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ABSTRACT 

We here report on the assessment of the model refinement predictions 
submitted to the 12th Experiment on the Critical Assessment of Protein 
Structure Prediction (CASP12). This is the fifth refinement experiment 
since CASP8 (2008) and, as with the previous experiments, the predictors 
were invited to refine selected server models received in the regular (non-
refinement) stage of the CASP experiment. We assessed the submitted 
models using a combination of standard CASP measures. The coefficients 
for the linear combination of Z-scores (the CASP12 score) have been 
obtained by a machine learning algorithm trained on the results of visual 
inspection. We identified 8 groups that improve both the backbone 
conformation and the side chain positioning for the majority of targets. 
Albei t  the top methods adopted dist inctively d if ferent  
approaches,  the ir overal l  performance was a lmost  
indis tinguishable,  wi th each of them excel l ing in di fferent  
scores or target subsets.  What is more, there were a few novel 
approaches that, while doing worse than average in most cases, provided 
the best refinements for a few targets, showing significant latitude for 
further innovation in the field. 
 
 
 
 
 
 



INTRODUCTION 

The refinement category of CASP (Critical Assessment of protein Structure Prediction) was 

introduced in the eighth round of the experiment to address the challenge of refining selected 

server models from the regular CASP experiment to better represent the native structure.1 

It is now recognized that a number of applications, ranging from rational drug discovery to 

crystallography (molecular replacement) require high accuracy models.2–7 Thus, a reliable 

computational approach for refinement is highly desirable. In this respect, the CASP refinement 

experiment can be very useful, by highlighting the best practices and progress in the field. 

As discussed in previous CASP experiments7, refinement is challenging, as predictors need to 

further improve the best server models both on a global and local scale. Indeed, since many of 

the starting models are already close to the native structures, the refinement methods need to 

be exquisitely sensitive to introduce subtle changes into the original structures, such as re-

packing of side chains. At the same time, these methods should be also capable of significant 

rearrangement of proteins, including rerouting of the backbone or changes to the secondary 

structure elements. 

Many methods ( i. e .  CASP groups1) participating in the mainstream CASP prediction 

already perform some degree of refinement, although the time constraint might prevent the 

use of computationally-intensive strategies. Analogously, a few groups participating in the 

refinement challenge might attempt a partial reconstruction of the fold from the sequence, 

blurring the distinction between the traditional modeling and refinement. Finding the balance 

between small changes that only locally perturb the starting structure, and more substantial 

rearrangements that refold whole sub-domains is the essence of the refinement task itself. As 
                                                             
1 Following the usual CASP convention, we refer to methods as groups (or CASP groups). When 
we refer to authors, we use the term “research group”. 



refinement assessors have already pointed out in the past,7 improving more fine-grained features of 

model quality such as side chain positioning and physicality is seldom useful without a correct 

backbone positioning. This turned out to be the case also in CASP12. 

Historically, a broad variety of methods have been used in protein structure refinement, ranging 

from knowledge-based and fragment-based approaches to molecular dynamics (MD) with 

physics-based force fields.8–15 Lately, due to increasingly accurate physics-based force fields10,16-

21 and faster parallel computers and GPUs, MD in combination with physics-based force fields 

and smart constraints is increasingly used in successful refinement pipelines.11 Starting from a 

clear disadvantage, where such approaches would in most cases make the starting model worse, 

they have been so successful that they are now used in most top-performing CASP12 methods. 

Eight out of top ten CASP12 refinement methods use MD with recently developed physics-based 

potentials (alone or in combination with other approaches), while the remaining two use MD with a 

hybrid knowledge-based / physics-based potential. The increasing success of MD methods 

might seem unsurprising given that they have been shown to reversibly fold small proteins, 

recovering their native structure.22 However, due to a combination of computationally 

prohibitive sampling times (especially in the context of CASP), missing information on structure-

determining contacts (e.g. cofactors, ligands and protein-protein contacts) as well as residual 

force-field inaccuracies, refinement with MD simulations works best when light positional 

restraints are applied to the starting structure.10 The strength of these restraints appear to be a 

crucial parameter for a successful refinement and concurs to differentiate the performance of the 

best approaches in the CASP refinement challenge. The use of restraints might also explain the 

difficulties encountered by MD-only pipelines in refining starting models that are far (in terms of 

GDT_HA and RMSD) from the target. 



Enhanced sampling algorithms, which are increasingly used to address the time-scale 

problem of atomistic MD simulations23–26,  also allow the inclusion of heuristic information 

about protein folds without the need for explicit constraints. Approaches such as MELD 

(Modeling Employing Limited Data)26, which sample important conformational states by 

combining structural and heuristic information with atomistic MD simulations, show promise. 

As an alternative to physics-based force-fields, knowledge-based potentials are highly attractive 

for structure refinement, due to their more direct relation with protein structures and lower 

computational cost.27–29 They are generally derived from knowledge of atom- or residue-specific 

interactions and have been shown to be able to refine near-native structures.30 

As the CASP12 refinement targets span a wide range of sizes (from 54 to 396 residues) and 

accuracies of starting models (GDT_HA scores ranging from 23 to 76), a battery of numerical 

evaluation measures sensitive both to subtle local changes and more global structural features 

needed to be used. For a well-rounded assessment, we combined conceptually different 

evaluation measures tested in previous CASP editions. The coefficients used to combine 

various accuracy metrics have been automatically determined with genetic algorithms and a 

Monte Carlo approach to best correlate with the ranking obtained by visual inspection. 

