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Abstract 

Expectation has been studied extensively in the decision-making field and 

its possible implementation in influential decision-making models has 

been formulated. Decision-making has historically been studied 

separately to motor planning. However, recent data suggest decision-

making and motor planning overlap in time, with competing action plans 

in motor cortex biased by the ongoing decision. There has therefore been 

increasing interest in studying the interplay between decision-making 

and motor planning. 

Past experiments have typically studied the decision between two 

movements, when each movement is equally likely to be chosen. This 

aims to mimic the everyday situation in which we prepare a movement 

before knowing which it will be. However, a more common situation is 

that we expect to make one movement with a high likelihood, but also 

know there is a low likelihood of making a different movement. It is this 

uneven expectation across potential movements, and its effect on motor 

planning and execution, that is the focus of this thesis.  

I first investigate expectation in motor planning. I propose expectation 

may play the same role in motor cortical excitability as it is proposed to in 

theoretical decision making models. A series of experiment did not 

support this hypothesis; I discuss possible reasons for this. 

I next turn to an aspect of action execution: motor variability. There has 

been increasing interest in the idea that noise during motor planning is an 

important cause of motor variability.  One theory has proposed that 

neural resources are divided when there are multiple motor plans, 

increasing motor variability. I propose that expectation interacts with this 

process by sharing these neural resources unevenly, so that variability is 

lower in the high-likelihood movement. I conduct two experiments to test 
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this idea, and, based on the results, propose that expectation interacts 

with the motor control policy to determine motor variability.  
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Chapter One: Introduction 

1.1. Introduction 

My PhD is about the interface between decision and actions. The fields 

studying these two processes have evolved separately, but there is 

increasing evidence that their brain implementation is not sequential, but 

concurrent and interactive. 

In this introductory chapter, I review literature from both fields. On the 

side of movement, I begin by discussing literature from the field of action 

planning, with a focus on a theory that proposes multiple actions are 

planned in parallel. I explain how neurophysiological experiments in 

monkeys have proposed hypotheses that have been amenable to 

behavioural testing. 

Turning to the decision literature, I focus on the role of expectation. Our 

beliefs about the world change the outcome of our decisions, and there 

has been much effort to place expectation into a theoretical framework. 

The third section of this chapter discusses ideas about the variability 

present during repeated execution of the same movement. From where 

and why does this variability arise? Motor variability has been 

characterised alternately as a limiting factor on the motor system and an 

exploratory behaviour; as arising primarily from noise in action execution 

or primarily from noise in action planning. The experiments in my PhD 

applied ideas about expectation and action planning to the study of motor 

variability. 

Transcranial magnetic stimulation has been one of the experimental tools 

used in my PhD. In the fourth section of this chapter, I review the 

methodological basis of transcranial magnetic stimulation and discuss its 

use as an assay of competing motor plans.  
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1.2. Motor Planning 

1.2.1. Actions and decisions occur in parallel, not series 

A common metaphor for the brain is that of a computer: they both seem 

to have inputs, execute programs, and produce outputs (Cisek, 1999). 

This concept of sequential computation (Donders, 1969) influenced 

neuroscience to view cognition and action planning as discrete modules, 

with cognitive processes executed before action planning begins. In such 

a view of action planning, we first resolve choice between competing 

targets – which item of food on the table to reach towards – and then 

motor cortex plans the kinematics of a reach towards the selected target. 

Sherrington saw response selection as the interface between 

anatomically distinct sensory and motor systems (Sherrington, 1910). 

The assumptions underlying this way of thinking have been influential, 

and there has been a traditional separation between the study of neural 

decision making and of action planning. The decision making field has 

been shaped by classic experiments in monkeys that show parietal cortex 

neurons which are interested in the balance of evidence for competing 

hypotheses in a perceptual decision (Shadlen and Newsome, 2001a; 

Roitman and Shadlen, 2002). On the action planning side, primate 

experiments have shown there is preparatory activity prior to a 

movement in premotor cortex (Tanji and Evarts, 1976; Riehle and 

Requin, 1989; Alexander and Crutcher, 1990) and disrupting this activity 

delays movement onset (Churchland and Shenoy, 2007).  
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Figure 1.1 Action plans in monkey dorsal premotor cortex are biased by decision information. The 
spatial cues indicate two possible reach directions, and PMd responds by planning a potential 
movement to each cue. These are maintained during the memory period. When the colour cue 
indicating the correct reach direction appears, activity in the corresponding motor plan is amplified 
and the alternate plan is suppressed. The Go signal tells the monkey to execute the movement. 
Figure from Cisek and Kalaska (2010) 

This theoretical separation has been challenged by neurophysiological 

data in which dorsal premotor cortex appears to reflect multiple possible 

actions plans (Cisek and Kalaska, 2005; Pastor-Bernier and Cisek, 2011). 

Neural activity recorded from monkey premotor cortex is shown in 

Figure 1.1 for a task in which monkeys have to remember two possible 

locations to reach to, wait for a colour cue that indicates which is the 

correct target, and then make their reach (Cisek and Kalaska, 2005; 

Pastor-Bernier and Cisek, 2011). In the memory period, dorsal premotor 

cortex (PMd) shows elevated activity in two sets of cells: those with 

receptive fields oriented to the two potential targets. When the colour cue 

appears, activity representing that target begins grows, whilst activity for 

the other target diminishes. So PMd maintains two potential motor plans 

whilst the direction of eventual movement is under consideration. The 

decision is reflected in this motor planning activity: multiple potential 

options are specified and gradually eliminated in response to relevant 

information. This is despite the fact that this strategy is not necessary for 
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success: monkeys could have withheld all motor planning processes until 

they had all the information needed. 

These data have led to the ‘parallel processing’ idea: decision-making and 

motor-planning take place on parallel timescales, with motor plans being 

continually updated with new information (Cisek, 2005). The idea has 

been formalised into the “affordance competition hypothesis” (Cisek, 

2007) in which an organism’s preoccupying challenge is to choose from 

the many competing potential actions (‘affordances’) offered by the 

environment, rather than specify the movement. As soon as potential 

targets for action are identified, movements begin to be planned. The 

decision about where to move to goes on in parallel, and, as it evolves 

towards completion, the winning hypothesis biases the corresponding 

action plan by amplifying its activity. The action plan corresponding to 

the losing hypothesis is supressed. Multiple action plans thus compete for 

dominance in a similar way to that envisaged for conventional “decision-

making” activity (Gold and Shadlen, 2007). The motor planning activity is 

biased by a range of relevant information, such as that from basal ganglia 

and prefrontal cortex. Choices emerge via a ‘distributed consensus’, in 

which relevant activity in one region propagates across the brain. Thus 

decisions based on stimulus features might emerge from sensory cortex 

and propagate forwards, whilst those based on abstract rules would 

emerge from frontal regions and propagate backwards, but both would 

ultimately bias movement plans. 

A parallel processing scheme predicts that all factors that influence a 

choice between actions will be represented in motor cortex, not because 

they are explicitly encoded there, but because they are reflected in the 

competition between actions. Thus, when monkeys must hold targets in 

memory with potentially different reward values, the strength of activity 

for each target is biased by the value of the target (Pastor-Bernier and 
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Cisek, 2011). These biases are relative: activity is suppressed by a higher 

value for the opposing target. Importantly, when there is no choice to be 

made, value does not influence activity at all ( 

Figure 1.2). Decision variables are represented in so far as they subserve 

competition between actions. 

 

Figure 1.2 PMd cells respond to the value of potential movements, but only when there is a 
choice. Plots show activity of one cell in caudal PMd from onset of targets (first vertical black line) to 
go cue (second vertical black line). Left panel: in the one target version of the task, the cell shows no 
modulation by value. Middle panel: in the two target version of the task, the value of the cell’s 
preferred target affects its activity so that high-value targets (green line) lead to more activity that 
medium (red line) or low value targets (blue line). This pattern is reversed when the value altered is 
that of the opposite target (right panel). Figure from Pastor-Bernier and Cisek (2011). 

There is further evidence from other modalities that ‘cognitive’ factors 

are represented in motor cortex. In a value-based choice, the subjective 

value difference between the alternatives is reflected in corticospinal 

excitability (Klein-Flugge and Bestmann, 2012). During a perceptual 

decision, accumulating sensory evidence corresponds to the lateralisation 

of motor-selective MEG activity (Donner et al., 2009). In a task with 

confusing, distracting flankers, corticospinal excitability shows the 

dynamic competition between the two plans (Figure 1.3), with activity 

first growing in the hand that favours the flankers, before being 

superseded by activity on the correct side (Michelet et al., 2010). 
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Figure 1.3 Corticopsinal excitability reflects dynamic competition between responses. In this task, 
subjects had to flex or extend a finger, as cued by a central arrow. The figure shows the 
corticospinal excitability in the chosen muscle (solid line) and unchosen muscle (dashed line) when 
(1) only the central arrow was present (black lines), (2) the central arrow was flanked by ‘congruent’ 
side arrows that pointed in the same direction (green lines), and (3) the central arrow was flanked by 
‘incongruent’ side arrows that confusingly pointed in the opposite direction (red lines). The red lines 
show an initial activation of the incorrect motor plan, followed by a change of mind. Figure from 
Michelet et al (2010). 

Recent neuronal recording studies have shown how decision-making 

activity might transform from purely sensory to information suitable to 

subserve an action as it travels from sensory association cortex to motor 

association cortex. Posterior parietal cortex (PPC) is typically implicated 

in evidence accumulation, whilst frontal eye fields (FEF) are involved in 

saccade generation. In the rat, there is a specialisation in the tuning of 

these two areas, with PPC accumulating evidence in a graded manner, 

whilst the rat FEF homologue represents this information in a more 

categorical manner, analogous to, “If I had to go now, which way would I 

choose?”(Erlich et al., 2015; Hanks et al., 2015). With similar evidence of a 

progressive transformation from pure decision to decision-for-action 

information is a study of subjective decision-making in macaques, which 

find that the value of a choice is encoded in abstract form in orbitofrontal 

cortex and relative to action in lateral prefontal cortex (Cai and Padoa-

Schioppa, 2014).  
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1.2.2. Behavioural data in support of parallel motor planning 

The neurophysiological data in Figure 1.1 have been replicated by 

modelling (Cisek, 2007). This draws on a literature which has seen 

premotor cortex as forming a population code over a movement-related 

metric, typically reach angle (Bastian et al., 2003; Georgopoulos and 

Carpenter, 2015). The two potential plans are modelled as peaks of 

activity existing within a continuous distribution of reach angles and thus 

represent a probability density function of potential movements. The 

peaks of activity interact with one another, competing when they are far 

apart, and mutually reinforcing when they are close together (Erlhagen 

and Schöner, 2002).  

 

Figure 1.4 Nearby targets permit intermediate movements, whilst widely-spaced targets do not.  
Behavioural data (top panels; Ghez et al., 1997) and simulations of preferred direction of first M1 cell 
exceeding threshold (bottom panels). With longer intervals permitted for movement selection (left 
panels: shortest interval; right panels: longest interval), behavioural responses and modelled activity 
settle on the response orientation corresponding to rightward target. However, if a response is 
forced before this process is complete, responses tend to be between the two targets when they are 
close, but bimodally distributed to one or other of the targets when they are spaced far apart. Figure 
from Cisek (2007). 
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This makes a prediction: sometimes, the interaction between competing, 

similar action plans will determine the final movement, rather than the 

original plans. This idea is powerfully supported by the ability of Cisek’s 

model (2007) and others similar (Erlhagen and Schöner, 2002) to 

reproduce behavioural data. If human subjects are cued to move before 

they know where to go, and the targets are far apart, they will select one 

or other target to move to (Ghez et al., 1997). However, if the targets are 

close together, a movement aiming between the two targets is made 

(Figure 1.4). This behaviour is explained by the models: positive feedback 

between similar actions leads to a single broad peak of activity, executed 

as an intermediate movement (Cisek, 2007). However, connections 

between actions which are spaced far apart in the population code are 

inhibitory and so only one action can win the competition. The model also 

explains why reaction time is longer when targets are far apart in space 

but not when there are more of them (Bock and Eversheim, 2000): 

interactions within a continuous distribution means angle subtended, 

rather than number of movements, is the important determinant of 

competition.  

If intermediate movements are the result of interactions between 

competing plans, they offer a behavioural window into this competitive 

process (Ghez et al., 1997). A ‘go before you know’ paradigm forces 

subjects to begin moving before they know exactly which of several 

potential movements they will have to make. This paradigm has shown 

that intermediate reach trajectories (Chapman et al., 2010) and initial 

hand orientation (Stewart et al., 2013) do indeed reflect competition 

between the potential options: for instance, in a situation in which 

subjects are twice as likely to be cued to the right as to the left, the ‘before 

you know’ intermediate trajectory is pulled to the right (Figure 1.5). 

Saccade trajectories can also be made curved by the presence of 

distractors (McPeek et al., 2003).  
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Figure 1.5 Intermediate trajectories in a ‘go before you know’ paradigm reflect target position  and 
target likelihood. Red and blue lines show trials where both targets were present, whilst green and 
black lines show trials where only one target is present. On one target trials, trajectories aim 
towards the target. On two target trials, trajectories are initially oriented in between potential 
targets. Moving one target further to the side deviates this intermediate trajectory correspondingly 
(A). When one side of the display is more likely to be cued than the other, the intermediate 
trajectory is deviated towards the likely side (B). Figure from Chapman et al (2010).  

Intermediate trajectories have even been found to reflect competition 

between high-level cognitive parameters during decisions (Song and 

Nakayama, 2009). For a task in which subjects have to make a movement 

to report whether one number is greater or less than another, there are 

more intermediate trajectories when the discrimination is difficult 

because the numbers are closer in value (Song and Nakayama, 2008). 

Similarly, relevant distractor words in a language-based task increase the 

proportion of intermediate trajectories (Finkbeiner et al., 2008). 

The evidence above is compelling but it is possible that the intermediate 

trajectories are generated by averaging between the sensory 

representations of the two targets, with a trajectory then generated to 

this intermediate pseudo-target, rather than a true a motor averaging 

(Stewart et al., 2014; Gallivan et al., 2017). Arguing for a true motor 
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averaging, Gallivan et al (2015) found that when subjects were forced to 

move to a target that was ambiguous in the movement it specified, they 

tended to use motor elements of a plan to a previously-seen, non-

ambiguous target. These results depended on interactions between 

specific movements and not the spatial organisation of the targets. This 

behaviour was observed despite the absence of a ‘go before you know’ 

paradigm: participants had all the necessary information before they 

began their movement.  

In fact, interactions between movement plans appear to extend beyond 

movement specification to movement execution. Feedback gains are also 

averaged between targets (Gallivan et al., 2016b) and feedback gains in 

turn reflect the evolving decision (Selen et al., 2012). This suggests 

competition is at the level of feedback control policies, not just endpoints. 

Behavioural data has not only been useful to understand the competitive 

processed entailed by parallel processing, but might hint at the reasons 

this system confers an adaptive advantage. Subjects tend to reuse 

elements of a competing plan in the executed plan, and when the two 

competing movements are compatible, reaction and movement times are 

shorter (Gallivan et al., 2015). In other words, sharing motor plan 

parameters might speed motor processing or reduce working memory 

load. Furthermore, intermediate movements may optimise reward or 

defer final decision-making in situations where evidence is uncertain 

(Haith et al., 2015; Wong and Haith, 2017). 

1.2.3. Two goals, one plan? 

Despite the evidence presented above, the affordance competition 

hypothesis is contested (Padoa-Schioppa, 2011). Wong and Haith (2017) 

have argued that intermediate trajectories represent a deliberate 

movement to an intermediate goal, rather than the execution of a 
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combination of plans. Similarly, intermediate feedback gains (Gallivan et 

al., 2016b) reflect selection of a halfway-house control policy which 

balances cost and accuracy. The findings of Stewart et al (2014) - that 

when there is an obstacle in the way of one plan, but not the intermediate 

movement, the intermediate movement is nevertheless deflected away 

from the obstructed side – is similarly explained as not a motor averaging 

phenomenon, but a unitary control policy, in which the obstructed 

movement is more effortful and thus costed against. Averaging is thus 

deliberate selection of, and planning for, an intermediate goal, because 

this is an optimal strategy (Haith et al., 2015), rather than because a 

combination of plans is being executed. 

These ideas are drawn from a viewpoint in which motor planning is a 

process distinct from selecting a motor goal (Wong et al., 2015). What is 

the difference between a goal and a plan? Wong and Haith (2017) 

characterise the distinction as analogous to that between a cost function 

and a control policy in optimal control theory; in other words, one is 

strategic and the other is implementational. Whilst there are multiple 

potential goals, there is only one motor plan. The activity relating to 

multiple visual targets in premotor cortex (Cisek and Kalaska, 2005) is 

the representation of multiple possible motor goals rather than motor 

plans. Planning, unlike choosing a goal, is characterised as a typically 

quick process that has little influence on the reaction time (Wong et al., 

2015, 2016). Planning follows serially from goal selection. This does not 

mean that planning must wait until goal selection is complete – a plan 

might be to an intermediate goal if the decision process is still ongoing – 

but a single plan is produced. 

To support this argument, Wong and Haith (2017) argue that activity in 

frontal eye fields represents stimulus, potential goals, and the motor 
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plans in turn. Motor cortex might similarly represent motor goals which 

evolve to a single plan.  

In this context, the finding that adding virtual barriers (Haith et al., 2015) 

or requiring speeded movements (Wong and Haith, 2017) abolishes 

intermediate movements is evidence for intermediate goals, on the 

grounds that the a motor averaging phenomenon in premotor cortex 

must be too low level to incorporate task rules. 

Further evidence for the separation of plans and goals comes from the 

field of motor skill learning: learning is believed to bind together 

execution-related activity in the spinal cord or primary motor cortex 

(‘motor primitives’) and thus over time automate the process of response 

selection (Diedrichsen and Kornysheva, 2015). 

These ideas have been conceptually linked to neurophysiological work 

describing motor cortex as a dynamical system for generating movement. 

According to this view, the goal of preparatory activity is to bring neural 

cortical activity to a particular state, from which it will evolve passively 

into movement activity without requiring additional input (Shenoy et al., 

2013). This view, in which motor cortex acts as an internal pattern 

generator, is in contrast to traditional views which regard the motor 

cortex as coding distributions of movement-related variables, such as 

reach angle (Georgopoulos and Carpenter, 2015). There is experimental 

evidence in favour of the dynamical systems view: neural variability 

diminishes during movement preparation, as would be expected by a 

dynamical system bringing activity to a common starting point 

(Churchland et al., 2006, 2010). When projected into a lower dimensional 

space, neural responses tend to rotate with an amplitude and phase given 

by the preparatory activity (Churchland et al., 2012), suggesting 

oscillatory activity akin to that found in other motor systems (Grillner, 

2006). 
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The dynamical systems view has the motor plan represented by a single 

population, with the firing rate of individual neurons only incidentally 

correlating with movement parameters such as speed and direction. This 

is argued to be incompatible with representing plans as two competing 

sets of neurons tuned to movement parameters (Cisek and Kalaska, 2005; 

Wong and Haith, 2017). Furthermore, the dynamical systems view argues 

that, because neural tuning to, for example,  velocity or reach direction 

does not necessarily remain consistent from the preparatory period to 

the movement period, there is no need for preparatory neural activity to 

be a subthreshold version of activity in the movement period (Kaufman et 

al., 2013, 2014). This is a challenge to Cisek’s model which encompasses 

rise-to-threshold behaviour (Cisek, 2007). 

To summarise, the line of thinking which argues that the representations 

of plans and goals in motor cortex are conceptually distinct posits that 

cue-related activity in premotor cortex represents multiple goals rather 

than multiple plans. Spatial averaging behaviour arises from selection of 

an intermediate goal rather than an averaged plan. 

1.2.4. Summary and relevance 

Neurophysiological evidence shows that motor plans compete for 

dominance in premotor cortex and this has been used to understand 

human behaviour in which movements reflect the competing alternatives 

available. The sharing of neural resources implicit in parallel processing 

has implications for motor variability; this is the subject of an experiment 

in Chapter 3. 

I have detailed the controversy over whether the activity patterns seen in 

premotor cortex truly reflect two executable motor plans. It is easy for 

the discussion to become semantic in the absence of clearly defined 

neural correlates for each putative process. Whether the goals hypothesis 
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proves to be true or not, it is not contested that there are signatures of 

value-based and perceptual decision-making in motor cortex. This has 

motivated increasing research interest in assaying decision variables in 

motor areas, which led to the experiment in Chapter 2. In the next section 

I turn my attention to one of these decision variables: prior expectation. 
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1.3. Prior Expectation 

Our interpretation of the world around us depends on our prior beliefs 

about it. The scene in Figure 1.6 provides an intuitive example: 

interpretation is hard until we know the image shows a Dalmatian under 

a tree; after this, it is easy. Visual illusions highlight the extent to which 

perception is a process of applying existing beliefs to new data (Kersten 

and Yuille, 2003). Similarly, object recognition is speeded by a relevant 

visual scene that makes the object more likely (Bar, 2004; Enns and 

Lleras, 2008). Veridical expectations make our decisions faster and more 

accurate (Mulder et al., 2012).  

 

Figure 1.6 This ambiguous scene becomes easy to interpret with information about what it 
depicts; see text. Image from Gregory (1970). 

The combining of prior expectations and sensory evidence occurs in a 

Bayes-optimal manner (Kording and Wolpert, 2004). Our tendency to 

form predictions about the world lies at the heart of ideas about the brain 

as an inference machine (Helmholtz, 1867; Friston, 2012). 
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How is expectation represented in the brain? Neurons in superior 

colliculus (Basso and Wurtz, 1997, 1998) and lateral intraparietal cortex 

(LIP; Platt and Glimcher, 1999) fire more vigorously prior to a certain 

response being cued, the likelier that response is. These responses have 

been interpreted in the context of models of decision-making, and so I 

begin by discussing these. 

1.3.1. Decision model predictions about role of prior expectation 

Normative models of decision making were proposed to model the 

process of making a choice between two alternatives. The drift-diffusion 

model (DDM; Ratcliff, 1978) is the most prominent among other related 

models (Carpenter and Williams, 1995; Usher and McClelland, 2001; 

Brown and Heathcote, 2008). The drift-diffusion model represents 

decision making as an iterative process of repeated sampling from 

sensory evidence. The samples of sensory evidence are accumulated until 

there is enough evidence to select one of the two alternatives and make a 

decision.  

For instance, consider a human subject faced with a popular 

psychophysical stimulus: a field of moving dots, with a small proportion 

moving either leftward or rightward amongst a majority moving 

randomly (Britten et al., 1992). These ‘random dot kinetograms’ (RDKs; 

Figure 1.8, top panel) require the subject to look at the stimulus and 

integrate evidence over time before making a left/right judgement. 

According to a drift-diffusion model, a decision variable represents the 

current state of accumulated evidence about the RDK. The decision 

variable starts at a level equidistant between two bounds which 

represent ‘decide right’ and ‘decide left’ (Figure 1.7). Every time sensory 

evidence is sampled, the decision variable changes, with sensory evidence 

consistent with leftward motion pushing the decision variable towards 

the ‘decide left’ bound and vice versa. Over time, the decision variable will 
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reach one of the two bounds, with the mean rate of the rise reflecting the 

strength of sensory evidence. The bound represents a criterion level of 

evidence which is regarded as sufficient to make a decision.  

 

Figure 1.7 The drift-diffusion model implements a statistically optimal method for making a 
decision. The decision variable (blue line) starts in between the bounds representing the two 
hypotheses (H1 and H2). Evidence is repeatedly sampled and the decision variable is updated. In this 
example, the sensory evidence favours H1 and so the activity of the decision variable rises to the H1 
bound, with mean rate of rise (red dashed line) representing the strength of the sensory evidence. 
When the blue line reaches a bound, the corresponding hypothesis is accepted as true. The time 
taken for this process, plus some non-decision time, equals the reaction time. Figure adapted from 
Gold and Shadlen (2007).  

The drift-diffusion model is equivalent to the Sequential Probability Ratio 

Test (SPRT; Wald, 1945), the statistical test developed to make a decision 

at the desired accuracy with the fewest samples of evidence possible. The 

drift-diffusion model naturally replicates some features of human 

perceptual decisions e.g. that more difficult decisions – where the 

evidence is weaker – take longer. Indeed, the drift-diffusion model is very 

good at replicating reaction time distributions in a range of tasks (Ratcliff, 

1978, 2002), including the RDK task (Ratcliff and McKoon, 2007). 

There are other, competitor models to the drift-diffusion model, which 

share the basic feature of evidence-determined activity racing to a bound. 

In some of these models, rising activity reflect momentary rather than 

accumulating evidence (Carpenter and Williams, 1995; Cisek et al., 2009), 

in others separate units race to meet threshold (Carpenter et al., 2009), 

whilst others include a leak term so that integrated evidence does not 
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accumulate indefinitely (Usher and McClelland, 2001). All perform well at 

modelling reaction times, so I have focussed on the drift-diffusion model 

because it is the most widely used. 

 

Figure 1.8 A random dot kinetogram task and corresponding activity in MT and LIP neurons. Top 
panel: the random dot kinetogram (RDK) is a field of noisy moving dots which moves either leftward 
or rightward. In this task, the direction of RDK motion indicates which of the two targets the monkey 
should make a saccade towards. RF indicates the neuron’s receptive field corresponds to the right 
target. Bottom panel: the activity of the LIP neuron shows ramping activity in response to the RDK, 
with a steeper ramp when the signal-to-noise ratio of the RDK motion is higher (solid lines). When 
RDK motion favours the alternative target (dotted lines), the ramping is downwards, with, again, a 
rate depending on strength of stimulus motion. The grey shaded area shows the response of 
motion-sensitive neurons in visual cortex: these appear to represent the current strength of sensory 
evidence, in contrast to LIP neurons, which appear to represent evidence integrated over time. 
Figure from Gold and Shadlen (2007). 
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The drift-diffusion model made the leap from theoretical model to 

putative mechanism with the discovery of neurons in macaque lateral 

intraparietal cortex (LIP) that appeared to encode the decision variable 

during RDK tasks (Shadlen and Newsome, 2001a; Roitman and Shadlen, 

2002). As in the drift-diffusion model, LIP neurons show ramping in 

activity level up to a fixed firing rate; their activity predicts behavioural 

choice (Figure 1.8; bottom panel). Stronger RDK motion leads to a steeper 

rise in activity and a shorter reaction time.  

How can prior expectation be incorporated into decision models? Prior 

expectation makes reaction times faster and more accurate (e.g. 

Carpenter and Williams, 1995). There are two possible ways to alter a 

rise-to-threshold model to reflect this (Carpenter and Williams, 1995; 

Ratcliff and McKoon, 2007; Domenech and Dreher, 2010; de Lange et al., 

2013; Summerfield and de Lange, 2014). Firstly, an increased expectation 

of one hypothesis in favour of another could bias the starting position 

(Figure 1.9). The decision variable would thus start closer to one bound 

than another, meaning less evidence would need to be accumulated to 

reach the decision. I refer to this as ‘baseline bias’. Alternatively, there 

could be a bias to the drift rate for the relevant hypothesis, so that 

accumulation progressed in bigger steps, making it easier to reach 

threshold. This is analogous to adjusting the gain on the sensory evidence 

for that hypothesis. I refer to this as ‘gain increase’.  

Either modulation would have the effect of reducing reaction times, 

although they make different predictions about distributions (Carpenter 

and Williams, 1995) and error trials (Mulder et al., 2012). (There is also a 

third possibility: an increased prior expectation could reduce the height 

of the bound for the relevant hypothesis. This has the same effect as a 

baseline bias – less evidence need be acquired – and is behaviourally 
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indistinguishable; thus these two possibilities are usually considered 

together.)  

 

Figure 1.9 Prior expectation could be incorporated into a drift-diffusion model in one of two ways: 
by reducing the distance between the two thresholds or increasing the gain on the integration of 
sensory evidence.  A reduced interthreshold distance is shown in the top panel; an increased gain on 
sensory evidence is shown in the bottom panel. Blue line: lower expectation; brown line: higher 
expectation. The reduced inter-threshold distance shown in the top panel could be achieved by a 
lowered top threshold or an elevated starting point; these have equivalent effects on reaction times. 
The plots on the right hand side show the corresponding effect on reaction time distributions, which 
are plotted as ‘reciprobit’ plots (Carpenter and Williams, 1995) in order to transform them to be 
linear. Figure from Domenech and Dreher (2010). 

For a simpler model than the drift-diffusion model, analysis of reaction 

time distributions has repeatedly (Carpenter and Williams, 1995; 

Domenech and Dreher, 2010; Forstmann et al., 2010) favoured the first 

explanation: prior expectation increases the height of the starting bound 

and not the drift rate. For drift-diffusion models themselves, the results 

are considered to support a change to starting bound to the exclusion of 

(Simen et al., 2009; Mulder et al., 2012) or as a greater effect than (Ratcliff 

and McKoon, 2007) a drift rate change. 
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Thus, the quantities in rise-to-threshold models have intuitive correlates 

(Carpenter and Williams, 1995). The starting level reflects the level of 

belief about a hypothesis: the prior expectation. The rate of rise is a noisy 

representation of the level of evidence for a particular hypothesis, or for 

one hypothesis over the other, depending on the model (Reddi et al., 

2003). The top threshold represents the amount of evidence for a 

decision, and modulations to this implement a natural speed-accuracy 

trade-off (Reddi and Carpenter, 2000). The models are Bayesian, in that 

they combine prior belief with new evidence (Summerfield and de Lange, 

2014). 

So behavioural modelling predicts prior expectation acts via a baseline 

bias and not gain increase. Is this prestimulus bias found in neural firing? 

This idea was lent credence by the finding that superior colliculus 

neurons (Basso and Wurtz, 1997, 1998) and LIP neurons (Platt and 

Glimcher, 1999; Churchland et al., 2008) fire at a lower level prior to 

stimulus if an alternative is less likely, but ultimately reach the same level 

prior to movement, exactly as would be predicted by the theory above. In 

a more direct test of the hypothesis, Rao et al (2012) found an effect of 

prior expectation that waned with time, exactly as might be expected for a 

baseline offset.  

However, Hanks et al (2011) found the opposite: the bias to neural 

activity afforded by a prior expectation grew stronger over time. This 

might be due to task differences: Rao et al showed a stimulus of fixed 

duration, whilst Hanks used a reaction time task in which it might be 

more advantageous to weight the prior more strongly as time proceeds. 

In other words, taken together, these studies might imply the 

implementation of priors is dynamic according to task demands. A third 

study (Gold et al., 2008) used an alternative method to compare the 
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hypotheses by looking for neural correlates of trial-to-trial random 

biases. They failed to find any; this could have been due to lack of power. 

1.3.2. High-level representations of expectation 

Whilst neurophysiological studies on the coding of prior expectation in 

LIP have been inconclusive, imaging studies have sought to look more 

broadly for representations of expectation and identify ‘higher-level’ 

brain areas which might be the source of expectations induced by task 

context.  A number of studies have used the decision modelling 

introduced in the previous section to identify relevant areas.  

Domenech and Dreher (2010) found that, in a shape identification task, 

prior expectation based on a predictable order to stimuli modulated 

reaction times in a manner consistent with a threshold modulation in a 

decision model. Their fMRI analyses found that the anterior cingulate 

cortex was involved in this threshold modulation, whilst dorsolateral 

prefrontal cortex accumulated sensory evidence relating to the correct 

choice.  

Forstmann et al (2010) induced an expectation about the direction of an 

RDK. Modelling the behavioural data using a simple decision model 

(Brown and Heathcote, 2008), they found that simply fitting the 

accumulator distance-to-threshold captured the data better than any 

other combination of parameter fitting. Using this parameter as a 

covariate in their fMRI analysis, they found that activity in the orbitfrontal 

cortex, hippocampus and putamen varied with the model-estimated 

distance-to-threshold. They suggested that a prior expectation led to 

activation of a selected corticostriatal loop, and thus began an action 

selection process. 

Rahnev et al (2011) attempted to dissociate perceptual activity from the 

corticostriatal motor response observed by Forstmann et al (2010) by 
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withholding the stimulus-response mapping until after the decision in a 

similar RDK task. They used their behavioural data to compute signal 

detection theoretic quantities (Green and Swets, 1966) and then 

compared the bias from this computation to BOLD activity. They found 

increased activity in dorsolateral prefrontal cortex, and increased 

recurrent connections between this area and motion-sensitive area MT+. 

Mulder et al (2012) used the drift-diffusion model to model the effect of 

prior expectation on an RDK task and again found that prior expectation 

changed the baseline of the evidence accumulation process. They found a 

variety of frontal and parietal regions covaried with this model baseline. 

These studies and others (Shulman et al., 1999; Preuschhof et al., 2009) 

have found a wide variety of brain areas whose activity co-varies with 

levels of expectation and shows a prestimulus bias in response to 

expectation (Esterman and Yantis, 2010). This suggests expectation 

signals are represented widely around the brain in a task-specific 

manner. However, one finding that has been remarkably consistent 

across paradigms and models is that reaction time changes in response to 

expectation are consistent with a baseline alteration to the evidence 

accumulation process, in preference to the rate or gain of the evidence 

accumulation itself.  

1.3.3. Expectation in sensory areas 

Random dot kinetograms are designed to activate neurons in motion-

sensitive visual cortex area MT (Britten et al., 1992). How does an 

expectation that a stimulus is coming affect this and other early sensory 

areas? The prediction made by the models outlined above is that early 

sensory areas should not show a modulation by expectation, because this 

is already represented as a baseline offset in the activity of the parietal, 

evidence-accumulating neurons. If it were true that stimulus likelihood 
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had been incorporated into the sensory representation, then expectation 

representation at the parietal level could not be by baseline offset alone – 

the expectation would be repeatedly incorporated with each sample of 

evidence and thus would also affect the drift rate. 

Is this prediction – of expectation-invariant sensory representations - 

borne out? Rao et al (2012) found the pattern predicted by decision 

theory: a modulation by expectation in LIP but not MT. However, this 

finding is at odds with fMRI studies which have seen a modulation by 

expectation in early visual areas (Kok et al., 2012) and MT specifically 

(Shulman et al., 1999; Schlack and Albright, 2007). Indeed, visual context 

can drive activity in non-stimulated areas of V1 (Smith and Muckli, 2010). 

Fitting these results into rise-to-threshold models would necessitate 

rejecting the hypothesis that, in biological implementation, expectation 

acts strictly on baseline alone. The Leaky Competing Accumulator (LCA; 

Usher and McClelland, 2001), a variant of the drift-diffusion model which 

is considered more biologically plausible, includes lateral inhibition 

between competing decision units. Lateral inhibition obliterates the 

distinction between baseline bias and drift rate, because, for example, a 

positive bias to one unit will inhibit the evidence accumulation of 

competing units. However, other lines of evidence also challenge the rise-

to-threshold model account. 

A consistent finding from the EEG literature is that unexpected stimuli 

evoke a ‘mismatch’ negativity’; a larger amplitude event-related potential 

compared to expected stimuli (Näätänen et al., 1978, 1989). As well as 

attenuated responses to expected stimuli, responses to repeated stimuli 

are also suppressed (Todorovic and de Lange, 2012). Clearly, this 

dampening of expected stimuli does not fit well with the drift-diffusion 

model account, which hypothesises that a stronger expectation drives the 

amplitude of responses. 
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What is the explanation for the apparent contradiction? Predictive coding 

(Mumford, 1992; Rao and Ballard, 1999) offers a more complex and 

dynamic account of the role of expectations or Bayesian priors, rooted in 

the recurrent nature of neural connections (Figure 1.10). Expectations 

are fed down the hierarchy of brain areas whilst sensory input is passed 

upwards. At each level of processing, sensory areas compare their input 

and the prediction to compute sensory prediction errors and errors are 

progressively minimised to arrive at the best percept.  

 

Figure 1.10 The integration of new information and existing beliefs, in a hierarchical network for 
predictive coding. Feedforward pathways carry prediction error signals whilst feedback pathways 
carry predictions. At each level of the hierarchy, a representation of the current input is maintained 
and compared to the prediction carried in the feedback connections to calculate a prediction error 
signal. The prediction error signal is then passed to the next level in the hierarchy via the 
feedforward connections. Figure from Rao and Ballard (1999). 

Predictive coding has the power to explain previously puzzling ‘extra-

classical’ receptive field effects (Rao and Ballard, 1999). Furthermore, a 

number of fMRI studies have found visual cortex activity consistent with 

predictive coding. Most strikingly, Kok and de Lange (2014) showed that 

when visual input is expected due to the context and also present, 

responses in V1 are suppressed, but responses are enhanced when there 

is the same expectation but no corresponding input. This fits well with 

the idea of a sensory prediction error. Furthermore, expectations increase 

top-down connectivity to visual areas (Summerfield et al., 2006), and 

when expected and observed perceptions diverge, bottom up connectivity 

increases (Summerfield and Koechlin, 2008). 
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Thus, there is now a body of evidence to suggest that expectations are 

represented in early sensory areas in a manner than cannot be accounted 

for by drift-diffusion modelling but is well captured by predictive coding. 

The rise-to-threshold model account, which influenced the design of 

experiments presented in this thesis, continues to be useful to understand 

the integration of evidence and existing beliefs in higher areas, but the 

purely feed-forward flow of information fails to capture the role of 

expectation in sensory areas.  

1.3.4. Expectation in motor representations 

Long-standing evidence has shown motor cortical neural activity in the 

period before having to make a movement (Wise et al., 1983; Riehle and 

Requin, 1989; Crammond and Kalaska, 2000). However, whether and 

how the motor cortex responds to information about the likelihood of 

having to make a particular movement is less well-studied. The 

affordance competition hypothesis (Cisek, 2007) would suggest that 

motor cortex is constantly being updated with decision-making signals 

and thus we might expect signals about expectation to move to be 

reflected in motor cortex. In the oculomotor system, superior collicular 

neurons reflect cue likelihood (Basso and Wurtz, 1997, 1998). 

Partial information about an upcoming movement shapes population-

tuned neural activity (Bastian et al., 2003). The likelihood of having to 

make a movement at a particular time also alters lateral field potentials 

(Roux et al., 2006). Corticopsinal excitability as measured by transcranial 

magnetic stimulation appears to reflect quantities related to likelihood, 

such as surprise (Bestmann et al., 2008) and time elapsed without a cue 

(van Elswijk et al., 2007). Finally, lateralisation of MEG activity over 

motor cortex reflects a predictive cue (de Lange et al., 2013). Thus there 

is a variety of evidence from different modalities that the information 

carried by predictive cues may be reflected in motor cortex. A series of 
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experiments into the effect of the movement likelihood on corticospinal 

excitability were the subject of Chapter 2.  

1.3.5. Differentiating attention and expectation 

‘Everyone’, William James famously wrote, ‘knows what 

attention is’. A similar claim might be made for expectation: 

we have a rich and immediate introspective sense of what 

it means to expect a forthcoming stimulus, or for 

expectation to be violated (‘Surprise!’). – Summerfield and 

Egner (2009) 

Despite everyone knowing what attention and expectation are, it is 

sometimes hard to differentiate them. For instance, the experimenter 

cues a subject that a target is likely to appear at a particular location, and 

they are faster and more accurate (e.g. Carpenter and Williams, 1995). 

Are neural changes a result of probabilistic expectation, spatial attention, 

or both?  

There is almost exact overlap between the putative implementations of 

expectation and attention (gain control, baseline offset, etc; Summerfield 

and Egner, 2009), and they have often been elided in discussions of 

cueing paradigms, particularly in the field of visual perception (e.g. 

Esterman and Yantis, 2010).  However, there is evidence that modulatory 

neural responses to predictive information persist even when attention is 

diminished by sleep (Nakano et al., 2008), anaesthesia (Yaron et al., 

2012), or disorders of consciousness (Bekinschtein et al., 2009). 

