery). Our future work will be dedicated to better under-
stand the properties of the method and its application to the
real datasets.
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