Reassuringly, the CASP12 score is robust upon restraining individual metrics to less than 20%. 

The ranking of the top 10 methods is very similar to that obtained by applying the CASP11 

and CASP10 scores (Table S1).7,32 Still, we believe that the visual inspection of a considerable 

fraction of submissions enabled us to better distinguish subtle differences in the submitted 

structures and reward the most successful ones. Overall, the analysis of the CASP12 

refinement predictions shows a consolidation of the trend started in CASP10 and continued in 

CASP11. The top methods excel in a number of metrics, but the prediction accuracy is in many 



respects similar across different methods, and for most targets incremental. While some methods 

are relatively more conservative, providing a reliable but small refinement, other approaches are 

more adventurous providing significant improvement of the global and local structure for some 

targets while making a few others worse. Finally, a few new approaches that trail the top 

scoring methods for most targets, occasionally provided striking refinements.  

 

 

MATERIALS AND METHODS 

Target selection 

The overall setup of the refinement experiment in CASP12 is similar to previous 

CASPs1,7,31,32.  Refinement targets are selected from amongst the main challenge targets. One of 

the major concerns of the organizers and assessors is to provide as many interesting targets as 

possible, while discarding cases where the experimental structure is dictated by extensive 

multimeric interactions, or where submitted models are already good and not much room is left 

for the refinement, or, on the contrary, where the models are too poor and the improvement would 

require substantial conformational rearrangements in the global structure. After careful analysis and 

visual inspection, we selected a total of 42 targets for the CASP12 refinement challenge. Of 

these, 23 (55%) were easier tertiary structure prediction targets (or TBM, see the domain 

classification paper elsewhere in this issue), 13 (31 %) wer e i nt ermediat e ( or  TBM/FM) 

and 6 (14 %) were dif f icul t  for  ter t iary st ructur e predic t ion targets (FM). 

D i f f e r e n t l y  f r o m  C A S P 1 1 ,  a large portion of CASP12 refinement targets were 

the FM and TBM/FM targets, which were included in the scope of the refinement experiment 

to follow the recent progress in the free modeling prediction and test the abilities of the 



refinement methods on this kind of targets. Also, some targets in CASP12 were 

considerably larger than those in previous CASP refinement experiments, likely contributing 

to the difficulty of their refinement. As in previous CASP experiments, for each target, one of the 

best server-submitted models was suggested as the starting model for the refinement. The 

accuracy of the model’s backbone (GDT_HA score, the main criterion) and its compliance to the 

known protein stereochemical rules (MolProbity score, secondary criterion) were used in the 

selection process. The accuracy scores for the initial structures are reported in Table 1, together 

with their CASP IDs.  

Many targets for the CASP12 main challenge are large multi-domain complexes. This makes the 

refinement of the corresponding single domain structures very challenging, as many inter-domain 

contacts might stabilize the observed X-ray arrangement. In order to retain as many targets as 

possible while providing a rigorous assessment, we removed from the evaluation some regions of 

targets clearly affected by inter-domain and protein-protein contacts (pertaining to TR866, 

TR868, TR870, TR876, TR885, TR887 and TR922). In TR866, for example, the C-terminal 

helix (V142-Y152) at the oligomerization interface is stabilized by contacts with the other 

proteins forming a hexamer and therefore was excluded from the evaluations. Analogously, in 

TR868, which is a dimer of heterodimers, residues Q65-F75 were removed since they form 

part of the dimerization interface. A visual summary of the regions removed from the seven 

targets is reported in Figure 1. Target TR887 is a special case of a swapped dimer in the X-ray 

structure. Refining the swap segment in the absence of the other monomer (Figure 1) and of 

correctly swapped templates, makes little sense. Instead, when defining the target structure of 

TR887, we replaced the region with the respective swapped segment from the second monomer 

(in green in Figure 1), as predicted by the servers in the main category. 

 



Model accuracy measures 

A number of accuracy scores are automatically calculated by the Protein Structure 

Prediction Center; we refer to the documentation therein for further details.33,34 Here, in line 

with previous CASP refinement experiments, we based our analysis on the following metrics: the 

Root Mean Square Deviation of the Cα atoms (RMSD), the Global Distance Test35 (GDT_TS 

and GDT_HA), SphereGrinder36 (SphGr), the Local Distance Difference Test (LDDT)37 and the 

MolProbity score (MolPrb)38 to assess the model stereochemistry. In addition to these, we also 

considered the Contact Area Difference score (CAD)39 and the Quality Control Score (QCS).40 