An experiment that aimed to orthogonalise the likelihood of a stimulus 

being relevant (as a proxy for attention) and the likelihood of a stimulus 

occurring (expectation; Wyart et al., 2012b), found that attention had 

effects consistent with a model which suppressed noise in signal 

processing. In other words, attention facilitated signal-processing most 

for stimuli in which the signal was present. By contrast, expectation 
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(likelihood) was best modelled by a baseline offset to signal processing. 

This would thus have the strongest effect on stimuli in which the signal is 

absent. Within a predictive coding framework, attention appears to 

increase the precision of prediction errors (Kok et al., 2012; Jiang et al., 

2013). In short, expectation and attention seem to have distinct neural 

mechanisms. 

1.3.6. Summary and relevance 

Expectation signals are found in a huge variety of experiments looking at 

different brain areas and using different techniques. In particular, I have 

highlighted lines of evidence that have argued for expectation as a 

baseline bias, which was relevant to the design of experiments in 

Chapters 2, 3 and 4. 

The literature on expectation is confused by an absence of a unifying 

definition or paradigm characterising expectation. For instance, some 

authors have considered it important that expectations should be 

implicitly developed (Kok et al., 2013) i.e. acquired unconsciously from 

task statistics rather than cued. Some studies have used a cue which is 

likely to come at one of several timepoints (Roux et al., 2006; van Elswijk 

et al., 2007) and assumed this temporal expectation represents 

expectations more generally. Some literature has used a task in which 

participants have to make an ‘A/not A’ judgement about each stimulus. 

The template A stimulus is assumed to represent an expectation, but, as 

test stimuli are equally likely to be A as to be not A, this is clearly not a 

representation of likelihood (Summerfield and Koechlin, 2008). 

Furthermore, some of the literature I have cited above used cues which 

were perfectly predictive of later stimuli (Shulman et al., 1999; Schlack 

and Albright, 2007); this could conceivably be represented differently to a 

probabilistic mapping. I have already discussed the common elision of 

expectation and visual attention in the scene perception literature.  
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In the experiments in this thesis, I used explicit cues that accurately 

informed subjects about the likelihood of one stimulus over another. This 

method is simple, clearly modulates subjects’ belief about stimulus 

likelihood and, when trial by trials cues are used, allows the use of 

interleaved designs (see Chapter 2 for more).  
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1.4. Motor variability 

In 1990, Larry Bird made 71 consecutive free throws. While 

a remarkable feat, one wonders why he missed the 72nd? 

Why could he not simply do what he had done the last 71 

times? – Churchland et al (2006) 

Movements are variable: it is rarely possible to perfectly repeat them. 

This is such a ubiquitous feature of human movement that we take it for 

granted, but why is it that we cannot do again what we have done before, 

even when, as the quote above illustrates, the potential gain is high?  

In this section I review ideas about the source of motor variability, but 

first begin by describing models which have centred around controlling 

movement variability as the fundamental optimisation of the motor 

system. 

1.4.1. Motor variability as a limiting factor in motor control 

The control of motor variability has been a critically important concept in 

formulating hypotheses about online motor control.  Under these 

hypotheses, variability is characterised as a limiting factor for the motor 

system. Optimal feedback control (Todorov and Jordan, 2002) was based 

on the experimental observation that movement variability is typically 

lower in task-relevant versus task-irrelevant dimensions: the 

‘uncontrolled manifold’ (Scholz and Schöner, 1999). For instance, 

endpoint distributions in pointing movements reflect the shape of the 

target (Lametti et al., 2007; Berret et al., 2011; Nashed et al., 2012).  Older 

models of motor control typically involved an ideal trajectory being 

planned and then movement execution system attempting to execute this 

as closely as possible (Flash and Hogan, 1985; Harris and Wolpert, 1998), 

but this fails to explain the existence of the uncontrolled manifold, which 
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implies that online mechanisms retain knowledge of the goal of the 

movement and not merely the trajectory.  

According to optimal feedback control, the motor system generates a 

feedback control law. This responds to feedback (e.g. proprioceptive 

information) intelligently, according to task demands (Todorov and 

Jordan, 2002). For instance, a control law for a reaching movement might 

be defined in terms of endpoint error. If the control law predicts that 

noise or a perturbation during the movement will deviate the endpoint 

enough to interfere with task goals then it is corrected for, but otherwise 

it is not. Thus variability accumulates in task-irrelevant dimensions. The 

elegance of this system is that details of the movement are postponed 

until execution, so that trajectory planning and motor execution become 

one and the same.  

In common with older models (Harris and Wolpert, 1998), optimal 

feedback control models include a term for noise at the neuromuscular 

junction which is dependent on the mean size of the motor-neuronal 

signal and thus a speed-accuracy trade-off arises naturally. Effort is also 

penalised. 

Optimal feedback control predicts a ‘minimal intervention’ principle, 

where deviations from a mean trajectory are corrected for only when 

they prevent task goals being reached. This prediction has held over a 

huge variety of experimental paradigms. If subjects experience a visual 

perturbation (via an offset introduced into the position of a cursor 

representing hand position) when moving towards a rectangular target, 

they correct more to deviations along the short axis than the long axis 

(Knill et al., 2011). This is also true when the perturbation is mechanical 

(Nashed et al., 2012).  
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Feedback corrections seem to be highly flexible in reflecting complex task 

demands. For instance, corrections take into account how hard the 

subject needs to hit the target (Liu and Todorov, 2007). Corrections also 

intelligently reflect obstacles in the task environment (Nashed et al., 

2012). If subjects learn that a perturbation is temporary, they do not 

correct for it, but if the perturbation is permanent, they do (Figure 1.11) 

(Franklin and Wolpert, 2008). Corrections to perturbations reflect 

knowledge about the dynamics of a task even when these were learnt in 

the absence of perturbations (Wagner and Smith, 2008; Cluff and Scott, 

2013). 

 

Figure 1.11 A visual perturbation is corrected for when it affects task performance, but not when it 
does not.  Results from an experiment in which the subject is making a reaching movement with 
hand occluded and a cursor representing hand position. The experimenter sometimes induces a 
perturbation by falsely deviating the position of the cursor laterally (left panels). On some blocks, 
these perturbations are eventually reversed (blue lines) whilst on others they are not (yellow/orange 
lines). The hand trajectories (right panels) show that the subject adjusts their hand position to 
counteract the permanent perturbation (yellow/orange lines), but not the temporary one (blue 
lines). Figure from Franklin and Wolpert (2008). 

Involuntary corrections to perturbation that are responsive to task 

demands begin within ~110 ms; in other words, within the class of 

response that is usually considered a ‘reflex’ (Pruszynski et al., 2008, 

2011; Dimitriou et al., 2013). This applies even when the perturbation 

varies from trial to trial (Franklin and Wolpert, 2008). Similarly, if the 

task changes, feedback gains are updated within 100 ms (Dimitriou et al., 
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2013), suggesting that optimal feedback laws are continuously 

recalculated. (However, in contradiction, another study failed to find trial-

by-trial updating of feedback corrections (de Xivry, 2013)). 

Corrections to perturbations are sensitive to task urgency (Crevecoeur et 

al., 2013) and are graded (Pruszynski et al., 2008) and present even for 

small perturbations (Crevecoeur et al., 2012). They peak in magnitude 

midway to the target (Liu and Todorov, 2007; Dimitriou et al., 2013), 

which is consistent with another optimal feedback control prediction: 

towards the end of the movement, there is an increased energetic cost to 

corrections, which begins to outweigh the benefit of a target hit. Optimal 

feedback control also accurately models coordination in two-handed 

movements (Diedrichsen and Dowling, 2009). 

In further support of the idea that the motor system is optimised to deal 

with the detrimental effects of noise, subjects select their movements in a 

way that shows knowledge of their own endpoint distributions, and a 

rapid updating of this knowledge when this variability is increased 

(Trommershäuser et al., 2005).  

In summary, optimal feedback control has been highly successful in 

accounting for feedback responses to experimentally-induced movement 

variability. However, the source of variability in natural movements is 

contested. 

1.4.2. The source of motor variability 

Optimal control theory (Todorov and Jordan, 2002) relies critically on the 

idea that motor noise is signal-dependent: that is, it scales with the size of 

the motor signal. Thus faster movements, requiring a larger signal, are 

more variable, imposing a natural speed-accuracy tradeoff (Harris and 

Wolpert, 1998). In these conceptions, the nervous system is critically 

limited by stochasticity in spiking and the motor system is optimised to 
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limit the impact of such noise on movement execution (Franklin and 

Wolpert, 2011). These theories have assumed that such noisy spiking is 

peripheral in origin (Jones et al., 2002) and has its detrimental effect 

primarily during action execution (van Beers et al., 2004). 

However, the primary determinant of movement variability continues to 

be debated. Elsewhere, the importance of central sources of neuronal 

noise has been emphasised, whether sensory, motor, or computational 

(Churchland et al., 2006; Beck et al., 2012; Chaisanguanthum et al., 2014). 

Churchland and colleagues (2006) have argued that their dynamical 

systems view of motor cortex (Section 1.2.3) suggests motor planning 

involves complex optimisations, and variance in these would be expected 

to contribute to variance in motor execution. They found a trial-by-trial 

correspondence in variability in motor planning activity and reach 

velocity. They estimate that motor planning activity determines around 

half of movement variability.  

Similarly, Beck and colleagues have argued that variability arises from 

approximations during inference: human limbs are too complex to be 

modelled accurately and our internal models of them are suboptimal 

(Beck et al., 2012). This would again predict that most variability arises 

during motor planning, when the models of limb dynamics are engaged. 

These ideas are in marked contrast to the optimal feedback control 

studies which have assumed that preparatory variability is negligible in a 

reaching task in humans (van Beers et al., 2004).  

In short, the key determinant of movement variability continues to be 

debated, but there has been a renaissance in interest in the importance of 

motor planning in determining motor variability. Recent behavioural 

work, which I have built on in my PhD, has manipulated motor planning 

in order to determine the effect on motor variability and this is described 

in the next section. 
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1.4.3. Limited resources as a cause of motor variability 

Multiple potential actions are planned in parallel (Section 1.2) and motor 

planning activity is considered a possible determinant of motor 

variability (Section 1.4.2). Does planning multiple actions have an effect 

on motor variability? When human subjects have to plan two possible 

movements rather than one, positional variability in the movement 

increases (Wijdenes et al., 2016). In this experiment, subjects had to move 

to one of two possible targets; the correct target was either cued early 

relative to the movement (i.e. only one plan need be maintained) or late 

(i.e. both plans need to be maintained). A control condition in which the 

cued target jumped showed that subjects did indeed maintain the 

expected number of plans, because there was a reaction time cost if the 

target jumped in the two-plan condition but not the one-plan condition. 

Why should increasing the number of motor plans increase motor 

variability? The finding suggests that there is a limited resource in motor 

planning. Under a limited resource scheme, all motor plans must be 

represented by a shared neural resource. As the number of plans 

increases, the quality of each plan diminishes. Behaviourally, variability 

increases. 

Limited resource models have had notable success in describing visual 

working memory. The precision of representations in visual working 

memory (as shown by line length discrimination between a presented 

stimulus and a remembered one (e.g. Palmer, 1990)) decreases as the 

number of items in working memory increases. Visual working memory 

was therefore posited to be item dependent, with acuity of 

representations dropping off sharply after three to four items (Luck and 

Vogel, 1997).  
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However, Bays and Hussain (2008) showed that when the discrimination 

task is made more difficult, there is no sudden drop in acuity after three 

or four items but instead a gradual decrease as the number of items 

increases. The relationship between number of items and precision of 

representation can be described by a power law. The results support an 

alternative hypothesis to a fixed item limit: that there is sharing of a 

limited resource which determines the precision with which items in 

working memory are internally represented. The limited resource is 

shared dynamically, with quick updating in response to saccadic gaze 

changes and attention-capturing cues (Bays and Husain, 2008). 

Limited resource models have also been proposed to explain finite self-

control (Muraven and Baumeister, 2000) and now motor variability 

(Wijdenes et al., 2016).  

What could the biological substrate of a limited resource constraint be? 

The summed level of neuronal spiking in a population offers a candidate 

mechanism. Many neuronal populations have been observed to exhibit 

divisive normalisation, where neuronal inputs are scaled by the overall 

activity of the population such that the mean level of spiking is always 

similar (Carandini and Heeger, 2012). Divisive normalisation was 

originally proposed to explain receptive field responses in striate cortex 

(Heeger, 1992) and has since been used to explain receptive fields in area 

MT (Britten and Heuer, 1999), multiple object representation in 

inferotemporal cortex (Zoccolan et al., 2005), value coding in lateral 

intraparietal cortex (Louie et al., 2011), retinal photoreceptor adaptation 

(Normann and Perlman, 1979; Carandini and Heeger, 2012) and olfactory 

population codes in Drosophila (Olsen et al., 2010). Indeed, divisive 

normalisation has been proposed as a canonical computation in neural 

circuits (Carandini and Heeger, 2012). Divisive normalisation provides a 

mechanism for the context-dependence of value coding in LIP (Louie et 
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al., 2011) and has been proposed to explain rationality violations in 

economic choices (Louie et al., 2013). Divisive normalisation is the basis 

of the limited resource model which has been successful in modelling 

errors made in visual working memory tasks (Bays, 2014).  

Divisive normalisation’s ubiquity makes it a good candidate for a limited 

resource model of motor planning. In a normalised neuronal population, 

maintaining a representation of two possible reach targets rather than 

one leads to a reduced signal-to-noise ratio for each option, because the 

spiking in the population is shared across the plans. Indeed, 

normalisation is needed to explain many of the behavioural phenomena 

introduced in Section 1, and is incorporated into the affordance 

competition model (Pastor-Bernier and Cisek, 2011). Normalisation 

explains why there is a response time cost to preparing more than one 

movement (Cisek, 2007), and why there is an inverse relationship 

between the number of potential movements and the neural activity of 

each one (Basso and Wurtz, 1998; Cisek and Kalaska, 2005).  

So, divisive normalisation might be the key to explaining many of the 

behavioural consequences of planning two movements, including an 

increased variability in execution. I have built on the limited resource 

ideas of Wijdenes and Bays (2016) in experiments in Chapters 3 and 4. 

1.4.4. The advantages of motor variability 

So far, I have discussed motor variability as a limitation; that is, in the 

context of hypotheses that posit that variability arises inevitably from 

noise in neuronal firing and is a limiting factor on the motor system 

(Harris and Wolpert, 1998). However, research in a different context has 

emphasised motor variability as a critical substrate of exploratory 

behaviour and motor learning (e.g. Therrien et al., 2016). There is 
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growing evidence that behavioural variability is sometimes desirable and 

gratuitously introduced. 

In support of the link between variable behaviour and learning, it has 

been found that rats which are trained to be more variable are capable of 

learning a complicated motor sequence which less variable rats were not 

(Grunow and Neuringer, 2002). These findings were extended to humans 

in a study showing that subjects who are naturally more variable in a 

particular aspect of a baseline reach task were faster to learn to modify 

behaviour when a subsequent reach task rewarded that aspect, even 

though subjects were not aware exactly what was being rewarded (Wu et 

al., 2014). Furthermore, this finding was not limited to reward-based 

operant learning, which is believed to be driven by reward prediction 

errors in the basal ganglia (Glimcher, 2011), but also held in an error-

based learning task; these are hypothesised to rely on cerebellar sensory 

prediction errors (Izawa et al., 2012).  

An eloquent description of how variable behaviour might be generated 

deliberately as a substrate for learning comes from the literature on 

songbird song generation. Young songbirds have highly variable song 

production, but, as the birds age, they learn to produce a stereotyped 

song that mimics a tutor bird (Ölveczky et al., 2011). Interestingly, when a 

songbird is caged with a potential mate, it ceases to produce a variable 

song and produces its best attempt at a stereotyped song, but the 

variability in singing resumes once the mate is removed (Woolley et al., 

2014). Neuronal recording studies have elucidated the spiking that drives 

this behaviour (Ölveczky et al., 2011) - the spiking itself drops in 

variability - and found that lesioning a basal ganglia-to-forebrain output 

tract obliterates the singing variability and produces a stereotyped song 

(Ölveczky et al., 2005). There is convergent evidence that dopamine is 
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also involved in producing behavioural variability in rats (Pesek-Cotton et 

al., 2011). 

In songbirds, when there is a high possibility of reward – a mate - 

variability is temporarily halted. Is the same true in humans? Yes: human 

subjects increase their motor variability in response to an absence of 

reward (Pekny et al., 2015) or a punishment (Galea et al., 2013), or in a 

task that relies on reward-based rather than sensory feedback (Izawa and 

Shadmehr, 2011). Similarly, saccades in monkeys are less variable after a 

reward (Takikawa et al., 2002). These effects apply to both overall 

movement direction (Pekny et al., 2015) and low-level movement 

parameters (Takikawa et al., 2002; Galea et al., 2013). There is also a 

graded response: when the chance of getting a reward is lower, baseline 

variability increases.  

Furthermore, the variability increase in response to absence of reward is 

obliterated in patients with Parkinson’s Disease, suggesting a basal-

ganglia dependent process, as in songbirds (Pekny et al., 2015). Similarly, 

dopamine antagonists obliterate the increased motor variability observed 

in response to financial punishment (Galea et al., 2013). The idea that 

variability increases in the absence of a reward fits into an idea from 

reinforcement learning of a so-called explore/exploit dilemma: organisms 

must trade-off between exploiting a current reward-giving option versus 

looking for a better one (e.g. Daw et al., 2006).  

In addition to allowing learning and exploration, variability in itself might 

offer an advantage. Game theory says that randomness can be useful in 

outwitting opponents in predator-prey relationships (Neumann and 

Morgenstern, 1944). Randomness’s role in exploration might even make 

it a substrate for higher-level processes like creativity (Carpenter, 1999).  
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1.4.5. Summary and relevance 

The motor system is optimised to limit the effects of variability, and 

recent ideas suggest this variability might arise from limited neural 

resources during motor planning. In Chapters 3 and 4, I hypothesise that 

prior expectation plays a role in dividing up these resources, and test this 

idea experimentally.   
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1.5. Transcranial Magnetic Stimulation 

Transcranial Magnetic Stimulation (TMS) is a neurostimulatory technique 

which can be used to assay action planning. I begin with a technical 

discussion of TMS before explaining its advantages in studying motor 

planning. In TMS, a coil-shaped electromagnet is placed on the scalp of an 

awake human. The electromagnet generates a magnetic field for a fraction 

of a millisecond, and so induces a current in and briefly excites underlying 

neural tissue (Barker et al., 1985). Whilst TMS can be used repetitively to 

study brain plasticity, or in paired pulse protocols to assay inhibitory 

circuits, I will focus the technical discussion on the type of TMS I used in 

the experiments in Chapter 2: single pulse TMS to hand area of motor 

cortex using a figure-of-eight coil in a postero-anterior (PA) orientation 

relative to the subject.  

1.5.1. The motor evoked potential 

A TMS pulse induces current flow parallel to the surface of the coil, with 

little radial current spread (Di Lazzaro and Rothwell, 2014). A figure-of-

eight coil, in contrast to earlier circular coils, causes current summation 

across the two halves so that stimulation is strongest in the centre.  

TMS excites the axons, rather than cell bodies, of cortical neurons. We 

know this because certain stimulation properties of TMS to motor cortex 

match those of large diameter myelinated peripheral fibres (Peterchev et 

al., 2013). Axons are excited by a potential difference along their length, 

and so TMS activates axons differentially according to their arrangement 

relative to the induced current (Salvador et al., 2011), with axons that 

bend out of a uniform electric field being most susceptible to stimulation 

(Amassian et al., 1992). Because of these properties, stimulation 

threshold varies with coil orientation, such that holding the coil in a PA 

orientation gives the lowest threshold for an evoked potential (Di Lazzaro 
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et al., 2001). This orientation is therefore commonly used, including for 

the experiments in this thesis. 

TMS to motor cortex causes a muscular twitch contralaterally and an 

evoked potential which can be read out using electromyography (EMG) 

with surface electrodes. The amplitude of this motor evoked potential 

(MEP) is the metric of interest in many experiments using TMS. 

Recordings from the surface of the spinal cord in awake humans have 

been used to understand the waves of neural discharge that sum, via 

motorneurones, to contribute to the MEP. Low intensity TMS evokes the 

I1 (‘indirect 1’) wave (Di Lazzaro et al., 1998a). This is a single discharge 

which is thought to originate from presynaptic activation of the 

pyramidal tract (hence the term ‘indirect’). In support of this idea, I1 

waves are sensitive to cortical excitability (Di Lazzaro et al., 1998b) 

suggesting a cortical origin. The latency of this wave is 1 ms longer than a 

direct wave; these will be discussed below.  

Medium intensity TMS evokes further waves after the I1, this time as a 

volley, known as late I waves (Di Lazzaro et al., 1998a). They are believed 

to originate from neurons discharging at about 600 Hz. It is these waves 

that are depressed by activation of GABAergic circuits in intracortical 

inhibitory protocols (Di Lazzaro et al., 1998c).  

The I1 wave may have a different origin to later I waves. Whilst I1 is 

believed to be monosynaptic, it has been proposed that late I waves arise 

from axons which synapse onto bursting neurons that in turn drive 

pyramidal tract neurons (Di Lazzaro and Rothwell, 2014). 

High intensity TMS evokes further late I waves, and a D (‘direct’) wave (Di 

Lazzaro et al., 1998a). D waves are believed to originate from direct 

excitation of pyramidal tract neurons in the subcortical white matter, 
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some distance from the cell body. A given axon can produce both D and I 

waves (Patton and Amassian, 1954). 

 

Figure 1.12 The waves evoked by PA TMS depend on the intensity of stimulation. Low intensity 
stimulation evokes an I1 wave. Intermediate intensity stimulation evokes an I1 wave and later I 
waves. High intensity stimulation evokes the I waves and a D wave (dashed line indicates timing of D 
wave). Figure from Di Lazzaro and Rothwell (2014). 

Monophasic stimulation is typically used for TMS because it produces a 

simpler and more consistent pattern of cortical outputs than biphasic 

stimulation (Di Lazzaro et al., 2001). TMS-evoked responses are 

idiosyncratic: for example, it has been shown for AP TMS that the 

efficiency of late I wave recruitment varies between subjects (Hamada et 

al., 2013).  

Importantly, voluntary contraction (both of relevant muscles (Di Lazzaro 

et al., 1998b) and non-relevant muscles (Andersen et al., 1999)) amplifies 

MEPs – the amplitude of evoked waves can be 50% higher than at rest. 

Thus MEP amplitude reflects the excitatory state of the pyramidal tract at 

the time of stimulation, and this is the basis of its use in studying action 

preparatory processes during the reaction time. 

1.5.2. The MEP as an assay of competing action plans 

TMS is highly temporally specific, allowing high-resolution sampling of 

corticospinal excitability within the human reaction time. This sampling 

can be directed to different effectors (index fingers, little finger, foot, etc). 

An early finding was that MEPs recorded from the effector during the 
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reaction time on a simple reaction time task (subjects respond to a cue 

with a fixed action) increase in amplitude, decrease in latency (Rossini et 

al., 1988) and increase in probability of being evoked (Starr et al., 1988) 

in the ~50 ms before EMG activity. Subsequently, it was found that the 

effector to move showed this pre-movement MEP facilitation in a variety 

of tasks whilst the corresponding, unchosen effector showed a 

suppression (Leocani et al., 2000). Thus it appeared that MEPs offered an 

insight into a suppression of the ipsilateral hemisphere prior to 

movement. 

Inhibition of the ipsilateral motor cortex depends on the nature of the 

movement (Liepert et al., 2001) and the effectors involved (Sohn et al., 

2003) and its mechanism is likely corticocortical (Weiss et al., 2003). 

Inhibition of the non-selected effector is context-dependent: it is stronger 

when movements are both upper limb than when one is upper limb and 

the other is lower limb (Labruna et al., 2013). Regarding excitation of the 

contralateral motor cortex, MEP excitability increases with an advance 

cue that fully or partially specifies the nature of the movement but not an 

uninformative cue (McMillan et al., 2004).  

Thus it seems that MEPs offer a read-out of the competitive processes 

leading to one hemisphere being excited and the other suppressed. The 

idea that MEPs reflect dynamic competition was demonstrated 

particularly by the study by Michelet et al (2010) discussed in Section 

1.2.1 (Figure 1.3) which showed the wrong effector initially being 

activated during a difficult decision. A number of studies have since used 

TMS to explore competition between action plans and find MEP 

correlates of factors which bias behaviour.  

MEPs are facilitated by a biasing reward (Klein et al., 2012). Increasing 

temporal expectation also increases MEP amplitude (van Elswijk et al., 

2007). MEPs reflect quantities related to the information signalled in the 
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task, like entropy and surprise (Bestmann et al., 2008). MEPs reflect the 

biomechanical cost of a decision: early MEPs are suppressed by high cost, 

perhaps reflecting a choice process, whilst later MEPs increase with high 

cost, perhaps reflecting a need for a greater EMG activation in more 

energetic movements (Cos et al., 2014).  

 

Figure 1.13 MEPs are different in the chosen versus unchosen effector during the decision time. In 
this experiment, the time for the decision was isolated using a comparison to control trials in which 
there was no choice process. Main panel shows the separation of MEPs in the chosen and unchosen 
effector across the whole reaction time. Inset shows this activity in just the decision time. The 
significant difference between MEP amplitude in the chosen and unchosen effectors in this period 
indicates that MEPs reflect the ongoing decision process. Figure from Klein-Flugge and Bestmann 
(2012).  

In support of the idea that MEPs reflect competition whilst the decision is 

still ongoing (as in a parallel processing schema (Cisek, 2007)), MEPs in 

the chosen hand are differentiated from those in the unchosen hand at 

timepoints too early to reflect action preparation (Figure 1.13) (Klein-

Flugge and Bestmann, 2012). Similarly, a more difficult face 

categorisation decision leads to divergence of MEP activity earlier relative 
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to the response, suggesting a continuous read out of the decision (Hadar 

et al., 2016).   

1.5.3. Inhibition of MEPs in the effector that moves 

Prior to movement, MEPs are facilitated in the selected effector and 

suppressed in the non-selected effector (Section 1.5.2). A consistent 

finding from the TMS literature thus seems counterintuitive: MEPs in both 

the effector and the antagonist are suppressed relative to an intertrial 

baseline prior to movement (Hasbroucq et al., 1997; Touge et al., 1998; 

van Elswijk et al., 2007; Tandonnet et al., 2010). Indeed, MEPs are more 

strongly suppressed in the effector that will move (Figure 1.14) (Duque 

and Ivry, 2009). This suppression is followed by the facilitation of the 

selected effector which was discussed above.  

The phenomenon has classically been investigated using ‘instructed 

delay’ tasks in which the participant knows which effector they will have 

to move but must wait for a fixed delay period before beginning the 

movement (Hasbroucq et al., 1997, 1999; Davranche et al., 2007; Duque 

and Ivry, 2009). These tasks show MEPs progressively diminishing if the 

delay period is short (0.5 s) but not if it is long (2.5 s). So this type of 

delay was believed to be associated with placing a temporary brake on 

motor structures prior to movement. 

However, even in a task without a delay, there is nevertheless MEP 

suppression after the imperative to move (Greenhouse et al., 2015b). 

Furthermore, simple reaction time tasks (in which the same response is 

always cued) also cause MEP suppression (Touge et al., 1998; Duque et 

al., 2014; Greenhouse et al., 2015b), suggesting the process is not 

critically dependent on choice selection. MEP suppression also occurs 

regardless of whether the precue is informative or not (Duque and Ivry, 

2009), or how likely the precue is to lead to a movement (Sinclair and 



65 
 

Hammond, 2009). In other words, MEP suppression before the ramping 

up of MEPs in the chosen effector prior to movement is a widespread 

phenomenon which is relatively robust to particular task parameters. 

 

Figure 1.14 MEP suppression during the delay period affects all effectors and is strongest in the 
hand the subject expects to move. The figure shows left index finger MEPs at intertrial baseline 
(black bars) compared to in the delay period before movement was cued (TMSDelay) and in the 
reaction time after movement was cued (TMSMovement). When the cue was informative (left panel), 
MEPs are suppressed most if the cue indicates that the relevant finger will be used in the response 
(‘Bimanual’ and ‘Left’). However, MEPs are also suppressed in the non-relevant finger (‘Right’).  
There is also suppression even if the cue was uninformative (right panel). Figure from Duque and 
Ivry (2009). 

To explain the stronger suppression of MEPs in the chosen effector, a dual 

process account of MEP suppression has been suggested (Duque et al., 

2010). According to this, one process reflects the outcome of the decision 

process (as described in Section 1.5.2), which might include the selected 

response inhibiting alternatives under a ‘winner take all’ scheme. This 

causes the suppression of non-selected effectors. The process is 

sometimes called ‘competition resolution’. This type of inhibition is 

upregulated when conflicting stimuli which cause confusion over which 

movement to make are expected (Klein et al., 2014). 

The second process is termed ‘impulse suppression’. The winning 

representation is inhibited most strongly, perhaps as part of the 

preparation for movement or to prevent premature initiation. Evidence 
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for this ‘hold your horses’ signal includes the finding that inhibition is 

stronger when responses are more complex (Greenhouse et al., 2015a). 

In support of the idea that there are two distinct processes, H-reflexes, 

which reflect spinal cord excitability, are diminished concurrently with 

MEP suppression in the chosen effector but not with suppression in the 

non-chosen (Hasbroucq et al., 1999; Duque et al., 2010). Furthermore, 

disrupting prefrontal areas with repetitive TMS reduces suppression of 

MEPs in the non-selected effectors (Duque et al., 2012, 2013), whilst 

doing the same to dorsal premotor cortex reduces suppression of  MEPs 

in the selected effector (Duque et al., 2012), perhaps implicating separate 

cortical mechanisms in these phenomena. 

Despite the dual process account, there is an alternative proposed 

explanation for MEP suppression: the spotlight account (Greenhouse et 

al., 2015b). This draws on the idea that MEP suppression could be a 

mechanism for increasing the gain of future signals (Hasbroucq et al., 

1997). According to the spotlight account, a single process leads to broad 

inhibition of MEPs, with, as in a spotlight, inhibition strongest at the 

selected representation, but also extending less strongly onto non-

selected representations. It is proposed that this broad inhibition is 

mediated by the basal ganglia, and there is focussed disinhibition of a 

relevant thalamocortical channel to initiate movement (Duque et al., 

2017). Under this scheme, inhibition enhances future movement, rather 

than temporarily halting it. This idea is appealing because it dissociates 

MEP and behavioural inhibition, which have often been assumed to be 

linked, despite an absence of evidence to support this (Duque et al., 

2017).  
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1.5.4. Summary and relevance 

MEPs offer a temporally precise read-out of decision processes taking 

place in motor cortex and this was the basis for its use for the 

experiments in Chapter 2. The separate inhibitory processes that 

influence the MEP became important in interpreting these experiments; 

current theories about these processes are described above. 
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Chapter Two: The representation of expectation in 

corticospinal excitability during motor planning 

2.1. Introduction 

Neurophysiological evidence suggests that, prior to movement, multiple 

motor plans are prepared and a competitive process between these plans 

leads to selection of the final movement (Cisek, 2007; Pastor-Bernier and 

Cisek, 2011). This chapter uses Transcranial Magnetic Stimulation (TMS) 

to ask how beliefs (‘prior expectations’) are incorporated into this 

competition between motor plans. Expectation has been characterised as 

a prestimulus bias in literature concerning theoretical models of decision-

making (Carpenter and Williams, 1995; Ratcliff and McKoon, 2007; 

Domenech and Dreher, 2010) and neural activity consistent with this has 

been recorded in superior colliculus (Basso and Wurtz, 1998) and 

parietal cortex (Platt and Glimcher, 1999; Rao et al., 2012). The question 

of this chapter is whether expectation is represented in corticospinal 

excitability as a prestimulus bias, as predicted by this work. Data from 

three experiments are presented. 

2.1.1. Assaying competition between motor plans 

The affordance competition hypothesis (Cisek, 2007) was formulated to 

explain neurophysiological data showing that activity in premotor cortex 

reflects sensory information (e.g. colour) only when it is relevant to the 

decision about which movement to make (Cisek and Kalaska, 2005; 

Pastor-Bernier and Cisek, 2011). According to the hypothesis, motor 

plans are formulated whilst the decision about which movement to make 

is still ongoing. The motor plans are then biased by all signals relevant to 

the decision from elsewhere the brain (e.g. parietal cortex and basal 

ganglia).  The motor plans are characterised as being in a continuous 

space representing a motor parameter, typically reach angle 
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(Georgopoulos and Carpenter, 2015). The plans can interact with one 

another in this space, so that executed movements are a product of the 

competitive interactions between the motor plans. Evidence for the 

affordance competition hypothesis is reviewed in detail in Chapter 1.    

TMS can be used to assay corticospinal excitability for a particular 

effector (e.g. right index finger).  Because of its temporal specificity, and 

the ability to compare competing effectors, over multiple trials, motor-

evoked potentials (MEPs) can be used to construct a picture of ongoing 

competition between motor plans. TMS has been used in this way to 

study competition between motor plans in a value-based decision (Klein-

Flugge and Bestmann, 2012). Apparent changes of mind when stimuli are 

highly conflicting have also been tracked using TMS (Michelet et al., 

2010). TMS has also been used to demonstrate that corticospinal 

excitability varies with ‘cognitive’ parameters such as surprise (Bestmann 

et al., 2008) and action cost (Cos et al., 2014), as would be expected if 

competition in motor activity were the result of all decision information 

available. In short, TMS permits an assay in awake humans of the dynamic 

competition between motor plans that is central to the affordance 

competition hypothesis. 

2.1.2. Expectation as a prestimulus bias 

Prior expectation (which here is a belief about the likelihood of various 

events) has often been investigated in literature on decision-making 

because our expectations, along with new sensory evidence, combine to 

determine the outcomes of our decisions. This literature has focussed 

particularly on perceptual decision-making, studied in an established 

paradigm, the Random Dot Kinetogram (RDK). An RDK is a noisy field of 

moving dots from which the subject must determine coherent motion and 

thus must be viewed over time to determine the motion direction. 
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Modelling human subjects’ performance on these tasks using the drift-

diffusion model (Ratcliff and McKoon, 2007; Simen et al., 2009; Mulder et 

al., 2012) or race-to-threshold models (Carpenter and Williams, 1995; 

Domenech and Dreher, 2010; Forstmann et al., 2010) consistently finds 

that expectation is best modelled as a decision bias that occurs prior to 

the process of accumulating sensory evidence up to a decision bound. 

Neural recordings consistent with the idea of prior expectation as a 

prestimulus bias have been made in intraparietal cortex (Platt and 

Glimcher, 1999; Churchland et al., 2008; Rao et al., 2012) and superior 

colliculus (Basso and Wurtz, 1998). See Chapter 1 for more. 

2.1.3. Hypothesis and key experimental features 

The aim of this chapter was to measure the influence of prior expectation 

on corticospinal excitability. The particular hypothesis, informed the idea 

that decision information is continually biasing motor plans, and by past 

work on decision models, is that there would be a bias, prior to evidence 

accumulation, where corticospinal excitability for the expected effector 

should be higher than in the non-expected effector.  

The experiments in the chapter involved human subjects receiving single-

pulse TMS to left motor cortex during a choice between a left index finger 

movement and a right index finger movement, with various levels of prior 

expectation that one movement would be more likely than the other. 

Subjects were cued to expect, for instance, that on some trials, the 

probability that the upcoming stimulus would go left vs right was 10:90, 

whilst on others it was 50:50. The stimulus used to indicate to 

participants which way they should move was a Random Dot Kinetogram 

(RDK; Britten et al., 1992). These noisy moving dot stimuli involve a 

perceptual judgement that requires evidence accumulation over time (see 

Results). They have been widely used in decision-making studies, both 

behavioural (e.g. Donner et al., 2009; Rahnev et al., 2011) and 
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neurophysiological (e.g. Roitman and Shadlen, 2002; Hanks et al., 2011), 

and so were used here to align this study with past literature. 

MEPs were measured in right-hand first dorsal interosseous (FDI). Due to 

the hypothesis that a bias would be present before evidence 

accumulation, the key MEP timepoint of interest was that at the 

appearance of the RDK: after the prior belief about its likely direction had 

been seen by subjects but before evidence accumulation had begun. I 

term this the ‘stimulus onset’ timepoint. The experiments also included 

some trials with later timepoints in order to build up a picture of ongoing 

excitability during the decision. 

A further goal of the experiments was to use behavioural data recorded to 

model the bias parameter using a decision model (the drift diffusion 

model; Ratcliff, 1978) and to test for a correlation between this 

parameter and corticospinal excitability. The model allows us to access a 

metric of prestimulus bias, which is hypothesised to be dependent on 

prior expectation, in a way that simple behavioural measures do not. 

2.1.4. What this study adds 

If the hypothesis was borne out, it would add to a growing body of 

evidence for competing motor plans being biased by decision information 

(Cisek, 2007), and show that this happens not just during the evidence-

accumulation part of the decision but also earlier. Corticospinal 

excitability has proved a fruitful way to investigate biased competition in 

humans because of its temporal and effector specificity. To date, TMS 

studies in this context have examined the Posner cueing task (Michelet et 

al., 2010) and a value-based task (Klein-Flugge and Bestmann, 2012), but 

there has not been any use of the evidence-integration task that 

perceptual decision-making studies have used. 
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A number of TMS studies have added credence to the idea that 

expectation can be detected in corticospinal excitability. Firstly, 

Bestmann et al (2008) have suggested that entropy and surprise are 

reflected in corticospinal excitability. As with the experiments in this 

chapter, they used a probabilistic cueing task. However, the experiment 

focussed on probabilities tracked over the many trials, incorporating the 

influence of both expectation and past events, and used information-

theory to model the quantities. Here I wanted to look at the 

representation of expectation in isolation. 

Secondly, Klein et al (2014) found MEP suppression at stimulus onset was 

higher in a context in which ‘conflict’ (a stimulus with confusing flankers) 

was expected. This informed the hypothesis here that expectation is 

incorporated at the timepoint of interest. However, the putative process 

studied here is a different one: Klein et al propose that MEPs are 

suppressed in this experiment as part of a stronger ‘impulse suppression’ 

process (discussed further below and in Chapter 1). This is considered 

distinct from the process of competition between motor plans 

investigated in this chapter (Duque et al., 2010). 

Thirdly, van Elswijk et al (2007) show that MEPs increase with increasing 

temporal expectation. Again, this is promising for the present hypothesis, 

but this temporal expectation is about ‘when’ not ‘where’ to move. This 

experiment only involved one movement and so there was no 

competition between motor plans. 

In other modalities, Bastian et al (2003) recorded primate motor cortex 

neurons and showed a population code for movement direction that is 

‘preshaped’ by the number of precues (i.e. by prior information). More 

information about which was likely to be the direction of movement led 

to narrow peaks of population activity around the mean movement 

direction. This chapter aims to extend this to humans and link the 



73 
 

findings to parameters in the drift-diffusion model. De Lange et al (2013) 

use an RDK task and magneto-encephalography to find that prior 

expectation cause lateralisation of beta oscillations over motor cortex. 

This study is similar, but uses corticospinal excitability. 

2.1.5. An experimental challenge: minimising impulse supression 

MEPs are increasingly understood to reflect multiple motor preparatory 

processes; they are the summed read-out of all the processes that affect 

corticospinal excitability (Bestmann and Duque, 2015). In particular, 

MEPs are known to have a phase of broad suppression prior to ramping 

up before movement (Greenhouse et al., 2015b), which is not easily 

understood in the context of biased competition. I will refer to this as 

‘impulse suppression’, as it has often been hypothesised to play the 

functional role of a ‘hold your horses’ signal that prevents premature 

movement (Duque et al., 2010), even though this functional 

interpretation is now disputed (Greenhouse et al., 2015b; Duque et al., 

2017).  

The literature on impulse suppression was discussed in Chapter 1; to 

briefly summarise some key properties: 

• MEP suppression has been shown to follow both a warning cue and 

an imperative cue giving the signal to move (Touge et al., 1998; 

Duque et al., 2014; Greenhouse et al., 2015b) 

• It is robust to the particular properties of the cue (Duque and Ivry, 

2009; Sinclair and Hammond, 2009) 

• It affects all effectors and is strongest in the effector that will move 

(Duque and Ivry, 2009) 

• In precue paradigms, MEP suppression is present if the precue-

imperative gap is short (0.5 s) but obliterated when this delay is 
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long (2.0 - 2.5 s; Hasbroucq et al., 1997; Touge et al., 1998; 

Tandonnet et al., 2010) 

I hypothesised that impulse suppression would mask the effect an effect 

of prior expectation, because it is a non-effector specific signal. I believed 

prior expectation would affect motor plans by altering biased 

competition, which is considered a separate process. The three 

experiments presented in this chapter attempted various manipulations 

with the aim of minimising the impulse suppression process to allow 

measurement of the biased competition process. 

2.1.6. Three experiments 

The three experiments presented in this chapter all aimed to measure the 

effect of prior expectation on corticospinal excitability. The differences 

between the three were concerned with how to distinguish the biased 

competition process from the impulse suppression process.  

Experiment 1 had a simple blocked design, in which the level of prior 

expectation (e.g. L:R 50:50) was only changed every block. On each block, 

a veridical cue indicated the left:right likelihood of the RDKs in that block. 

On each trial, participants had to make a finger movement (button press) 

to report the direction of an RDK and each trial involved one MEP 

measure via TMS. As is typical in decision-making experiments, each trial 

began with a fixation cross, which was designed to capture subjects’ 

attention.  

Experiment 1 showed no effect of prior expectation at stimulus onset and 

this indicated that prior expectation does not affect corticospinal 

excitability, or that its effect was potentially being masked by impulse 

suppression. I hypothesised that impulse suppression could have been 

induced by the fixation cross, which, because it was a fixed interval before 

the stimulus, acted as a warning cue.  
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Another possibility for the lack of an effect in Experiment 1 was that MEP 

fluctuations with time (see Discussion) were making a block design 

unsuccessful; an interleaved design was used in Experiment 2. 

Experiment 2 aimed to answer the question, ‘how does prior expectation 

modify MEPs in the absence of a warning cue?’. It was a modification of 

Experiment 1 without a warning cue and other optimisations to the 

design, such as an interleaved structure (see Methods).   

Experiment 2 also showed no effect of prior expectation at stimulus 

onset. Again, this raised the issue that impulse suppression was present. I 

hypothesised that the prior cue itself could have been acting as a warning 

cue, inducing MEP suppression. Experiment 3 induced a further 

modification to aim to reduce this.   

Experiment 3 aimed to answer the question, ‘how does prior expectation 

modify MEPs when the timing of stimulus onset is unpredictable?’. In this 

experiment, which was otherwise identical to Experiment 2, the length of 

prior cue (and thus the timing of stimulus onset) was jittered, to make the 

onset unpredictable. Although there is no evidence that unpredictable 

onset reduces impulse suppression, prominent theories (Duque et al., 

2010) hypothesise that this suppression prevents the release of 

premature movements, and thus I hypothesised that making movement 

onset unpredictable might suppress this process. Furthermore, pilot data 

in three subjects indicated the hypothesised effect was strongly present 

in this experimental design, and this further motivated this experiment.   

Experiment 2 and Experiment 3 were later combined into one dataset 

and analysed together (see Results). 
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2.2. Methods 

All three experiments aimed to measure the effect of expectation to move 

on corticospinal excitability. In all three experiments, subjects watched a 

computer display. The instruction to move was given by a moving dot 

stimulus; subjects had to judge whether this was moving left or right and 

make a corresponding button press with either the left or right index 

finger. An expectation to move was induced by an explicit veridical cue 

which told subjects the likelihood the moving dot stimulus would be 

leftward versus be rightward. MEPs were measured during stimulus 

onset (i.e. when the moving dot stimulus appeared) and at various 

timepoints afterwards. 
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Figure 2.1 Tasks for the three experiments. In Experiment 1, on each trial, a fixation cross was 
presented, followed by an RDK. Subjects had a deadline of 800 ms in which to judge the direction of 
motion of the RDK and make a corresponding response with an abduction of either the left or the 
right index finger. At the start of each block, subjects were shown a message (see text; figure shows 
simplified form) which instructed them as to the Left:Right probability of stimulus motion. In 
Experiments 2 and 3, on each trial, a probabilistic cue was presented, which instructed subjects as to 
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the probability of rightward stimulus motion. This was followed after a constant (Experiment 2) or 
jittered (Experiment 3) delay by an RDK. Again, subjects had to make a corresponding button press. 
In all experiments, TMS was delivered to left motor cortex to evoke an MEP in right FDI. 

2.2.1. Participants 

All participants were healthy human subjects who had been screened for 

contraindications to TMS and provided informed consent. Experiment 1 

was carried out in 18 subjects (11 female; mean age = 26, SD = 6). 

Experiment 2 was carried out in 27 subjects (17 female; mean age = 21, 

SD = 9). Experiment 3 was carried out in 16 subjects (11 female; mean 

age = 23, SD = 7). The experiments were approved by a UCL ethics board.  

2.2.2. Experiment 1 

2.2.2.1. Task 

On each trial, subjects viewed a Random Dot Kinetogram (RDK; (Britten 

et al., 1992). RDKs were used because they require subjects to accumulate 

evidence over a longer time-period than e.g. a simple arrow stimulus, 

because they are widely-used for studying perceptual decision making 

(e.g. Shadlen and Newsome, 2001b), and because the difficulty level can 

be titrated to individual subjects.  

RDKs use dots, replotted frame-by-frame, to give the illusion of a motion 

signal to left or right. This signal is corrupted by noise because a fraction 

of the dots move left or right whilst the remainder move randomly. In this 

experiment, the signal:noise ratio was fixed across the experiment at a 

difficulty level adjusted for individual subjects (see below on 

thresholding). Subjects were required to judge the direction of motion 

and respond with an index finger button press. Subjects rested the index 

fingers of both hands on either side of the arrow keys of a standard 

keyboard and pressed the left arrow key with left index finger or right 

arrow key with right finger to mark their response. This meant that the 



79 
 

button press involved a finger adduction (i.e. used the first dorsal 

interosseous). 

To maximise subjects’ behavioural change, a blocked design was used. 

The probability that the stimulus would move left vs right was not always 

equally balanced and this changed by block. The possible ratios were 

10:90, 25:75, and 50:50 L:R probability. There were a total of six 

experimental blocks (each consisting of 66 trials), so each probability was 

repeated once. A random order of the three probabilities was generated 

for each participant and this was repeated twice, in order to avoid any 

participant repeating the same probability consecutively.  

The probability of the block was explicitly cued at the start of the block. 

For instance, in a 50:50 block, subjects saw the following message: “For 

the next 66 trials, the probability the dot field will be moving LEFT is 

50%, and the probability it will be moving RIGHT is 50%.”  

The RDK was displayed for 800 ms, or until subjects made a response. 

Subjects received feedback according to their response: ‘Right!’ if their 

button press correctly indicated the motion direction; ‘Wrong!’ if it 

indicated the opposite direction, ‘Too Slow!’ if subjects failed to make a 

response whilst the RDK was displayed; ‘Too Early!’ if subjects pressed in 

the period before stimulus appearance. This feedback was displayed for 

200 ms. The interval between this and the next trial was jittered between 

2,750 ms and 3,750 ms (randomly with a uniform distribution). After the 

intertrial interval, and prior to each stimulus, a fixation cross was 

presented for 400 ms. 

2.2.2.2. Stimulus parameters 

Subjects saw 300 dots of size 0.10 degrees of visual angle randomly 

plotted in a central circular aperture (diameter: 8.1 degrees of visual 

angle). A certain proportion of dots had coherent motion; that is, they 
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were replotted every frame with a constant offset along the x-axis to give 

an illusion of either leftward or rightward motion. Dots had an apparent 

speed of 4 degrees of visual angle/s. The remainder of dots were 

replotted with the same offset in a random direction.  

Stimuli were viewed on an LCD monitor (Dell) of size 52 cm by 32.5 cm 

and 1920 by 1200 pixels resolution. Subject sat 90 cm away from the 

screen. The refresh rate was 60 Hz. Stimuli were presented in MATLAB, 

version 2014b (Mathworks, 

https://www.mathworks.com/products/matlab.html) and Psychtoolbox 

(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). The Magstim was 

triggered via the DAQ toolbox (Mathworks).  

2.2.2.3. TMS 

On every trial, a single TMS pulse was delivered to finger area of left 

motor cortex a 50 mm figure-of-eight-shaped coil connected to a 

monophasic Magstim 2002 stimulator (Magstim). The stimulation 

intensity had previously been adjusted for each subject to produce a 

Motor Evoked Potential (MEP) of approximately 1 mV in relaxed right 

first dorsal interosseous muscle (FDI). The coil was held throughout the 

experiment at a 45° angle relative to an anteroposterior axis by the 

experimenter. Optimal stimulation site was marked in pencil on subjects’ 

scalps prior to the experiment. A block lasted approximately 5.5 minutes. 

The coil was repositioned on the head using the pencil marks at the start 

of each new block. 

The time-point of TMS delivery was varied: half of pulses were delivered 

at 0 ms relative to stimulus presentation (i.e. stimulus onset) which was 

the key timepoint of interest. To build up a picture of corticospinal 

excitability after stimulus onset, the other half were delivered at a 

random point within the first 40% of individual subject reaction time 
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(measured prior to the main experiment; see Section 2.2.2.4). Before each 

block, and prior to subjects seeing the probability information, 14 TMS 

pulses were delivered. This was to determine a pre-block baseline 

measure of corticospinal excitability for the data analysis. 

EMG was recorded from right hand FDI using disposable prewired 

electrodes (Henleys Medical Supplies Ltd). Electrodes were attached to 

muscle belly and thumb index finger metacarpophalangeal joint, and 

earthed at a bony wrist process. 

2.2.2.4. Protocol 

Prior to the main experiment, subjects completed a training, without TMS, 

of 30 trials which were similar to the main experiment but with a fixed 

RDK coherence of 70%.  

Subjects next underwent a thresholding procedure which adjusted the 

difficulty of the RDK in order to standardise performance. They 

undertook 100 trials without probability information and the RDK 

coherence was modulated to individual ability such that subjects were 

getting 80% of trials correct. A Bayesian thresholding procedure was 

used (Quest; Watson and Pelli, 1983).  

Subjects then undertook 3 blocks of 75 trials (one each at each level of 

prior cue) which were similar to the main experiment, and incorporated 

the individually thresholded coherence. These blocks were used to 

measure their mean reaction time, which determined the timing of the 

TMS. 

Subjects then had their TMS ‘hotspot’ determined by adjusting the 

position of the coil on the left hemisphere until the point of maximum 

right FDI MEP amplitude was obtained. Stimulation intensity was 
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adjusted to produce an MEP of approximately 1mV at rest, stable over 

approximately 10 trials, with the right hand relaxed.  

Prior to the main experiment, subjects were asked to relax their hands as 

much as possible between trials and ignore the TMS pulse. Subjects were 

shown the EMG trace at this point and practised relaxing their hand with 

this biofeedback. During the experiment, the experimenter monitored 

EMG activity and reminded the subject to relax if there was activity 

during the intertrial interval.  

It was emphasised to subjects that they should try to make exclusive 

movements (to move the left finger or right finger). Each subject then 

carried out another brief training of 12 trials with TMS, so they could 

accustom themselves to doing the task with TMS pulses. 

2.2.3. Experiment 2 

As described above, this experiment was a modified version of 

Experiment 1, and so the method was similar, except in the following 

ways. The main changes to the method were, firstly, switching from a 

blocked to an interleaved design, to avoid problems with MEP 

fluctuations over time, and, secondly, removing the fixation cross, to 

avoid possible suppression of MEPs associated which has been reported 

for tasks with a cue a short interval before the imperative (Hasbroucq et 

al., 1997). The changes are detailed in full below:  

Absence of fixation cross: As highlighted above and in the Introduction, 

in order to obliterate a possible warning cue, there was no fixation cross. 

Trial types were interleaved across blocks: Prior cue levels were 

interleaved across blocks to reduce the possibility of MEP fluctuations 

over time affecting the results (see Discussion). Subjects underwent 400 

trials in four blocks of 100 trials. They had a break between each trial 
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during which the coil was removed from the head. The trials were divided 

evenly between the five probability conditions (10/25/50/75/90% 

rightward probability) and interleaved randomly.  

Forty trials, interleaved randomly amongst the remainder, were ‘control’ 

trials, meaning a large arrow which accurately indicated the direction of 

stimulus motion was displayed superimposed on the RDK. These trials 

were included to measure portion of reaction time that did not depend on 

RDK interpretation (Klein-Flugge and Bestmann, 2012) (see Section 

2.2.9). 

Prior cue on every trial: In order to permit an interleaved design, 

probability information (i.e. the prior expectation) was given to subjects 

on every trial, rather than at the start of a block. Each trial began, prior to 

RDK appearance, with the appearance of a bar which informed 

participants of the likelihood that the stimulus following would be 

moving rightward (see Figure 2.1). The bar gave a visual illustration of 

the likelihood, and this probability was also displayed as a percentage 

underneath the bar. The possible likelihoods of moving right were 10, 25, 

50, 75 and 90%. The bar was displayed 2,950 ms. 

Timing changes: The RDK was displayed for 700 ms rather than 800 ms 

to encourage a strong dependence on the prior cue. 

Feedback was displayed for 600 ms, not 200 ms, for easier viewing. 

TMS timepoints: Fixed timepoints were used to increase power in a 

stimulus-locked analysis (see Results). 

TMS was delivered at one of three possible timepoints: at stimulus onset, 

25% of subject’s mean reaction time, 45% of subject’s mean reaction 

time. Mean reaction time was in response to RDK stimuli and was 
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determined for each subject prior to the start of the experiment. It did not 

change over the course of the experiment. 

Determination of mean reaction time: Prior to the main experiment, 

subjects undertook 100 trials which were similar to the main experiment, 

and incorporated the individually thresholded coherence, but excluded 

control trials. A subject’s mean reaction time (across all trial types) was 

determined in these trials and used to determine timing of TMS delivery 

later.  

Thresholded level: Prior to the main experiment, subjects were 

thresholded to a 70% correct performance, rather than 80%. 

Subject instruction: Prior to the main experiment, subjects were told 

that they would see a bar indicating the likelihood that the next moving 

dot stimulus would be rightward. It was emphasised that this was 

probabilistic and a strong rightward probability could still be followed, on 

occasion, by a leftward moving stimulus. 

RDK properties: An alteration was made to how RDK frames were 

calculated to make these stimuli consistent with other work using these 

stimuli. Rather than replotting coherent dots on consecutive frames, they 

were replotted every fourth frame with a constant offset along the x-axis 

to give an illusion of either leftward or rightward motion. The second 

frame had a separate random series of dots which were replotted as 

described for the first frame on the 5th, 8th, 11th frames and so on. 

Similarly, the third frame displayed another random distribution of dots 

which were replotted on the 6th, 9th, and 12th frames. This RDK protocol is 

in keeping with, e.g. Roitman and Shadlen (2002). It did not change the 

visual appearance of the stimuli. 

In addition to right hand FDI, EMG was also recorded from right hand 

Abductor Pollicis Brevis, right hand Abductor Digiti Minimi, and left hand 
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FDI. This was to allow for comparison MEP size in non-target muscle if 

required during analysis. Ultimately, only FDI data was used; because of 

the null result in FDI data, the analysis was not extended to other 

muscles. 

2.2.4. Experiment 3 

The method for this experiment was the same as for Experiment 2 in 

every aspect, except that the duration of the probabilistic cue was jittered 

between 2,950 ms and 3,950 ms, which aimed to increase participants’ 

uncertainty about when the RDK would appear on screen (Figure 2.1).  

2.2.5. Subject exclusions 

For Experiment 1, two subjects were excluded from analysis entirely: 

one had very few baseline MEPs successfully recorded; the other reported 

at debriefing deliberately slowing his behavioural responses ‘to see what 

would happen’. This left sixteen subjects remaining in the analysis. Two 

further subjects had a single block removed in MEP analyses due to few 

baseline MEPs being recorded. 

For Experiment 2, one subject was excluded because they had a mean 

reaction time of 389 ms (SD = 65.1 ms; mean reaction time across all 

subjects in this experiment = 521 ms, SD = 40.7 ms) and chose the more 

probable cue nearly 100% of the time in the 10%, 25%, 75% and 90% 

conditions, suggesting this subject was guessing. 

For Experiment 3, one subject was excluded because 9.75% of their 

MEPs were under the MEP amplitude threshold, leading to concerns over 

a possible floor effect (mean across remaining subjects = 0.75%, SD = 

1.18%). 
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2.2.6. Preprocessing of behavioural data 

For plots showing reaction time or success rates, trials in which subjects 

pressed before stimulus onset (Experiment 1: M = 0%, SD = 0%; 

Experiment 2: M = 0.067%, SD = 0.22%; Experiment 3: M = 0.12%, 

SD = 0.23%), and trials in which a key other than left or right was pressed 

were removed (Experiment 1: M = 0.047%, SD = 0.10%; Experiment 2: 

M = 0.13%, SD = 0.28%; Experiment 3: M = 0.017%, SD = 0.065%). 

Reaction time outliers were also removed (Experiment 1: M = 0.078%, 

SD = 0.15%; Experiment 2: M = 0.087%, SD = 0.22%; Experiment 3: 

M = 0.13%, SD = 0.23%). Reaction times were deemed outliers if they 

were more than three interquartile ranges above the third quartile or 

below the first quartile. Control trials were also excluded from these 

plots. 

2.2.7. Preprocessing of MEPs 

EMG activity was recorded in Signal (Cambridge Electronic Design 

Limited) and exported to MATLAB, version 2014b (Mathworks, 

https://www.mathworks.com/products/matlab.html). A 50 Hz notch 

filter was applied to EMG data either at time of recording or 

retrospectively if it was judged, on visual inspection, to be contaminated 

by 50 Hz noise. MEP amplitude was extracted by searching for the 

maxima and minima in a time window 0 to 60 ms after pulse delivery. 

Trials in which the rectified, baseline-corrected EMG value exceeded 

0.1 mV at any point between 50 ms and 5 ms prior to the TMS pulse were 

discarded as muscle contraction is known to potentiate MEP amplitude  

(Hess et al., 1987; Rossini et al., 1988).  ‘MEPs’ with an amplitude less 

than 0.05 mV were discarded; this threshold was to prevent the algorithm 

reporting background fluctuations as MEPs. The EMG traces were 

manually checked by an observer for approximately five subjects to 

ensure the algorithm described was producing plausible results. MEPs 
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were deemed outliers if they were more than three interquartile ranges 

above the third quartile or below the first quartile; these were also 

removed.  

For Experiment 1, on average, 1.19% of MEPs were lost due to 

precontraction (SD = 2.81%), 0.98% due to insufficient amplitude 

(SD = 1.64%), and 0.53% due to outlier exclusion (SD = 0.95%). For 

Experiment 2, on average, 1.37% of MEPs were lost due to 

precontraction (SD = 1.38%), 0.42% due to insufficient amplitude 

(SD = 0.84%), and 0.40% due to outlier exclusion (SD = 0.94%). For 

Experiment 3, on average, 1.28% of MEPs were lost due to 

precontraction (SD = 1.87%), 0.75% due to insufficient amplitude 

(SD = 1.18%), and 0.20% due to outlier exclusion (SD = 0.30%). 

2.2.8. ‘Too Slow’ trials 

On trials in which subjects did not make a response within the RDK time 

limit (800 ms or 700 ms), the stimulus disappeared and subjects saw a 

‘Too Slow’ message (5.58% of trials, SD = 3.44%). As no reaction time or 

response was recorded, these trials were not included in analyses, with 

the exception of analyses of MEP data at the first timepoint. These 

analyses did not rely on sorting MEPs by reaction time or response and so 

‘Too Slow’ trials could be included. 

2.2.9. Control trials 

Experiments 2 and 3 included ‘control trials’ which showed an arrow in 

the same direction as the RDK. These trials are easier to respond to 

because they do not involve the evidence-accumulation stage of viewing 

the RDK. These trials were included because they could be used to 

measure the time needed to detect a stimulus and make the motor 

response, and identify changes in corticospinal excitability related to this 

(as used by Klein-Flugge and Bestmann, 2012). This then allows an 
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analysis of corticospinal excitability in non-control trials that focuses on 

the part of the trial prior to the timing of excitability changes in control 

trials. In other words, it allows an identification of purely decision-related 

activity. 

The analysis of control trials here was based on that in Klein-Flugge and 

Bestmann (2012), although the method used was slightly different. The 

question was whether choice-selective activity is seen in a part of the 

reaction time known to be prior to ‘motor preparation’. The timing of this 

period was found using the control trials, which do not require an 

evidence accumulation phase.  

MEPs in control trials were analysed by eventual choice and timepoint. It 

was found that there was no difference between activity by eventual 

choice at the first and second timepoints. Therefore, for each subject, the 

average timing of the second timepoint was calculated in milliseconds. 

This was the ‘decision epoch’, i.e. the period known not to invoke choice-

selective activity on control trials. MEPs recorded on non-control trials in 

this epoch were then selected, and analysed by eventual choice, to see if 

choice biases were present in the decision epoch. Other than for this 

analysis, control trials were excluded from all analyses except for those of 

MEP data at the first timepoint. At this timepoint, subjects had not yet 

seen the stimulus and so heterogeneous trial types could be included. 

2.2.10. MEP normalisation 

In Experiment 1, MEPs were ‘normalised’ by in-block MEPs being 

divided by the medial of preblock MEPs. There were 14 of these preblock 

MEPs on each block. Those with precontraction (as defined above) were 

excluded and the median of the remaining MEPs was used. 
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In Experiments 2 and 3, the interleaved design reduced the importance 

of normalisation and also permitted normalisation by z-scoring, which 

was the method used.  

2.2.11. Primary and secondary analyses 

Some of the analyses presented in this chapter were planned prior to data 

collection whilst others were planned post-hoc. 

The primary MEP analysis planned was an analysis of normalised MEPs at 

stimulus onset plotted by prior cue (Figure 2.6 and Figure 2.10). Analyses 

of reaction times and error rates plotted by prior cue were also planned 

(e.g. Figure 2.3 and Figure 2.4). An analysis in which bias parameter was 

modelled (see Section 2.2.12) and related to MEP size was also planned 

(Figure 2.15). 

Secondary analyses were: (1) analysing non-normalised MEPs at stimulus 

onset by prior cue (Figure 2.5 and Figure 2.11); (2) analysing MEPs at 

stimulus onset by later choice (Figure 2.13); (3) analysing the 

relationship between MEP size and reaction time (Figure 2.16 and Figure 

2.22); and (4) extending the analysis of bias parameter to late MEPs 

(Figure 2.21). Furthermore, whilst an analysis of MEPs at timepoints 

post-stimulus onset was planned, specific decisions about how to bin or 

smooth these (Figure 2.7, Figure 2.19 and Figure 2.20) were made post-

hoc. 

2.2.12. Modelling analysis 

The behavioural data in Experiments 2 and 3 was used for drift-

diffusion modelling. The drift-diffusion model is a decision model for 

modelling two-alternative forced choice tasks. In the drift-diffusion 

model, a decision variable representing current belief in a hypothesis 
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accumulates to one of two decision bounds. The model is described in 

more detail in Chapter 1. 

As Chapter 1 explains, there is behavioural evidence that prior 

expectation provides a prestimulus bias to the activity of a drift-diffusion 

model. This line of thinking influenced us to look for a correlate in 

corticospinal activity: a prestimulus bias that represented prior 

expectation.  

As Chapter 1 explains, there are many similar diffusion and race-to-

threshold models. Here the drift-diffusion model was used because it has 

been widely used it past literature (e.g. Gold and Shadlen, 2007; Mulder et 

al., 2012; Rao et al., 2012). 

Here I used the HDDM toolbox, version 0.6.0 

(http://ski.clps.brown.edu/hddm_docs/, Wiecki et al., 2013) running in 

Python, version 2.7 (Python Software Foundation, 

https://www.python.org/), and.  The HDDM allows for hierarchical 

Bayesian parameter estimation of the Drift Diffusion Model. Hierarchical 

here means parameters of the model are estimated for each subject 

individually under the assumption that there is a group-level distribution 

(i.e. participants are similar but not identical). This method is preferred 

when datasets are small (Ratcliff and Childers, 2015), and so is well 

suited to this dataset with <400 trials per subject. 
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Figure 2.2 Parameters in the drift-diffusion model. The figure shows the parameters in the evidence 
accumulation process. The decision variable must accumulate to one of the two response 
boundaries for a response to be selected. The distance between these two response boundaries is 
the threshold, a. The mean slope of the evidence accumulation signal is the drift rate, v. The 
parameter of interest in the analysis presented in this chapter is the bias, z, which allows the 
evidence accumulation to begin closer to one response boundary than the other and thus lower the 
evidence required for a particular response. There is also a portion of non-decision time, t, which 
represents a fixed time taken by non-decision processes. The dark red and blue lines show 
histograms of reaction times for each response generated by the model. 

The model toolbox was used to estimate the parameters of the model in 

each subject under the assumption that the bias, z, of the model was 

different with different levels of prior expectation cue. All other 

parameters, including the drift rate, v, were assumed to be fixed across 

conditions (Figure 2.2). I did not include model comparison of alternative 

models, as the finding that prior expectation mainly or exclusively alters 

bias rather than drift rate has been consistent among many previous 

studies (Ratcliff and McKoon, 2007; Simen et al., 2009; Mulder et al., 

2012), and was not the question motivating this study. 

The model was operationalised as follows: (1) the find_starting_values 

function was used to find plausible starting parameters via optimisation; 

(2) Markov Chain Monte Carlo simulations were run to sample 20,000 

times from the posterior distributions of the parameters. Four thousand 

samples were discarded as ‘burn-in’. This level of sampling was arrived at 

after visually inspecting plots of parameter estimates over time for 

evidence of Markov Chain convergence.  
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All trials in which the participant responded before RDK end were 

included in modelled data (i.e. previously-identified reaction time outliers 

were not excluded) but the model was instructed to assume a certain 

proportion of reaction times were outliers drawn from a separate 

distribution, and the starting proportion of these was set at 0.1%, which 

was informed by the outlier analysis reported above.  

Due to the small numbers of trials, I did not attempt to model inter-trial 

parameters. 

The existence of a relationship between modelled bias and MEP was 

tested. For each subject, the bias parameters derived from the model (one 

per prior cue level) were used to fit a linear regression (y: bias parameter, 

X: prior cue level and constant term). An equivalent linear regression was 

also fit for each subject for mean MEP at stimulus onset (y: mean MEP at 

stimulus onset, X: prior cue level and constant term). This gave, for each 

subject, an ‘MEP slope’ and a ‘bias slope’ (β coefficients from the linear 

regression). Across subjects a linear regression was fit to the bias slopes 

against the MEP slopes. This tested whether subjects who showed steeper 

changes in MEP size across prior conditions showed steeper changes in 

bias parameter. 

Finally, this analysis was repeated to test a behavioural measure directly, 

in place of the modelled bias parameter: reaction speed for right-choice 

trials only. Reaction speed is the inverse of reaction time and it was used 

so the directionality would be the same as the bias parameter (stronger 

rightward expectation leading to both a larger rightward bias and a faster 

reaction speed in right-choice trials). As above, reaction speed was used 

to fit a linear regression within each subject (y: reaction speed, X: prior 

cue level and constant term). Again, the β coefficients of these 

relationship were regressed against the MEP slopes across subjects. 
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2.2.13. Analysis of MEPs over time 

In both experiments, MEPs collected at timepoints after the stimulus 

onset timepoint were collated to create plots displaying excitability 

during the early part of the reaction time. 

In Experiment 1, MEPs were recorded at random timepoints in the first 

40% of the reaction time. The time of the TMS probe on each trial was 

divided by the reaction time on that trial to normalise MEP timings by 

variable trial reaction times. This is sometimes referred to as ‘stimulus-

locked and response-locked’. Within each subject, the MEPs were then 

sorted into six equally-spaced time-bins between 0% and 40% of reaction 

time. A mean value was obtained for each bin within subjects, and this 

was then meaned across subjects. This analysis is shown in Figure 2.7. 

MEPs in Experiments 2 and 3 were recorded at discrete timepoints (0%, 

25%, and 45% of mean reaction time) to give more power to ‘stimulus 

locked’ analyses. ‘Stimulus locked’ analyses with MEPs presented at their 

original timepoints are shown in Figure 2.17 and Figure 2.18.  

In order to look at a continuous measure of MEPs over time, MEPs were 

also ‘response-locked’, by finding, on each trial, the time remaining 

between the time of the TMS probe and the reaction time. These data 

were used to calculate a moving average. In each subject, MEP data was 

averaged in bins 150 ms wide. The bin was applied to the data every 

20 ms. Any bin that did not contain a minimum of three MEPs for the 

average was discarded. The bins were then averaged across subjects. Any 

bin that did not contain a minimum of two subjects’ data was discarded. 

The results of this moving average ‘response locked’ analysis are shown 

in Figure 2.19. 



94 
 

2.2.14. Statistical analysis 

Reaction times and MEPs at stimulus onset were tested for statistical 

significance using one- or two-way repeated measures ANOVAs. Where 

assumptions of sphericity were violated (as determined by Mauchly’s 

test), Greenhouse-Geisser corrections were applied, indicated in the text 

as non-whole number degrees of freedom. For Figure 2.19 and the 

analysis of control trials (Section 2.3.3.6), Multiple comparison t-tests 

were corrected for with a False Discovery Rate procedure (Storey, 2002) 

within each condition, with the False Discovery Rate set at 0.25 

(Bonferroni correction was not used because the tests were not 

independent). 
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2.3. Results 

Three experiments were conducted to measure the effect of an 

expectation to move on corticospinal excitability. The particular 

hypothesis was that an expectation to move a particular effector 

increases corticospinal excitability for that effector prior to stimulus 

onset, i.e. prior to the process of weighing evidence for the decision 

beginning. Subjects saw a moving dot stimulus (RDK) which instructed 

them whether to make a movement with either the left or right index 

finger. Prior to viewing the stimulus, they were biased by a cue that 

instructed them about the relative likelihood of a leftward vs a rightward 

stimulus. MEPs were measured at stimulus onset, the key timepoint to 

test the hypothesis, as well as at later timepoints during the ongoing 

decision. 

2.3.1. Experiment 1 

Experiment 1 tested the hypothesis above using a standard 

psychophysical design. The level of prior expectation cue (50:50, 25:75, 

or 10:90 L:R expectation) changed on a block basis.  

I measured right hand MEPs and hypothesised that a stronger 

expectation of rightward movement (i.e. the 10:90 condition) would 

facilitate MEPs in this hand, and that this facilitation would be present at 

the time of stimulus onset. 

2.3.1.1. Behavioural data 

Behavioural data was analysed to test whether subjects had understood 

and used the prior cue given at the start of each block. Prior cue level 

modified reaction time (Figure 2.3). A more biasing cue (i.e. 10:90 versus 

50:50) reduced the reaction time to respond to the RDK (repeated 

measures ANOVA, F(2, 30) = 12.5, p < .001, η2p = .45).  
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Figure 2.3 Reaction time decreases with increasing rightward expectation. Participants were slower 
to respond to a Random Dot Kinetgoram stimulus when they were in a block in which 50% of stimuli 
were rightward compared to when they were in a block in which 90% of stimuli were rightward. So 
the experimental manipulation modified subjects’ behaviour, F(2, 30) = 12.5, p < .001, η2

p = .45. 
Error bars show standard error of mean. 

Similarly, subjects made more errors when they had a less informative 

probability cue. They made more incorrect button presses in the unbiased 

condition (Figure 2.4B; repeated measures ANOVA, F(1.18, 17.7) = 12.1, 

p = 0.0019, η2p = 0.447). A similar, though non-significant, trend is present 

for no-response errors (i.e. did not respond to the RDK within 800 ms; 

Figure 2.4A; repeated measures ANOVA, F(2, 30) = 2.36, p = 0.11, 

η2p = .14). 

To summarise, probability information given at the start of a block was 

used by subjects to improve their speed and accuracy. Did it also have an 

effect on corticospinal excitability? I first consider MEPs at stimulus onset 

(‘0 ms’), the key timepoint of interest. 
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Figure 2.4 Errors decrease with increasing prior expectation. Both errors in which subjects did not 
press a button to respond to the stimulus before it timed out (A) and errors in which the button 
press did not match the direction of stimulus motion (B) decreased with increasing prior 
expectation. One-way ANOVAs showed a significant effect for ‘Too Slow’ errors, F(1.18, 17.7) = 12.1, 
p = 0.0019, η2

p = 0.447, but not wrong response errors, F(2, 30) = 2.36, p = 0.11, η2
p = .14. 

Participants made more errors when they were in a block in which 50% of stimuli were rightward 
compared to when they were in a block in which 90% of stimuli were rightward. Error bars show 
standard error of mean. 

2.3.1.2. MEPs at stimulus onset 

 

Figure 2.5 Raw MEP size does not change with prior expectation. MEPs measured in right FDI at 
stimulus onset (the appearance of the RDK) are shown. These were hypothesised be larger with 
increasing rightward expectation. In fact, there is no effect of level of prior expectation, F(2, 30) = 
0.67, p = .52, η2

p = .043. Error bars show standard error of the mean. 

At stimulus onset, there was no change in raw MEP amplitude with 

probability condition (Figure 2.5; repeated measures ANOVA: F(2, 30) = 
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0.67, p = .52, η2p = .043). However, this analysis was always intended to 

look at a relative MEP measure, as the block design made the experiment 

susceptible to any baseline fluctuations in corticospinal excitability. A 

baseline excitability measure was taken at the start of each experimental 

block, before subjects had seen any probability information (see 

Methods). Here, within-block MEPs were divided by the median of the 

baseline MEPs measured at the start of the block (Figure 2.6). As with the 

raw MEPs, there was no change between prior cue levels (repeated 

measures ANOVA: F(2, 30) = 2.24, p = .12, η2p = .13). 

 

Figure 2.6 Relative MEP size does not change with prior expectation. MEPs measured at stimulus 
onset were normalised by diving by the median of baseline MEPs recorded prior to the start of the 
block. This was to reduce inter-subject variability in MEP size. MEPs were hypothesised to be larger 
with increasing rightward expectation. In fact, as with raw MEPs, there was no effect of prior 
expectation, F(2, 30) = 2.24, p = .12, η2

p = .13. Error bars show standard error of the mean. 

2.3.1.3. MEPs over time 

In addition to the data at stimulus onset, MEPs were also sampled at later 

timepoints. Due to variation in reaction times, TMS delivered at 

timepoints beyond stimulus onset does not fall at a consistent point in the 

reaction time and so here the data has been scaled by percentage of 

reaction time elapsed (‘stimulus and response locked’) and binned 

(Figure 2.7).  
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Figure 2.7 Right hand MEPs over time in the three prior cue conditions. Left panel shows trials on 
which the subject chose left; right panel shows trials on which the subject chose right. Timepoint of 
TMS delivery has been scaled by reaction time on the relevant trial, pooled across subjects, and 
sorted into six bins. Due to the scaling by reaction time, data becomes sparser near to 40% of 
reaction time. Colouring of points shows number of MEPs in relevant mean, according to colour 
scale on right hand side. Error bars show standard error of the mean. 

2.3.2. Comparison of Experiment 2 and Experiment 3 

Experiments 2 and 3 aimed to test the effect of prior expectation on 

corticospinal excitability under altered temporal predictability of 

stimulus onset. These were motivated by past literature suggesting 

temporally predictive cues can suppress MEPs (Duque et al., 2010). 

Experiment 2 involved stimulus onset at a fixed time, but without the 

fixation cross that had preceded stimulus onset in Experiment 1. 

Experiment 3 jittered stimulus onset to further reduce the temporal 

predictability. 

Experiment 3 followed the same protocol as Experiment 2, except that the 

length of time the prior expectation cue was presented for was jittered, to 

reduce subjects’ expectation about when the stimulus would appear. 



100 
 

A four-way ANOVA was used to compare MEPs in the two datasets, with 

Hand chosen, Probability, and Timepoint as within-subject factors, and 

Dataset as a between subject factor. This ANOVA revealed no main effects 

and no interactions. The results of this ANOVA are given in full in 

Appendix I. 

A t-test was used to compare subject mean reaction times across the two 

datasets, collapsed across condition. As with the MEPs, this revealed no 

difference between datasets, t(39) = 1.13, p = .27, d = .37. The mean 

reaction time for Experiment 2 was 526 ms (SD = 31.7 ms) and the mean 

reaction time for Experiment 3 was 513 ms (SD = 41.1 ms). 

Because no reaction time or MEP difference was found between these two 

datasets, they were combined for the remaining analyses, which are 

presented below. 

2.3.3. Experiment 2 and Experiment 3 combined dataset 

2.3.3.1. Behavioural data 

Reaction times across the five conditions are shown in Figure 2.8A. A 

repeated measures ANOVA showed prior cue had a significant effect on 

reaction time F(2.78, 111.1) = 15.76, p < .001, η2p = .283. Subjects were 

slowest in the 50:50 condition, in which the prior cue did not offer any 

information about the likeliest direction of the stimulus. Biasing prior 

cues decreased reaction time, with a more strongly biasing cue increasing 

reaction time more. This suggests that subjects had understood the cues 

they were shown and were using them in the perceptual decision. 

Separating reaction time by response as well as prior cue condition 

(Figure 2.8B) shows the advantage a biasing cue gives – a speeded 

reaction time – applies only when the response is that the subject has 

been primed to expect by the cue. (Note that the trials in which the cue 

moves in the opposite direction to that suggested by the prior are rarer, 
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and thus the bars in Figure 2.8A are not an average of the red and blue 

bars in Figure 2.8B.) These data show a main effect of probability cue 

condition, but no main effect of response direction on ANOVA. There is a 

significant interaction between these factors. Probability: F(2.69, 

104.8) = 3.18, p = .032, η2p = .075; Hand: F(1, 39) = 0.02, p = .902, 

η2p = .000; Probability*Hand: F(1.52, 59.2) = 22.2, p < .001, η2p = .36. 

In short, the biasing information given by the prior cues was used by 

subjects to make themselves faster, indicating that they had understood 

and used the information given. 

 

Figure 2.8 Subjects were fastest with the response they most expected to make. Behavioural data 
for Experiments 2 and 3, showing: (A) Mean reaction time by prior cue condition, excluding control 

trials; (B) Mean reaction time by prior cue condition and response, excluding control trials. (B) shows 
that the U-shaped curve in A is composed of two linear trends in reaction time, so that subjects are 
fastest with right-hand responses with increasing expectation of a rightward stimulus, and vice 
versa. In (A), there is a significant effect of prior expectation, F(2.78, 111.1) = 15.76, p < .001, η2

p = 
.283. In (B), there is a significant effect of prior expectation and a significant intereaction, 
Probability: F(2.69, 104.8) = 3.18, p = .032, η2

p = .075; Hand: F(1, 39) = 0.02, p = .902, η2
p = .000; 

Probability*Hand: F(1.52, 59.2) = 22.2, p < .001, η2
p = .36. In both panels, error bars show standard 

error of the mean. 

Similarly, subjects scored more correct trials when the information was 

more strongly biasing (Figure 2.9A), F(3.03, 121.1) = 8.91, p < .001, 

η2p = .18. Figure 2.9B shows how choice varied by prior cue condition; 

subjects were more likely to choose in the direction of the bias with a 

more biasing cue. 
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Figure 2.9 Behavioural choice is modulated by prior cue. Subjects’ choice reflected the level of prior 
expectation. (A) Percentage of trials that were correct in the prior cue conditions. Error bars show 
standard error of the mean, F(3.03, 121.1) = 8.91, p < .001, η2

p = .18. (B) Percentages of trials in each 
prior cue condition where left or right was chosen as the response, and where the chosen response 
was correct or incorrect. 