The Cα RMSD measure calculates the average distance between the corresponding Cα atoms in 

the model and target after their optimal least-square superposition. The GDT_TS sco r e  is a 

measure of model’s backbone accuracy. The model is superposed (using LGA33) to the target 

structure in multiple trials, maximizing the number of Cα atoms within a certain cut-off 

distance. The GDT_TS value is the average percentage of well-fit Cα atoms calculated at four 

different cut-off values (1.0, 2.0, 4.0 and 8.0 Å ). The GDT_HA is the high-accuracy version of 

the latter metric, for which the cut-offs are halved. SphereGrinder is a local-based measure of 

similarity introduced in CASP10. For every residue, the RMSD score is calculated on sets of 

corresponding atoms inside the spheres of a selected radius (6Å in CASP) centered on the 

same Cα atoms in the model and target. The average percentage of spheres fitting under 2Å 

and 4Å RMSD cutoffs is reported as the SG-score. The LDDT is a superposition-free measure 

based on the comparison of all-atom distance maps of model and target structures. For each 

residue pair within a distance cutoff o f  15 Å, the difference between the corresponding 

distances in the model and in the target is calculated. The LDDT score reports the average 

fraction of the differences below four different threshold values (0.5, 1, 2, and 4 Å ). The CAD-



score39 is based on a similar concept, but uses the difference in residue-residue contact surfaces 

as derived by the Voronoi tessellation, instead of a set of cut-offs. The QCS score was 

developed by Grishin and co-workers40 as a result of their experience as evaluators of the 

CASP9 free modeling (FM) category and is the average of six individual scores that take 

into account the length, position and reciprocal orientation of secondary structure elements 

and Cα-Cα contacts. We observed that adding QCS to the final score led to a better agreement 

with the manually curated rankings. Finally, the MolProbity score is a target-independent 

measure of the model stereochemistry accuracy. It is derived from an extensive analysis of 

deposited PDB structures38 and repor ts the presence of clashes, the rotameric state of the 

side-chains, and the number of residues with backbone torsions φ and ψ outside the high-

density Ramachandran regions.  

The scatter plot and correlation of the different metrics for all the submissions is reported in 

Figure 2. Since most quality scores are highly correlated, after extensive trials with our machine 

learning algorithm trained on the ranking obtained from our manually curated evaluations, we 

retained the RMSD, GDT_HA, SphGr, QCS and MolPrb in our final score (see below). 

For ranking purposes, all the metrics were converted to Z-scores in a two-step procedure. First, 

Z-score were calculated from the distribution of raw scores for all models submitted on a 

target. Then, models with a Z-score lower than -2 were excluded and Z-scores were re-

calculated based on the mean and standard deviation of the outlier-free model set. Finally, 

models with Z-scores lower than -2 (in both calculation stages) were assigned a value of -2 in 

order not to over-penalize the groups attempting novel strategies. The cumulative ranking 

scores were obtained by summing the target-based Z-scores for each group, assigning a Z-

score of -2 every time a target was not predicted by a particular group. 



To estimate the overall added value of the refinement, we compared the results of CASP12 groups to 

those of the artificial ‘naïve group’, which always resubmits unchanged starting model, as proposed by 

the past CASP assessors.7 

 

ASSESSMENT OF THE CASP12 REFINEMENT CATEGORY 

RESULTS 

 

General Overview of targets and predictions 

A total of 39 groups took part in the CASP12 refinement challenge. 20 groups submitted 

predictions for all the 42 targets and further seven for 41 targets. CASP12 refinement results 

spanned a wide range of scores. Figure 3 shows general statistics of the accuracy of first 

submitted models with respect to the accuracy of the corresponding starting models (in terms of 

GDT_HA) for targets of different lengths and different accuracies of starting models. The best 

potential for improvement was observed for smaller targets (top left panel) and those in the 

medium range of starting GDT_HAs (bottom middle panel). Overall, 34% of the models 

improved over the initial structure.  A similar conclusion can be drawn from 

the DRMSD-based analysis ( see Figure S1).  As expected, the median score change is 

close to zero, with ∼ 70% of the predictions having a ∆GDT_HA between -5 and 5 (Figure 

3). This suggests a prevalence of conservative predictions. While more potential for worsening 

the starting structure is observed, with 23% of models taking a loss of 5 or more GDT_HA units, 

3% of the models showed remarkable examples of refinement improving starting structures by 

5 to 20 GDT_HA units.  

Performance of methods according to various 



assessment measures 

We used several conceptually different measures for the refinement assessment (see Methods). 

This allowed us to analyze models from different perspectives (e.g., overall accuracy of the 

backbone, all-atom accuracy of local substructures or stereochemical accuracy).  

Figure 4 shows the results according to one of the most widely used CASP measures, 

GDT_HA, which is used here to evaluate accuracy of the protein backbone refinement. Using 

this metric, it is clear that a number of groups are able on average to refine the targets, with the 

best groups significantly refining some targets, while still worsening a few. Eight groups - 

SVMQA, Seok, FEIG, GOAL_COMPLEX, BAKER, Kiharalab, Seok-server and GOAL - on 

average improve over the starting model (top panel). The largest average accuracy increase, 

however, is very modest and constitutes only 1.3 GDT_HA points (by the SVMQA group). In 

the bottom three panels we report the results binned for different accuracies of starting models. 

In contrast to the general results (showing that the highest improvement potential is for targets 

with medium-range starting GDT_HAs), the top performing groups achieved better  results on 

targets with low initial GDT_HA scores. For example, BAKER, the best group on targets with 

starting GDT_HA<40, improved the GDT_HA by 2 units on average. The average refinement 

of structures close to the target (high initial GDT_HA) is more modest, even though 10 out of 

39 groups stayed in the positive average ΔGDT_HA territory. 