2.3.3.2. MEPs at stimulus onset 

With evidence that subjects had incorporated the prior cues in their 

decision-making, MEPs at the main timepoint of interest, stimulus onset 

(‘0 ms’), were analysed. As detailed in the Introduction, I hypothesised 

that the prior cue shown would affect corticospinal excitability at this 

early timepoint, prior to subjects viewing the stimulus. In particular, I 

expected a stronger right-hand expectation to increase corticospinal 

excitability measured with a right FDI MEP.  

Figure 2.10 shows MEPs at stimulus onset plotted by condition. As 

subjects had not seen the stimulus, these data are not sorted by eventual 

choice. Contrary to the hypothesis, there was no effect of prior cue on 

these MEPs, F(3.09, 123.8) = 0.88, p = .45, η2p = .022. 

In case the system of z-scoring MEPs within blocks was obscuring a 

different trend in the raw data, raw MEPs were also plotted (Figure 2.11).  

The data show a similar trend to that after z-scoring, and, as with the z-
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scored data, there was no effect of prior cue condition on MEP magnitude, 

F(2.89, 115.6) = 0.59, p = .62, η2p = .015. 

 

Figure 2.10 No modulation of MEP by prior expectation cue at stimulus onset. For Experiments 2 
and 3, this figure shows MEPs recorded at stimulus onset, regardless of ultimate choice. It was 
hypothesised that a stronger rightward expectation would increase right hand MEP. In fact, there 
was no effect, F(3.09, 123.8) = 0.88, p = .45, η2

p = .022. Within each subject, MEPs have been z-
scored within blocks. Error bars show standard error of mean. 

 

Figure 2.11 No modulation of raw MEPs by prior expectation cue at stimulus onset. To check the 
absence of effect in Figure 2.10 was not a problem with the normalisation method used (z-scoring), 
raw MEPs were also plotted. Once again, there was no effect of prior cue on MEP size, F(2.89, 115.6) 
= 0.59, p = .62, η2

p = .015. Error bars show standard error of the mean. 

Figure 2.12 once again shows MEPs measured at stimulus onset by prior 

cue condition, except that here only MEPs have been plotted for trials in 
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which both that trial and the preceding had the same prior cue. If there 

was a weak effect of prior cue on corticospinal excitability, this might be 

expected to be strengthened by successive identical cues. However, there 

was once again no effect of prior cue condition, F(4, 160) = 1.50, p = .21, 

η2p = .036.  

 

Figure 2.12 No effect of prior cue condition on MEP amplitude for trials in which the same prior 
cue had been seen on that trial and the preceding one. Trials in which the same prior cue had been 
seen twice in a row were selected, to see if a stronger bias showed an effect of prior cue on MEP 
size. However, there was no effect of prior cue on MEPs in these trials, F(4, 160) = 1.50, p = .21, 
η2

p = .036. MEPs have been z-scored within blocks within subjects. Error bars show standard error of 
the mean.  

Figure 2.13 once again shows MEPs at stimulus onset, now sorted by 

eventual choice as well as prior cue condition. Subjects have not seen the 

stimulus at this point, so any differences in MEPs by right/left choice 

reflect a cause of that choice rather than a response to the stimulus. 

Testing this data via two-way ANOVA revealed no main effect of 

probability, F(3.20, 118.6) = 2.18, p = .090, η2p = .056, or choice, F(1, 37) = 

2.46, p = .13, η2p = .062, and no significant interaction between these 

factors, F(4, 148) = 0.67, p = .62, η2p = .018.  



105 
 

 

Figure 2.13 Post-hoc analysis shows that choice affects MEP size at stimulus onset in some 
conditions. In this analysis of MEPs at stimulus onset split by eventual choice, only the stimulus has 
not yet been seen so any differences between MEPs according to eventual choice (left or right) are 
causal. There was no overall main effect of probability, F(3.20, 118.6) = 2.18, p = .090, η2

p = .056, or 
choice, F(1, 37) = 2.46, p = .13, η2

p = .062, and no significant interaction between these factors, F(4, 
148) = 0.67, p = .62, η2

p = .018. However, a post-hoc t-test showed that MEPs in the strongest 
‘Expect left’ condition are reduced when the eventual choice is right, compared to when the 
eventual choice is left, t(40) = 2.54, p = .015, d = 0.40. Error bars show standard error of the mean. 
Annotated significance values show results of paired t-tests between indicated bars. 

However, the plot of these data appears to show a trend in which MEPs in 

the strongest expectation conditions show a difference when the 

unexpected vs the expected choice is made (e.g. the ‘Chose right’ bar 

appears supressed compared to the ‘Chose left’ bar in the 90:10 

condition). Paired t-tests were used to test for a difference of left/right 

choice in the two extreme conditions. There was no effect of choice in the 

‘Strongly expect right’ condition, t(37) = 0.90, p = .37, d = 0.15, but an 

effect in the ‘Strongly expect left’ condition, t(40) = 2.54, p = .015, d = 

0.40.  

To summarise, in the condition in which subjects most expected to move 

left, right hand MEPs were smaller in trials in which the eventual choice 

was left compared to when the eventual choice was right. Whilst there is 

no statistically significant effect in the complementary ‘Strongly expect 
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right’ condition, there is a parallel trend. Note that the effect is contrary to 

what might be expected: we might guess that a higher right hand MEP 

would lead to a higher likelihood of moving right on that trial. This 

counterintuitive finding is examined in the Discussion. 

2.3.3.3. MEP-behaviour correlations for stimulus onset MEPs 

The hypothesis of this experiment – that an expectation to move would 

bias corticospinal excitability for the relevant effector – was influenced by 

ideas from the drift-diffusion and related models. Work with these 

models has suggested that expectation is incorporated as a prestimulus 

bias, altering model activity before evidence accumulation begins (Ratcliff 

and McKoon, 2007; Simen et al., 2009). The aim of these experiments was 

to look for a similar process in corticospinal excitability. 

This motivated an analysis in which behavioural data (reaction time and 

selected response) was used to fit a drift-diffusion model with a bias 

parameter, z, allowed to vary between prior cue levels. From this an 

estimate of z for each prior cue level, within each subject, was obtained. 

Figure 2.14 shows the estimated group-level (i.e. all subject) distributions 

for the bias parameter, z. The bias parameter is measured on a scale 

between 0 and 1, with 0.5 being unbiased, 0 indicating total certainty 

about choosing left, and 1 indicating total certainty about choosing right.   

The figure shows the modelling produced the expected results. Bias 

towards the right-hand response is strongest in the most strongly expect 

right condition (10:90) and the remaining conditions rank in the expected 

order. The distributions do not overlap one another. The 50:50 condition 

has a mean bias slightly below 0.5, indicating, at the group level, a slight 

bias towards left-hand responses. 
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Figure 2.14 Modelled bias parameters by probability cue condition. A hierarchical Bayesian drift-
diffusion model toolbox was used to fit the behavioural data. Plot shows group distributions of the 
parameter z, which represents a prestimulus bias to either a right-hand response (closer to 1) or a 
left-hand response (close to 0). The bias parameter was fit under the assumption drift rate and other 
parameters were fixed across prior cue conditions, but bias varied with condition. The resulting 
distributions reproduce the order of conditions with the strongest rightward expectation (10:90, 
blue line) leading to the strongest rightward bias. 

The bias parameters from the modelling were used in a regression 

analysis to see if participants who showed steeper trends in bias 

paramters showed steeper trends in corticospinal excitability at stimulus 

onset. In other words, was there a relationship between bias in the model 

and MEP size? 

For each participant, a regression was conducted for (a) mean bias value 

and (b) mean MEP at stimulus onset in the five prior cue levels. The 

slopes of these relationships gives the rate of change of (a) bias and (b) 

MEP by prior cue level. The bias slope and the MEP slope for each subject 

were then plotted against one another and a regression on these values 

conducted. This regression thus tested whether participants who showed 

greater changes in modelled bias parameter across conditions showed 

greater changes in MEP (Figure 2.15). The regression found no 

statistically significant relationship, F(1, 39) = 0.007, p =.93, R2=.0002. In 

summary, there was no relationship between trend in modelled response 

bias and trend in MEP size at stimulus onset.  
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Figure 2.15 No relationship between bias parameter slope and MEP slope. (A) shows the bias 
parameters, z, produced by the drift diffusion model, for each condition and each subject. A simple 
linear regression was conducted on these points within each subject. (Each subject’s data is shown 
by coloured points, with a line indicating the fits of the linear regression.) A histogram of the slopes 
(β) of these relationships is shown in (B). These slopes are significantly different from 0, t(40) = 223, 
p < .001, d = 34.9. The positive slopes indicate the model finds that subjects are, as expected, more 
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biased towards a right-hand response the more the prior cue indicates a rightward stimulus is likely. 
(C) shows an equivalent plot to (A) for MEP in the right FDI at stimulus onset. (D) shows the slopes 
(β) of within-subjects linear regressions on these data. These slopes are not significantly different 
from 0, t(40) = 0.19, p = .85, d = 0.029. In (E), for each subject, the bias parameter slope has been 
plotted against the MEP slope, to see whether subjects who show steeper relationships between 
experimental condition and modelled parameter also show steeper trends in MEPs. There was no 
significant relationship, F(1, 39) = 0.007, p =.93, R2 = .0002. 

In order to understand whether final reaction time, rather than modelled 

bias, might drive MEP differences, the above analysis was repeated using 

reaction speed (inverse of reaction time) on right-choice trials instead of 

bias parameter. As expected, most participants were faster to make a 

right-hand movement in strongly expect right conditions (Figure 2.16A 

and B). When the regression against MEP slopes was repeated (Figure 

2.16C), the slope of the relationship was positive, but there was no 

statistically significant relationship, F(1, 39) = 3.78, p =.059, R2=.088.  
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Figure 2.16 No relationship between reaction speed slope and MEP slope. (A) shows individual 
subject data for reaction speed (inverse of reaction time) in right-choice trials only. As expected, the 
trend is towards faster right-hand responses in conditions where there is a greater likelihood of a 
rightward stimulus. Linear regression models were fit to these data within each subject. (Each 
subject’s data is shown by coloured points, with a line indicating the fits of the linear regression.) A 
histogram of the slopes (β) of these relationships is shown in (B). These slopes were significantly 
different from 0, t(40) = 5.36, p < .001, d = 0.84. Figure 2.15C and D show this analysis repeated for 
right FDI MEP at stimulus onset. (C) shows the slopes from plot (B) against the MEP slopes, and the 
line of the linear regression fit. The regression showed no significant relationship, F(1, 39) = 3.78, 
p = .059, R2 = .088. 

2.3.3.4. MEPs over time 

In addition to recording MEPs at stimulus onset, MEPs were recorded at 

25% and 45% of the subject’s mean reaction time (as measured 

behaviourally before the first experimental block). This data is shown 

plotted by original timepoint (effectively aligned to stimulus onset; 
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‘stimulus locked’) and left/right choice in Figure 2.17 and further divided 

by prior cue condition in Figure 2.18.  

 

Figure 2.17 MEPs plotted relative to stimulus onset are suppressed at the second timepoint and 
elevated at the third.  To look at broad patterns of MEP size over time, these were plotted according 
to timepoint of stimulation. There was a main effect of timepoint, F(1.55, 62.0) = 4.68, p = .020, 
η2

p = .11, no main effect of choice, F(1, 40) = 0.22, p = .64, η2
p = .006, and no interaction between 

these factors, F(2, 80) = 2.00, p = .14, η2
p = .048.  A post-hoc test showed that MEPs at the second 

timepoint were significantly lower than at the first timepoint, t(40) = 2.23, p = .032, d = 0.35. 
Although some studies have reported greater MEP suppression in the chosen effector, MEPs at the 
second timepoint did not differ by ultimate choice, t(40) = -1.82, p = .61, d = 0.081. Error bars show 
standard error of the mean. 

A two-way timepoint x hand ANOVA on this data (i.e. reflecting the data 

as split in Figure 2.17) revealed a main effect of timepoint, 

F(1.55, 62.0) = 4.68, p = .020, η2p = .11, no main effect of choice, 

F(1, 40) = 0.22, p = .64, η2p = .006, and no interaction between these 

factors, F(2, 80) = 2.00, p = .14, η2p = .048. When the data are plotted 

locked to the stimulus, there is a trend for MEPs to be supressed at the 

second timepoint relative to the first, and elevated at the third.  

Suppression of MEPs shortly after stimulus onset has been recorded 

previously (Greenhouse et al., 2015b). To find whether this phenomenon 

was present in the data reported here, all data (i.e. collapsed across 

‘Chose left’ and ‘Chose right’) at the first timepoint was compared to the 

second timepoint. MEPs at the second timepoint were indeed significantly 



112 
 

lower than at the first timepoint, t(40) = 2.23, p = .032, d = 0.35. 

Suppression of MEPs has been previously found to be strongest in the 

effector used compared to non-chosen effectors (Duque and Ivry, 2009).  

Again, to find if this applied in this dataset, ‘Chose left’ and ‘Chose right’ 

data at the second timepoint were compared. These were not significantly 

different, t(40) = -1.82, p = .61, d = 0.081. 

A three-way timepoint x prior cue x hand ANOVA on the data (i.e. 

reflecting the data as split in Figure 2.18) showed no significant main 

effects or interactions. This ANOVA is given in full in Appendix II. 

 

Figure 2.18 Stimulus-locked MEPs do not vary by condition in when split by timepoint x prior cue x 
hand. Here, data from Figure 2.17 is shown further split by prior cue condition. MEPs, aligned to 
stimulus onset, are plotted by choice made (upper panels: chose left; lower panels: chose right), 
timepoint (left panels: 0% of mean RT; middle panels: 25% of mean RT; right panels: 45% of mean 
RT), and prior cue condition. There are no significant main effects or interactions in an ANOVA of this 
data (see Appendix II). Error bars show standard error of the mean. 

To understand better how MEPs evolved over the reaction time, they 

were ‘locked’ to the response (i.e. time of stimulation was recalculated to 
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be relative to reaction time on each trial). These data were then smoothed 

by calculating a moving average with a window width of 150ms, stepped 

across the data in steps of 20ms. These moving averages were meaned 

across subjects. These data are plotted in Figure 2.19 and Figure 2.20, 

split according to which hand was chosen on that trial. For each prior 

condition, the trials in which the right hand was chosen have been plotted 

against left-choice trials for the opposite prior category. For example, 

right-choice trials in the 10:90 condition have been paired with left-

choice trials in the 90:10 condition. This pairs together ‘strongly expect 

right, chose right’ with ‘strongly expect left, chose left’ trials, and, as MEPs 

were always from right FDI, thus shows CSE in the chosen and unchosen 

effector for the strongest expectation condition. Thus, the most intuitive 

and useful comparison is produced by matching the data across 

conditions in this way. This produces three panels in which subjects had a 

neutral or biasing prior which they chose with (Figure 2.19), and two in 

which they had a biasing prior they chose against (Figure 2.20). 

For each plot, a paired t-test was conducted on the data at each point 

(left-choice vs right-choice). These tests were corrected for multiple 

comparisons using a False Discovery Rate procedure (Benjamini and 

Hochberg, 1995). The first point at which the two traces are significantly 

different in a test surviving correction is shown with a grey line on the 

graph in Figure 2.19. This point comes progressively later as the cue 

becomes less biasing across conditions: 0.245, 0.205, and 0.185 ms prior 

to the response. 
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Figure 2.19 Response locked MEPs suggest activity may diverges later when prior expectation is 
stronger. Data have been re-organised so that MEPs are plotted relative to time of response rather 
than time of stimulus onset. MEPs were selected from trials in which subjects chose according to 
prior cue. Data were then smoothed by a moving average filter (window width: 150 ms; step size: 20 
ms). Paired t-tests were conducted at each step. Significant t-tests are shown on the chose right 
trace with a black point (.); significant tests surviving FDR correction are shown with a black asterix 
(*). Vertical grey lines show first significant point surviving correction. The first point of significant 
divergence is earliest relative to response in the neutral condition and latest in the strong 
expectation condition. See text for a discussion of the robustness of this result. Vertical black lines 
show mean reaction time for that condition relative to response; in other words, they show the 
average time of reaction start. 

This suggested that there might be an effect whereby ‘Chose right’ MEP 

activity differentiates itself from ‘Chose left’ MEP activity earlier relative 

to the response when the prior expectation to move in that direction is 
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stronger. It is difficult to examine this hypothesis directly in this dataset, 

which was not designed to look in detail at MEPs over time. Because 

sampling occurred at two fixed timepoints after stimulus onset, the 

distribution of datapoints once expressed relative to response is 

determined by reaction time variability. The data are sparse close to the 

response, and some subjects do not have any data in this time-period (as 

shown by wider error bars close to response in Figure 2.19 and Figure 

2.20). To attempt to test the hypothesis, the last timepoint at which there 

was data in all subjects in the response-locked analysis was used, which 

was 0.325 s prior to response. For each subject, for the strong, medium 

and neutral expectation conditions, the difference between ‘Chose right’ 

and ‘Chose left’ MEPs at this timepoint was calculated, and then ranked 

the resulting values within subjects. These ranks were tested to see if 

there was a greater tendency for e.g. the strong expectation condition to 

have a greater left-right difference; however, Friedman’s test revealed no 

difference between the conditions, Χ2(2, 80) = 1.76, p = .42. In sum, the 

data does not support the hypothesis of an earlier separation at a within 

subjects level, although this could be due to sparse data in the critical 

time-period rather than a genuine absence of effect. 
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Figure 2.20 Response locked MEPs on trials in which subjects chose against the prior cue do not 
show statistically-significant divergence. Data have been re-organised so that MEPs are plotted 
relative to time of response rather than time of stimulus onset. MEPs were selected from trials in 
which subjects chose in the opposite direction to that indicated by the prior cue. Data were then 
smoothed by a moving average filter (window width: 150 ms; step size: 20 ms). Paired t-tests were 
conducted at each step. Significant t-tests are shown on the chose right trace with a black point (.); 
significant tests surviving FDR correction are shown with a black asterix (*). Vertical black lines show 
mean reaction time for that condition relative to response; in other words, they show the average 
time of reaction start. 

2.3.3.5. MEP-behaviour correlations for late MEPs 

Analyses reported above failed to show a relationship between (a) 

modelled bias parameter or (b) reaction speed and MEP size at stimulus 

onset. Having failed to find this relationship with early MEPs at the time 

of RDK onset, the analysis was repeated with late MEPs (third timepoint; 

45% of reaction time). This was to investigate whether late corticospinal 

activity predicts behaviour on this task, given that early corticospinal 

activity does not. 

Thus the analysis described in Section 2.3.3.3 was repeated for MEPs 

recorded at the third timepoint. Firstly, slopes of bias parameter 
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regressions were regressed against MEP slopes (Figure 2.21). There was 

no relationship between these variables, F(1, 39) = 0.36, p =.55, R2=.009. 

Secondly, slopes of reaction speed regression were regressed against 

MEP slopes (Figure 2.22). Here, there was a significant relationship, F(1, 

39) = 8.61, p =.006, R2=.18. This indicates that subjects who showed a  

steeper trend in late MEPs across prior conditions also showed a steeper 

trend in right-choice reaction speed. Note that the distribution of MEP 

slopes at the late timepoint was not significantly different from 0 (t(40) = 

1.09, p = .28, d = 0.17), indicating no significant tendency for subjects to 

show a positive relationship between right FDI MEPs at the late timepoint 

and rightward expectation. Thus the MEP slope-reaction speed slope 

relationship exists despite this lack of a positive bias in the slopes 

themselves. 
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Figure 2.21 No relationship between bias parameter slopes and late MEP slopes. Plots (A) and (B) 
have previously been displayed in Figure 2.15 and are repeated here for visual convenience. (A) 
shows the bias parameters, z, produced by the drift diffusion model, for each condition and each 
subject. A simple linear regression was conducted on these points within each subject. (Each 
subject’s data is shown by coloured points, with a line indicating the fits of the linear regression.) A 
histogram of the slopes (β) of these relationships is shown in (B). These slopes are significantly 
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different from 0, t(40) = 223, p < .001, d = 34.9. The positive slopes indicate the model finds that 
subjects are, as expected, more biased towards a right-hand response the more the prior cue 
indicates a right-hand response is likely. (C) shows an equivalent plot to (A) for MEP in the right FDI 
at the third timepoint. (D) shows the slopes (β) of within-subjects linear regressions on these data. 
These slopes are not significantly different from 0, t(40) = 1.09, p = .28, d = 0.17. In (E), for each 
subject, the bias parameter slope has been plotted against the MEP slope, to see whether subjects 
who show steeper relationships between experimental condition and modelled parameter also 
show steeper trends in MEPs. There was no significant relationship, F(1, 39) = 0.36, p =.55, R2=.009. 

 

Figure 2.22 Positive relationship between reaction speed slope and late MEP slope.  Plots (A) and 
(B) have previously been displayed in Figure 2.16 and are repeated here for visual convenience. (A) 
shows individual subject data for reaction speed (inverse of reaction time) in right-choice trials only. 
As expected, the trend is towards faster right-hand responses in conditions where there is a greater 
likelihood of a rightward stimulus. Linear regression models were fit to these data within each 
subject. (Each subject’s data is shown by coloured points, with a line indicating the fits of the linear 
regression.) A histogram of the slopes (β) of these relationships is shown in (B). These slopes were 
significantly different from 0, t(40) = 5.36, p < .001, d = 0.84. (C) shows the slopes from plot (B) 
against the MEP slopes in the third timepoint (see Figure 2.21C and D), and the line of the linear 
regression fit. The regression showed a significant relationship, F(1, 39) = 8.61, p = .006, R2 = .18. 
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2.3.3.6. MEPs in control trials 

A previous study (Klein-Flugge and Bestmann, 2012) compared MEPs in 

simple and choice reaction time tasks, using the timing of separation of 

corticospinal excitability by eventual effector (left or right) in the simple 

reaction time task to measure a time for executing a simple motor 

response. The authors then analysed MEPs only prior to this ‘motor 

response’ epoch. This allowed them to show that MEP activity was 

differentiated by eventual choice prior to this epoch on choice trials, 

suggesting that this information leaks into corticospinal excitability 

whilst the decision is ongoing, substantiating ideas about parallel 

processing. 

The experiments in this chapter included control trials (in which an 

arrow was superimposed on the RDK to indicate direction of dot motion, 

obliterating the need for an evidence accumulation phase) in order to 

allow for a similarly-motivated analysis.  

MEPs are shown recorded in control trials only, plotted aligned to 

stimulus onset, separated by eventual choice (Figure 2.23). This showed a 

separation by eventual choice at the third timepoint  (t(27) = 2.57, p = 

.048, d = 0.49), but not the first (t(40) = 0.14, p = .89, d = 0.021) or second 

(t(40) = 1.48, p = .22, d = 0.23). 



121 
 

 

Figure 2.23 Control trial MEPs show separation by activity at latest timepoint, but not at stimulus 
onset or interim timepoints. MEPs here were recorded during control trials, in which an arrow was 
displayed on the screen, removing the need for difficult RDK direction detection and making reaction 
times faster. MEPs have been plotted by eventual button press response (left or right). As indicated 
on the graph, right hand MEPs are significantly large in right-choice trials than left-choice trials by 
the third timepoint, at 45% of mean reaction time, but not at earlier timepoints. T-tests were 
corrected for multiple comparisons using the False Discovery Rate procedure (Storey, 2002). 

Because there was no differentiation of activity by eventual choice at the 

first or second timepoint, it could be safely assumed that at least the 

epoch until the second timepoint could be considered ‘decision time’, in 

which MEP activity does not reflect motor preparation. For each subject, 

this decision time was calculated and MEPs in this epoch only on non-

control trials were analysed for differences by eventual choice. In Klein-

Flugge and Bestmann’s analysis (2012), the authors similarly defined a 

decision time epoch using forced choice trials and then found activity 

relating to choice in this epoch in the choice trials. However, in the 

experiment presented here, there was no difference by choice of MEPs in 

the decision time at either the first (t(40) = 0.63, p = .53, d = 0.098) or the 

second (t(40) = 0.99, p = .49, d = 0.16) timepoints. These t-tests were 

corrected for multiple comparisons using the False Discovery Rate 

procedure (Storey, 2002). 
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2.3.4. Comparison to baseline 

In all experiments, in addition to the within-block MEPs presented so far, 

a pre-block, baseline MEP measure was also taken. It has been shown 

repeatedly that under some experimental conditions, MEPs can be 

suppressed prior to movement relative to a baseline measure (e.g. 

Hasbroucq et al., 1997). It has been hypothesised this is the result of a 

broad-based inhibition and is part of a process of preventing premature 

movement (Duque et al., 2010). 

 

Figure 2.24 MEPs are elevated relative to pre-block baseline measure. This analysis sought a metric 
of whether MEPs recorded at the time of stimulus onset were suppressed relative to baseline for 
each experiment. For the three experiments, mean MEP at stimulus onset only was calculated 
relative to baseline measure on that block. In fact, MEPs on all three experiments were 
approximately double the baseline measure. The first two MEPs were excluded from the baseline 
measure. Error bars show standard error of the mean. 

I hypothesised that MEPs at stimulus onset were suppressed in the 

experiment and this was responsible for the absence of modulation by 

prior cue level (see Discussion). I thus calculated MEPs relative to the pre-

block baseline in the three experiments, as this measure may give some 

indication of the suppression (although note MEP suppression is typically 

calculated relative to a within-block, intertrial baseline (e.g. Duque and 

Ivry, 2009). 
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Figure 2.24 shows MEPs at stimulus onset relative to the appropriate 

block baseline measure, collapsed across all prior cue conditions. In all 

three experiments, MEPs were higher than at baseline. The implications 

of this are examined in the discussion.  
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2.4. Discussion 

This chapter investigated whether an expectation about which direction 

to move modulates corticospinal excitability in the early period prior to 

the evidence-accumulation phase of the decision. Three datasets 

investigating this question were presented. Contrary to the hypothesis, 

there was no effect of prior expectation on corticospinal excitability prior 

to stimulus onset. There was some indication in the data that a stronger 

prior might lead to earlier right-left separation in activity relative to 

response, but this was not statistically robust; the experiment was not 

designed to look at this time period in detail and data here was sparse. 

This discussion will consider a number of possible explanations for the 

null result. The first is that there is no representation of prior expectation 

in motor cortex; in other words the proposed hypothesis is false. A 

second explanation is that MEP suppression, which is known to occur 

either just before or just after a movement is cued (Greenhouse et al., 

2015b), affected the expectation conditions indiscriminately and thus 

obscured an effect. A third explanation is that MEPs are too variable to 

assess an effect of this magnitude. I will examine these explanations in 

further detail and then discuss the positive findings of this experiment. 

2.4.1. Was ‘impulse supression’ in these experiments the reason for a 

lack of effect on MEPs at stimulus onset? 

What is the relevance of the ‘impulse suppression’ to the experiments 

presented in this chapter? Because impulse suppression affects all 

effectors that might be involved in the upcoming movement (Duque et al., 

2010; Greenhouse et al., 2015b), it is considered to be a broad inhibitory 

signal, and thus could have obscured differences between conditions in 

the data. 
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The Introduction to this chapter detailed the three experimental designs 

aimed at minimising the effect of MEP suppression. In Experiment 1, a 

fixation cross was always presented 400 ms before stimulus onset. A 

fixation cross is common in both perceptual tasks (e.g. Shadlen and 

Newsome, 2001b) and instructed delay TMS studies (e.g. Labruna et al., 

2013). However, the fixation cross may have acted as a warning cue and 

thus lead to MEP suppression by the time of stimulus onset. Experiment 2 

therefore had no fixation cross. However, it is possible in this experiment 

that the presentation of prior cues - which were presented a fixed 2,950 

ms prior to stimulus onset - themselves acted as a warning cue (Sinclair 

and Hammond, 2009; Duque et al., 2010). Experiment 3 was similar to 

Experiment 2, except that the duration between the prior cue and the 

stimulus was jittered. There is no evidence in the literature that jittering 

the length of the delay period reduces suppression; however, pilot data in 

three subjects (not presented separately in chapter; incorporated into 

dataset for Experiment 3) which showed an effect of prior cue at stimulus 

onset, indicating that reducing temporal expectation by jittering the 

length of the delay might unmask an effect of prior expectation. 

Furthermore, it has repeatedly been found that long pre-movement 

delays (which are considered less ‘predictable’ than short pre-movement 

delays) obliterate MEP suppression (Touge et al., 1998; Hasbroucq et al., 

1999, 1999; Tandonnet et al., 2010). 

So was there MEP suppression in the experiment which obscured any 

effect of prior cue? There are several reasons to think MEP suppression 

was not present in Experiments 2 and 3.  

Firstly, MEPs are high relative to a pre-block baseline (Figure 2.24).  This 

is unsatisfactory as a direct measurement of suppression, because, in 

studies that investigate MEP suppression, MEP amplitude is typically 

compared to a baseline measured during the intertrial interval. This was 
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not part of the experimental design (although with hindsight, this would 

have been a useful metric). However, some studies have additionally 

compared to a pre-block baseline (Greenhouse et al., 2015b). Repeating 

the process on this data shows that MEPs at stimulus onset are facilitated, 

not suppressed.   

Secondly, there was a delay of at least 2,950 ms between prior cue and 

stimulus onset. It has been repeatedly demonstrated that long delays (2 – 

2.5 s compared against 0.5 s) in instructed delay tasks obliterate impulse 

suppression (Hasbroucq et al., 1997; Touge et al., 1998; Tandonnet et al., 

2010). This suggests that the delay used was long enough to obliterate 

MEP suppression in the delay period. Note however that the papers cited 

above used simpler tasks and the cues prior to the delay period fully 

specified the movement that would be required at the time of the 

imperative; thus, they are not directly comparable.  

Thirdly, in the combined dataset for Experiments 2 and 3, MEPs are 

supressed at the second timepoint relative to the first (Figure 2.17). This 

has been observed after the imperative in no-delay reaction time tasks 

(Greenhouse et al., 2015b), and is interpreted as being the same MEP 

suppression phenomenon as seen in instructed delay tasks, with a shifted 

timing in response to the specifics of the task. The presence of a post-

stimulus suppression in the data suggests that MEPs were not suppressed 

at stimulus onset. (It is possible that there are two successive stages of 

suppression, but this has not been described in the literature.)  

In sum, there is no compelling reason to think that MEP suppression was 

the reason for the null result. It is possible that it was present, but a 

number of lines of reasoning point towards its absence.  
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2.4.2. Was anatomical specificity of competitive representations the 

reason for a lack of effect on MEPs at stimulus onset? 

If broad suppression of MEPs was not the cause of the null result, then 

why was there an absence of hypothesised activity in response to the 

prior cue? One possibility is that stimulus information dynamically biases 

motor activity in dorsal premotor cortex but not primary motor cortex. 

The key studies demonstrating biasing of motor plans by cognitive 

information when this cognitive information was relevant for decision 

found this activity in PMd (Pastor-Bernier and Cisek, 2011; Cisek and 

Pastor-Bernier, 2014); the authors did not find the same phenomenon in 

M1 (Cisek; personal communication).  

However, other studies have successfully used TMS to demonstrate 

response competition (Michelet et al., 2010) and the impact of cognitive 

variables such as expected value (Klein-Flugge and Bestmann, 2012) on 

corticospinal excitability. Furthermore, the specificity of TMS with a 

figure-of-eight coil for M1 remains unclear. MEPs are composed of D 

(‘direct’) and I (‘indirect’) waves (Di Lazzaro et al., 1998a). D waves are 

generated directly from the pyramidal cell outflow tract (Patton and 

Amassian, 1954), but I waves are believed to be dependent on 

corticocortical circuits (Di Lazzaro et al., 1998b). Invasive electrical 

stimulation of premotor cells alone elicits I waves and an EMG response, 

but more weakly than when M1 is stimulated (Cerri, 2003; Shimazu et al., 

2004; Schmidlin et al., 2008), and mini-coil TMS to PMd will not evoke 

MEPs (Groppa et al., 2012).  However, TMS or electrical stimulation of 

PMd enhances later I waves and thus MEPs evoked from M1 (Cerri, 2003; 

Shimazu et al., 2004; Groppa et al., 2012). Thus a figure-of-eight coil 

activating both PMd and M1 could result in MEPs being evoked which 

depend on PMd activation. The hand motor hotspot (the site at which 

maximum MEP size is elicited) has been found to be located in M1 in just 
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under half of subjects, with the remaining half having a more anterior 

premotor location (Ahdab et al., 2016). 

Hence it is not possible to say definitively that an effect of prior on motor 

plans in PMd but not M1 would have led to the results observed. A paired 

pulse protocol looking at the strength of PMd to M1 facilitation (Tokimura 

et al., 1996; Ziemann et al., 1998) could be used to test directly the idea 

that prior information is represented in PMd.  

It is possible that there was no effect of prior information on corticospinal 

excitability at stimulus onset because prior information is not transmitted 

to any motor areas until action preparation begins. However, a previous 

magneto-encephalography study with a similar motivation to the 

experiments presented in this chapter found expectation was 

represented in motor areas from around one second before the cue to 

move (de Lange et al., 2013).  

2.4.3. Was the experiment underpowered? 

A final possible reason for the null result is that the study was 

underpowered. However, the sample size of 41 subjects (Experiments 2 

and 3 combined) is approximately double what similar studies have used 

in the past. This sample size gives an 80% power to detect a difference 

between means of 0.45 standard deviations, using a paired t-test. It’s 

possible there was an effect present that was smaller than this, which 

would be very hard to measure using a TMS experiment. The differences 

observed in MEP size at stimulus onset between conditions were less 

than 0.1 standard deviations; if these reflected genuine differences, the 

study would not have been powered to detect them. 



129 
 

2.4.4. Temporal variability of MEPs 

Between Experiment 1 and Experiment 2, alongside other changes to the 

design highlighted elsewhere, I switched from a design where the 

experimental conditions were varied by block to an ‘interleaved’ design 

where they were varied by trial. This was as a result of gaining 

experimental experience of the variability of MEPs. There is also evidence 

in the literature that MEPs are highly variable, with exact variability 

depending on factors such as coil and stimulation intensity (Kiers et al., 

1993). Variation in physiological factors might also play a role; post-

exercise fatigue decreases MEPs (Brasil-Neto et al., 1993). More recent 

studies have begun to attempt to explain the determinants of this 

variability (Klein-Flügge et al., 2013; Goetz et al., 2014). Importantly, MEP 

variability has a strong temporal component, with the first few recorded 

MEPs being much larger than subsequent ones (Brasil-Neto et al., 1993; 

Schmidt et al., 2009). One paper found that early MEPs are approximately 

log-normally distributed, whilst subsequent MEPs are approximately 

normal (Schmidt et al., 2009). The authors recommend excluding the first 

20 MEPs when analysing experiments; however, this practice has not 

been adopted in the literature cited in this chapter.  I believe these 

findings support the idea of using interleaved designs in preference to 

blocked designs in cognitive MEP experiments. 

2.4.5. Differences between conditions at stimulus onset when split by 

choice 

Figure 2.13 shows MEPs at stimulus onset split by choice. Unexpectedly, 

even though subjects had not seen the stimulus at this stage, in the 90:10 

(strongly expect left) condition, MEPs were lower when subjects chose 

right (i.e. against the expectation) compared to when they chose left. The 

data pattern in the opposite condition appears to reverse this pattern, 

although the difference is not significant here. (Note that there are very 
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few trials in these conditions as the stimulus only moves against the prior 

in 10% of cases.) These findings are counterintuitive because one might 

expect a higher right hand MEP to predict right hand choice, but the right 

hand MEP was lower when subjects managed to overcome a strong 

expectation that the stimulus would be leftward and move the right 

finger. Why is this? One speculative explanation is that these trials reflect 

a delayed or failed impulse suppression process. Under this explanation, 

differences between conditions are usually obliterated by impulse 

suppression by the time of stimulus onset, but occasionally this process 

fails or is late, reflecting a delay to the preparation process. This delayed 

preparation means the action is further from being released and thus 

there is more time to overcome a bias on the basis of evidence presented 

by the stimulus. The effect only shows up in the most extreme conditions 

because these are the hardest to overcome and are only overcome in 

trials with delayed impulse suppression.  Note that this explanation relies 

critically on the presence of MEP suppression at stimulus onset, and 

above I have presented reasons why this might not be present in these 

data. Thus this explanation is presented as speculation. 

2.4.6. Relationship between late MEPs and reaction speed  

The results showed that subjects who showed stronger trends (steeper 

regression slopes) in right FDI MEPs measured at the third timepoint 

showed stronger trends in right-hand reaction speed across prior cue 

conditions. There was no relationship (regression was non-significant) 

for the same analysis using modelled bias parameter rather than the 

direct behavioural measure of reaction speed. Interestingly, this 

relationship was present, even though the MEPs slopes themselves were 

not mostly positive (i.e. there was no tendency for most subjects to show 

a positive relationship between third-timepoint MEP and prior cue). This 

highlights the value of analyses which link individual subject behavioural 



131 
 

measures to corticospinal excitability (Klein-Flugge and Bestmann, 2012). 

The analyses indicate that MEP size at stimulus onset does not determine 

(or is not determined by) reaction time, but MEP size at later timepoints 

does. (The same analysis with stimulus-onset MEPs showed no effect).  

It is interesting that modelling a bias parameter in each subject weakened 

rather than strengthened these analyses. An fMRI study on prior 

expectation by Forstmann et al (2010) found results only when a similar 

modelled bias parameter was included in the fMRI analysis as a covariate. 

This highlighted the value of modelling in these experiments and 

influenced the choice of analyses for this experiment. Why was the 

modelling less valuable in this case? Visual inspection of the modelled 

bias parameters shows that inter-subject variability is very low and every 

subject shows a steep trend in bias parameters across prior cue 

conditions. This contrasts with the reaction speed measure, which is 

much noisier. This is an effect of the hierarchical modelling, which 

assumes individual subject parameters are drawn from a group 

distribution. This noise-reduction effect might sometimes be 

advantageous, but I speculate that this reduced inter-subject variability to 

the point where an analysis based on individual differences was not 

useful. 

2.4.7. Suitability of TMS for experiments of this nature 

At the time of designing the experiments presented in this chapter, there 

were no other studies looking at evidence-accumulation based decisions. 

In the interim, Hadar et al (2016) published a TMS study looking at how 

MEP size over the reaction time depends on stimulus strength. In short, 

their study was similarly motivated by studying the correlates of biased 

competition in a perceptual decision using TMS, but they chose to focus 

on stimulus strength, which is considered to affect the rate of evidence 
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accumulation, rather than prior expectation, which is considered to cause 

a biased starting point. 

Similarly to the analysis presented in this chapter, they used smoothing to 

generate a continuous MEP trace. They find an earlier divergence of 

activity for hard over easy decisions in a response locked analysis. 

However, this result was achieved only after a post-hoc exclusion of trials 

which did not produce strong reaction time differences. Furthermore, 

each of their eight participants undertook an unusually high number of 

trials (1,920, compared to 400 in this study). Thus this study also 

struggled to find hypothesised effects even with large statistical power. It 

is interesting to consider whether, despite its advantages (temporal and 

effector specificity), high MEP variability and the complexity of unpicking 

multiple component processes which contribute to the MEP, mean TMS is 

not, in fact, a good method for this kind of experiment. 

2.4.8. Replication of previous studies 

How do the results presented in this chapter compare to those in 

previous studies? Firstly, the canonical finding that corticospinal 

excitability in the chosen effector increases prior to movement was 

replicated (e.g. Leocani et al., 2000). Secondly, a suppression of MEPs 

shortly after stimulus onset (Greenhouse et al., 2015b), strongest in the 

chosen effector (Duque and Ivry, 2009), has been shown previously and 

this pattern was found in the data from Experiments 2 and 3 (Figure 

2.17). Thirdly, in the behavioural measures, a more biasing prior 

expectation was shown to make subjects faster and more accurate, which 

is another standard result (e.g. Carpenter and Williams, 1995). 

A finding this study failed to replicate was that decision-related activity is 

present in corticospinal excitability in the ‘decision epoch’, which was 

previously shown in a value-based choice task (Klein-Flugge and 
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Bestmann, 2012). However, the experiments in this chapter had less 

precision in this analysis, as only three timepoints were tested, whilst the 

previous study tested six. This was necessary to the design of the 

experiments in this chapter as there were more kinds of decision type 

(five levels of prior cue) and thus needed fewer timepoints to give 

statistical power. So loss of temporal resolution, or a difference in 

decision type (value-based vs perceptual decision) could have been 

reasons for the discrepancy in findings. 

Bestmann et al (2008) conducted a study in which the main focus was the 

effect of entropy and surprise on corticospinal excitability, but they also 

briefly report that corticospinal excitability was higher in blocks in which 

the conditional stimulus had a higher likelihood of validly cueing the 

imperative stimulus. This is analogous to the experiments in this chapter, 

in which an effect of expectation at stimulus onset was not found. It is 

difficult to say why this is. One possibility is that it is due to a timing 

difference, as these authors timed TMS at 200 ms prior to the imperative 

stimulus to move.  

2.4.9. Alternative experimental approaches 

The experiments in this chapter attempted to measure corticospinal 

excitability in order to investigate how it was modulated by expectation. 

A similar question could have been investigated with other experimental 

approaches.  

M1 excitability can also be measured via M/EEG. The advantage of these 

methods is a temporally precise signal. Furthermore, data recording is 

continuous through the reaction time, unlike with an MEP, and thus data 

about temporal dynamics is richer for the same number of trials. These 

advantages make this a promising method for this kind of experiment.  
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However, unlike with an MEP, it is not possible to tell from the cortical 

recordings of M/EEG, which activity is translated to the corticospinal 

tract.  Furthermore, increased activity seen on M/EEG could come from 

populations of inhibitory neurons, and thus it is difficult to disentangle 

motor facilitation and suppression.  

A similar experiment to the ones in this chapter was performed using 

MEG by de Lange et al (2013). In contrast to the findings in this chapter, 

this study did find a modulation of M1 oscillatory activity by prestimulus 

bias. However, the conflict with the results presented here suggests the 

oscillatory activity they found may not translate into corticospinal 

activity. 

Another alternative is a TMS paired pulse protocol (Reis et al., 2008). In 

such protocols, a pair of MEP pulses are delivered, either at the same 

cortical site (through the same coil) or at a different cortical site (using a 

second coil). Specific paired pulse paradigms are known to differentially 

modulate the MEP. For instance, a subthreshold first stimulus (the Test 

Stimulus, TS) applied to M1 6 – 25 ms before a suprathreshold second 

stimulus (Conditioning Stimulus, CS) will produce a facilitation 

(Intracortical Facilitation, ICF) of the MEP (Kujirai et al., 1993). Similarly, 

when the protocol is modified to have shorter intervals of 1 – 6 ms 

between the stimuli, the MEP is instead inhibited (Kujirai et al., 1993); 

this process is called short interval intracortical inhibition (SICI). 

These paired pulse protocols could be combined with the behavioural 

paradigm described in this chapter to test whether different levels of 

expectation modulate SICI and ICF. Relatedly, increased temporal 

expectation given by a warning stimulus has been shown to decrease SICI 

and increase ICF (Tandonnet et al., 2010). However, the literature the 

experiments in this chapter was based on does not suggest an a priori 

hypothesis about how SICI and ICF are modulated by expectation. 
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A more hypothesis-driven alternative would be to use TMS to test 

whether expectation is acting at PMd rather than M1. There are two 

methods for testing PMd-M1 connections using TMS.  

Firstly, repetitive TMS can be applied to PMd by a protocol known to 

either facilitate or supress PMd activity. Single pulse TMS to M1 can then 

be used to test whether the MEP is in turn facilitated/supressed by the 

PMd modulation (Rizzo et al., 2004). For instance, repetitive TMS to PMd 

(used to inactivate PMd) decreases inhibition during motor preparation, 

suggesting PMd is responsible for that inhibition (Duque et al., 2012).  

Alternatively, paired pulse TMS can be used with a coil over PMd. For 

instance, a subthreshold CS over ipsilateral PMd with a CS-TS interval of 

6 ms reduces the MEP evoked from M1 (Civardi et al., 2001). A 

suprathreshold CS will cause facilitation. Contralateral PMd-M1 

connections can also be tested (Mochizuki et al., 2004).  

To test whether expectation modifies PMd-M1 connections, an ipsilateral 

paired pulse protocol would be optimal. The experimental question 

would be whether MEP suppression or facilitation by PMd is altered by 

the level of prior expectation. 

2.4.10. Conclusion 

In conclusion, three experiments found no effect of prior expectation on 

corticospinal excitability. This seems unlikely to have been because MEP 

suppression masked a result. The null result could be: (1) because prior 

expectation is, in fact, not represented in motor areas before stimulus 

appearance; or (2) because MEP variability renders TMS an unsuitable 

technique for studying subtle activity changes in a perceptual decision, 

even with a large number of subjects. 
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2.5. Appendix I: ANOVA to compare MEP data from 

Experiments 2 and 3 

Within Subjects Effects  

 
Sphericity 
Correction 

Sum of 
Squares 

df 
Mean 
Square 

F p 

Hand  
 

None 
 

0.018  
 
1.000  

 
0.018  

 
0.086  

 
0.773  

 
Hand ✻ Dataset  

 
None 

 
0.113  

 
1.000  

 
0.113  

 
0.551  

 
0.467  

 
Residual  

 
None 

 
3.701  

 
18.000  

 
0.206  

   
   

 
Prob  

 
None 

 
0.560  

 
4.000  

 
0.140  

 
0.606  

 
0.659  

 
Prob ✻ Dataset  

 
None 

 
0.770  

 
4.000  

 
0.192  

 
0.834  

 
0.508  

 
Residual  

 
None 

 
16.622  

 
72.000  

 
0.231  

   
   

 
Time  

 
None 

 
0.738  

 
2.000  

 
0.369  

 
1.003  

 
0.377  

 
Time ✻ Dataset  

 
None 

 
0.150  

 
2.000  

 
0.075  

 
0.203  

 
0.817  

 
Residual  

 
None 

 
13.234  

 
36.000  

 
0.368  

   
   

 
Hand ✻ Prob  

 
None 

 
0.357  

 
4.000  

 
0.089  

 
0.624  

 
0.647  

 
Hand ✻ Prob ✻ Dataset  

 
None 

 
0.878  

 
4.000  

 
0.219  

 
1.536  

 
0.201  

 
Residual  

 
None 

 
10.287  

 
72.000  

 
0.143  

   
   

 
Hand ✻ Time  

 
None 

 
0.776  

 
2.000  

 
0.388  

 
1.718  

 
0.194  

 
Hand ✻ Time ✻ Dataset  

 
None 

 
0.852  

 
2.000  

 
0.426  

 
1.886  

 
0.166  

 
Residual  

 
None 

 
8.133  

 
36.000  

 
0.226  

   
   

 
Prob ✻ Time  

 
None 

 
1.973  

 
8.000  

 
0.247  

 
1.317  

 
0.239  

 
Prob ✻ Time ✻ Dataset  

 
None 

 
1.680  

 
8.000  

 
0.210  

 
1.121  

 
0.352  

 
Residual  

 
None 

 
26.967  

 
144.000  

 
0.187  

   
   

 
Hand ✻ Prob ✻ Time  

 
None 

 
1.154  

 
8.000  

 
0.144  

 
0.756  

 
0.642  

 
Hand ✻ Prob ✻ Time ✻ Dataset  

 
None 

 
1.058  

 
8.000  

 
0.132  

 
0.693  

 
0.697  

 
Residual  

 
None 

 
27.476  

 
144.000  

 
0.191  

   
   

 
 
Between Subjects Effects  

 
Sum of 
Squares 

df  
Mean 
Square  

F p 

Dataset  
 
0.028  

 
1  

 
0.028  

 
0.237  

 
0.632  

 
Residual  

 
2.130  

 
18  

 
0.118  

   
   

 

 

Table 2.1 MEP data does not differ between Experiments 2 and 3. These tables report a four-way 
repeated measures ANOVA on the MEP data from Experiments 2 and 3, with hand chosen (L/R), 
probability condition (10:90/25:75/50:50/75:35/90:10), and timepoint (0%/25%/45%) as within 
subjects effects, and dataset (Experiment 2/Experiment 3) as between subjects effects. 
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2.6. Appendix II: ANOVA on stimulus-locked MEP data 

Within Subjects Effects  

   
Sphericity 
Correction  

Sum of 
Squares  

df  
Mean 
Square  

F  p  η² p  

Time  
 
None  

 
1.129  

 
2.000  

 
0.564  

 
1.661  

 
0.205  

 
0.089  

 
   

 
Greenhouse-Geisser  

 
1.129  

 
1.724  

 
0.655  

 
1.661  

 
0.209  

 
0.089  

 
Residual  

 
None  

 
11.552  

 
34.000  

 
0.340  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
11.552  

 
29.308  

 
0.394  

   
   

 
   

 
Hand  

 
None  

 
1.59e -5  

 
1.000  

 
1.59e -5  

 
6.4e-5  

 
0.994  

 
0.000  

 

   
 
Greenhouse-Geisser  

 
1.59e -5  

 
1.000  

 
1.59e -5  

 
6.4e -
5   

0.994  
 

0.000  
 

Residual  
 
None  

 
4.222  

 
17.000  

 
0.248  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
4.222  

 
17.000  

 
0.248  

   
   

 
   

 
Prob  

 
None  

 
1.789  

 
4.000  

 
0.447  

 
1.893  

 
0.122  

 
0.100  

 
   

 
Greenhouse-Geisser  

 
1.789  

 
3.072  

 
0.582  

 
1.893  

 
0.141  

 
0.100  

 
Residual  

 
None  

 
16.067  

 
68.000  

 
0.236  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
16.067  

 
52.221  

 
0.308  

   
   

 
   

 

Time ✻ Hand  
 
None  

 
0.309  

 
2.000  

 
0.155  

 
0.693  

 
0.507  

 
0.039  

 

   
 
Greenhouse-Geisser  

 
0.309  

 
1.772  

 
0.175  

 
0.693  

 
0.491  

 
0.039  

 
Residual  

 
None  

 
7.582  

 
34.000  

 
0.223  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
7.582  

 
30.119  

 
0.252  

   
   

 
   

 

Time ✻ Prob  
 
None  

 
1.408  ᵃ  8.000  ᵃ  0.176  ᵃ  0.827  ᵃ  0.580  a   0.046  

 
   

 
Greenhouse-Geisser  

 
1.408  ᵃ  4.349  ᵃ  0.324  ᵃ  0.827  ᵃ  0.520  a   0.046  

 
Residual  

 
None  

 
28.923  

 
136.000  

 
0.213  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
28.923  

 
73.927  

 
0.391  

   
   

 
   

 

Hand ✻ Prob  
 
None  

 
0.696  

 
4.000  

 
0.174  

 
1.078  

 
0.374  

 
0.060  

 

   
 
Greenhouse-Geisser  

 
0.696  

 
2.804  

 
0.248  

 
1.078  

 
0.364  

 
0.060  

 
Residual  

 
None  

 
10.972  

 
68.000  

 
0.161  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
10.972  

 
47.668  

 
0.230  

   
   

 
   

 

Time ✻ Hand ✻ 
Prob   

None  
 
0.753  

 
8.000  

 
0.094  

 
0.481  

 
0.868  

 
0.028  

 

   
 
Greenhouse-Geisser  

 
0.753  

 
4.491  

 
0.168  

 
0.481  

 
0.770  

 
0.028  

 
Residual  

 
None  

 
26.616  

 
136.000  

 
0.196  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
26.616  

 
76.351  

 
0.349  

   
   

 
   

 

ᵃ Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p < .05).  

 

Table 2.2 No significant main effects in stimulus-locked MEP data. This table reports the results of a 
three-way repeated measures ANOVA on the MEP data from Experiments 2 and 3 (combined). The 
data is ‘stimulus-locked’ i.e. categorised by timepoint of stimulation. ANOVA factors were timepoint 
(stimulus onset/25% of reaction time/45% of reaction time) x probability condition 
(10:90/25:75/50:50/75:35/90:10) x hand chosen for response (left/right). 
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Chapter Three: Does prior expectation distribute 

variability unevenly across motor plans? 

3.1. Introduction 

There is mounting evidence that multiple alternative motor plans are 

created and maintained in motor cortex whilst the decision about which 

movement to make is ongoing. Both neurophysiological (Cisek and 

Kalaska, 2005; Pastor-Bernier and Cisek, 2011) and behavioural 

(Chapman et al., 2010; Stewart et al., 2014; Gallivan et al., 2015, 2016b, 

2017) studies suggest that offering experimental subjects two potential 

targets leads to two motor plans being maintained, and these can interact, 

leading to a movement trajectory which is initially intermediate between 

the two potential task goals. Experiments which excluded simple spatial 

relationships between targets (Gallivan et al., 2015, 2017) have suggested 

that the multiple plans are true motor representations and not dependent 

on sensory averaging. The ‘affordance competition hypothesis’ (Cisek, 

2007) is discussed in more detail in Chapter One. 

What is the effect of maintaining multiple motor plans on the quality of 

the executed movements? When human subjects are required to plan two 

pointing movements rather than one, movement variability increases 

(Wijdenes et al., 2016). This effect is also present when subjects must 

prepare motor plans with both hands vs one hand to a single target, 

showing it is not dependent on competition for resources at the level of 

visuospatial representation. 

The finding that more motor plans means more variability is consistent 

with a limited resource model, in which there is a finite neural resource 

that must represent various options; in this case, the various possible 

targets of the reach. Divisive normalisation provides a potenital biological 

substrate for this: it limits the cumulative level of neuronal spiking and 
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thus makes it a finite resource. Many neuronal populations have been 

observed to exhibit divisive normalisation, where neuronal inputs are 

scaled by the overall activity of the population such that the mean level of 

spiking in the population is always similar (Olsen et al., 2010; Carandini 

and Heeger, 2012). Adaptation by photoreceptors to light of different 

intensities is an example of normalisation (Normann and Perlman, 1979; 

Carandini and Heeger, 2012).  

In a normalised neuronal population, maintaining representations of two 

motor plans rather than one would lead to a reduced signal-to-noise ratio 

for each plan. Limited resource models have been successful in modelling 

errors made when subjects need to remember multiple items in visual 

working memory tasks (Bays, 2014), and a similar mechanism has been 

proposed to underlie the motor variability finding (Wijdenes et al., 2016). 

The concept of a limited resource in motor planning is attractive because 

it imposes a biological disadvantage to implementing multiple motor 

plans, and thus proposes a mechanism by which perceptual or decision 

uncertainty could translate to higher movement variability. Additionally, 

it places a constraint on the number of motor plans, which seems 

necessary to counterbalance the optimisation that multiple motor 

planning brings. 

For the idea of a limited resource determining motor variability to be 

correct, noisier representations during motor planning must translate 

into variability during the movement. The primary source of motor 

variability has been a matter for debate. The pre-eminent  theory of 

motor control relies on noise generated at the periphery during motor 

execution being the main source of variability during movement (Harris 

and Wolpert, 1998; Todorov and Jordan, 2002). In this theory, noise 

scales with the size of the signal, such that faster movements are more 

variable, and the nervous system is optimised to limit the impact of such 
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noise on movement execution. However, elsewhere, the importance of 

central sources of neuronal noise has been emphasised, whether sensory, 

motor, or computational (Churchland et al., 2006; Beck et al., 2012; 

Chaisanguanthum et al., 2014). Churchland and colleagues (2006) have 

argued that, in macaques, variable spiking during motor planning 

explains more than half of the variability in executed reaches. The 

experiment by Wijdenes and colleagues (2016) found a measurable 

difference in variability due to planning two movements rather than one, 

suggesting that it is reasonable to study the effect of motor planning on 

motor variability in behavioural tasks. 

3.1.1. A hypothesis linking prior expectation and motor variability 

This chapter examines the situation in which a subject must plan two 

possible movements, but expects to make one with a much stronger 

likelihood than the other. This is analogous to many real-world situations: 

when reaching out to take a cup of hot tea from a friend, we must plan, 

with a strong expectation of execution, a movement to grasp the cup, but 

also, with a much lower likelihood, a movement to quickly pull our hand 

out of the way, in case they spill the tea.  

It is known that a stronger expectation of making a movement increases 

neuronal spiking for cells interested in that movements prior to evidence 

accumulation in lateral intraparietal cortex (Rao et al., 2012) and 

superior colliculus (Basso and Wurtz, 1997, 1998). In this chapter, I 

hypothesise that uneven spiking rates translate into an effect on motor 

variability.  

Motivated by the limited resource theories of Bays (Bays, 2014, 2015; 

Wijdenes et al., 2016), I propose that the effect of prior expectation in 

motor cortex is to allocate the limited resource to motor plans unevenly, 

so that the signal-to-noise ratio of the expected motor plan is boosted at 



142 
 

the expense of the other. Assuming that the impact of limited resources in 

motor planning can be measured in motor variability (Wijdenes et al., 

2016), this predicts that the variability of the expected movement is 

reduced whilst the variability of the unexpected movement is increased. 

As the variability increase derives from the motor planning stage, I expect 

it to predominate in the first part of the movement, and thus will analyse 

motor variability throughout the movement. (Other studies have typically 

focussed only on endpoint variability (e.g. Pekny et al., 2015)). 

3.1.2. Experimental design 

In this chapter, I test the hypothesis that an increased prior expectation to 

move reduces motor variability. I describe a behavioural experiment in 

which human subjects make two-dimensional reaching movements and a 

cue before movement gives subjects a trial-by-trial expectation about 

which movement they are likely to have to make.  

Subjects made right-handed reaching movements to either a target 

oriented at either 45° to the left or to the right of the starting position. On 

each trial, before seeing a cue which instructed subjects which direction 

to move in, subjects saw a probabilistic cue which informed them one of 

three possibilities: the left target was more likely to be cued (with an 80% 

probability); the right target was more likely to be cued (80% 

probability), or both targets were equally likely to be cued. These cues 

were veridical. After this, either the left or the right target was cued, and 

subjects had one second in which to respond with a speeded reaching 

movement, aiming to win points by hitting the cued target.  
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3.2. Methods 

The aim of the experiment was to measure movement variability under 

various levels of expectation about making the movement. This was 

tested with an experiment in which human subjects were required to 

make fast reaching movements, using an onscreen cursor, to one of two 

targets, each positioned at 45° to the horizontal either side of the starting 

position. On each trial, subjects were shown probabilistic information (a 

‘prior cue’) which indicated whether the cued target was likely to be the 

left one, the right one, or either target. After the target was cued, subjects 

had a brief period to execute a movement to the target and were given 

feedback on whether their movement had been successful or not. 

3.2.1. Participants 

Fourteen participants were tested (3 female, mean age = 24, SD = 5.36) 

recruited through a university subject pool. The choice of sample size was 

based on previous behavioural experiments studying variability (Pekny et 

al., 2015; Wijdenes et al., 2016). Participants gave written informed 

consent. The experiment was approved by the research ethics committee 

of University College London (United Kingdom). Subjects were naïve to 

the purpose of the experiment. 

3.2.2. Robotic apparatus 

Subjects rested their right forearm in a plastic support and grasped a 

manipulandum in their semipronated right hand at approximately chest 

height (Figure 3.1). Their forehead was supported on a rest. The 

manipulandum moves with two degrees of freedom. Subjects viewed 

reach targets and the cursor via a screen of size 40 cm by 64.5 cm 

projected through a mirror of 30 cm by 36 cm which obscured a direct 

view of the hand and arm. The display appeared to be in the same plane 

as the hand. The apparatus was controlled by custom C++ code 
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(Microsoft). The position of the manipulandum was recorded at 200 Hz 

and this position was Kalman filtered and drawn to the screen as a 

circular outline cursor of diameter 0.3 cm. Screen information was 

updated at 200 Hz and the screen display was refreshed at 60Hz. Objects 

on the screen were drawn in white on a black background, except where 

stated.  

 

Figure 3.1 The robotic apparatus used allowed subjects to control a cursor with their hand 
movements. Subjects grasped a manipulandum in their semi-pronated right hand. Their view of 
their own arm was obscured by a screen (translucent in the diagram). The screen contained a cursor 
which reflected the position of the manipulandum. Targets which indicated to the subjects which 
movement they would have to make were displayed on the screen. Figure modified from one by J 
Galea. 

3.2.3. Trial protocol  

The starting box and two targets were displayed on the screen at all 

times. The starting box was a square outline of length 0.7 cm centered at 

0 cm (x-dimension) and -12 cm (y-dimension) relative to the centre of the 

screen. The two targets were circular outlines of diameter 1 cm 

positioned 20 cm away from the starting box at 45° angles. 



145 
 

To begin a trial, the participant had to move the cursor inside the starting 

box. Once the subject was within 0.25 cm of the centre of the starting box, 

the cursor would disappear and a probability cue would appear (Figure 

3.2). 

 

Figure 3.2 Information on screen during a trial of the experiment. Subjects saw a prior cue (1st 
panel; here the cue is 80:20) followed by a target cue which also indicated the movement should 
begin (2nd panel). During movement, subjects saw their hand position represented with a cursor (3rd 
panel). After movement end, subjects were given endpoint feedback (yellow dot) and scored points 
according to the accuracy of the reach (4th panel). On the trial displayed, the prior cue indicates an 
80% probability the reach will be to the left, and the left target is cued. Inset shows the three 
possible prior cues. Not to scale. Cursor depicted as filled rather than outline for visibility. 

On each trial the prior probability cue could be 20/80 (‘20% probability 

the left target will be cued; 80% probability the right target will be cued’), 

50/50 or 80/20, and these probabilities were displayed to subjects 

visually. The prior cue was composed of two rectangle outlines (position: 

-3 cm or 3cm (x-dimension), -8.5 cm (y-dimension) relative to the centre 

of the screen; size: 2 cm x 5 cm). Each rectangle was filled with white in 

proportion to the relative likelihood of the corresponding target being 

cued (see Figure 3.2). 
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Once the subject had held the required starting position for 1700 ms, one 

of the probability cue rectangles turned green and the cursor reappeared. 

(If the subject left the starting box prematurely, the rectangle failed to 

turn green, a motorised robotic manipulandum pushed them back 

towards the starting position, and the timer for holding an acceptable 

start position was reset.) The probability cue rectangle turning green 

signalled which target to move to (left target if the left rectangle turned 

green, right target if the right rectangle turned green). This was also the 

cue to move.  

The rectangles turned green rather than the targets, to encourage 

subjects to focus their attention on the two (close together) rectangles 

rather than the two targets (which were far apart from one another), 

reducing a possible confound in which a subject would be quicker to 

detect a particular cue if she happened to be attending to the 

corresponding target. 

After this cue to move, subjects had to complete their response within 

1000 ms (i.e. a combined reaction time and movement time criterion of 

1000 ms). Movement start was operationalised as a movement speed 

greater than 3.5 cm/s. Once the subjects began moving, the probability 

cue disappeared. The movement was considered ended if the 

displacement was greater than or equal to 20 cm (the distance of the 

targets from the starting box) or the reaction time plus movement time 

was greater than the deadline. If the subject’s speed fell below 3.5 cm/s 

during the movement, this was considered a stop and if movement did 

not resume within 40 ms, this was also considered the movement end.  

When the movement had ended, feedback about the movement was 

displayed. Subjects saw a static yellow cursor of same size as the 

movement cursor at the position where the movement had ended. If the 

cursor position at the end of movement was within the cued target, 
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subjects saw ‘Hit! Points: 1’ displayed in green. If a subject ended the 

movement inside the non-cued target they saw ‘Wrong target! Points: 0’. 

(In practice this did not happen a single time, for any subject.) If a subject 

made a movement of sufficient amplitude but did not land inside a target, 

they saw ‘Miss! Points: 0’ displayed in red. If a subject failed to make a 

movement of sufficient amplitude within the deadline, ‘Too Slow’ was 

displayed in white. 

Once the movement was over, the motorised robotic manipulandum 

pushed subjects back towards the start position. If subjects’ movement 

amplitude was greater than 23 cm, they were also pushed back towards 

the starting position, in order to prevent them hitting the back of the 

apparatus.  

3.2.4. Experimental protocol 

Each subject undertook one training block and six experimental blocks. A 

block consisted of 90 trials. There were three levels of the probability cue 

factor (20/80, 50/50, 80/20). These conditions were interleaved across 

blocks to avoid block effects. There were 30 trials of each level in a block. 

The order of trials was randomised within blocks. The schedule of cued 

targets was determined such that the likelihood levels subjects 

experienced in a block were equal to the probability cue for that level (e.g. 

for the 30 trials in a block with a 50/50 cue, 15 were cued for the left 

target and 15 for the right target).  

The nature of the probability cues and scoring system was explained to 

participants and they were coached through the first approximately 10 

trials by the experimenter. Subjects were paid £5 for their participation 

and an additional £6-10 based on the score they accumulated during the 

experimental blocks, to increase motivation. (Score being the summed 

total of all the hit trials.) Subjects were aware that the training block did 
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not count towards their score and the experimental blocks did. 

Participants could choose whether to take a break between blocks. 

3.2.5. Analysis 

Data were analysed in MATLAB, version 2014b (Mathworks, 

https://www.mathworks.com/products/matlab.html) and JASP, version 

0.8.1.2 (Jasp Team, https://jasp-stats.org/).  

3.2.5.1. Processing of position data 

During the experiments, the measurement sampling rate was 200 Hz, 

giving an average number of samples per movement trajectory (i.e. after 

reaching a movement speed threshold 3.5 cm/s) of 95.4 (SD = 8.86). To 

facilitate comparison across trials, data was interpolated so that each trial 

comprised a fixed number of samples, irrespective of movement speed on 

that trial. Each measured trajectory was interpolated to 100 points using 

spline interpolation based on cubic interpolation of neighbouring values 

(interp1 function; Matlab). This effectively normalised all trajectories 

with respect to time. Interpolated trajectories were used in all analyses. 

The interpolated trajectories were used to compute a reach angle over 

the course of the movement. Past studies involving reaching movements 

have also used reach angle (Pekny et al., 2015; Wijdenes et al., 2016); it 

has the advantage of collapsing x- and y-data into a single metric. Prior to 

angle calculation, rest position was first subtracted; this effectively 

equalises the starting point across trials. Reach angle was calculated for 

each interpolated sample by finding the angle between the position at 

that sample and the rest position, relative to the vertical midline (see 

Figure 3.3).  
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Figure 3.3 Reach angle was calculated as the angle between position at sample and rest position, 
relative to the vertical midline. Leftward reach angles are negative. 

3.2.5.2. Defining movement onset 

The apparatus generated velocity data in addition to position, which was 

calculated by a Kalman filtering process during the experiment. These 

velocities were used to define the start of movement. For the majority of 

the analyses, movement onset was operationalised in the same way as 

during the experiment: reaching a 3.5 cm/s speed criterion. Thus reaction 

time was defined as the time between the green cue to move being shown 

and a movement reaching the 3.5 cm/s speed criterion. Movement time 

was defined as the time between the 3.5 cm/s speed criterion being hit 

and the movement end.   

The above analyses included all data after the speed criterion was 

reached. Some analyses of trajectory and reach angle which attempted to 

capture earlier data were also conducted. For these, the start of the 

trajectory was defined as the point at which a zero or negative y velocity 

became a positive y velocity (but only in runs of samples where the 

velocity continued increasing until it hit the 3.5 cm/s speed criterion; i.e. 

earlier samples for the same movement were selected). These start on 

average 53.2 ms earlier (SD = 8.98), representing on average 0.095 cm of 

movement (SD = 0.007 cm). The sample before this start was defined as 

the rest position, and this rest position was used in every analysis, 

regardless of whether the speed criterion was used.  
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3.2.5.3. Defining trial success 

Success was defined as an endpoint within the displayed target confines 

within the time limit.   

3.2.5.4. Trial exclusion 

When sorting trials by experimental condition (target or prior cue level), 

trials which were ‘too slow’ and ‘change of mind’ trials were excluded. 

These trials were excluded in order not to artificially inflate measures of 

variability with trials that might have markedly different trajectories 

because they were erroneous. 

It was important that measures of reach angle variability were not 

contaminated by trials in which the subject moved towards non-cued 

target, because more of these trials might be expected in low-expectation 

conditions. For this reason, trials in which the reach angle indicated that 

the subject moved towards the incorrect target, however briefly, were 

excluded.  On almost all these trials, the subject switched during the 

movement to aiming towards the cued target during the movement 

(mean number of trials in which subjects did not switch = 0.079% of 

trials, SD = 0.14%). For this reason, they were termed ‘change of mind’ 

trials.  

Change of mind trials were defined as trials in which the sign of the reach 

angle (with negative reach angles indicating a movement in the leftward 

direction and positive reach angles indicating a movement in the 

rightward direction) was opposite to the vertical half of the screen in 

which the movement ended (i.e. started with a leftgoing reach angle and 

finished in the right side of the screen, or vice versa). The reach angle 

used in this change of mind exclusion was that at the very start of the 

movement (i.e. not post the speed threshold). 
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Too slow trials were defined as trials in which the participant had not 

made a movement of sufficient amplitude with the time limit. These were 

also included in case they selectively increased variability in some 

experimental conditions. 

3.2.5.5. Analysis of positional correlations 

To test the idea that early position determines final position more 

strongly in leftward movements than rightward movements, an analysis 

of how position correlation with endpoint was performed. Within each 

subject, for each trial, across every interpolated position sample, squared 

deviation from the subject’s mean position at that sample (with sign 

preserved, such that negative deviations remained negative after 

squaring) was calculated. At each sample, these deviations were 

regressed against the equivalent deviations in the final sample i.e. the 

endpoint. This produced, for each subject, at each sample, a slope (beta) 

of the regression, which could be used to assess how strongly position at 

that sample determined final position. By definition, the slope at the final 

sample was one.  

3.2.5.6. Analysis of reaction time as a determinant of performance 

Two analyses were performed to determine whether reaction time 

predicted (1) endpoint performance or (2) reach angle variability during 

movement. 

For the endpoint analysis, for each subject, on each trial, endpoint error 

was calculated as the Pythagorean distance between actual endpoint and 

endpoint at the centre of the target cued at that trial (a point 20 cm away 

and oriented at +/-45° from the centre of the starting box). Across trials, 

these endpoint errors were regressed against the reaction times on the 

corresponding trial (using the MATLAB robustfit function). For each 

subject, this produced a slope (β) of this relationship. These slopes were 
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then t-tested against 0 to look for evidence of a systematic tendency in 

reaction time-error relationships (distribution of βs significantly different 

to 0). 

For the analysis of reach angle variability, for each subject, trials were 

sorted according to the trial reaction time, based on that subject’s 

reaction time quartiles. The variability (standard deviation) of the reach 

angle in trials across the four groups was then calculated. 

3.2.5.7. Statistical analysis 

Success rates, movement times, reaction times, rest positions, initial 

reach angle and standard deviation of initial reach angle were analysed 

by two or three-way repeated measures ANOVAs, as indicated in the text. 

Where assumptions of sphericity were violated (as determined by 

Mauchly’s test), Greenhouse-Geisser corrections were applied, indicated 

in the text as non-whole number degrees of freedom. When conducting 

the two- and three-way ANOVAs on initial reach angle, reach angles for 

the left target were multiplied by -1 to make them positive and avoid 

trivially significant interactions. 

For the analysis of positional correlation (Figure 3.14), multiple t-tests 

were used to compare data across left-cue and right-cue movements, and 

these were corrected for using the False Discovery Rate (FDR) procedure 

(Benjamini and Hochberg, 1995). 

For analyses of continuous data, paired t-tests and one-way repeated 

measures ANOVAs were conducted using the spm1d Maltab toolbox 

(Pataky, 2012) for statistical parametric mapping, which uses random 

field theory (Worsley et al., 1996) to make statistical inferences about 

one-dimensional continua. Statistical tests under random field theory are 

suitable for continuous data which violate the assumption of 

independence, making them unsuitable for standard multiple 
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comparisons corrections. The toolbox returns the number of clusters in 

the data which exceed an F-statistic or t-statistic threshold required for 

an alpha value (significance level) of 0.05.  

Figure 3.18 and Figure 3.19 show analyses conducted to look at learning 

over the course of the experiment. For these, the reach angle used was 

that of the first interpolated sample post-speed threshold.  

3.2.5.8. Bootstrapping analysis 

In order to exclude the possibility that systematic changes in number of 

trials in different conditions were driving differences in standard 

deviation of reach angle (e.g. there are four times as many right-cue trials 

than left-cue trials in the 20:80 condition), a bootstrapping analysis was 

conducted. For each subject, at each level of each factor, for each sample, 

reach angles were sampled with replacement from the full pool of reach 

angle datapoints, such that the number of datapoints equalled the 

number of datapoints in the most sparse condition. The standard 

deviation of this new sample was found. This process was repeated 100 

times and the mean of the boostrapped standard deviation was 

calculated.Figure labelling 

Figures are labelled with the prior expectation conditions as ‘Expect left’ 

(which corresponds to the 80:20 left:right expectation), ‘Neutral’ (50:50 

expectation) and ‘Expect right’ (20:80 expectation).  

 

 

 



154 
 

3.3. Results 

Fourteen participants were tested on a simple reaching task. Subjects 

used a robotic manipulandum to control a cursor and make a reaching 

movement to either a target oriented either 45° to the left or 45° to the 

right of the starting position. Prior to each reach, they saw a probabilistic 

cue (‘prior cue’) informing them of one of three conditions: that they were 

likely to have to move to the left (80% probability), that they were 

equally likely to have to move to either target, or that they were likely to 

have to move to the right (80% probability). Following the probability 

cue, the target for the reach was cued (‘target cue’) and subjects had one 

second to respond. The hypothesis under test was that expectation about 

where to reach affected variability in the subsequent reach. 

3.3.1. Success rate 

 

Figure 3.4 Prior expectation influences success rate.  A successful trial was one in which the subject 
hit the cued target within the 1000 ms deadline. (A) Global success rate and breakdown of non-
scoring trials. On ’Wrong Target’ trials, subjects successfully hit the non-cued target. On ‘Miss’ trials, 
subjects completed a movement of sufficient amplitude within the deadline but did not finish inside 
the target. On ‘Too Slow’ trials, subjects did not complete a movement of sufficient amplitude within 
the deadline. (B) Success rate by cued target and prior expectation condition. Filled circles show 
individual subject data. 

Task performance, and whether this differed by prior cue and movement 

made, were first analysed. Subjects were successful in finishing the 
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movement within the boundaries of the cued target on 60.4% of trials 

(SD = 8.90%; Figure 3.4A). They failed to make a reach of sufficient 

amplitude within the 1000 ms deadline on 5.09% of trials (SD = 2.68%). 

Subjects never successfully hit the non-cued target (M = 0.00% of trials; 

SD = 0.00%). Furthermore, reaches in which subjects finished the 

movement in the incorrect vertical half of the screen were counted (i.e. on 

the left side of the screen when the cue was for the right target and vice 

versa). Most subjects also did not have a single trial in which they made 

this error (M = 0.079% of trials, SD = 0.14%). This indicates that subjects 

had time following the cue to make a reach to the cued target, and miss 

trials (M = 34.4% of trials, SD = 7.85%) were primarily caused by 

inaccurate execution to the correct target rather than an attempt to move 

to the wrong target. 

Figure 3.4B shows success rate analysed by probability cue condition and 

cued target. A 2x3 ANOVA revealed no main effect of target, 

F(1, 13) = 2.49, p = .14, η2
p = .16, or prior probability cue, 

F(1.84, 24.0) = 0.010, p = .99, η2
p = .001, but a significant target x prior 

interaction, F(1.84, 24.0) = 3.92, p = .037 , η2
p = 0.23. This interaction 

shows that subjects are more successful on the reach they expect to carry 

out. To test whether subjects were more successful at right-cue 

movements in the neutral condition, as suggested by the plot, a post-hoc 

t-test was conducted. This showed no success rate difference between 

left-cue and right-cue movements in the neutral condition, t(13) = -1.98, 

p = .069, d = 0.53. 

This analysis suggests participants find right target reaches easier, as 

shown by increased success for right target cued movements in the 

neutral expectation condition. This advantage is exacerbated by the 

expect right condition, but when subjects expected to go left, the trend 

reversed and they were more successful in left target cued reaches.  
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3.3.2. Reaction Time and Movement Time 

During the experiment subjects had 1000 ms between movement cue and 

timeout in which to react to the cue and complete the movement. 

Reaction time and movement time data were analysed by prior cue and 

movement made, in order to understand whether different expectations 

induced by the prior cue had conferred speed advantages in reaction 

and/or movement. 

 

Figure 3.5 Reaction times are modulated by expectation but movement times are not. Mean (A) 
reaction time and (B) movement time by cued target and prior expectation condition. Filled circles 
show individual subject data. 

The mean reaction time during the experiment was 345 ms (SD = 

57.1 ms). An expectation to move in a particular direction conferred a 

speed advantage when the eventual cue was in the expected direction 

(Figure 3.5A), but a speed penalty when the non-expected target was 

cued. This was shown by a significant effect of prior, 

F(1.43, 18.5) = 10.168, p = .002, η²p = .44, and target x prior interaction, 

F(1.14, 14.8) = 51.8, p = <.001, η²p = .80, in a 2x3 ANOVA. There was no 

main effect of target, F(1, 13) = 1.14, p = .26, η2
p = .098. 

The mean movement time was 477 ms (SD = 44.3 ms).  There was no 

difference in movement time by target or prior probability cue (Figure 



157 
 

3.5B). A 2 x 3 ANOVA showed no effect of target, (1, 13) = 3.03, p = .11, 

η2
p = .19, no effect of prior, F(1.29, 16.8) = 2.43, p = .13, η2

p = .16, and no 

interaction between these factors, F(1.46, 19.0) = 2.47, p = .12, η2
p = .16 

3.3.3. Movement trajectories 

 

Figure 3.6 Movement trajectories by expectation. Mean interpolated trajectory across subjects to 
left and right targets in the ‘Expect left’ (left panel), ‘Neutral’ (centre panel) and ‘Expect right’ (right 
panel) conditions. Shaded error bars show standard deviation. In this and subsequent analyses, ‘Too 
Slow’ and ‘Change of Mind’ trials were excluded. 

Positional data during the reach was recorded at 200 Hz. To facilitate 

comparison across trials, data was interpolated so that each trial 

comprised a fixed number of samples, irrespective of movement speed on 

that trial. 

Figure 3.6 shows mean trajectories across all subjects to the two targets 

in the three conditions. To compute these trajectories, every sample in 

which the subjects had a positive velocity in the y direction which was 

part of a full movement was used (i.e. the subject did not become still 

again before speed threshold reached; see Methods). Trials which were 

labelled ‘too slow’ (did not make a movement of sufficient amplitude in 

one second) or ‘change of mind’ (starting direction did not match 

finishing half; see Methods) were excluded in these and subsequent 

analyses.  
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Figure 3.7 Cursor position at last sample before onset of forward movement, by cued target and 
prior expectation condition. Left panel shows cursor position relative to the 0.7 x 0.7 cm starting 
box. Starting box shown as grey outline. Starting position for left cue movements shown in blue; 
starting positions for right cue movements shown in red. Right panel shows an enlargement of the 
same data, colour-coded according to prior expectation condition.  

The last sample before the first used in the trajectory was defined as the 

rest position. Rest position was analysed before calculating reach angle 

(see below) to check there was no systematic difference in starting 

position across conditions. Figure 3.7 shows the rest positions in the 

conditions, in relation to the starting box in which subjects were required 

to maintain a position within whilst the prior probability cue was 

displayed. A 2x3 ANOVA on the x coordinate revealed no main effect of 

target, F(1, 13) = 0.029, p = .87, η2
p = .002, or of prior probability cue, 

F(2, 26) = 1.74, p = .20, η2
p = .12, but a significant target x prior interaction, 

F(2, 26) = 8.33, p = .002, η2
p = .39. Visual inspection of these x-coordinates 

did not show any systematic ordering of the conditions and suggested the 

interaction was spurious. A 2x3 ANOVA on the y coordinate revealed no 

significant effects of target, F(1, 13) = 4.42, p = .055, η2
p = .25, or prior 
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probability cue, F(2, 26) = 1.70, p = .20, η2
p = .12, and no significant 

interaction between these factors, F(1.29, 16.8) = 1.07, p = .34, η2
p = .076. 