We also performed the analyses similar to the one reported in Figure 4 according to all other 

evaluation measures. In Figure S2 we show the distributions of GDT_TS scores of refined 

models (model 1) for all CASP12 refinement targets.  Figures S3 and S4 show examples of the 

analyses according to the RMSD_CA and GDT_TS metrics. It can be seen that the results are 

conceptually similar to the GDT_HA-based data - a number of groups are able to improve on 



average, but in most cases only marginally.  

To analyze the relative performance of CASP12 groups, we converted raw evaluation scores 

into the corresponding Z-scores (see Methods). Figures 5 and S5 illustrate the performance 

of the participating groups as measured by the normalized RMSD, GDT_HA, SphGr, QCS and 

MolPrb scores (Figure 5) and normalized GDT_TS, LDDT and CAD scores (Figure S5). 

While the ranking changes when different metrics are used, some CASP groups remain 

consistently in the top. These include the following four groups: GOAL (from J. Lee’s research 

group), Seok (from C. Seok’s research group), BAKER (from D. Baker’s research group) and 

FEIG (from M. Feig’s research group). 

Figure 6 reports how many times the best CASP12 groups appear among the best 10 

according to eight evaluation metrics (RMSD, GDT_HA, GDT_TS, SphGr, LDDT, CAD, 

QCS and MolPrb). Seok and GOAL have the best cumulative score according to three 

metrics each: GDT_TS, LDDT and CAD for Seok; RMSD, QCS and SphGr for GOAL. 

FEIG and BAKER appear as the best in one metric each (GDT_HA and MolPrb, respectively). 

Some methods  such  as  SVMQA, LEE, LEEab GOAL_COMPLEX (all from J. Lee’s 

research group and similar to GOAL) and Seok-server (similar to Seok) as well as FLOUDAS 

REFINESERVER (herein referred to as FLOUDAS_REFI), Kiharalab and STAP also appear 

among the first 10 groups. Moreover, BAKER, Seok, Seok-server and SVMQA on average 

perform better than the “näıve method”, regardless of the metric used. The “best 10” methods 

according to each single metric are reported in SI Figure S6. 

 

The CASP12 Score 

The assessor’s formula for ranking groups in CASP is generally defined as a combination of 



different metrics. As discussed in previous CASP experiments,7,32 this is due to two 

considerations: single standard scores, such as RMSD and GDT_HA, may miss promising 

models40,41 and different metrics may suggest different rankings (as shown in Figures S6-S8). 

Examples of discrepancies in rankings according to different metrics are shown in Figure 7 for 

targets TR882 and TR948. It can be seen that different models scored very high with respect to 

either SphGr (left) or GDT_HA (right) metrics, and at the same time very low with respect 

to the other score.  

In CASP12 we had a high percentage of FM and FM/TBM targets (45%). Manual 

inspection41 has been traditionally used to evaluate this kind of targets in CASP. The main 

reason behind this was the reduced reliability of standard scores in FM. It is for instance well 

known that GDT_HA score may give preference to models containing small but precisely 

modeled substructures over those with a good topology and general fold.40,41 Manual 

assessment, on the contrary, is better suited to assess the general fold, the relative arrangement 

of secondary structure elements and local hydrogen bond networks. However, it requires 

significant time investment and might suffer from being subjective.  

In order to benefit from manual assessment while minimizing the pitfalls of subjectiveness 

and avoiding the definition of arbitrary weights for the different metrics, we used a machine 

learning approach to devise a linear combination of standard scores based on the visual 

inspection. Four assessors (LH, VO, HY and GS) visually inspected all “model 1” predictions 

for 14 targets (33%) and each independently scored them. The visually inspected targets have 

the same fraction of FM, TBM/FM and TBM targets as the complete set of targets.  

The targets were divided in 2 to 4 regions (depending on the length of the target) and each 

evaluator carefully assessed their global and local structure, with specific focus on features 



(such as the length, position and reciprocal orientation of secondary structure elements and 

hydrogen bond networks) that might increase the usefulness of the refined structure for docking, 

molecular replacement, etc. The final scores from different evaluators (ranging from -5 to +5) were 

in remarkable agreement (see an example of target TR876 in Figure S9 in SI). We then converted 

the raw manual scores to standard Z-scores,  and derived optimal weights 𝑐#̂  for Z-scores Zm of 

each metric m in our subset, defining the final score 	𝑆& as: 

 

𝑆& = ( 𝑐#̂ ∙ 𝑍#
+

#,-

 

 

under the normalization condition: ∑ 𝑐#̂ = 1+
#,- , where n is the number of metrics selected (8 in 

our case). For the purpose of optimizing the coefficients, we used both a Monte Carlo (MC) 

simulation and a genetic algorithm (GA). Ultimately, the GA was able to push the optimization 

further in preliminary analysis and was used exclusively. The procedure involves the iterative 

generation of N =1000 sets of trial coefficients 𝑐1̃ = {𝑐#̃}1 (with i = 1, . . . , N ) and defining a 

fitness function	𝑓(𝑐1̃),  which selects the best sets.  In the first iteration, all 1000 sets are 

randomly generated. At every subsequent iteration, the best 5% (50) sets of coefficients are 

retained and a further 250 random sets are randomly generated. To have an ensemble of 1000 

sets again, 700 {cm} sets are generated by averaging the coefficients between randomly chosen 

pairs of sets. As we are interested in reproducing the ranking obtained with our manual 

assignment, we defined f (ci) as the Spearman rank correlation coefficient calculated using the 

ranking resulting from our manual assignment and the one resulting using the current score: 