3.3.4. Reach angle 

The interpolated trajectories were used to compute a reach angle over 

the course of the movement (Figure 3.3). Past studies involving reaching 

movements have also used reach angle (Pekny et al., 2015; Wijdenes et 

al., 2016); it has the advantage of collapsing x- and y-data into a single 

metric. Prior to angle calculation, rest position was first subtracted; this 

effectively equalises the starting point across trials. 

The key hypothesis of this chapter was that when expectation to make a 

particular movement was higher, variability (in reach angle) would be 

lower. On these analyses (Figure 3.8), and analyses of continuous data 

throughout this chapter and the next, random field theory statistical tests 

were used (see Methods). These are suited to continua because random 

field theory designed to deal with correlated data, whereas conducting 

repeated t-tests would have violated the assumption of independence.  
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Figure 3.8 Left-cue trials show an early modulation of reach angle and reach angle variability by 
prior expectation. (A) Mean reach angle across course of movement for interpolated trajectories, in 
left-cue trials (left panel) and right-cue trials (right panel). (B) Mean standard deviation of reach 
angle in left-cue trials (left panel) and right-cue trials (right panel). Grey bars indicate clusters of the 
movement for which there is a significant effect of prior expectation condition. Red dashed line 
indicates orientation of targets. Shaded error bars show standard error of the mean. 

For completeness, mean reach angle was analysed in addition to reach 

angle variability. Figure 3.8A and B show reach angle, divided by prior 

probability cue condition. In both left target cued and right target cued 

trials, subjects have a tendency to end the reach at a reach angle of 45° 

(the target orientation) relative to their rest position. In left target cued 

trials, this is preceded by reach angles that are wider than 45° (larger 

angle between the cursor and the vertical midline), whereas for the right 

target cued reaches, subjects are initially wider than 45° but then show 

reach angles that are narrower. 

For the left target cue trials only, reach angle differed by probability 

condition in the first third of the reach (one-way ANOVA using random 
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field theory showed one suprathreshold cluster, from 2.15% to 33.5% of 

movement, F(2, 26) threshold = 6.71, p = <.001). Subjects followed a 

trajectory that was more wide of the target when they expected to go 

right compared to expecting to go left. This modulation of reach angle by 

prior condition did not apply for right target cued reaches, where a one-

way ANOVA using random field theory showed no suprathreshold 

clusters, F(2, 26) threshold = 6.53. 

Figure 3.8C and D show the standard deviation in reach angle, averaged 

across subjects. Reach angle variance shows a difference by condition in 

the early part of the movement for the left cued trials but not the right 

cued trials. One-way ANOVA for left cued trials showed two 

suprathreshold clusters, from 1.86% to 2.34% of movement and from 

5.71% to 39.9% of movement, F(2, 26) threshold = 7.32, p of first 

cluster = 0.050, p of second cluster = <.001. One-way ANOVA for right 

cued trials showed no suprathreshold clusters, F(2, 26) threshold = 6.74. 

In summary, the predicted effect was seen in left cued trials but not right 

cued trials. 

This analysis of reach angle variability partially supports the hypothesis, 

in that a variability difference between prior cue conditions was seen in 

left cued reaches. For this to be a valid finding, it is important that only 

variability across reaches in which the subject was aiming in the same 

direction (i.e. to the same target) are included. Including reaches in which 

the subject aimed to the opposite target has the potential to artificially 

increase variability in low expectation conditions, in which an increase in 

the number of trials to the wrong target might be expected. For this 

reason, trials in which the subject aimed in the wrong direction (termed 

‘change of mind’ trials because an initial aim in the wrong direction was 

readjusted over the movement) were excluded in the above analyses. 

However, because some trials showed small amounts of stop-start 
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movement prior to the definition of movement start used, it is possible 

that variability could be increased by mind-changes that had happened in 

this period, without the trials being excluded. Therefore, as an even more 

stringent test, later portions of the movement were selected and used, but 

with an exclusion criterion based on the full movement shown in Figure 

3.8. Replicating the pattern in this analysis would give reassurance that 

early changes of mind are not driving later variability differences. 

Raw position data were re-interpolated, now using only samples in which 

the subject had achieved a threshold speed of 3.5 cm/s. (This was the 

same way movement was operationalised by the apparatus during the 

experiment, when it was needed to determine whether subjects had e.g. 

moved too early.) This meant movement ‘start’ began on average 53.2 ms 

later (SD = 8.98 ms), in which time subjects had moved on average 0.095 

cm (SD = 0.007 cm) – in other words, they were still within the starting 

box. The same change of mind exclusion criterion from before was used. 

This leads to higher change of mind rates than when using a change of 

mind criterion calculated based on post-speed threshold data only. 

(Stringent criterion: M = 4.55% of trials, SD = 4.29% of trials; other 

criterion: M = 1.71% of trials, SD = 2.58% of trials.) Because trials were 

excluded based on a very early reach angle and only later reach angles 

were plotted, this excluded even trials with a direction change very early 

in the movement, when the cursor was moving within the start box with 

very low speed. 

To aid visualisation of change of mind trials, Figure 3.9 shows histograms 

of reach angle over the course of the movement for one example subject 

who had a high change of mind rate. Figure 3.9A shows reach angle in all 

trials, and shows a gradual narrowing of distribution of reach angles as 

the movement progresses. Figure 3.9B shows only change of mind trials, 
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demonstrating how incorrect reach angles are substituted with correct 

ones over the course of the movement in these trials.  

 

Figure 3.9 Reach angle histograms in one subject. Plots show reach angle histograms through the 
reach, with reach angles for that point in the trial grouped into bins of width 10°; brighter colours 
indicate higher number of trials in a bin. (A) All left cue trials; (B) All right cue trials; (C) Change of 
mind left cue trials; (D) Change of mind right cue trials. These plots show reach angle for the entirety 
of the reach (i.e. including pre-speed threshold data). The colourbar gives the scale: number of trials 
expressed as a percentage of all trials across the experiment. 

Figure 3.10 shows the reach angle and reach angle variability, with only 

the later parts of the movement interpolated but using the stringent early 

change of mind exclusion. This figure displays a reduced range of reach 

angles and lower reach angle variability than Figure 3.8, due to 

elimination of the high variability, early portion of the movement. 

However, the pattern is the same as for Figure 3.9: for left target cued 

reach angle, there is an early effect of prior probability cue (one-way 

ANOVA using random field theory showed one suprathreshold cluster, 0 – 

29.1% of movement, F(2, 26) threshold = 5.86, p = .007). There is also an 
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early effect of prior probability cue on left target cued reach angle 

variability (one-way ANOVA showed one suprathreshold cluster, 0 – 

39.0% of movement, F(2, 26) threshold = 5.73, p = .003). For right target 

cued trials, there was no effect on reach angle (one-way ANOVA showed 

no suprathreshold clusters, F(2, 26) threshold = 5.89) or reach angle 

variability (one-way ANOVA showed no suprathreshold clusters, F(2, 26) 

threshold = 5.41). Thus the same results were found in the more stringent 

analysis. 

 

Figure 3.10 Left-cue trials show a modulation of reach angle and reach angle variability by prior 
expectation when a speed threshold is applied. Details as for Figure 3.9 except that here only 
samples in which a criterion speed threshold was met have been interpolated to produce the reach 
angles. Mean reach angle is shown by prior expectation condition for trials in which the left target 
was cued (A) or the right target was cued (B). Red dashed lines indicate target orientation. SD of the 
reach angle is shown by prior expectation condition for trials in which the left target was cued (A) or 
the right target was cued (B). Grey bars indicate a significant difference between conditions. 

A constraint of using veridical prior probability cues is that the 

experimental conditions were unbalanced with regard to trial number. 

(For instance, in the ‘Expect right’ condition, 80% of trials had a right 
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target cue, whilst only 20% had a left target cue.) To establish that the 

lower number of trials was not driving higher variability in reach angle, a 

bootstrapped version of the reach angle variability analysis was 

conducted, in which the data set was sampled with replacement in such a 

way as to balance the number of trials across conditions (Figure 3.11). 

The same pattern as in the full dataset was found: for the left target cued 

trials, a one-way ANOVA showed one suprathreshold cluster, from 0% to 

39.0% of movement, F(2, 26) threshold = 5.73, p = .003. For the right 

target cued trials, a one-way ANOVA revealed no suprathreshold clusters, 

F(2, 26) threshold = 5.41.  

Similarly, a version of the analysis in which the data were not 

interpolated but averaged by the original sample number once again 

revealed the same pattern on statistical testing (not shown).  

 

Figure 3.11 The effect of prior probability cue on reach angle variability in left-cue trials is not 
dependent on sample size. A bootstrapping analysis sampled reach angles with replacement to 
match sample size across conditions. For each new sample generated, the standard deviation was 
calculated, and the average of this bootstrapped SD is plotted. Grey bar indicates a difference 
between conditions.  

3.3.5. Directional Bias  

Having excluded from the reach angle analyses some trials on which 

subjects moved in the wrong (non-cued) direction, the rates of these 
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excluded trials were analysed to understand if they were distributed 

unevenly across experimental conditions and so build up a picture of 

participants’ strategy. Whilst change of mind trials are shown separately 

to trials in which subjects started in the wrong direction, in fact these are 

almost exactly the same trials. Participants almost always attempted to 

correct a trial in which they had begun in the wrong direction by 

switching direction (‘change of mind’), and so almost never finished the 

reaches still oriented in the wrong direction (M = 0.079% of trials, SD = 

0.14%). In other words, change of mind trials are caused by an initial 

start in the wrong direction and a correction of this. 

 

Figure 3.12 Prior probability cue and target affect starting direction. Mean (A) change of mind rate 
and (B) rate of trials in which the starting direction did not match the cue direction, by cued 
direction and target. Rates here are as a percentage of trials in that condition, not all trials in the 
experiment. Filled circles show individual subject means. 

An analysis of change of mind trials by condition (Figure 3.12A) shows 

that subjects were more likely to change their mind on right-cue trials: a 

2x3 ANOVA showed a significant effect of target, F(1, 13)  = 6.93, p = .021, 

η2
p = .35. There was no effect of prior probability cue, F(1.36, 17.6) = 0.90, 

p = .39, η2
p = .065, but there was a significant target x prior interaction, 

F(1.16, 15.0) = 5.22, p = .033, η2
p = .29. This interaction reflects the 
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discrepancy between change of mind rates in left and right target trials 

being strongest when subjects expected to go left.  

A similar analysis of the rate at which subjects initially reached in the 

wrong direction (Figure 3.12B) is visually indistinguishable from the 

analysis of change of mind trials. As with the change of mind trial 

analysis, a 2x3 analysis of started wrong trials found an effect of target, 

F(1, 13) = 7.16, p = .019, η2
p = .36, no main effect of prior probability cue, 

F(1.36, 17.7) = 1.00, p = .36, η2
p = .072, and a target x prior interaction, 

F(1.16, 15.1) = 5.37, p = .031, η2
p = .29. 

So, the higher rate of change of mind in right cue trials indicates an 

increased tendency to reach towards the left and later correct this. This 

effect is strongest when the leftward expectation is highest.  

(In Figure 3.12, one subject has markedly higher rates of change of mind 

in the right-cue trials than the remainder. This was because Subject 14 

had a tendency to make rightward reaches with an initial very strong 

curvature, leading to an initial leftward angle. This idiosyncratic 

behaviour is not driving the effect – excluding Subject 14 from Figure 3.12 

does not change the appearance of the trend. Excluding Subject 14 from 

the ANOVAs leads to an additional significant main effect of prior 

probability cue in both cases but does nots obliterate any existing 

significant effects.)  

3.3.6. Differences between leftward and rightward movements 

The analyses of mean reach angle and reach angle variability showed a 

difference of prior cue condition for left-cue but not right-cue reaches. 

This motivated an investigation into the differences between these 

movements. The analyses of reach angle variability appeared to show that 

right cued reaches had higher initial variability, despite equivalent 

success rates.  
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To test this, variability was examined for all leftward reaches compared 

to all rightward reaches. Indeed, in the early portion of the movement, 

right-hand reaches are more variable than left-hand reaches (Figure 

3.13); t-test showed one suprathreshold cluster, from 1.00% to 10.4% of 

movement, t(13) threshold = 2.91, p = .047. 

 

Figure 3.13 Reach angle variability was higher for right-target movements than left-target 
movements early in the movement. To test the hypothesis that the control policy in the early part 
of the movement was less stringent in rightward movements compared to leftward movements, 
standard deviation of reach angle in left-cue movements and right-cue movements were calculated. 
Grey bar shows where right variability was different to left variability in a random field theory t-test. 
Shaded error bars show standard error of the mean.  

On the basis of this variability difference, I hypothesised this was because 

these movements had non-symmetrical control policies. In particular, I 

hypothesised that there was less stringent control of variability early on 

in rightward reaches.  

In addition to a gross variability difference, a second test of this 

hypothesis would be to determine whether, in rightward reaches, early 

position was a weaker predictor of final position compared to in leftward 

reaches. Finding a weaker relationship would again be supportive of the 

hypothesis that early control policy in rightward reaches was less 

stringent than in leftward reaches. 

To test this, an analysis was conducted where, for each sample of each 

trajectory, the deviation of the position from the mean position at that 
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sample was calculated. Thus each trial was expressed in terms of 

deviation from the mean position at every point along the trajectory. In 

each subject, at each sample, these deviations on the trials were regressed 

against the endpoint deviation. The slope (beta) of this relationship gave 

a measure, in each subject, at each sample, of the strength of the 

relationship between current position and end position. Figure 3.14A and 

B shows how, as might be expected, this relationship strengthened over 

the course of the movement, so that deviations closer to the end of the 

movement were better predictors of final endpoint position than 

deviations earlier in the movement. 

 

Figure 3.14 Early position is a stronger determinant of endpoint position in left-cue movements 
than right cue movements. To test the idea that early position determines final position more 
strongly in leftward movements than rightward movements, the following analysis was performed: 
at each sample, for each trial, squared deviation (with sign preserved) from the subject’s mean 
position at that sample was calculated. At each sample, these deviations were regressed against the 
equivalent deviations from the mean endpoint. This produced, for each subject, at each sample, a 
slope (beta) of the regression. These are shown plotted for left-cue movements in (A) and for right-
cue movements in (B). Thin line shows individual subject betas; thick line shows mean. The means 
are shown again in (C), with grey bars to indicate regions of significant difference (t-tests with False 
Discovery Rate correction for multiple comparison). 

My question was whether, early on in the movement, deviation in 

rightward movements was a weaker predictor of deviation in endpoint 

position than in leftward movements. To test this, the distributions of 
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slopes for right and left were compared to one another. Indeed, right 

slopes were lower (less strong relationship with endpoint deviation) for 

right than for left early in the movement. In the last part of the movement, 

the trend was reversed (Figure 3.14C). This analysis supports a 

suggestion that position on rightward reaches was less stringently 

controlled early on in the movement than on leftward reaches, and that 

this is compensated for by more stringent control later in the movement. 

3.3.7. Reaction time as a determinant of variability 

Figure 3.5 shows that prior cue affects reaction time, with an unexpected 

cue being associated with a longer reaction time. It is important to know 

if performance of the reaching movement differed by reaction time. In 

particular, did variability during the movement vary with reaction time? 

If so, it needs to be considered whether reaction time differences could be 

driving the variability difference seen across conditions (Section 3.3.4). 

To look for a relationship between reaction time and task performance, 

two analyses were performed.  

Firstly, for a trial-by-trial measure of whether reaction time predicts 

performance, endpoint error (distance of endpoint from ‘ideal’ endpoint, 

the centre of the target) was regressed against reaction time within each 

subject (Figure 3.15A). The betas for this relationship were then t-tested 

against zero, to find out whether there was a systematic tendency for 

these betas to be positive or negative, which would indicate a relationship 

between reaction time and endpoint error. In fact, the betas were not 

different from zero, t(13) =  0.58, p = .57, d = 0.15 (Figure 3.15B). 
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Figure 3.15 Reaction time does not predict endpoint error on a trial-by-trial basis. For each subject, 
reaction time on each trial was plotted against endpoint error on that trial (Pythagorean distance of 
endpoint from centre of cued target). This is shown for one example subject in (A). A regression was 
performed on this data (indicated by red line in (A)). The slopes (betas) of these regressions for all 
subjects are shown in (B). The distribution of these betas was found not to be significantly different 
from zero (red line). 

(This analysis excludes change of mind trials, as do the main analyses of 

variability (Section 3.3.4). In case these trials were critical to revealing a 

relationship between reaction time and endpoint error, the analysis was 

repeated with these trials included. This again showed no difference of 

the betas from zero, t(13) = 0.88, p = .40, d = 0.23.) 

The goal of the next analysis was to test for an effect of reaction time on 

reach angle variability across the movement, similar to the analyses of 

reach angle variability shown above (Section 3.3.4). To achieve this, trials 

were sorted by their reaction time quartile (assessed within subjects), 

and variability across trials in each quartile was calculated (Figure 3.16). 
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Figure 3.16 Left-cue trials with faster reaction times have lower variability. Trials were sorted by 
the reaction time quartile and variability in reach angle across the movement was calculated, for left 
cue movements (A) and right cue movements (B). Grey bars show areas of the movement with a 
significant effect of reaction time quartile. There was a significant effect of reaction time quartile on 
reach angle variability in the early part of the movement for left-cue trials. Shaded error bars show 
standard error of the mean. 

As Figure 3.16A shows, for the left target cued movements, there is a 

difference in reach angle variability by reaction time quartile (a one-way 

ANOVA using random field theory showed one suprathreshold cluster, 

from 0.00% to 26.7% of movement, F(3, 39) threshold = 4.51, p = .011). 

This is such that the shortest reaction times (fastest reaction speeds) lead 

to the lowest variability. There is no such relationship for the right-cue 

movements (Figure 3.16B; a one-way ANOVA using random field theory 

showed no suprathreshold clusters, F(3, 39) threshold = 4.70). 

However, the analysis above includes data from all prior cue conditions 

and is thus potentially confounded by any effects of prior cue. In other 

words, an effect of prior cue on variability might be driving the effect of 

reaction time on variability. Therefore a more stringent test of the idea 

that reaction time affects variability is to repeat the analysis, including 

only trials with a neutral (50:50) cue. All trials will then have the same 

expectation and so any effect of reaction time on variability will be a 

direct effect. 
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Figure 3.17 There is no effect of reaction time on movement variability when the prior cue seen is 
controlled for. Figure details as for Figure 3.16, except only trials in the Neutral (50:50) expectation 
condition have been included. This was done to determine whether the effect of reaction time on 
movement variability was driven by an underlying difference in prior cue seen.  

When this is done (Figure 3.17), no effect of reaction time on variability is 

found for either left-cue movements (a one-way ANOVA using random 

field theory showed no suprathreshold clusters, F(3, 39) threshold = 

4.50) or right-cue movements (a one-way ANOVA using random field 

theory showed no suprathreshold clusters, F(3, 39) threshold = 4.64). 

This indicates the effect in Figure 3.16 was driven by differences in prior 

cue. 

3.3.8. Learning 

Experimentally, participants appeared to improve performance over the 

course of the experiment. Success rates were analysed to understand 

whether this was indeed occurring and what changes were occurring in 

reach parameters to drive this learning effect. 
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Figure 3.18 Subjects improved over the course of the experiment. Success rate was calculated by 
block number to test for performance improvement. (A) shows overall success rate by block. (B) 
shows success rate by block and cued target. Thick lines show mean; thin lines show individual 
subject data. 

Participants were rewarded financially for their cumulative score across 

the experiment and an analysis of success rate by block shows 

participants tended to increase their scores across the duration of the 

experiment (Figure 3.18). A 6x2 ANOVA showed a main effect of block, 

F(5, 65) = 9.37, p = <.001, η2
p = .42, but no effect of right/left target, F(1, 

13) = 4.12, p = .063, η2
p =.24, or block x target interaction, F(5, 65) = 0.55, 

p = .74, η2
p = .041. In other words, the pattern of improvement did not 

differ between left-cue and right-cue trials. 
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Figure 3.19 Reach angle shows learning across experiment but reach angle variability does not. 
These analyses were conducted to understand whether movement parameters showed trends over 
blocks (suggesting learning) to parallel the increase in success rate over blocks. (A) Mean initial (i.e. 
first post-speed threshold sample) reach angle across blocks for left-cue (left panel) and right-cue 
(right panel) trials. (B) Mean standard deviation by initial reach angle for left-cue (left panel) and 
right-cue (right panel) trials. (C) Data in (A) presented by prior expectation condition. In (A) and (B), 
thick lines show mean and thin lines show individual subject data. In (C), thick lines show mean and 
shaded error regions indicate standard error of the mean. 

In order to investigate what might be driving subjects’ improvements in 

hitting the cued target over the course of the analysis, initial reach angle 
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and initial reach angle variability were analysed by block (Figure 3.19A & 

B). Initial reach angle varied with block as shown by a 2 x 6 ANOVA, 

F(5, 65) = 12.2, p = <.001, η2
p = .48, and target cued, F(1, 13) = 11.5, p = 

.005, η2
p = .47, and the interaction between these factors was significant, 

F(2.58, 33.5) = 4.87, p = .009, η2
p = .27, indicating that the pattern of 

improvement differed with reach direction. The magnitude of the change 

in reach angle is larger in the right hand than in the left hand. (Note that 

in this analysis the leftward reach angle was multiplied by -1 to prevent a 

trivially significant interaction). 

In contrast, the variability in reach angle showed no modulation by block, 

F(5, 65) = 2.05, p = .083, η2
p = .014, although there was a main effect of 

target, F(1, 13) = 6.45, p = .025, η2
p = .33. There was no interaction 

between these factors, F(2.85, 37.0) = 1.31, p = .29, η2
p = .092. In short, 

there was a learning effect in the initial reach angle itself but not in the 

variability in this reach angle. 

To investigate whether the learning effect in initial reach angle differed 

across prior probability conditions (Figure 3.19C), a 2 x 3 x 6 ANOVA was 

conducted. As expected from analyses described above, this revealed 

main effects of block number, F(5, 65) = 10.1, p <.001, η2
p = .44, and of 

target, F(1, 13) = 12.0, p = 0.004, η2
p = .48, a block x target interaction, 

F(2.49, 32.3) = 4.49, p = 0.013, η2
p = .26, and a target x prior interaction, 

F(2, 26) = 10.6, p < 0.001, η2
p = 0.45. However, there was no block x prior 

interaction, F(4.26, 55.4) = 0.71, p = .60, η2
p = .052, indicating that prior 

probability level did not modulate reach angle learning. The results of this 

ANOVA are given in full in Appendix I. 

3.4. Discussion 

This experiment asked how an expectation of making one movement over 

another affects the variability of those movements. This was tested in an 
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experiment comparing reaching movements to two targets under unequal 

levels of expectation. My key hypothesis was that a lower prior 

expectation of having to reach towards a particular target would lead to a 

higher variability in movements towards this target.  

3.4.1. Why does variability differ across expectation condition in 

leftward movements? 

A variability difference across conditions was observed in leftward 

movements, with the lowest variability present when participants had 

expected to make that movement, and the highest present when 

participants had not expected to make that movement. This is in keeping 

with the prediction made: that making a movement, having expected to 

make the alternative movement, would increase variability. 

So, low expectation of making a leftward movement reduces leftward 

movement quality. This is echoed by the findings in other metrics: 

reaction times are lengthened, and success rate decreased, in lower 

expectation conditions. Whilst these findings of a reaction time effect are 

common in the literature (e.g. Carpenter and Williams, 1995), to my 

knowledge this is the first study to find an effect of expectation on 

movement quality. 

3.4.2. Why is there no variability difference in rightward movements? 

Do the findings fit with a limited resource model of motor planning, as 

proposed in the Introduction? The findings in left-cue trials, where low 

expectation increases variability, fit with the idea proposed: low 

expectation to make a movement reduces the quality of the associated 

motor plan.  

However, the hypothesised variability effect was not present in right-cue 

trials, in which there was no effect of prior cue. This appears to be a 
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challenge to a limited resource hypothesis. I proposed that prior 

expectation distributes limited resources unevenly, such that the quality 

of one motor plan increases at the cost of the other. If the improved 

variability in one movement does not come at a cost to the other, how can 

a limited resource be the cause? To answer this, I propose that if the two 

motor plans are understood as two differing feedback control policies, the 

findings can be successfully interpreted under a limited resource model. 

According to this line of reasoning, the two movements (leftward and 

rightward) have distinct, non-symmetrical control policies. We can 

understand the limited resource as determining the quality of the control 

policies. In other words, the distribution of the limited resource affects 

the fidelity of corrections to deviations from the optimal trajectory. If 

corrections are inaccurate or incomplete, movement variability increases. 

This understanding requires characterising motor planning as the 

planning of two control policies, rather than two movement trajectories. 

This is in keeping with modern understandings of motor planning 

(Gallivan et al., 2016b).  

Here I propose that worse motor planning leads to a less successful 

control policy which increases variability. However, this increased 

variability would only be observed in portions of the movement in which 

there was active control of motor variability, which I have termed a 

‘stringent’ control policy. If the feedback policy was not stringent in a 

particular portion of the movement, then worse motor planning would 

not be expected to affect variability. Hence variability changes arise 

through an interaction between the limited resource in motor planning 

and the control policy. 

According to this explanation, in this experiment, rightward movements 

had a control policy which did not control variability stringently in the 
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early part of the movement and so there was no effect of expectation 

here. 

What is the evidence that leftward and rightward movements had non-

symmetrical control policies in this experiment? Firstly, variability in 

rightward movements was higher than in leftward ones in the early 

portion of the movement (Figure 3.13). Secondly, early position showed a 

weaker relationship with final position in rightward movements 

compared to leftward ones (Figure 3.14). For late position, the 

relationship was reversed, suggesting that, for rightward movements, 

control is initially less stringent, and more stringent later in the 

movement. 

In the context of these findings, I interpret the bias to starting with 

leftward movements (Figure 3.12) as a strategy to begin the execution of 

these more demanding movements early on.  

Why should leftward and rightward movements have had non-

symmetrical control policies? The difference arises from the 

biomechanics of the two movements. Right handed movements towards a 

rightward target oriented at 45° can be achieved by elbow extension only, 

whilst right handed movements towards a leftward target involve 

shoulder and elbow flexion. Involving two joints over one might be 

expected to increase movement variability, or conversely, increase the 

amount of control of variability needed for a successful movement. Van 

Beers at al (2004) studied centre-out reaching movements in all 

directions, and found marked differences in the endpoint distributions of 

movements at 45° and 225° (the single-joint movements) from 

movements in other directions. 
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3.4.2.1. Feedforward not feedback 

Previous studies have shown that control policies are highly flexible. Fast 

correction occurs within around 150 ms of external perturbation and, 

although involuntary, these corrections are responsive to sophisticated 

task demands (Franklin and Wolpert, 2008). More generally, 

perturbations are only corrected when they interfere with achieving the 

task goal (Liu and Todorov, 2007; Knill et al., 2011; Nashed et al., 2012; 

Dimitriou et al., 2013).   

Whilst these studies have focussed on the corrections that occur in 

response to an experimenter-induced perturbation i.e. feedback 

corrections, I propose corrections that drive the effect in this experiment 

are feedforward ones. This is because the differences between conditions 

are present most strongly very early in the movement, which is too soon 

even for fast feedback corrections.  

How does a motor control policy allow for feedforward corrections? The 

motor system contains a forward model which allows it to predict the 

sensory consequences of future states (Miall and Wolpert, 1996; Bhushan 

and Shadmehr, 1999), and learning studies suggest that feedback control 

processes have access to the current forward model (Wagner and Smith, 

2008). One study found that including feedforward strategies in their 

optimal control model was necessary to describe experimental data 

sufficiently (Yeo et al., 2016). Here, there are differences between 

conditions, and I propose these differences rely on a difference in control 

model. Because these differences are present from the start of the 

movement, I propose they rely on feedforward error correction, rather 

than feedback. 
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3.4.3. Why does the variability difference between conditions 

diminish over time? 

The variability difference in leftward movements caused by varying levels 

of expectation is greatest at the start of the movement and diminishes 

through the movement (Figure 3.10). It loses statistical significance at 

around 40% of the movement. Why does the effect progressively 

diminish? I propose this is because over the course of the movement, 

resources are reallocated to the motor plan being executed, and the effect 

of planning becomes less important.  

The study that posited a limited resource theory for visual working 

memory (Bays and Husain, 2008) found that the distribution of the 

limited resource was highly dynamic, with rapid reallocation based on the 

forthcoming saccade, attention, and so on.  Here, I propose that the 

processes underlying distribution of the limited resource in motor 

planning are similarly dynamic. Indeed, Gallivan et al (2016a) have 

shown that motor plans are rapidly restructured when a second possible 

movement target is presented subsequent to the first one. 

3.4.4. Why is there a difference in mean reach angle? 

As well as a difference of prior cue on reach angle variability in leftward 

movements, there is also a difference in the reach angle mean for these 

movements, with narrower movements in the high-expectation condition. 

I interpret these, once again, as an effect of differing control policies. I 

propose that the difference in mean reach angle indicates variability 

accumulates or is controlled more in one direction that the other. It may 

be that the dynamics of the movement lead to a tendency to reach wider 

(further from the vertical midline) unless actively corrected. When 

control of this tendency is weaker, the mean reach angle becomes larger 

(further from the midline). In support of the idea that the same process 
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that is driving variability differences is also driving mean differences, 

these effects are mirrored: they are present over the same period and 

both only present in leftward movements. 

As an alternative explanation, could spatial averaging explain the 

difference in mean reach angle? It is known that when subjects have to 

make movements to multiple targets in go-before-you-know paradigms 

(Chapman et al., 2010), they initially make trajectories that are 

intermediate between the targets, weighted by the likelihood of having to 

move in either direction. There was no corollary of this in phenomenon in 

these results. This is perhaps unsurprising, as subjects had all the 

information necessary for target selection before they needed to move. 

There was little tendency for subjects to choose intermediate reach 

angles, even very early in the reach and on trials where they changed 

their mind (Figure 3.9). Furthermore, there was a significant effect of 

target and prior on reaction time but not movement time (Figure 3.5), 

supporting the idea that a single movement was selected before the 

movement was initiated. Crucially, the differences in reach angle found  

actually run counter to the ‘spatial averaging’ phenomenon observed by 

Chapman et al (2010) – when subjects expected to go left, their reach 

angle was narrower i.e. the trajectory was closer to the rightward target 

in coordinate space.  

3.4.5. Variability effects are not a result of more changes of mind 

An alternative explanation for the variability effects seen in this 

experiment is that change of mind trials – trials in which the subject 

initially reaches towards one target but finishes the movement on the 

other side of the screen – are driving a difference between prior 

conditions. Under this argument, a lower expectation to move to a 

particular target would lead to an increased tendency to initially make 

the wrong movement and switch to the correct target, thus increasing 
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variability, either directly by increasing the spread of data points, or 

indirectly, with the hurried switch leading the subject to execute the 

replacement movement more sloppily. A highly conservative change of 

mind exclusion was used in which all data points that had a forward 

velocity that ramped into movement were included to look for changes of 

mind – in other words, data recorded at very low speeds early in the 

movement were used, rather than just data points that had reached the 

speed threshold. Yet it is hard to exclude switching in motor plans at very 

low velocities at which the movement is still starting and stopping, and it 

is not possible to exclude decision switching that happens before 

movement initiation.  

However, there are a number of reasons I do not think a change of mind 

phenomenon could be driving the observed effect. Firstly and most 

importantly, a change of mind effect would be predicted to lead to mean 

reach angles which show the opposite effect to the one they do: switching 

from the right to the left target when right was expected should lead to 

reaches which are on average spatially nearer to the right target, but 

these reaches are on average closer to the left target. Secondly, any 

explanation which relies on cancelling one plan and replanning another 

would be at odds with the current literature, in which there is 

neurophysiological (Cisek and Kalaska, 2005) and behavioural (Gallivan 

et al., 2015) evidence for multiple motor plans maintained in concert.  

3.4.6. Variability effects are not driven by reaction time differences 

across conditions 

The results show a reaction time difference between prior cue conditions 

(Figure 3.5); expected cues lead to faster responses. If movement 

variability varied systematically with reaction time, it is possible that 

movement variability changes across conditions could be driven 

indirectly by reaction time differences rather than by a direct effect on 
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variability itself. There are a number of reasons to think this was not the 

case, based on analyses of reaction time and variability presented in 

Section 3.3.7.  

When data from all prior cue conditions was included, there was an effect 

of reaction time on movement variability in left-cue movements (Figure 

3.16). Speed-accuracy tradeoffs are well established in a variety of 

paradigms in behavioural neuroscience (Heitz, 2014). For this 

relationship to fit with a speed-accuracy tradeoff, we would expect the 

fastest responses to lead to the most variable movements. However, the 

opposite direction of effect is found: faster reactions lead to less variable 

movements. This is more consistent with an effect of prior cue, with 

stronger expectation making movements both faster and less variable (i.e. 

the extra information improves movement speed and quality).  Consistent 

with the idea that the expectation-variability relationship drives the 

reaction time-variability relationship and not vice versa, there is a 

reaction time effect only when there is a variability effect (left cue trials, 

early part of the movement). 

A simple way to test whether the prior cue is driving variability 

differences across reaction time quartiles is to exclude the effect of prior 

cue by selecting only trials on which a neutral (50:50) cue was seen. 

When this is done (Figure 3.17), no relationship between reaction time 

and variability is seen. 

3.4.7. Learning does not reduce motor variability in this experiment 

Subjects improved their performance over the experiment (Figure 3.18). 

There is a parallel change in initial reach angle, for both rightward and 

leftward movements, but not in initial reach angle variability. The 

absence of change in initial variability suggests that this variability is a 

constraint that cannot be overcome by learning, or at least not in the 540-
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trial timescale of the experiment. The prior expectation cues did not alter 

the rate of reach angle change. So the effect of expectation on motor 

variability, which I propose as one of limited resources, is not modifiable 

by learning, indicating it is a fundamental effect.   

3.4.8. Planning versus execution: the source of motor variability 

In the interpretation of the results proposed above, it must be planning of 

a control policy and not merely trajectory planning alone that is under a 

limited resource constraint. This is needed to explain why rightward 

movements do not show an effect of prior cue trajectory. A limited 

resource effect acting purely via motor planning would affect both 

movements. So I believe that an interplay between the effect during 

motor planning and execution noise during the movement must be 

important. 

As discussed in Chapter 1, there has been debate about whether noise 

during motor planning or execution noise is the main determinant of 

motor variability (Harris and Wolpert, 1998; van Beers et al., 2004; 

Churchland et al., 2006; Chaisanguanthum et al., 2014). The experiment 

described in this chapter was designed to examine a putative determinant 

of motor variability that has its effect at the motor planning stage. 

However, the explanation for the results that has been proposed in this 

discussion relies on the control of execution noise. In other words, in this 

paradigm, noise in motor planning manifests as worse control of noise 

during motor execution. This is an important distinction that may resolve 

some of the apparently contradictory experimental data that exist. The 

planning versus execution debate may not be meaningful because motor 

planning is concerned with reducing execution noise. 
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3.4.9. Comparison to previous studies 

The affordance competition hypothesis has been extended to suggest that 

it is not merely multiple movements that are planned in parallel, but 

multiple task-specific feedback control policies. Gallivan et al (2016b) 

perturbed subjects in a portion of a movement in which the subjects were 

still uncertain whether they would have to finish within the bounds of a 

narrow, stringent target or a wide, lenient target. The gain of the 

correction subjects made was intermediate between the gain when 

reaching to just the narrow or just the wide target. In other words, just as 

there is spatial averaging between competing motor plans when final 

target location is uncertain (Chapman et al., 2010), there appears to be 

feedback control averaging when the final accuracy demand of the task is 

uncertain. This finding, and the flexible nature of feedback control 

policies, are the foundation for the interpretation of results proposed 

here. 

I have proposed that the control of variability (in other words, the gain on 

corrections to noise) is weaker if the subject was not expecting to reach to 

a particular target. In Gallivan et al’s paper (2016b), they find that 

feedback gains are higher with higher uncertainty about a movement. 

However, I attribute this differences in task: in their task, in which both 

targets are in the same location, success can always be maximised by 

increasing feedback gains, whereas this task has an either/or nature, in 

that subjects must choose the right target to be rewarded.  

3.4.10. Alternative metrics for analysing movement trajectories 

In the analyses presented here, reach angle relative to starting position 

was calculated and used as the primary metric for calculating e.g. 

movement variability. The primary reason for using reach angle was that 

this experiment was based on a study by Wijdenes et al (2016), which 

used variability in reach angle at moment of peak speed as the main 
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dependent variable. In order to make the analysis comparable to that of 

Wijdenes at all, I also used variability in reach angle, but extended this to 

be a continuous measure rather than choosing a single point during the 

movement. 

An often-used alternative to reach angle is movement jerk (third 

derivative of position). It is used because an early model of reach 

trajectories operated on a principle of minimising jerk across the 

movement i.e. assumed that the motor system sought to execute the 

smoothest movement possible (Flash and Hogan, 1985). However, there 

has been no standard measure for summarising jerk across a movement 

(e.g. mean jerk, cumulative jerk, mean jerk normalised by peak speed and 

many other variants have all been used) and this has caused 

inconsistencies in results (Hogan and Sternad, 2009). One alternative, 

similar to the continuous reach angle measure I used, would be to deal 

with continuous metrics of jerk across the movement, rather than 

calculating a summary. Investigating variability in movement jerk, and 

whether this varies by prior expectation cue, could be a possible future 

line of analysis for the data in this chapter. 

3.4.11. Conclusion 

To conclude, the hypothesised effect of expectation on movement 

variability was present, but only in leftward reaches. I propose this is 

because leftward movements have a more stringent control of early 

variability. I support this with supplementary analyses showing a 

stronger relationship between early position and end position for 

leftward reaches.  

I believe this is the first study to demonstrate an effect of prior 

expectation on motor variability. The expectation affected motor 

execution even though subjects were fully cued as to the correct target 
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before the movement began. I propose the effect of expectation on 

variability arises because planning movements with uneven expectations 

divides the resources of the motor system unevenly.  

In sum, expectation determines limited resource allocation, and this 

interacts with motor control policy to produce the final effect.  
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3.5. Appendix I: ANOVA on learning effects within initial 

reach angle  

Within Subjects ANOVA  

   
Sphericity 
Correction  

Sum of 
Squares  

df  
Mean 
Square  

F  p  η² p  

Target  
 
None  

 
1301.20  

 
1.000  

 
1301.201  

 
11.996  

 
0.004  

 
0.480  

 
   

 
Greenhouse-Geisser  

 
1301.20  

 
1.000  

 
1301.201  

 
11.996  

 
0.004  

 
0.480  

 
Residual  

 
None  

 
1410.07  

 
13.000  

 
108.467  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
1410.07  

 
13.000  

 
108.467  

   
   

 
   

 
Block  

 
None  

 
1004.87  

 
5.000  

 
200.973  

 
10.078  

 
< .001  

 
0.437  

 
   

 
Greenhouse-Geisser  

 
1004.87  

 
3.203  

 
313.716  

 
10.078  

 
< .001  

 
0.437  

 
Residual  

 
None  

 
1296.21  

 
65.000  

 
19.942  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
1296.21  

 
41.640  

 
31.129  

   
   

 
   

 
Prior  

 
None  

 
20.74  

 
2.000  

 
10.372  

 
2.585  

 
0.095  

 
0.166  

 
   

 
Greenhouse-Geisser  

 
20.74  

 
1.538  

 
13.485  

 
2.585  

 
0.111  

 
0.166  

 
Residual  

 
None  

 
104.31  

 
26.000  

 
4.012  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
104.31  

 
19.996  

 
5.216  

   
   

 
   

 

Target ✻ Block  
 
None  

 
458.57  ᵃ  5.000  ᵃ  91.714  ᵃ  4.494  ᵃ  0.001  a   0.257  

 

   
 
Greenhouse-Geisser  

 
458.57  ᵃ  2.486  ᵃ  184.441  ᵃ  4.494  ᵃ  0.013  a   0.257  

 
Residual  

 
None  

 
1326.59  

 
65.000  

 
20.409  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
1326.59  

 
32.321  

 
41.044  

   
   

 
   

 

Target ✻ Prior  
 
None  

 
209.34  

 
2.000  

 
104.670  

 
10.561  

 
< .001  

 
0.448  

 

   
 
Greenhouse-Geisser  

 
209.34  

 
1.573  

 
133.072  

 
10.561  

 
0.001  

 
0.448  

 
Residual  

 
None  

 
257.69  

 
26.000  

 
9.911  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
257.69  

 
20.451  

 
12.601  

   
   

 
   

 

Block ✻ Prior  
 
None  

 
43.66  ᵃ  10.000  ᵃ  4.366  ᵃ  0.709  ᵃ  0.715  a   0.052  

 

   
 
Greenhouse-Geisser  

 
43.66  ᵃ  4.259  ᵃ  10.251  ᵃ  0.709  ᵃ  0.598  a   0.052  

 
Residual  

 
None  

 
800.45  

 
130.000  

 
6.157  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
800.45  

 
55.361  

 
14.459  

   
   

 
   

 

Target ✻ Block ✻ 
Prior   

None  
 
27.48  ᵃ  10.000  ᵃ  2.748  ᵃ  0.488  ᵃ  0.895  a   0.036  

 

   
 
Greenhouse-Geisser  

 
27.48  ᵃ  4.034  ᵃ  6.813  ᵃ  0.488  ᵃ  0.746  a   0.036  

 
Residual  

 
None  

 
731.43  

 
130.000  

 
5.626  

   
   

 
   

 
   

 
Greenhouse-Geisser  

 
731.43  

 
52.440  

 
13.948  

   
   

 
   

 

ᵃ Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p < .05).  

 

Table 3.1 Prior expectation does not affect block-by-block changes in reach angle. This table 
reports a repeated measures ANOVA which was conducted on initial reach angle to understand 
whether prior expectation condition drives learning-related changes in reach angle. Factors in the 
three-way ANOVA were target (left-cue/right-cue) x block number (1/2/3/4/5/6) x prior expectation 
condition (Expect left/Neutral/Expect right). 



190 
 

Chapter Four: Do planning-related variability 

differences depend on a stringent control policy? 

4.1. Introduction 

In the previous chapter, I reported that a stronger expectation to make a 

particular movement reduced variability in reach angle, for a leftward 

reaching movement but not a rightward reaching movement. To explain 

this finding in the context of a limited resource model, I hypothesised this 

was due to differing control policies in leftward versus rightward 

movements. Specifically, I suggested that there is stronger control of 

position early in leftward movements than rightward movements. This 

arises because these movements have non-symmetrical biomechanics: a 

45° rightward movement with the right hand involves flexion at a single 

joint, whilst moving leftward with the right hand involves movement at 

two joints (van Beers et al., 2004).  

I proposed that prior expectation acts at the motor planning stage to 

affect the quality of the planned control policy. It therefore only has an 

effect on variability if positional corrections are made under a stringent 

control policy. The aim of the present chapter was to test this proposal. 

4.1.1. Encouraging a non-stringent control policy 

In this chapter, I aimed to design an experimental condition in which 

there was no incentive to strictly control position in the early part of the 

movement. This was in order to test the idea that this would cause an 

effect of prior expectation on motor variability to be reduced or 

obliterated. Effectively, this would mimic the control policy I 

hypothesised that subjects used in rightward movements in the previous 

experiment. 
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The manipulation used to encourage subjects to adopt a non-stringent 

control policy was to make the target jump during the movement. The 

experiment presented in this chapter is similar to that in the previous 

chapter, but introduces a target jump manipulation in half the 

experimental blocks. In these blocks, as the subject moved the cursor 

through an occluder a fixed distance from the start position, the target 

would change position unpredictably. This required subjects to change 

their trajectory. Importantly, the target jumped relative to the cursor 

position at the occluder, rather than its own position, so there was no 

obvious optimal strategy for the initial reach. 

In other words, the early movement in the jump blocks is similar to that 

in the non-jump blocks; but, in the jump blocks, unlike in the non-jump 

blocks, this part of the movement is unimportant to final success. I used a 

blocked design (jump vs non-jump blocks) so there was no uncertainty 

about whether the target would jump or not. 

4.1.2. Target jumps as a paradigm to manipulate control policy 

Why should the target jump encourage a non-stringent control policy 

prior to the jump? I hypothesised that, as aiming for a particular position 

in the early part of the movement was not advantageous, subjects should 

adopt a policy of correcting less stringently for deviations from the 

trajectory than in the equivalent portion of the non-jump block 

movements. 

To my knowledge, a target jump manipulation has not been previously 

used for the reason it was here: to make subjects’ movement less 

stringent and more variable prior to a jump they were aware was coming. 

However, a large literature on Optimal Feedback Control (Harris and 

Wolpert, 1998; Todorov and Jordan, 2002) has suggested that subjects 
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should allow variability to accumulate more when there is no advantage 

to accuracy.  

Multiple experiments find that subjects correct to perturbations most 

when they interfere with task success and only partially otherwise. This 

was reviewed in Chapter 1; to recap: subjects correct more to a deviation 

that will prevent them from hitting the target (Knill et al., 2011; Nashed et 

al., 2012), and more when they know they are reaching in a context in 

which perturbations will not be corrected externally (Franklin and 

Wolpert, 2008). Corrections to perturbations reflect knowledge about 

obstacles in the environment (Nashed et al., 2012) and the learnt 

dynamics of a task (Wagner and Smith, 2008; Cluff and Scott, 2013). 

These studies support the view that feedback policies are highly flexible 

and reflect ‘high-level’ parameters such as knowledge of task 

environment. This drove the assumption here that subjects would, on 

target jump blocks, learn to adopt a lax control policy prior to the jump. 

4.1.3. Relevance to Chapter Two 

The jump trials used here are analogous to rightward movements in the 

previous experiment. In the previous chapter it was shown that 

rightward variability was higher than leftward variability in the early 

parts of the movement. Furthermore, deviations from the mean position 

early in the movement predicted endpoint deviations better for leftward 

than rightward movements. I therefore postulated that the control policy 

in leftward movements involved a more stringent control of early 

variability, whilst in rightward movements, more stringent control was 

applied later in the movements. 

By introducing a target jump, I expected that the control policy in both 

leftward and rightward trials would become more like the control policy 

in rightward trials in the previous experiment. Thus I expected to 
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obliterate the effect of prior expectation on reach angle and reach angle 

variability in the leftward direction of target jump blocks only. This would 

suggest that the effect of prior was dependent on a control policy that 

stringently corrected for feedforward deviations in the early part of the 

movement. 

4.1.4. Relevance to target jump literature 

Target jump paradigms are common in motor experiments, but have 

typically been used to investigate feedback processes (e.g. Desmurget et 

al., 1999; Brenner and Smeets, 2003; Wijdenes et al., 2011). For instance, 

target jump paradigms have shown that corrective responses are multi-

component, with a fast, mostly automatic response at 100 - 150 ms 

(Prablanc and Martin, 1992) which is likely subcortical (Day and Brown, 

2001), and a second response showing a greater degree of voluntary 

control at 200 – 300 ms (Day and Lyon, 2000). Corrections can be 

initiated quickly even if two corrections are required in quick succession 

(Wijdenes et al., 2011). Corrections can be initiated without conscious 

awareness of the jump (Goodale et al., 1986; Prablanc and Martin, 1992). 

Disrupting the posterior parietal cortex with TMS interferes with 

corrections (Desmurget et al., 1999). 

Thus much work has gone into describing the corrective responses after 

target jump, which represent replanning processes. These studies have 

not examined whether knowledge of a target jump affects movement 

prior to the jump. Here, target jumps were used with the aim of inducing 

in subjects a movement policy where the initial portion of the movement 

was unimportant to final success. Only the first portion of movement was 

of interest in the analyses. 

The corrections that subjects made in response to the target jump were 

not studied because they did not relate to the hypothesis posed here. 
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Furthermore, in order to maximise unpredictability for the subjects, the 

target jump was to a position that changed on every trial (see Methods), 

rather than to one of e.g. two fixed positions, as is more usual in previous 

experiments (e.g. Day and Lyon, 2000). This would have made the 

trajectories of corrections to jumps difficult to analyse without 

approximations such as binning trials.  
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4.2. Methods 

4.2.1. Overview  

The experiment was designed to (1) introduce a target jump 

manipulation and see whether this made subjects more variable in the 

early part of the movement, suggesting a less stringent control policy, (2) 

discover whether adoption of this less stringent control policy reduced or 

obliterated an effect of prior expectation on variability. 

As in the previous chapter, subjects used a robotic apparatus to control a 

cursor and make a rapid reaching movement from a starting position to 

one of two possible targets, each one positioned at 45 degrees to the 

horizontal either side of the starting position. On each trial, one of the two 

targets was cued, which indicated which to move towards. Before this 

‘target cue’, probabilistic information (‘prior cue’) was displayed to 

subjects, indicating the relative probability of each target being cued 

(Figure 4.1). After the target was cued, subjects had 1200 ms to execute a 

movement to the target and were given feedback on whether their 

movement had been successful or not. 

Unlike in the previous experiment, the movement involved moving the 

cursor through an occluder at 25% of the distance through the 

movement. There were two types of blocks. On trials in a non-jump block, 

nothing happened when cursor passed through the occluder. On jump 

blocks, the target position changed. 

4.2.2. Participants 

Twenty-two subjects were tested in total (15 female, mean age = 25, SD = 

4.40) recruited through a university subject pool. Participants gave 

written informed consent. The experiment was approved by the research 
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ethics committee of University College London (United Kingdom). 

Subjects were naïve to the purpose of the experiment. 

4.2.3. Robotic apparatus 

The robotic apparatus and screen were as described in the previous 

chapter (Section 3.2.2). 

4.2.4. Trial protocol  

 

Figure 4.1 On-screen display for one trial. Top series shows a trial in a non-jump block. First, the 
prior cue is displayed (here: 80:20, i.e. ‘Expect left’). Secondly, one of the rectangles turns green, 
which is the cue to move (here: left cue). Thirdly, the subject makes a movement, with cursor 
feedback of hand position. The subject has 1200 ms to respond and to complete the movement. 
Fourthly, the subject sees endpoint feedback (yellow dot) and written feedback; they gain a point if 
the trial was successful. Bottom series shows a trial in a jump block. These trials are the same as in 
the non-jump blocks, except that when the cursor passes through the arc-shaped occluder (3rd 
panel), the target the subject is reaching towards changes position (‘jumps’).  

Screen objects are not displayed to scale; dimensions given in text. For visibility, cursor has been 
shown as solid rather than an outline. 
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The starting box and two targets were displayed on the screen at all 

times. The starting box was a square outline of length 0.7 cm centered at 

0 cm (x-dimension) and -12 cm (y-dimension) relative to the centre of the 

screen. An occluder was also displayed on screen at all times. This 

occluder was an arc located at 5 cm from the starting box and spanned 

180° (Figure 4.1). 

The two targets were arc-shaped. The change from circular targets (in the 

previous experiment) to arc targets (in this experiment) was made to 

facilitate calculation of target-jumps in reach angle space rather than 

coordinate space. The targets were each 5° wide, making them roughly 

equivalent in size to the circular targets of the previous experiment. At 

the start of the trial they were always oriented at 45° to the left and right 

of the starting box, at a distance of 20 cm.  

As with the previous experiment, to begin a trial, the participant had to 

move the cursor inside the starting box. Once the subject was within 0.25 

cm of the centre of the starting box, the cursor would disappear and a 

probability cue would appear. 

The prior probability cues were visually as described in the previous 

chapter. In this experiment, two prior levels were used: 20:80 and 80:20. 

This was a reduction from the three prior levels of the previous chapter, 

to increase power, as the target jump introduced another condition to the 

experiment. 

Once the subject had held an acceptable starting position for 1700 ms, 

one of the probability cue rectangles turned green and the cursor 

reappeared. (If the subject left the starting box prematurely, the rectangle 

failed to turn green, a motorised robotic manipulandum pushed them 

back towards the starting position, and the timer for holding an 

acceptable start position was reset.) The probability cue rectangle turning 
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green signalled which target to move to (left target if the left rectangle 

turned green, right target if the right rectangle turned green). This was 

also the cue to move. 

After this cue to move, subjects had to try and hit the cued target and 

complete their response within 1200 ms (i.e. a combined reaction time 

and movement time criterion of 1200 ms). This was lengthened from 

1000 ms in the previous experiment because the jump trials (see below) 

increased difficulty significantly. 

As in the previous chapter, movement onset was operationalised as a 

movement speed greater than 3.5 cm/s. Once the subjects began moving, 

the probability cue disappeared. The movement was considered ended if 

the displacement was greater than or equal to 20 cm (the distance of the 

targets from the starting box) or the reaction time plus movement time 

was greater than the deadline. 

When the movement had ended, feedback about the movement was 

displayed. Subjects saw a static yellow cursor of same size as the 

movement cursor at the position where the movement had ended. If the 

cursor position at the end of movement was within the cued target, 

subjects saw ‘Hit! Points: 1’ displayed in green. If a subject ended the 

movement inside the non-cued target they saw ‘Wrong target! Points: 0’. 

If a subject made a movement of sufficient amplitude but did not land on 

the target, they saw ‘Miss! Points: 0’ displayed in red. If a subject failed to 

make a movement of sufficient amplitude within the deadline, ‘Too Slow’ 

was displayed in white. 

As in the previous experiment, once the movement was over, the 

motorised robotic manipulandum pushed subjects back towards the start 

position. If subjects’ movement amplitude was greater than 23 cm, they 
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were also pushed back towards the starting position, to prevent them 

hitting the back of the apparatus.  

4.2.5. Block types: jump and non-jump 

There were two block types: jump and non-jump. Trials in non-jump 

blocks were the same as in the previous experiment: the target stayed in a 

fixed position. Although the arc shaped occluder was visible, there was no 

change when the cursor passed through this. 

For trials in jump blocks, the target jumped when the cursor passed 

through the occluder (i.e. at a movement amplitude of 5 cm). The aim of 

the target jump manipulation was that there would be no optimal 

position that subjects could maximise performance by aiming towards. 

The target jumped relative to the participant’s reach angle, which was 

calculated online. The amplitudes of the possible target jumps were: 5°, 

7.5°, 10°, 12.5°, or 15° either leftward or rightward. The jump was 

selected randomly from these each trial and added to the participant’s 

reach angle at the moment of passing the occluder in order to calculate 

the new target position. Only the cued target moved. 

Because it was the cued target that jumped, and it jumped relative to the 

participant’s reach angle, on trials in which the subject was aiming 

towards the wrong target at the time of reaching the occluder, the correct 

target would jump to the opposite side so that both targets were 

displayed on the same side of the screen. This occurred in 0.14% (SD = 

0.24%) of trials. 

Furthermore, on trials in which subjects made a reach at a wide angle, it 

was possible for targets to jump below the horizontal. This involved 

0.15% (SD = 0.50%) of trials. 
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The behaviour of the jump manipulation was not changed to prevent 

these two types of trials (target jumps to opposite side; target jumps 

below horizontal) as I did not want to introduce any kind of fixed 

mapping which participants could exploit, aiming at a particular angle in 

order to produce a predictable post-jump target position. As the totals 

given above show, the number of trials affected was very small. As 

movement analysed in this chapter was pre-target jump, whilst these 

trials only produced idiosyncratic behaviour post-target jump, trials in 

which the target jumped below the horizontal were not excluded from the 

analysis. Trials in which the target jumped to the opposite side were 

excluded for a different reason (see ‘Analysis’, below). 

4.2.6. Experimental design 

Each subject undertook six experimental blocks, of 100 trials each. Three 

blocks were target jump blocks and three blocks were non-jump blocks. 

Each subject began with either a target jump or a non-jump block, chosen 

at random, after which the block type alternated.  

There were two levels of prior probability cue (20:80, 80:20). Thus there 

were 50 trials of each level in a block. The order of trials was randomised 

within blocks. The schedule of cued targets was determined such that the 

likelihood levels subjects experienced in a block were equal to the 

probability cue for that level (e.g. for the 50 trials in a block with a 80:20 

cue, 40 were cued for the left target and 10 for the right target).  

Prior the main blocks, subjects completed two training blocks. They 

practised a non-jump block for 50 trials, followed by a jump block for 80 

trials.  

The nature of the probability cues and scoring system was explained to 

participants and they were coached through the first approximately 10 

trials by the experimenter. Subjects were paid £5 for their participation 
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and an additional £6-10 based on the score they accumulated during the 

experimental blocks, to increase motivation. (Score being the summed 

total of all the hit trials.) Subjects were aware that the training block did 

not count towards their score and the experimental blocks did. 

Participants could choose whether to take a break between blocks. 

4.2.7. Analysis 

4.2.7.1. Data processing  

Data were analysed in MATLAB, version 2014b (Mathworks, 

https://www.mathworks.com/products/matlab.html) and JASP, version 

0.8.1.2 (Jasp Team, https://jasp-stats.org/). ‘Movement’ samples were 

selected between the start of the trial and the last sample prior to 

reaching the occluder (i.e. movement amplitude 5cm; 25% of total 

required movement amplitude). Note therefore that the parts of the 

trajectory beyond the occluder were discarded; the question of interest 

here was the effect of anticipating a target jump on the early movement 

variability, rather than the corrections made in response to the jump 

itself.  

Movement was defined in the same way as during the experiment 

(filtered velocity > 3.5 cm/s). Trials in which there was no movement or 

the movement did not reach the arc were discarded (0.030% of trials, SD 

= 0.066%).  

Each measured trajectory was interpolated to 100 points using spline 

interpolation based on cubic interpolation of neighbouring values 

(interp1 function; Matlab). This effectively normalised all trajectories 

with respect to time. Interpolated trajectories were used in all analyses. 

As in the previous experiment, interpolated trajectories were used to 

calculate a reach angle relative to the vertical midline. Before angle was 

calculated, the position one sample prior to the start of the trajectory was 
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subtracted from each trajectory; this effectively normalised the start 

position of each trajectory to (x, y) = (0, 0). 

4.2.7.2. Analyses of reaction time and movement time 

These analyses included all trials i.e. unsuccessful trials were not 

excluded. As in the previous chapter, reaction time was defined as time 

between cue to move and movement speed greater than 3.5 cm/s. 

Movement time was the time between reaching a movement speed 

greater than 3.5 cm/s and movement end. 

4.2.7.3. Analysis of reach angle and reach angle variability 

As in the previous experiment, an emphasis was placed on a stringent 

exclusion of trials in which the subject aimed initially for the opposite 

target, even momentarily, in order to avoid artificially inflating measures 

of variability. In the previous experiment, this was achieved by using 

change of mind by the time of reaching the final target. Since in this 

experiment, the movement of interest was that up to the occluder, a 

similar exclusion was achieved instead by discarding trials in which the 

initial reach angle was not in the same half of the screen (i.e. aiming left vs 

aiming right) as the cued target. These were 0.65% of trials, SD = 0.78%. 

The first trial of each block was also excluded, to reduce the impact of the 

switch from jump to non-jump blocks. 

Note that, unlike in the previous experiment, ‘too slow’ trials in which the 

subject did not manage to hit the target were not excluded. Because the 

pre-occluder portion of the movement was the movement of interest, 

there was no longer a clear reason to exclude these trials. Trials in which 

the subject was too slow to reach the occluder had already been removed 

at the data processing stage (see above). 
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After these exclusions, trials were sorted by experimental condition and 

the mean and standard deviation of this reach angle were calculated 

within conditions.  

4.2.7.4. Analysis of X and Y velocity 

The robotic apparatus used a Kalman filtering technique to calculate a 

smooth estimate of velocity during the trial. These estimates were used to 

produce the velocity plots in Figure 4.10. The samples were selected and 

interpolated in exactly the same way as for positional trajectories. 

4.2.7.5. Analysis of effect of success or failure on previous trial 

The aim of this analysis was to understand how positive or negative 

feedback altered reach angle when performing the same movement on a 

subsequent trial (Galea et al., 2013; Pekny et al., 2015). Therefore, for this 

analysis (Figure 4.11), trials were included only if the same direction was 

cued as on the previous trial. Excluding trials in which the direction cued 

was not the same as on the previous trial left 49.5% of trials remaining 

(SD = 1.89%). 

4.2.7.6. Statistical analysis 

Success rates, reaction times, and movement times were analysed using 

paired t-tests and two or three-way repeated measures ANOVAs, as 

indicated in the text. For the ANOVAs, as all factors had only two levels, 

assumptions of sphericity were not violated. 

For the continuous measures of reach angle, reach angle standard 

deviation, and velocity, t-tests and ANOVAs were conducted using the 

spm1d Matlab toolbox (Pataky, 2012) for statistical parametric mapping, 

which uses random field theory to make statistical inferences about one-

dimensional continua (Worsley et al., 1996). Statistical tests under 

random field theory are suitable for continuous data which violate the 
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assumption of independence, making them unsuitable for standard 

multiple comparisons corrections. The toolbox returns the number and 

positions of clusters which exceed the F-statistic threshold at an alpha 

value (significance level) of 0.05. All t-tests were paired and two-tailed, 

and all ANOVAs were repeated measures. 

As indicated in the Results section, one Bayesian repeated measures 

ANOVA (Rouder et al., 2012) was carried out on the leftward reach angle 

variability data. A single measure of variability was obtained by averaging 

reach angle standard deviation across the movement epoch. The prior 

used was that each model, and the null model, were equally likely i.e. a 

prior of 0.2. 
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4.3. Results 

In Chapter 3, I presented evidence that a higher expectation of having to 

move to a particular target decreases the variability associated with that 

movement, and argued that this effect is dependent on a less stringent or 

less effective online control policy. This experiment aimed to test that 

assertion. 

This experiment compared the effect of an expectation about having to 

make a movement to a particular location in two types of movement: 

firstly, a simple reach to a target orientated at 45°, and, secondly, the 

same reach in which the target jumped when the cursor passed through 

an occluder 25% of the way through the movement, requiring a change of 

direction. 

Subjects alternated between jump and non-jump blocks. On the jump 

blocks, the target jumped relative to the participant’s reach angle at the 

time of jump so there was no advantage to aiming accurately in any 

particular direction. The aim of these target jump trials in this experiment 

was to reduce the value of strict control of variability early in the 

movement, as the forced change of direction meant this would no longer 

contribute to success.  

Movement trajectories were analysed in the early part of the movement; 

up until the occluder was reached. If the assertion that the effect of 

expectation on variability depends on control policy was correct, it would 

be expected that, on jump trials (in which control policy did not need to 

be stringent), there would be no effect of prior expectation on variability. 

Because an effect of prior expectation was previously only seen on 

leftward trials, this difference is only expected in leftward trials. Thus the 

critical test of the hypothesis is an interaction between prior expectation 

and block type (non-jump vs jump) in leftward trials.  
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4.3.1. Characteristics of jump trials 

Experimental blocks were composed alternately of all non-jump trials, or 

all target jump trials. Subjects completed six blocks in total; whether they 

began on a standard or a jump block was randomised for each subject.  

As anticipated, the target jump made the task more difficult and subjects 

were significantly more successful on the non-jump blocks, t(21) = 8.46, 

p <.001, d = 1.80 (Figure 4.2A).  

 

Figure 4.2 Success is lower in target jump blocks. The jump blocks required subject to change 
direction under time pressure at 25% of the movement, and this is reflected in the success rate. (A) 
Success rate in non-jump vs jump blocks. (B) For jump blocks only, success rate as a function of 
angular target jump. Green line shows mean; grey lines show individual subject data. 

The target jump was one of a range of fixed sizes between 5 and 15° 

(target width: 5°) either clockwise or counterclockwise relative to the 

subject’s reach angle at the time of crossing the occluder. Subjects were 

less successful with increasing size of target jump (Figure 4.2B). 

Because the target jumped relative to the subject’s own position, it is also 

possible to plot the target jump relative to the original target position (i.e. 

the apparent target jump) rather than the preprogrammed target jump. 

Figure 4.3A shows histograms of these apparent target jumps in all 

subjects.  As the histograms show, a consequence of the target jumping 
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relative to the subject’s position was that in a proportion of trials there 

was no apparent target jump (M = 4.49% of target jump trials where 

apparent jump was less than 1° magnitude, SD = 1.82%). However, as the 

target could jump with equal likelihood in either direction, subjects had 

no way to predict when these would occur. 

Plotting success relative to apparent jump shows, as with programmed 

jump, that larger apparent jumps decrease success (Figure 4.3B). 

 

Figure 4.3 Apparent target jump differed from the predetermined target jump shown in Figure 
4.2B. Because target jump was calculated relative to subject’s reach angle, the visual appearance of 
the jump was not the same magnitude as the pre-determined magnitude. Here, apparent jumps are 
shown. (A) Histogram to show distribution of apparent target jumps; each line shows data for one 
subject. (B) Success rate by apparent target jump; thin lines show individual subject data; thick line 
shows mean. Grey vertical lines indicate bin edges. Both graphs show data only between +/-60° for 
scaling reasons although there were very low numbers of trials beyond this. 

The aim of the jump trial blocks was to produce a context in which 

subjects did not need to use a stringent control policy early in the 

movement. If this was achieved, pre-jump variability would be expected 

to be higher in jump trials than the equivalent portion of the movement in 

standard trials, because there would be low levels of correction of 

positional error.  
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Data was recorded as x and y positions; these trajectories were truncated 

at the occluder, interpolated to give the same number of data points on 

each trial (see Methods), and the angle on each trial relative to the 

midline was calculated, after subtracting that trial’s rest position. These 

analyses are equivalent to those in Chapter 3, except that trajectories 

were not truncated in Chapter 3 i.e. these analyses only look at an early 

25% of the movement. 

Figure 4.4A and B show that mean reach angle was different between 

jump and no-jump trials in leftward movements, but not rightward 

movements. For left-cue movements, a t-test using random field theory 

showed one suprathreshold cluster, from 0.00% to 99.0% of movement, 

t(21) threshold = 2.50, p <.001. For right-cue movements, a t-test using 

random field theory showed no suprathreshold clusters, t(21) 

threshold = 2.49.Figure 4.4C and D show that the prediction of higher 

variability in jump trials was borne out. Reach angle variability is higher 

for jump trials in both leftward and rightward movements. For left-cue 

movements, a t-test using random field theory showed one 

suprathreshold cluster, from 19.8% to 99.0% of movement, t(21) 

threshold = 2.54, p = .012. For right-cue movements, a t-test using 

random field theory showed one suprathreshold cluster, from 0.00% to 

99.0% of movement, t(21) threshold = 2.62, p <.001. 
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Figure 4.4 Mean reach angle and reach angle variability differ between non-jump and jump blocks. 
(A) and (B) show reach angle in interpolated trajectories for start of movement until occluder. (C) 
and (D) show the standard deviation of the reach angle. Left panel shows left-cue trials and right 
panel shows right-cue trials. Grey bars indicate clusters of the movement for which there is a 
significant effect of block type (jump vs non-jump). Shaded area shows standard error of the mean.  

4.3.2. Reaction time and movement time 

The mean reaction time during the experiment was 384 ms (SD = 50.2 

ms). A three-way prior x block type x target cued ANOVA showed a main 

effect of prior expectation on reaction time (F(1, 21) = 8.46, p = .008, 

η2p = .29), but not block type (F(1, 21) = 1.67, p = .21, η2p = .074) or target 

cued (F(1, 21) = 3.02, p = .097, η2p = .13). There was also a target x prior 

interaction (F(1, 21) = 158, p < .001, η2p =0.88), but no other significant 

interactions. This ANOVA is shown in full in Appendix 1. 

These results replicate the findings in Chapter 3, where an expectation to 

move to a particular target was found to decrease the reaction time for 
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movements to that target but increase the reaction time for movements 

to the other target. 

 

Figure 4.5 Reaction times are modulated by prior expectation but not block type. Mean reaction 
time by expectation and block type in (A) left cue and (B) right-cue trials. Filled circles show 
individual subject data 

The mean movement time during the experiment was 616 ms 

(SD = 59.1 ms). Movements were slower in jump blocks than non-jump 

blocks. A three-way prior x block type x target cued ANOVA showed a 

main effect of target cued (F(1, 21) = 7.20, p = .014, , η2p = .26) and of 

block type (F(1, 21) = 39.9, p < .001, η2p = 0.66). There was no main effect 

of prior expectation (F(1, 21) = 0.11, p = .75, η2p = .005), and no significant 

interactions between these factors. This ANOVA is given in full in the 

appendix. 
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Figure 4.6 Movement times are modulated by block type but not prior expectation.  Mean 
movement time by expectation and block type in (a) left-cue and (B) right-cue trials. Filled circles 
show individual subject data. 

4.3.3. Replication of previous study 

The non-jump blocks were highly similar to the experiment presented in 

Chapter 3, although with only two prior levels (‘Expect left’ and ‘Expect 

right’; there was no ‘Neutral’ condition). This allows us to check for a 

replication by using trials in standard blocks only (original analysis: 

Figure 3.10).  

For reach angle, the same pattern was found as in the previous 

experiment: there was a mean difference in reach angle for leftward 

movements but not rightward movements (Figure 4.7A and B). For left-

cue movements, a t-test using random field theory showed one 

suprathreshold cluster, from 0.00% to 99.0% of movement, t(21) 

threshold = 2.63, p < .001. For right-cue movements, a t-test using 

random field theory showed no suprathreshold clusters, t(21) 

threshold = 2.65. 
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Figure 4.7 As in the previous study, for trials in non-jump blocks, mean reach angle and reach 
angle variability depend on expectation in left-cue but not right-cue trials. The aim of this analysis 
was to check for a replication of the results of Chapter 3. Top panel: mean reach angle for 
movement until occluder for interpolated trajectories in left cue (A) and right-cue (B) trials. Bottom 
panel: mean standard deviation of reach angle in left-cue trials (C) and right-cue trials (D). Grey bars 
indicate clusters of movement for which there is a significant effect of prior expectation condition. 
Shaded error bars show standard error of the mean. 

Similarly, for reach angle variability (Figure 4.7C and D), a difference in 

reach angle variability in left-cue movements, but not right-cue 

movements, was found. For left-cue movements, a t-test using random 

field theory showed one suprathreshold cluster, from 0.00% to 99.0% of 

movement, t(21) threshold = 2.76, p <.001. For right-cue movements, a t-

test using random field theory showed no suprathreshold clusters, t(21) 

threshold = 2.76. Again, this replicates the previous study. 

4.3.4. An interaction between block type and prior cue?  

Having replicated the previous study, jump trials were now included in 

the analysis. This allows us to test whether the effect of expectation on 
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reach angle mean and variability was reduced or obliterated in jump 

trials, as hypothesised.  

Figure 4.8A and B show reach angle between movement start and 

reaching the occluder. For left-cue movements, a two-way ANOVA using 

random field theory showed an effect of prior (one suprathreshold 

cluster, from 0.00% to 99.0% of movement, F(1, 21) threshold = 5.84, 

p <.001), an effect of block type (one suprathreshold cluster, from 0.00% 

to 99.0% of movement, F(1, 21) threshold = 5.84, p = .005), but no 

interaction (F(1, 21) threshold = 5.84). 

For right-cue movements, a two-way ANOVA using random field theory 

showed an effect of prior in the later part of the movement (one 

suprathreshold cluster, from 43.6% to 99.0% of movement, F(1, 21) 

threshold = 6.37, p = .027), no effect of block type (F(1, 21) 

threshold = 6.37) and no interaction (F(1, 21) threshold = 6.37).  

Figure 4.8C and D show reach angle variability between movement start 

and reaching the occluder. The litmus test of the hypothesis proposed is, 

in leftward movements, the presence of an interaction between prior and 

trial type. In fact, this interaction was absent. Instead, for leftward 

movements, there was a main effect of both prior expectation and block 

type. A two-way ANOVA using random field theory showed an effect of 

prior (one suprathreshold cluster, from 0.00% to 99.0% of movement, 

F(1, 21) threshold = 6.58, p = .002), a later effect of block type (one 

suprathreshold cluster, from 30.2% to 99.0% of movement, F(1, 21) 

threshold = 6.58, p = .014) and no interaction (F(1, 21) threshold = 6.58). 

For right-cue movements, a two-way ANOVA using random field theory 

showed no effect of prior (F(1, 21) threshold = 6.99), an effect of block 

type (one suprathreshold cluster, from 0.00% to 99.0% of movement, 

F(1, 21) threshold = 6.99, p <.001) and an early interaction (one 
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suprathreshold cluster, from 0.00% to 30.6% of movement, F(1, 21) 

threshold = 6.99, p = .033). 

 

Figure 4.8 Effect of block type and expectation on reach angle mean and variability. This figure 
shows the key analysis of interest in this experiment. A significant interaction between block type 
(jump vs no jump) and prior expectation in panel C would have confirmed the hypothesis by 
indicating that variability is only modulated by prior expectation in the presence of a stringent 
control policy (i.e. non-jump blocks). Top panel: mean reach angle for interpolated trajectories until 
occluder in left-cue trials (A) and right-cue trials (B). Bottom panel: mean standard deviation of reach 
angle in left-cue trials (C) and right-cue trials (D). Light grey bars show a significant effect of prior 
expectation condition. Dark grey bars show a significant effect of block type (jump vs non-jump). 
Orange bars show a significant interaction between these two factors. Shaded error bars show 
standard error of the mean. 

For the data shown in Figure 4.8D, two post-hoc t-tests were conducted in 

order to understand the trends underlying the interaction. For non-jump 

trials, variability was compared in the ‘Expect left’ and ‘Expect right’ 

conditions, and found no effect here: a t-test using random field theory 

showed no suprathreshold clusters, t(21) threshold = 2.76. Variability for 

the ‘Expect left’ and ‘Expect right’ conditions in the jump trials was also 

compared, and again found no effect. A t-test using random field theory 
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showed no suprathreshold clusters, t(21) threshold = 2.70. Thus there 

was no significant difference of prior expectation in rightward 

movements in either jump or non-jump trials considered in isolation. 

4.3.4.1. Was the lack of effect due to lack of power? 

I wanted an indication of whether the absence of the expected interaction 

was due to lack of power or not. Therefore movement variability was 

averaged across the sample (0% to 100% of movement) for ‘left target 

cued’ data only and a Bayesian ANOVA was conducted, which compared 

the five models given in the Table 4.1. 

Models P(M) P(M|data) BF M BF 10 % error 

Null model (incl. subject)  
 

0.200 
 

3.900e -4 
 

0.002 
 

1.000 
   

Prior  
 

0.200 
 

3.047e -4 
 

0.001 
 

0.781 
 

0.922 
 

Block type  
 

0.200 
 

0.400 
 

2.668 
 

1025.923 
 

2.026 
 

Prior + Block type  
 

0.200 
 

0.470 
 

3.550 
 

1205.767 
 

3.772 
 

Prior + Block type + Prior  ✻  Block type  
 

0.200 
 

0.129 
 

0.593 
 

330.844 
 

1.634 
 

Note.  All models include subject.  
 

Table 4.1 Bayesian ANOVA shows anecdotal evidence against the interaction of interest, and 
extremely strong evidence for the two-main effect model.  This ANOVA was conducted to give an 
indication as to whether the study was underpowered to detect a block type (jump/non-jump) x 
prior (Expect left/Expect right) interaction. The ANOVA showed anecdotal evidence against the 
interaction i.e. tends away from supporting the idea that the study was underpowered.  

In keeping with the random field theory ANOVA, the most likely model 

was that with a main effect of prior and a main effect of trial type. This 

model had a Bayes Factor against the null hypothesis of 1,206, indicating 

these data are 1,206 times more likely to be observed under this model. A 

Bayes Factor of > 100 is usually interpreted as ‘Extreme evidence’ 

(Wagenmakers et al., 2011). 

The comparison of interest was the model with the interaction over the 

model without. How strong was the evidence against the presence of an 

interaction in addition to the two main effects? This is given by finding 

the ratio of the Bayes Factors for the model with the interaction against 

the model with the main effects alone. This gives a Bayes Factor of 0.274. 
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This can be interpreted as ‘anecdotal’ or ‘barely worth mentioning’ 

evidence against the interaction (Kass and Raftery, 1995).  

To summarise, contrary to the hypothesis, an effect of prior on reach 

angle variability is present in jump trials. This could be because higher 

variability in the jump trials arises not due to a genuinely less stringent 

control policy, but for other reasons. I investigated two possible 

confounds that could explain variability differences between jump and 

non-jump trials in the following section. These are: (1) movement 

velocity: faster movement in jump trials could lead to higher variability; 

(2) lower success: exploration in space in jump trials following negative 

feedback could lead to higher variability. 

4.3.5. Early movement time and movement velocity 

 

Figure 4.9 Block type affects time taken to reach occluder. The aim of this analysis was to discover 
whether pre-occluder movement time differed by block type. Mean movement time to reach 
occluder by block type (jump vs non-jump) and target cued. Filled circles show individual subject 
data.  

Above, an analysis of total movement time was presented, finding that 

subjects were slower on jump blocks. However, this includes time take to 

respond to the target jump and does not give an indication of their 

movement speed prior to the occluder, in the portion of the movement 

that has been considered in the other analyses. 
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Analysing the movement time to the occluder showed that movements to 

the occluder were faster in jump blocks compared to non-jump blocks. A 

two-way block type x target cued ANOVA showed a main effect of block 

type, F(1, 21) = 6.59, p = .018, η2p = .24, no effect of cue direction (left vs 

right), F(1, 21) = 3.89, p = .062, η2p = .16, and a significant interaction, 

F(1, 21) = 8.84, p = .007, η2p = .30. 

This result shows that movements to the occluder were faster in non-

jump trials than in jump trials. This could have been a source of the 

variability difference observed between these two trial types (see 

Discussion). This raised the question of whether similar differences in 

early movement time exist between movements at different levels of 

prior expectation, which have been demonstrated to show different levels 

of variability. I wanted to check whether this was the case, to check this 

difference did not drive variability differences seen in the previous 

chapter. 

I have already shown no difference of prior expectation on overall 

movement time (see previous chapter). To further investigate this, the 

analysis above was repeated (movement time to reach a movement of 

amplitude 5 cm, which was the location of the occluder) on the dataset in 

Chapter 3. I found no effect of prior expectation of this metric in leftward 

movements, F(2, 26) = 0.78, p = 0.47, η2p = 0.056, and no effect for 

rightward movements, F(2, 26) = 0.31, p = 0.73, η2p = 0.024. This 

confirmed that early movement time differences were not the cause of 

variability differences in the previous experiment. 

I next analysed velocity during the movement prior to the occluder. X 

velocity in leftward movements showed a significant effect of block type 

for most of the movement: a t-test using random field theory showed one 

suprathreshold cluster, from 0.00% to 84.6% of movement, t(21) 

threshold = 2.90, p  < .001. For x velocity in rightward movements, a t-test 
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using random field theory showed no suprathreshold clusters, t(21) 

threshold = 2.84.  

Y velocity in leftward movements showed no effect of block type: a t-test 

using random field theory showed no suprathreshold clusters, t(21) 

threshold = 2.85. For y velocity in rightward movements, a t-test using 

random field theory showed one suprathreshold cluster, from 22.7% to 

72.6% of movement, t(21) threshold = 2.91, p <.001.  

 

Figure 4.10 Block type affects movement velocity in movement prior to the occluder. Top panel: 
mean X velocity in left-cue (A) and right-cue (B) trials. Bottom panel: mean Y velocity in left-cue (C) 
and right-cue (D) trials. Grey bars show a significant effect of block type (jump vs non-jump). Shaded 
error bars show standard error of the mean. 