𝑆71 = ( 𝑐#̃,1 ∙ 𝑍#
+

#,-

 



where the {𝑐#̃}1 are the coefficients at the current step. After some trials with various 

combinations, we considered only the rank of the six best models according to our manual 

assignment and the proposed score, for every manually evaluated target. After 100 iterations 

the weights converged, resulting in formula:	 

𝑆&CASP12= 0.46·ZRMSD + 0.17·ZGDT_HA + 0.2·ZSphGr + 0.15·ZQCS + 0.02·ZMolPrb 

where the weights for ZLDDT and ZCAD were manually excluded from the final score as they were 

approaching zero and GDT_TS was very strongly correlated with GDT_HA. 

As expected, the ranking obtained by the final 𝑆&9:;<=> score correlates better with the ranking 

obtained by visual inspection than those obtained by CASP10 and CASP11 scores (Figure S10). 

We were initially surprised by the high coefficient of the RMSD. However, the ranking is robust 

upon constraining RMSD to 20% or less. Fixing the coefficient for ZRMSD at 0.2 and that for 

ZMolPrb at 0.02, the ranking with this “restricted” CASP12 score is very similar to the original 

CASP12 ranking (see Table S2). 

It should also be noted that the inclusion of MolProbity worsens the correlation with the manual 

assessment. By excluding ZMolPrb and re-optimizing the coefficients, the Spearman rank 

correlation coefficient increases to 0.491 from the 0.467 of 𝑆&9:;<=>. This shows that the local 

stereochemistry of the models is not a priority for most groups. Thus, we decided to retain the 

MolProbity score, albeit with a small coefficient, to continue encouraging predictors to fix the 

local stereochemistry of their models. 

The performance of different groups according to the 𝑆&9:;<=> score is reported in Figure 8 and 

Table 2. GOAL ranks n a r r ow l y  first, followed by Seok and BAKER with almost 

indistinguishable scores, Seok_server ( s im i l a r  t o  S eo k ,  s ee  de s c r i p t i on  b e l ow ) ,  



SVMQA ( s im i l a r  t o  G O A L)  and FEIG. For comparison, the rankings on CASP10 and 

CASP11 assessor-defined scores are reported in Figure S11 and Table S1. 

The final rankings by CASP12 and CASP11 scores are similar. For instance, only in 10 of the 

42 targets does the highest scoring model 1 according to the CASP12 score differ from the 

highest scoring model according to the CASP11 score (Table S3). In 4 of these 10 cases the 

highest scoring models according to the CASP12 score are clearly more accurate than the 

highest scoring models according to the CASP11 score (Figures S12-S15), in one case the 

highest scoring model according to CASP11 is marginally better than the one of CASP12 and 

in the remaining six cases the difference is negligible. We also tested if applying the 𝑆&9:;<=> 

score to CASP11 targets would yield different top models. For most targets, the top-ranking 

predictions are the same, with the exception of six targets (TR217, TR288, TR280, TR760, 

TR774, TR795). In three cases (TR217, TR288, TR280) the highest scoring model according 

to the CASP12 score are more accurate, while in the remaining three cases the differences are 

too small to be significant (see Table S4 for detailed analysis).  

All top 10 refinement methods outperformed the näıve submission in CASP12 improving both 

the backbone conformation and the side chain positioning. The difference between the top 6 

methods is very small. This is confirmed by both a pair-wise Wilcoxon signed-rank test and a 

global Friedman test that concur that their performances are marginally different. 

Based on the results, we can roughly classify the methods in two categories: “conservative” and 

“adventurous”. The conservative methods typically yield structures that are close to the initial 

ones and which score in a narrow range around the starting model’s score. Seok and 

FEIG’s approaches belong to this category. Adventurous methods seem to have the ability to 

substantially improve the structures in some cases, counterbalanced by a significant 



worsening in other cases (e.g. BAKER). 

 

Details of the best methods 

The GOAL method uses the similarity between the given refinement model and a list of 

templates generated by their fold recognition methods to select the best template and 

generate a new starting model, on which a refinement protocol similar to 

Princeton_Tigress MD-only is used.43 A number of minimization steps with gradually 

reduced positional restraints and short restrained MD simulations are performed. At 

difference with Princeton_Tigress, GOAL uses the AMBER ff14SB18 force field and explicit 

TIP3P water.44 GOAL’s variant, LEE, uses modeling server models for initial clustering and the 

same refinement protocol. SVMQA and GOAL_COMPLEX use the same initial structures as 

GOAL, but perform a series of shorter MD simulations (5ns in total) using positional restraints. 

SVMQA complements the force-field with the DFIRE statistical energy term.29 

The Seok method first predicts the inaccurate regions of the starting model, then it 

performs an extended structural sampling on those regions by normal mode analysis and 

secondary structure perturbations /hybridization, followed by short MD relaxation with a hybrid 

potential.45 The difference between the Seok and Seok-server methods is that the 

latter submitted server predictions with no human intervention, while in the Seok 

predictions some of the final conformations are manually-selected and the error 

estimation results are modified after human inspection. 45  

The BAKER group performs a large scale conformational sampling using the Rosetta 

hybridization protocol followed by restrained MD simulations with the AMBER ff12SB force 

field and explicit TIP3P water on selected candidates. Depending on the distance of the 



starting structure from the target,  either a high-resolution or a low–resolution 

protocol is used. In the former, Rosetta hybridization is only applied to rebuild 

local regions estimated to be less accurate, while in the low-resolution protocol, 

the iterative version is applied to rebuild the whole structure. For each of five 

selected Rosetta-refined models,  5 independent 10 ns-long MD simulations are 

performed and MD-refined models are ranked by the ensemble-average Rosetta 

energy. 