4.3.6. Variability as determined by success 

Previous studies have indicated that human movement variability 

increases in response to negative feedback (Galea et al., 2013; Pekny et 

al., 2015). Specifically, variability depends strongly on whether the 
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previous trial was successful or not (Pekny et al., 2015). Given that 

success rates differed greatly between non-jump and jump blocks (see 

above), I wanted to explore whether I also observed this effect of success 

on variability in subsequent trials. If so, this could indicate that 

differences in variability between the two block types were driven by 

differences in success, rather than in movement strategy. 

Trials were divided by the block type (jump or non-jump) and whether 

the previous trial had ended in a target hit (and positive feedback) or a 

miss (with ‘Points: 0’ feedback). Since the experiment involved two 

separate reaching movements (leftward or rightward) and since I was 

interested in the effect of success or failure in amending the same 

movement in future, I used only trials in which the same movement was 

cued twice in a row (i.e. leftward, leftward or rightward, rightward). 

 

Figure 4.11 Variability is increased by lack of success for some trials only. The aim of this analysis 
was to discover whether unsuccessful trials drove an increase in variability on the subsequent trial. 
The figure shows reach angle variability on trials sorted by whether the previous trial was a hit or a 
miss, and by block type. (A) shows left-cue trials and (B) shows right-cue trials. Only trials where the 
same direction was cued twice in a row have been included. Dark grey bar shows significant effect of 
block type (jump vs non-jump). Light grey bar shows significant effect of success (hit on previous trial 
vs miss on previous trial). Orange bar shows significant interaction. Shaded error bars show standard 
error of the mean. 
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The variability in these groups of trials showed, as in Figure 4.4, a 

modulation by block type. Only leftward movements showed the effect of 

interest: higher variability following unsuccessful trials over successful 

ones (Figure 4.11). 

For leftward movements, there were significant main effects and an 

interaction. A two-way ANOVA using random field theory showed an 

effect of success (one suprathreshold cluster, from 26.7% to 99.0% of 

movement, F(1, 21) threshold = 6.78, p = .008), an effect of block type 

(one suprathreshold cluster, from 1.29% to 99.0% of movement, F(1, 21) 

threshold = 6.78, p = .002), and a significant interaction (one 

suprathreshold cluster, from 47.9% to 99.0% of movement, F(1, 21) 

threshold = 6.78, p = .020).  

For rightward movements, the only significant finding was a main effect 

of block type (jump vs no jump). A two-way ANOVA using random field 

theory showed no effect of success (F(1, 21) threshold = 6.90), an effect of 

block type (one suprathreshold cluster, from 0.00% to 99.0% of 

movement, F(1, 21) threshold = 6.90, p <.001), and no interaction 

(F(1, 21) threshold = 6.90). 

For the leftward movements, visual inspection and the significant 

interaction suggested there was no effect of success in the no jump trials 

(Figure 4.11A; solid lines). To test this, a post-hoc t-test, was conducted 

which confirmed there was no effect of success (hit vs miss) for these 

trials. The t-test using random field theory showed no suprathreshold 

clusters, t(21) threshold = 2.84. In other words, the variability difference 

for hit vs miss trials in leftwards movements was driven purely by jump 

trials. 
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4.4. Discussion 

I wanted to test whether a previously-described (Chapter 3) effect of 

prior expectation on motor variability in a reaching movement was 

dependent on the control policy used in the movement. The experiment 

presented in this chapter examined the effect of prior expectation on 

motor variability, in two contexts: (1) a simple 45° reaching movement; 

(2) the same reaching movement but involving a target jump 25% of the 

way through the movement. 

4.4.1. Effect of expectation on movement variability successfully 

replicated 

Because the reaching movements that did not involve a jump are 

equivalent to those in the experiment presented in Chapter 3, I was able 

to test whether we replicate the results of this experiment. Indeed, the 

findings are replicated faithfully (Figure 4.7). As in the previous 

experiment, prior expectation to move modulated mean reach angle in 

leftward but not rightward movements. An expectation to move left 

reduced movement variability in leftward movements, but this was not 

mirrored in rightward movements. Again, this matches with the findings 

of the previous experiment. 

The reaction time and movement time findings also matched the previous 

study: again there was an effect of prior expectation cue on reaction time 

but not movement time. 

4.4.2. Target jump manipulation increased movement variability 

The ‘target jump’ trials were included in this experiment with the aim of 

introducing a type of trial in which the early part of the movement did not 

contribute to movement success. I surmised this would induce subjects to 
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adopt a lax control policy where there was little correction for deviations 

from the mean trajectory. 

If subjects had indeed adopted such a control policy, I would expect to see 

higher variability in the movements in target jump blocks. Indeed, this 

difference was present (Figure 4.4). The target jump blocks had a longer 

total movement time but there was no reaction time effect. 

4.4.3. Main analysis of interest did not support hypothesis 

The key question of this experiment was whether the effect already 

observed - a lower expectation to make a leftward movement increasing 

variability in that movement - was obliterated during the target jump 

blocks. I theorised that, during these blocks, control policy would be less 

stringent. I had hypothesised in the previous chapter that an effect of 

prior expectation is only seen in a portion of the movement in which 

there is active control of variability, in order to explain why the effect of 

prior expectation is seen in leftward but not rightward movements. So I 

hypothesised, on blocks where there was a target jump, there would be a 

reduced or no difference between variability across different levels of 

prior expectation in leftward movements. 

However, a lower expectation to move increased variability in jump trials 

just as it did in non-jump trials. There was a main effect of prior 

expectation and of block type (jump versus non-jump) in leftward 

movements, but no interaction between these factors.  

Thus the findings provide no evidence for the hypothesis. This could be 

because the hypothesis is false. However, a second possibility is that the 

target jump manipulation did not, in fact, induce a lax control policy in 

participants. Under this interpretation of the data, subjects did in fact use 

a stringent control policy on jump blocks, perhaps because this somehow 

conferred an advantage in the process of making an adjustment in 
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response to the target jump. If this was indeed the case, how can the 

higher variability on jump blocks be explained?  

I identified two factors, not relating to control policy, which could have 

been driving variability differences between the target jump and non-

jump trials: (1) movement velocity, and (2) success rate. These are 

discussed in turn; I then discuss whether the hypothesis was falsified. 

4.4.3.1. Movement velocity was higher in jump blocks 

Despite an overall longer movement time in jump blocks ( 

Figure 4.6), movement times for the portion of the movement which was 

analysed were shorter in jump blocks (Figure 4.9). This is a sensible 

strategy for these trials: moving faster in the early portion of the trial 

buys as much time as possible in which to redirect the movement in 

response to the target jump. In keeping with this difference in movement 

time, velocities were also faster in jump trials, although whether this is 

evident in the x or y component of velocity differs between leftward and 

rightward movements (Figure 4.10). 

So a higher velocity in target jump trials could be the cause of the 

increased variability seen in these trials. If this was the case, it would 

explain why the effect of prior was present in these trials. This would 

suggest that there was still a control policy which stringently controlled 

deviations, but a different speed-accuracy tradeoff (Heitz, 2014) had been 

used. 

If it were true that these movement time differences were driving 

variability, it would mean the variability metric used (standard deviation 

in reach angle) is highly sensitive to small movement time differences of 

~10 ms over a 5 cm (~190 ms) movement. I therefore checked that 
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differences in early movement time were not present in the previous 

experiment, and confirmed that there were none. 

One way to try and minimise speed-accuracy tradeoff differences in a 

future version of this experiment could be to attempt to fix movement 

speed by training and instructing subjects appropriately. The most 

constrained way to do this would be to attempt to standardise the timing 

of both the first (pre-jump) and second (post-target jump) parts of the 

movement. If a subject reached either the jump position or the final target 

too early or too late, visual cues would indicate to a subject that that trial 

had been discarded, and whether this was due to being too fast or too 

slow. Through training subjects would learn to time their movements 

within the bounds chosen. 

However, the disadvantages of this approach are that it would likely lead 

to lots of lost trials due to incorrect timing and/or an extensive training 

requirement. Furthermore, it seems likely that these techniques do not 

represent a truly standardised movement speed, and instead lead to 

speed being restricted to a narrow range, which may not fully obliterate 

differences between conditions. 

4.4.3.2. Did success rate drive variability differences? 

There was a marked reduction in success rate in the jump blocks 

compared to the non-jump blocks (Figure 4.2A). This was in contrast to 

the previous experiment where success differences between conditions 

were much smaller. I considered whether this strong difference in success 

could have been the source of the variability difference between jump and 

non-jump blocks, confounding the results.  

Reward information has been shown to alter motor variability (Takikawa 

et al., 2002; Izawa and Shadmehr, 2011; Galea et al., 2013), including on a 

trial-by-trial basis (Pekny et al., 2015). Here I drew on a study by Pekny et 
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al (2015). This study found that variability in a reaching task increased in 

response to failure on the preceding trial. Furthermore, when reward 

probability was lower, global reach variability was higher. 

In a similar analysis, I found, in leftward movements only, a main effect of 

success on previous trial for the later two thirds of the movement. There 

was an interaction with block type (jump vs non-jump). Post-hoc analysis 

confirmed the effect of success was not present in non-jump blocks 

(Figure 4.11).  

It is interesting that I replicated the results of Pekny et al in just one 

movement, for one trial type only, rather than more widely. Perhaps the 

effect was present in jump trials because the difficult nature of these 

trials and lower success rate encouraged exploration. Pekny et al’s study 

encouraged exploration by, unknown to participants, shifting the 

rewarded zone periodically. This might have prompted participants to 

adopt a ‘when you don’t succeed, explore in space’ strategy. In other 

words, their experimental finding might be specific to tasks with a benefit 

to spatial exploration. However, my study was not designed for these 

analyses and selecting only trials where the same target was cued twice 

consecutively reduced the amount of data available and might have 

meant the study was underpowered for these particular analyses. 

The key finding from this analysis of success is that analysing by success 

does not obliterate the effect of block type (jump vs non-jump) on 

variability. In other words, there is a variability increase due to jump 

trials beyond the one driven by success. This suggests that differences in 

success rate are not sufficient to explain the variability increase caused by 

the experimental manipulation. 
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4.4.4. Was the hypothesis falsified? 

A velocity difference between the conditions could have driven the 

increased variability, which would mean this was not evidence that 

subjects adopted a laxer control policy for the jumping blocks. An 

alternative explanation is that subjects did indeed adopt this lax control 

policy and the lack of the predicted result indicates the hypothesis – that 

an effect of prior on variability depends on a stringent control policy 

being planned – was false. 

If this was the case, this would indicate the key finding was that, even 

when subjects had a lax control policy because it was not important for 

the early movement to be accurate, a lower prior expectation still 

increased movement variability. In short, the effect of prior expectation 

does not depend on movement control policy, and instead only on 

planning. 

However, the problem with this explanation is that it struggles to 

reconcile the results of the previous chapter. These were that rightward 

movements were not susceptible to a change in variability as a 

consequence of prior expectation. Indeed, I replicated this effect again in 

the most recent experiment and also found it applied to jump blocks. It is 

difficult to find an explanation for this that does not rely on differing 

dynamics of the two movements (i.e. different control policies). 

Explanations that are based on the idea that there is a floor effect for 

variability of rightward movements are unsatisfactory as I showed in the 

previous chapter that initially rightward variability is higher than left; 

this informed the idea that control of variability in the rightward 

movement is less stringent. 

Therefore, the explanation for the findings based on measured 

differences in movement velocity between jump and non-jump blocks 
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(Section 4.4.3.1) seems easiest to reconcile with the data across the two 

chapters. 

4.4.5. Was the study underpowered? 

One possibility is the sample size lacked the power to demonstrate a 

larger effect of prior in non-jump trials than in jump trials. To try and 

assess this, I conducted a Bayesian ANOVA. This found anecdotal evidence 

against the presence of the interaction. In other words, this analysis 

tended to suggest the hypothesis was false rather than the study 

underpowered, but only weakly.  

The sample size was 22 subjects, which is larger than typical amongst 

similar studies (Pekny et al., 2015; Wijdenes et al., 2016). So, rather than 

increasing the sample size, reducing measurement noise via the use of a 

different manipulation seems a more fruitful way to attempt to resolve 

this problem.  

4.4.6. Conclusion 

To conclude, the evidence did not support the hypothesis proposed. It 

could be that the hypothesis is incorrect, but this poses a challenge in 

understanding the experiment in the previous chapter. It could also be 

that the study is underpowered, but the evidence from the Bayesian 

ANOVA leans towards suggesting it was not.  

An alternative possibility is that subjects did not adopt the strategy of a 

lax control policy. Instead, greater variability was caused by other 

differences between the target jump and non-jump blocks. Specifically, a 

faster velocity in the early part of the movement for jump blocks could 

have driven higher variability.  
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4.5. Appendix I: ANOVAs on reaction time and movement 

time 

4.5.1.  Reaction time 

Within Subjects Effects  

   Sum of Squares  df  Mean Square  F p η² p 

Target  
 
1128.08  

 
1  

 
1128.08  

 
3.018  

 
0.097  

 
0.126  

 
Residual  

 
7850.22  

 
21  

 
373.82  

   
   

 
   

 
Prior  

 
1450.61  

 
1  

 
1450.61  

 
8.461  

 
0.008  

 
0.287  

 
Residual  

 
3600.47  

 
21  

 
171.45  

   
   

 
   

 
Block Type  

 
2263.57  

 
1  

 
2263.57  

 
1.671  

 
0.210  

 
0.074  

 
Residual  

 
28448.23  

 
21  

 
1354.68  

   
   

 
   

 
Target ✻ Prior  

 
179593.51  

 
1  

 
179593.51  

 
157.988  

 
< .001  

 
0.883  

 
Residual  

 
23871.89  

 
21  

 
1136.76  

   
   

 
   

 
Target ✻ Block Type  

 
35.42  

 
1  

 
35.42  

 
0.359  

 
0.556  

 
0.017  

 
Residual  

 
2073.90  

 
21  

 
98.76  

   
   

 
   

 
Prior ✻ Block Type  

 
17.86  

 
1  

 
17.86  

 
0.181  

 
0.675  

 
0.009  

 
Residual  

 
2069.37  

 
21  

 
98.54  

   
   

 
   

 
Target ✻ Prior ✻ Block Type  

 
670.18  

 
1  

 
670.18  

 
4.009  

 
0.058  

 
0.160  

 
Residual  

 
3510.72  

 
21  

 
167.18  

   
   

 
   

 

 

Table 4.2 Reaction time showed a significant main effect of prior expectation and a significant 
target x prior interaction. Table reports a three-way repeated measures ANOVA on reaction times 
with factors target cued (left-cue/right-cue) x block type (jump/non-jump) x prior expectation cue 
(Expect left/Expect right). 
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4.5.2. Movement time 

Within Subjects Effects  

   Sum of Squares  df  Mean Square  F  p  η² p  

Target  
 
3344.207  

 
1  

 
3344.207  

 
7.200  

 
0.014  

 
0.255  

 
Residual  

 
9754.293  

 
21  

 
464.490  

   
   

 
   

 
Prior  

 
26.111  

 
1  

 
26.111  

 
0.105  

 
0.749  

 
0.005  

 
Residual  

 
5221.674  

 
21  

 
248.651  

   
   

 
   

 
Block Type  

 
314608.017  

 
1  

 
314608.017  

 
39.860  

 
< .001  

 
0.655  

 
Residual  

 
165750.445  

 
21  

 
7892.878  

   
   

 
   

 
Target ✻ Prior  

 
870.198  

 
1  

 
870.198  

 
1.885  

 
0.184  

 
0.082  

 
Residual  

 
9697.001  

 
21  

 
461.762  

   
   

 
   

 
Target ✻ Block Type  

 
224.350  

 
1  

 
224.350  

 
0.929  

 
0.346  

 
0.042  

 
Residual  

 
5070.148  

 
21  

 
241.436  

   
   

 
   

 
Prior ✻ Block Type  

 
8.951  

 
1  

 
8.951  

 
0.089  

 
0.768  

 
0.004  

 
Residual  

 
2112.275  

 
21  

 
100.585  

   
   

 
   

 
Target ✻ Prior ✻ Block Type  

 
239.875  

 
1  

 
239.875  

 
1.351  

 
0.258  

 
0.060  

 
Residual  

 
3727.578  

 
21  

 
177.504  

   
   

 
   

 

 

Table 4.3 Movement time showed a significant main effect of target cued and block type. Table 
reports a three-way repeated measures ANOVA on movement times with factors target cued (left-
cue/right-cue) x block type (jump/non-jump) x prior expectation cue (Expect left/Expect right). 
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Chapter Five: General Discussion 

This thesis looked at how prior expectation acts on motor processes. 

Firstly, I studied prior expectation in motor planning. A series of TMS 

experiments were carried out to attempt to substantiate a hypothesis that 

prior expectation biases motor system excitability prior to a decision 

(Chapter 2). The results of the experiment did not support the hypothesis. 

It is unclear whether the hypothesis has been falsified or whether TMS is 

not a suitable method for studying small behavioural biases, despite a 

number of previous studies which suggested it might be promising 

(Bestmann et al., 2008; Michelet et al., 2010; Klein-Flugge and Bestmann, 

2012). 

The second part of the thesis studied prior expectation in motor planning, 

specifically in the context of theories which have proposed how a limited 

resource in motor planning influences variability during movement 

(Wijdenes et al., 2016). I proposed a new hypothesis: that prior 

expectation unevenly weights the allocation of resources to motor plans, 

and thus will lead to unequal variability between two planned 

movements. 

In Chapter 3, I found evidence to support this hypothesis, with the 

expected effect present in one movement but not the other. I proposed 

this was due to an interaction with the specific control policies of the 

movement and tested this idea in Chapter 4. I did not find support for this 

idea in Chapter 4; I proposed that this might be because the experiment 

was confounded by differing movement velocities across conditions. 

In this general discussion, I will first revisit and broaden the themes 

presented in Chapter 1 which have been pertinent to the design of the 

experiments in this thesis.  In particular, I will outline what might be the 

next stages in investigating these theories, and give some of the more 
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novel and contested evidence. As this thesis has used human experiments, 

I will ask to what extent these developments can be tested in humans.  

I will then return to the experiments presented in this thesis, specifically 

those on motor variability, and present some ideas for the next steps in 

this line of research. 

5.1. Where next for the affordance competition hypothesis? 

The idea that multiple motor plans are formed during a decision about 

movement is now prominent, and heavily informed the experiments in 

this thesis. Evidence for this idea comes from neurophysiology (Cisek and 

Kalaska, 2005; Pastor-Bernier and Cisek, 2011), behavioural studies 

(Chapman et al., 2010; Stewart et al., 2013; Gallivan et al., 2015, 2016b, 

2017) and TMS studies (Michelet et al., 2010; Klein-Flugge and Bestmann, 

2012).   

As detailed in Chapter 1, there has been a shift away from the idea that 

motor cortex is a population code representing movement parameters 

such as reach direction (Georgopoulos and Carpenter, 2015), which is 

intertwined with the modelled instantiations of the affordance 

competition hypothesis (Cisek, 2007). In particular, a new line of 

evidence supports the idea that motor cortex acts as a dynamical system, 

and so the role of preparatory activity is to bring the neural population to 

a particular state, from which it can passively evolve into movement 

activity (Churchland et al., 2006, 2012; Churchland and Shenoy, 2007; 

Shenoy et al., 2013; Kaufman et al., 2014). It has therefore been argued 

that the multiple motor plans of the affordance competition hypothesis 

are more accurately multiple motor goals  (Wong and Haith, 2017). (See 

Chapter 1 for more.) Leaving aside this debate, the core findings of (1) 

representation of ‘cognitive’ variables in motor cortex when they are 

relevant to a decision (Cisek and Kalaska, 2005; Pastor-Bernier and Cisek, 
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2011) and (2) competition and interaction between motor 

representations (Ghez et al., 1997; Chapman et al., 2010; Gallivan et al., 

2015)  still stand.  

Having established this hypothesis of competition between motor plans, 

what is the next step in investigation of these theories? One avenue could 

be to move beyond the recognition that activity relating to a decision is 

represented in multiple brain areas to studying the distinct role of these 

brain areas in an ongoing decision to move. The affordance competition 

hypothesis talks about a ‘distributed consensus’ of decision activity; what 

is the unique contribution of each part of the consensus? 

Work in rats has elucidated distinct representations of accumulating 

evidence during a decision to move. These studies focussed on a 

perceptual decision requiring evidence accumulation. While posterior 

parietal cortex appears to encode accumulating evidence in a graded 

manner, the tuning curve in the FOF (Frontal Orienting Fields; rat 

premotor homologue) is steeper; analogous to a categorical 

representation of information encoding the current best choice (Hanks et 

al., 2015).  Furthermore, brief optogenetic inactivation of the FOF only 

induces an ipsilateral choice bias if it occurs near the end of the decision 

time – supporting the idea that it is involved in committing to or 

remembering (Piet et al., 2017) a choice, or categorising accumulated 

evidence into a binary choice, but not the evidence accumulation itself 

(Erlich et al., 2015). This is an elegant way to show how representation of 

decisions in motor areas are not a straightforward translation of the 

evolving decision and involve modification of the information to be more 

suitable to subserve action. 

The idea of multiple representations of similar decision information 

raises an interesting question: if multiple regions show evidence-

accumulator activity, which is the underlying evidence accumulator? 



233 
 

Erlich et al (2015) found that pharmacological FOF inactivation (i.e. over 

a longer time period than optogenetic inactivation) introduced a strong 

behavioural bias consistent with a role as the output pathway of the 

evidence accumulator. By contrast, inactivation of the posterior partietal 

cortex did not cause a choice bias, except on trials in which the animal 

was free to give a random response of its choice.  In short, the finding is 

consistent with the posterior parietal cortex being a weak alternative 

evidence accumulator that only plays a role when there is no incoming 

sensory evidence. The finding has been replicated in primates where LIP 

inactivation again only biased decisions on the free choice trials (Katz et 

al., 2016). This is interesting because seminal neurophysiological 

decision-making work referenced in Chapters 1 and 2 has focussed on 

lateral intraparietal cortex (LIP), under the assumption that this area is 

the site of the evidence accumulator (reviewed in Huk et al., 2017). Yet it 

seems that an activity correlation with the ongoing decision does not 

equal causation.  

So which is the crucial region for evidence accumlation? Brody and Hanks 

(2016) report that currently unpublished data (Yartsev et al) suggest the 

causal circuitry in the rat is subcortical, in a region not previously studied 

in the context of evidence accumulation.  

Thus the next stage of research on the affordance competition hypothesis 

might be interest in the specific roles different brain areas play in a single 

decision for action. Do human studies, such as those presented in this 

thesis, have a role to play in extending this work? The low temporal 

resolution of the BOLD response makes it difficult to extract the 

accumulating evidence signal in fMRI studies (discussed in Hanks and 

Summerfield, 2017). However, M/EEG studies have more potential for 

measuring these time-critical signals. There has been a focus on work to 

find neural correlates of evidence accumulation signals, similar to those 
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in LIP. Accumulating signals which correlate with behavioural measures 

have been found in a centroparietal positivity (Kelly and O’Connell, 2013, 

2015), in lateralised beta band power over motor cortex (Donner et al., 

2009; de Lange et al., 2013), and in theta band power (van Vugt et al., 

2012).  

These studies open up the possibility of more complex analyses to 

decompose how the evidence accumulation signal evolves over brain 

areas, similar to the rat studies above. This is facilitated by new 

paradigms, which ask participants to make a decision about a stream of 

evidence presented as a series of discrete stimuli (e.g. judging whether 

the average axis of a series of Gabor patches is cardinal or diagonal; 

Wyart et al., 2012a). Because these use quantised streams of evidence, the 

experimenter can measure the contribution of individual pieces of 

evidence to the decision, as in the rat studies (Hanks et al., 2015).  

Wyart et al (2012a) used this task to characterise how each stimulus 

added to perceptual, decision, or response information. These parameters 

could then be regressed against brain activity. They found distinct 

representations of each type of information: perceptual information 

encoding peaked at occipital electrodes, whilst decision information 

encoding was more broadly distributed and peaked later at parietal 

electrodes. Response information was encoded in beta-band activity over 

motor electrodes.   

Using this analysis, the authors were able to detect that decision 

information was multiplicatively weighted by the phase of delta 

oscillations over parietal cortex, and then integrated additively over 

motor cortex. In other words, the accumulation signal in parietal cortex is 

not yet a pure response signal. This provides further evidence for distinct 

decision and motor stages, with distinct computations. Another approach 

comes from Hunt et al (2012), who correlated MEG activity with a 
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network attractor model to find brain areas that actively contribute to 

value-based choice.  

These studies illustrate how it is possible for paradigms to orthogonalise 

distinct processes within a single motor response, and so decompose the 

representation of these processes.  

5.2. New competitors to the drift-diffusion model 

Evidence-accumulation and race-to-threshold models were introduced in 

Chapter 1; the hypothesis that was the basis of Chapter 2 was influenced 

by them. The drift-diffusion model in particular is canonical and widely 

used across human and animal neuroscience (e.g. Shadlen and Newsome, 

2001a; Roitman and Shadlen, 2002; Mulder et al., 2012). Despite this, the 

drift-diffusion model as a putative neural computation continues to be 

debated. It is clear that the drift-diffusion model is effective in modelling 

reaction time distributions under various task manipulations, such as 

evidence level, urgency or expectation (Ratcliff, 2002; Ratcliff and 

McKoon, 2007). The debate has centred on whether activity in lateral 

intraparietal cortex is effectively a neural implementation of evidence 

accumulation, as has often been argued, implicitly or explicitly (Gold and 

Shadlen, 2007). 

These classic studies average neural activity across trials, which has the 

potential to obscure trial-to-trial dynamics; in particular, it has the 

potential to make abrupt transitions look graded when averaged over 

many trials (Churchland and Kiani, 2016). Similarly, population 

heterogeneity can be obscured by averaging across a population of 

neurons.  Some authors have analysed spike trains in single-neurons to 

seek evidence for models in which there is a ‘step’ between states rather 

than ramping activing (Durstewitz and Deco, 2007; Miller and Katz, 2010) 

and found evidence that spike trains in LIP during a decision-making task 
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indeed step from one fixed firing rate to another (Latimer et al., 2015). 

Under this model, the ramping activity appears only when neural 

responses are stimulus-locked and averaged. Stronger stimuli lead to 

steeper ramping, not because of a change within single neuron responses, 

but because of a greater proportion of up-steps over down-steps in the 

population. However, this has been strongly contested (Shadlen et al., 

2016), and the dynamics of neural responses may depend on the 

particular task (Latimer et al., 2016).  

A second challenge to the drift-diffusion model has come from a 

theoretical background. Cisek has argued that the ramping activity seen 

in neural activity or inferred behaviourally has always been assumed to 

track accumulating evidence, but there is no evidence that it is not driven 

by elapsed time (Cisek et al., 2009). The urgency-gating model proposes 

that neural activity is composed of two combined signals. Firstly, an 

‘urgency’ signal that grows with time and pushes a decision towards 

completion (and thus action) whether or not there is decisive evidence. 

This can be seen as a motor signal. This is combined with the second 

signal, which represents momentary sensory evidence (and is thus larger 

if sensory evidence is strong). The group has produced behavioural and 

neural studies supporting the model (Cisek et al., 2009; Thura et al., 2012; 

Thura and Cisek, 2014). 

In sum, the extent to which the DDM can be used to understand neural 

responses is still contested. One of the advantages of the DDM is that 

parameters in the model can be assigned intuitive correlates (Carpenter 

and Williams, 1995). The top threshold can be understood as 

representing urgency; the drift rate as evidence; and the starting bias as 

prior expectation.  The latter pair influenced this thesis. It is an open 

question how quantities such as prior expectation would be represented 

in any competitor models.  
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Is there a way to distinguish between various decision models in 

humans? Recent TMS studies have had success linking MEPs to modelled 

quantities (Bestmann et al., 2008; Klein-Flugge and Bestmann, 2012; 

Hadar et al., 2016) and raised the prospect that TMS could be used to 

distinguish between models (Hadar et al., 2016). The idea that ongoing 

decisions are present in motor cortex (Cisek, 2007) suggests that TMS 

should be able to access decision computations. On the other hand, in 

Chapter 1, I did not find any evidence to support the proposed hypothesis 

and an analysis attempting to link modelled bias to early corticospinal 

excitability was unsuccessful. I speculated one reason for these null 

results could be MEP variability (Kiers et al., 1993; Schmidt et al., 2009). 

Furthermore, TMS produces an aggregate population signal which makes 

it unsuitable for testing models based on single-neuron responses 

(Latimer et al., 2015). Any studies that were to attempt to differentiate 

between models using MEPs would need many more trials than is 

conventional. 

5.3. Alternative theories of expectation in motor cortex 

This thesis examined some aspects of the role of prior expectation in 

motor processes. I stayed within a framework influenced by past 

neurophysiological recordings (Basso and Wurtz, 1998; Platt and 

Glimcher, 1999; Bastian et al., 2003) and the models used to understand 

them (Ratcliff, 1978; Gold and Shadlen, 2007). However, there are other 

frameworks in which to understand prediction. As detailed in Chapter 1, 

the drift-diffusion model cannot explain the diverse nature of 

expectation-related signals in sensory areas, but predictive coding can 

(Summerfield and de Lange, 2014). 

To date most work on predictive coding has been in the sensory domain 

(e.g. Summerfield et al., 2006; Summerfield and Koechlin, 2008). Can this 

theory be extended to explain the role of prediction in the motor domain? 
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Active inference, a framework that extends predictive coding (Friston et 

al., 2011), includes a theory of motor function. 

According to active inference, motor planning should be understood not 

as generating a motor command but as the process of generating a 

sensory (specifically, a proprioceptive) prediction. The movement is then 

the process of fulfilling this prediction. Movement initiation involves 

increasing the uncertainty on current sensory information to make the 

predicted state more certain than the current one; this results in 

movement in order to attain the predicted state. There is an obvious 

analogy to the predictive coding theory of sensory cortex, where 

predictions are made about sensory inputs and prediction errors are 

conveyed back. 

According to a mapping of predictive coding onto the laminar 

architecture of the cortex, this explains why the motor cortex is agranular 

(has rudimentary or no Layer IV; Shipp et al., 2013). It is theorised that 

this layer is concerned with conveying prediction errors and thus is not 

needed in motor cortex, where predictions are fulfilled by movement.  

According to active inference, rather than the motor system planning a 

cost function (as in optimal control theories referred to in this thesis; 

Todorov and Jordan, 2002), a prior belief is generated about the desired 

trajectory (Friston et al., 2011; Adams et al., 2013). 

The theory of active inference in the motor domain and the mapping onto 

laminar architecture are clearly exciting steps towards a deeper 

understanding of expectation in motor areas. Whether the hypothesis can 

be tested in humans remains to be seen. Recently, fMRI paradigms have 

started to arise for testing the predictions of predictive coding in 

perceptual areas (Summerfield and Koechlin, 2008; Kok and de Lange, 

2014), so perhaps motor paradigms will follow. It has been proposed that 
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beta-band oscillations over motor cortex reflect uncertainty 

computations (Tan et al., 2016), and therefore track active inference 

processes (Palmer et al., 2016). So beta oscillations might be a way to test 

active inference predictions about the role of expectation in motor 

control. 

5.4. Appraisal of methods used in thesis 

In this section I discuss the benefits and drawbacks of some of the 

experimental methods used in this thesis. Further discussions are located 

elsewhere: in Chapter 1, I consider whether TMS was a suitable method 

for assessing decisions in motor cortex. An alternative to the use of single-

handed leftward and rightward movements (as in Chapters 3 and 4) is 

discussed in the context of future work in Section 5.5. 

5.4.1. Paradigms for delivering probabilistic information 

In the experiments of this thesis, I used simple, explicit ‘prior cues’ to 

induce a probabilistic expectation in subjects about the direction of an 

upcoming movement. As discussed in Chapter 1, a variety of paradigms 

have been proposed to access ‘expectation’. The method used in this 

thesis has the advantage that it is clear on any trial what the participant’s 

belief is, and the explicit nature of the cues allows an interleaved design, 

because expectations do not need to be acquired slowly by learning. This 

was particularly useful in the TMS experiments of Chapter 1, where there 

was concern that temporal trends within MEPs (Schmidt et al., 2009) 

could compromise a blocked design. Despite being interleaved, the tasks 

used produced robust reaction time effects. 

The disadvantage of this task is that it only allows the tracking of very 

simple types of probabilistic information. Recently-developed tasks are 

more complex (Galea et al., 2012; Marshall et al., 2016), and allow 

inferences about subjects’ beliefs about multiple kinds of information e.g. 
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both beliefs about individual trials and the wider context. These tasks, 

however, require model-based analyses to infer the quantities subjects 

are tracking. 

5.4.2. Measures of variability 

There has been no standard metric of movement variability in past 

experiments. Past measurements of variability have included standard 

deviation in maximal acceleration (Galea et al., 2013), standard deviation 

of the deviation of movement direction from a straight line at the moment 

of peak speed on that trial (Wijdenes et al., 2016), standard deviation of 

trial-to-trial change in overall movement reach angle (Pekny et al., 2015), 

and analyses of endpoint distributions as described by 95% confidence 

ellipses (van Beers et al., 2004). In short, it has been common to focus 

either on variability at movement endpoint, or variability at a single point 

during the trial.  

To my knowledge, the analyses presented in this thesis are the first to 

plot variability continuously over the movement. The motivation for this 

was that the hypotheses concerned factors affected motor planning, and 

so any variability effects were expected to be strongest at the start of the 

movement. Indeed, this was borne out in the results. I believe the 

continuous metric is a strength of the analyses as it gives a more complete 

picture of variability changes over the movement than previous studies. 

One limitation of this method is it is not suitable for analysis by 

conventional statistical methods. Instead, a variant of random field theory 

(Worsley et al., 1996) optimised for one-dimensional data (Pataky, 2012) 

was used to perform t-tests and ANOVAs, although it was necessary to 

collapse the data into a single variability metric for some analyses.  
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5.5. Future work 

What should follow from the experiments presented in this thesis? In this 

thesis, I drew on recently proposed ideas that suggest that a limited 

resource model has implications for motor variability because it places a 

constraint on the planning resources allocated to each motor plan 

(Wijdenes et al., 2016). To me, an interesting aspect of the affordance 

competition hypothesis (Cisek, 2007) is the tension between an optimal 

strategy and the biological implementation of this. Planning multiple 

movements is argued to be necessary for dynamic behaviour in complex 

environments (Cisek and Kalaska, 2010). Planning many movements is 

clearly advantageous; a shared resource framework provides the balance 

to this by limiting the number of movements that can be planned well (i.e. 

with low execution variability). Extending and testing the idea of a limited 

resource framework in motor areas has the potential to offer new insights 

into motor variability, which has always been an area of debate (Harris 

and Wolpert, 1998; van Beers et al., 2004; Churchland et al., 2006)  

In Chapter 3 I proposed and tested a hypothesis about how expectation 

would interact with a limited resource model. Specifically, I proposed that 

prior expectation leads to uneven distribution of resources across two 

motor plans, making the more expected movement less variable in 

execution. 

Testing this idea, I found the expected effect in leftward movements but 

not rightward movements. I proposed this was due to an interaction with 

the different control policies for leftward and rightward movement and in 

Chapter 4 tested the idea that a stringent control policy is needed to see 

the effect. The experiment in Chapter 4 failed to support this hypothesis.  

I discussed in Chapter 4 whether there were confounding factors in the 

paradigm used to test this idea. One option for future work would be to 
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attempt to design an improved paradigm to test the hypothesis and 

conduct another experiment. However, a continuing complicating factor 

in these experiments is the comparison between two different 

movements (right-handed movements to a target 45° left or 45° right) 

involving non-symmetrical patterns of muscle recruitment which are 

known to produce different early variabilities and endpoint distributions 

(van Beers et al., 2004). 

Thus the next experiment I propose to pursue would be to repeat the 

experiment in Chapter 3 again, this time using two-handed movements 

(i.e handle of robotic manipulandum is grasped with both hands, rather 

than right-hand only). This would have the effect of making the 45° 

leftward and rightward movements much more similar to one another, as 

they would both involve use of both hands. Handedness means that the 

two movements are not completely equivalent, but it seems likely this 

difference is less that the difference when both movements are completed 

using the right hand, and one solution to this would be to recruit a group 

with equal proportions left and right-handers, for separate analysis if 

necessary. 

One possibility is that the explanation proposed for the results of Chapter 

3 – that an effect of expectation on motor variability in leftward but not 

rightward movements was due to differing control policies between these 

movements – was not due to differences in control policy. This would 

explain why the experiment in Chapter 4 failed to find any evidence in 

support of this idea. What then is the reason for the result in Chapter 3? 

The result could be caused by switching. Under this explanation, subjects 

plan a (perhaps lower-effort, single-joint) rightward movement and plan 

the leftward movement only when it is cued. Thus increased variability in 

lower expectation conditions is as a result of lower expectation to switch 

plans, not lower expectation at the planning stage.  



243 
 

The idea that a single movement is planned contradicts a wide literature 

on multiple motor planning (Cisek, 2007; Chapman et al., 2010), detailed 

in Chapter 1. It is also unable to explain the results of a previous 

experiment on motor variability in choice vs forced-choice movements 

(Wijdenes et al., 2016). On the other hand, it explains the null result of 

Chapter 4, because it does not predict that inducing a lax control policy 

(as in this experiment) would change the modulation of variability.  

How could the idea that the result of Chapter 3 is due to plan-switching 

be tested? The strength of a two-handed experiment is that it would also 

test the idea that the results observed are due to plan-switching. If 

switching were occurring, I would expect a two-handed version of the 

experiment to either show the same result as Chapter 4, with an effect of 

variability in one direction but not the other (because one movement is 

still planned in preference to the other, with later switching) or a 

complete null result (because with two equivalent movements, neither 

one is planned until advance, and planning is withheld until the 

movement is fully specified). 

Assuming a two-handed version of the experiment replicated the finding 

in Chapter 3, I would next design experiments to bring the idea I have 

advanced - that limited resources for motor plans can be shared unevenly 

– away from the specific idea of prior expectation and into a more general 

framework. There are lots of factors that influence the relative 

importance of one motor plan over another and might similarly by 

hypothesised to weight motor plans unevenly, leading to a variability 

difference between the two movements. The investigation of these could 

be amenable to the analyses developed (specifically, continuous measures 

of variability along the movement) in Chapters 3 and 4.  

One experiment in this vein would be to test whether, when multiple 

movements are planned in a value-based choice, movements towards the 
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lower-value item are more variable. Value encoding is already known to 

be relative, and the proposed encoding is via divisive normalisation 

(Louie et al., 2011; Pastor-Bernier and Cisek, 2011). Showing a similar 

effect of value on variability to that for prior expectation would be the 

first step towards extending these experiments.  

If these experiments were successful, a next step could be to attempt to 

prove that divisive normalisation is the underlying mechanism, as 

proposed. This would be a challenge in humans as divisive normalisation 

is a cellular mechanism, which, to date, has been studied in animal models 

(Olsen et al., 2010; Louie et al., 2011; Carandini and Heeger, 2012). One 

alternative to animal work is to show results match with the pattern 

predicted by modelling a divisive normalisation processing. This has been 

done successfully for visual working memory errors by modelling spike 

patterns (Bays, 2014, 2015), and there are also preliminary results using 

whole-population models of divisive normalisation to make inferences 

about motor adaptation (Kato et al., 2017). Thus modelling approaches 

could be one option for linking more definitively to divisive 

normalisation. 

An alternative approach to attempting to link to divisive normalisation 

mechanisms could be to use neuroimaging in humans. M/EEG would be 

more suitable than fMRI because temporal resolution would be more 

critical than spatial. A possible experiment would be to measure 

lateralised population activity, and, in particular, peak strength in activity, 

during a task where multiple movements have to be planned with 

different likelihoods of being executed, and show that (1) the activity 

associated with a particular movement is larger in amplitude when that 

movement is more expected; (2) the overall summed population activity 

is relatively constant; as predicted by a divisive normalisation hypothesis. 
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