The FEIG group uses by far the most extensive weakly restrained MD simulations (2-8 µs per 

target) with explicit solvent and the recently re-parameterized CHARMM36m force field.21 

From the MD structural ensembles a subset of structures is selected and 

averaged before finishing with detailed refinement of the local stereochemistry 

using “locPREFMD”.46 

Kiharalab uses a combination of energy minimization, short and long MD 

simulations with the CHARMM22/CMAP force field and an implicit solvent.   

As it can be seen from Figure 9, the GOAL method works best on targets with intermediate 

starting GDT_HA (40 < GDT_HA < 60) and those longer than 300 residues (see Figure 10 

for an example). It also provides some well-refined targets in the GDT_HA<40 range where 

the initial structure is far from the experimental structure. Seok’s approach ranks second in 

three categories (Starting GDT_HA>60; 40 < Starting GDT_HA<60 and 150< 

Residues<300) and on average has the best GDT_TS (Figure S5). BAKER remarkably 

comes on top in targets with extreme starting GDT_HA (either >60 or <40), submitting a 

number of strikingly refined structures (see Figure 11 for an example). FEIG’s approach has on 

average the best GDT_HA scores (Figure 5) and ranks clearly first for smaller targets (< 150 



residues). This might reflect the fact that a strategy based purely on long MD simulations with 

accurate physics-based force fields and weak restrains (FEIG) is effective in exploring the 

conformational landscape of small proteins. However, large targets or those with low initial 

GDT_HA clearly benefit from combined methods where backbone-rebuilding methods are used 

before MD. Alternatively enhanced sampling MD has clear potential, as shown by the 

remarkable refinement of some more complex targets by the group Laufer_seed (Figure 10).  

 

Accuracy of model 1 compared to the other models  

CASP12 participants were allowed to submit 5 models per target. The additional submissions 

allow predictors to test different models, different versions of their methods or even completely 

different strategies. As in previous CASP experiments, we assessed the ability of different 

groups to identify their best models and protocols (tentatively model 1) out of the submitted 

ones. This is often an important task, as many approaches provide a number of structures 

and some methods include a final MD simulation, which generates a large ensemble of 

structures. A few methods based on structure selection and averaging have been developed to this 

end.11,42 GOAL, the top scoring approach according to the CASP12 score, uses a combination of 

trajectory averaging of atomistic explicit solvent MD simulations and energy minimization with 

an implicit solvent to address this issue. BAKER combines large scale conformational search 

using Rosetta with multiple 10ns-long MD simulations, run with the AMBER ff12SB force 

field and explicit TIP3P water. Structural averaging was used to obtain the representative 

conformation from the MD simulations.  

In Figure 12, we report the ability of each group to correctly identify their best model (or 

protocol). On average, the groups were not able to correctly identify the best model (they did 



little better than random by identifying the best model in 30% of the cases). The best 

groups in this component of the analysis, MESHI and Kiharalab, succeeded in more than 60% 

of the targets. GOAL and Seok identified their best models/protocols in about 30% of cases, 

while BAKER identified the best model only in 24% of cases. The BAKER group would 

have ranked 2nd according to the CASP12 score if the best models (instead of Model 1) were 

considered, showing further potential for improvement of their protocol. 

FEIG submitted as model 1 the predictions from the most comprehensive and expensive MD-

based protocol. This reassuringly resulted in 36% of models 1 being the best model, showing that 

longer MD sampling indeed helps the refinement (and perhaps combining it with enhanced 

sampling algorithms might help even more).  

 

Progress since CASP11 

An important question addressed at every CASP meeting is the progress since last CASP. 

Comparison of the CASP12 results with those from two previous experiments is reported in 

Figure 13. The comparison shows the considerable improvement observed in CASP11 over 

CASP10, which, in turn, had already shown the most remarkable results since the inception of 

the refinement category in CASP8. CASP12 appears to consolidate the results of CASP11, 

showing similar global refinement when all submissions are considered. However, it is 

important to bear in mind that the targets are different in each CASP experiment, and we believe 

that the targets we released in this edition were more challenging, being both larger (including 

targets longer than 400 amino acids), more diverse and requiring more local refinement. In 

particular, six CASP12 targets were especially challenging: TR869, TR870, and 

TR898 had starting GDT-HA less than 30 and protein size larger than 100 aminoacids, 



while targets TR890, TR901 and TR905 had a starting GDT_HA less than 35 and 

protein size larger than 180 amino acids. It is thus reassuring to observe that the CASP12 

predictions were as good as or better than CASP11 predictions.  

 

DISCUSSION AND CONCLUSIONS 

In the CASP12 refinement experiment, we have assessed the performance of 39 groups in 

refining 42 targets using a combination of standard Z-scores provided by the Structure 

Prediction Center. 

We used a machine learning algorithm to select the weights for combining Z-scores so that they 

correlate in the best way with the manually curated rankings performed by 4 independent 

evaluators on 33% of the targets. Although the final ranking is similar to that obtained with the 

CASP11 score, we believe that the new score is better able to distinguish useful refinements (see 

SI Figures S11-S14). 

CASP12 witnessed yet another step forward in the development of effective refinement 

algorithms. The methods were tested on the most diverse set of targets ever used in the 

refinement-CASP. Despite the challenging refinement target set, the CASP12 results proved to 

be on par with those from the previous CASP.  

The best CASP12 methods can be roughly categorized as “conservative” (Seok and FEIG) and 

“adventurous” (BAKER and, to some extent, GOAL and similar methods from Lee’s research 

group), with the first group of methods consistently refining the initial structures by a small 

amount and worsening few structures and the second group submitting some spectacular 

refinement but worsening a larger number of targets. 

All best performing groups use restrained MD simulations, alone (FEIG and Kiharalab) or 



in combination with other approaches (GOAL, Seok and BAKER). Seven out ten run MD 

simulations with physics-based force fields (AMBER ff12SB, ff14SB and CHARMM36m) and 

explicit solvent, while three (Seok, Seok-server and Kiharalab) use a hybrid potential or an 

implicit solvent. 

The GOAL method was the top performer according to the CASP12 score. This excellent result 

was obtained by combining an effective strategy to select the best templates to remodel the initial 

structures provided, followed by short MD runs with a good protein force field (AMBER 

ff14SB) and explicit solvent. As almost 30% of the starting structures for refinement came from 

the GOAL server, there was a risk of diminishing returns for the starting model rebuilding 

strategy. Indeed, Figure 14 shows the difference in performance depending on the origin of the 

starting structure as measured by increase in GDT_HA. As expected, the median is clearly 

affected (and goes below zero) when the starting structure comes from the group itself. Still, even 

in these cases, GOAL was capable of some significant refinements, up to 13 GDT_HA units, 

showing the effectiveness of the MD refinement approach.  

The BAKER method proved to be capable of generating striking refinements for difficult 

targets. The method ranked first on the targets in the difficult GDT_HA <40 category and in the 

GDT_HA >60 category. According to the authors, the method was in part limited by 

insufficient sampling and by failure of correcting sequence alignment errors47, 

showing a clear potential to emerge as a very robust and reliable refinement 

method across all categories.  Seok’s approach showed the ability to reliably refine almost 

all targets, albeit by a smaller amount. It is currently the best choice in terms of 

reliability. FEIG’s approach does extremely well for small targets (<150 residues) and 

provides the best GDT_HA improvement on average. However, being based on weakly 



restrained MD with a physics-based potential, it is penalized to a greater extent for missing 

structure-defining contacts (ligands, multimeric protein-protein contacts) and needs more 

extensive sampling and perhaps a different restraint strategy on larger and more difficult targets. 

Indeed, the use of positional restraints and plain (non-enhanced) MD keeps the refined structure 

close to the initial one and makes it particularly difficult to refine targets with low starting GDT-

HA. Interestingly, the authors convincingly show that increasing the MD sampling yields better 

refined models.46 An additional group that did better than the näıve method is Kiharalab, again 

with an MD-based protocol and an implicit solvent model. 

It is worth bearing in mind that missing contacts are almost unavoidable in larger CASP 

targets, thus penalizing the strategies based on pure-MD. However, a special “high resolution” 

category might be introduced in future CASPs to address this problem.  

Even among the second-tier groups, a few approaches delivered remarkably refined models for a 

subset of the targets, while performing modestly overall (see Figure 4 and 5). These include 

groups PKUSZ, Seminoles, Schroderlab and Laufer_seed. The latter uses MD with an enhanced 

sampling approach (MELD).26 Indeed, when considering the number of times their models 

ranked first for a target (SI Figure S7), or had a Z-score higher than 1.5 units (SI Figure S8), 

these groups perform as well as the top ones and provide a number of remarkably refined 

structures, see for instance Figure 10. With further development, any of these approaches has 

the potential of ranking very highly in future CASP refinement experiments, especially if a 

“high-resolution” category is introduced.   

Although the combination of restrained MD simulations with accurate force-fields is clearly 

useful in protein structure refinement and has been adopted by most top-ranking groups, the 

larger and more difficult targets introduced in the CASP12 refinement challenge made clear the 



limits of this approach. When the starting structure is large or far from the target, restrained-MD 

works best when combined with methods that perform a more extensive sampling of the 

backbone conformational space. Indeed, limited sampling has been cited by the top performing 

research groups as a common cause of concern. According to their authors, both Feig’s “pure-

MD” and Baker’s hybrid method might have benefited from more extensive conformational 

sampling. In this respect, the use of enhanced sampling methods might be very beneficial, as 

shown by some remarkable refinements already obtained by some groups (such as 

Laufer_Seed). Methods combining coevolutionary data and MD simulations with hybrid force 

fields and enhanced sampling algorithms48 might also lead to further progress. 

Ideas for future CASP refinement experiments 

The experience in assessing the CASP12 refinement category has led us to propose a 

subdivision in two categories along the lines of high and low resolution refinement. The former 

category should include smaller targets providing all structure defining contacts (including 

ligands and co-factors). In this category, the use of starting structures different from the ones 

provided by the organizers should be strongly discouraged. This should provide a level ground 

and allow a fair comparison of MD-based and  similar  “pure ref inement” approaches, 

including those avoiding explicit restraints and using enhanced-sampling algorithms, with 

hybrid methods. The low-resolution category (low starting GDT_HA) should cater to more 

adventurous methods and reward pipelines that include a systematic effort to locally rebuild the 

backbone of FM predictions with knowledge-based approaches that might do well even in the 

absence of important structure-defining contacts. An additional consideration arises by the lack 

of correlation of the MolProbity score with all the other quality scores. It is desirable that the role 

of this score in the future assessments is discussed before the start of the next experiment. 
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FIGURE CAPTIONS 
Figure 1. Target structures with inter-domain o r  i n t e r - c h a i n  contacts. The 
domains to be refined a r e  in cyan, additional domains are in gray. The interacting 
regions that were removed from the assessment are shown in red. These are: Q65-
F75 in TR868, I8-S21 in TR870, F107-A124 in TR876, V142-Y152 in TR866. In the 
case of TR887, the green region represents the swap segment added to the target 
structure from the second monomer. 
 
Figure 2. Correlation between eight evaluation metrics for all targets and all 



submissions. Pair-wise scatter plots are in the l e f t  lower triangular part of the table; 
the correlation coefficients are in the upper one. 
 
Figure 3. N o r m a l i z e d  p r o b a b i l i t y  distributions of ΔGDT_HA differences 
between the refined and starting models for different target lengths (top row of 
graphs) and different starting GDT_HA (bottom row). Data for first submitted models 
are presented. Y-axis shows values of the probability density function (PDF) of the distribution.  
 
Figure 4. Performance of CASP12 groups as evaluated by the differences in 
GDT_HA scores between the refined and starting models. The data are shown for all 
targets (top panel) and for three target subclasses with different GDT_HA scores of 
starting models (i.e. different difficulties of original targets for tertiary structure 
prediction). Only models ranked as #1 by the predictors are considered. The quartiles 
are shown as dotted lines in the violin plots. Groups are sorted according to decreasing 
delta_GDT_HA mean on all targets (top panel). 
 
Figure 5. Overall performance by group as measured by RMSD, GDT_HA, 
SphGr, QCS and MolPrb Z-scores. Each panel shows boxplots of per-target Z-
scores for a specific measure.  Groups are ordered left to right by the sum of 
RMSD Z-scores (top panel, higher is better). Missing predictions are assigned a 
value of -2 for each target. The number of submitted targets for each group are 
reported in grey on top of the box plots for MolPrb.  
 
Figure 6. Cumulative group ranking for the eight selected metrics. The plot 
shows the number of times a group appears with a particular ranking in the 
best 10 models according to the various metrics considered separately. When 
a group is not in the best 10, we report whether the score is better or worse 
than that of the “naïve” submission. Thus, the sum of all bar heights for each 
group is always equal to eight (total number of metrics). Only groups 
appearing among the best 10 according to at least 2 metrics are shown. 
 
Figure 7. Discrepancies between the GDT_HA and SphereGrinder scores for two 
different models on two refinement targets - TR882 and TR948. The target structure is 
colored blue, the starting model - gray and the prediction - based on per-residue 
distances between the corresponding Ca atoms in the superposition, ranging from 
green (improved over starting model) to yellow (no improvement) and red (worse). 
For clarity, part of the structure has been removed from target TR948.  
 



Figure 8. Overall performance by group as measured by the 𝑆&CASP12 
assessors score. Groups are ordered left-to-right by their rank (i.e., 
decreasing sum of 𝑆& over all targets). 

Figure 9. Overall performance by group as measured by the 𝑆&CASP12 assessors 
score on the targets grouped into three bins based on the starting model's GDT_HA (top 
row) and target size (lower row). Groups in each panel are ordered left-to-
right by their rank (decreasing sum of 𝑆&CASP12 over all targets). Only the first 
submitted models are considered. 
 
Figure 10. Some examples of notable refinement. The target structure is shown in blue, the 
starting model in gray and the prediction with a color scale based on per-residue distances 
between the corresponding Ca atoms in the superposition, ranging from green (improved over 
starting model) to yellow (no improvement) and red (worse). 
 
Figure 11. Four predictions that  improved over the start ing model for target 
TR594 by more than 10 GDT_HA points The target structure is shown in blue, 
the starting model in gray and the prediction with a color scale based on ∆RMSD 
ranging from green (improved over starting model) to yellow (no improvement) and 
red (worse). 
 
Figure 12. Best model or method selection. The plot reports the percentage of submitted 
models #1 that correspond to the best of the 5 submitted models. The numbers on top of the bars 
report the number of model 1s corresponding to the best models (not all groups submitted 
models for all targets). The asterisks mark the CASP12 top performers. 
 
Figure 13. Normalized probability distributions of delta-GDT HA and delta-
RMSD scores in the latest three CASPs. Y-axis shows values of the probability density 
function (PDF) of the distribution.  
 
 
Figure 14. Comparison of the refinement achieved by group 220 (GOAL) on 
targets for which the starting structure was provided by GOAL itself (”start”) or 
by other groups (”not-start”). 
 
 


