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Abstract 

The iconic climate archive of Tenaghi Philippon (TP), NE Greece, allows the study of short-

term palaeoclimatic and environmental change throughout the past 1.3 Ma. To provide high-

quality age control for detailed palaeoclimate reconstructions based on the TP archive, 

(crypto)tephra studies of a peat core ‘TP-2005’ have been carried out for the 0–130 ka interval. 

The results show that the TP basin is ideally positioned to receive tephra fall from both the 

Italian and Aegean Arc volcanic provinces. Two visible tephra layers, the Santorini Cape 

Riva/Y-2 (c. 22 ka) and the Campanian Ignimbrite (CI)/Y-5 (c. 39.8 ka) tephras, and six primary 

cryptotephra layers, namely the early Holocene E1 tephra from the Aeolian Islands (c. 8.3 ka), 

the Campanian Y-3 (c. 29 ka) and X-6 tephras (c. 109.5 ka), as well as counterpart tephras 

TM-18-1d (c. 40.4 ka), TM-23-11 (c. 92.4 ka) and TM-33-1a (c. 116.7 ka) from the Lago Grande 

di Monticchio sequence (southern Italy), were identified along with repeatedly redeposited Y-

2 and CI tephra material. Bayesian modelling of the ages of seven of the primary tephra layers, 

60 radiocarbon measurements and 20 palynological control points have been applied to 

markedly improve the chronology of the TP archive. This revised chronology constrains the 

age of tephra TM-18-1d to 40.90–41.66 cal ka BP (95.4% range). Several tephra layers 

identified in the TP record form important isochrons for correlating this archive with other 

terrestrial (e.g., Lago Grande di Monticchio, Sulmona Basin and Lake Ohrid) and marine (e.g., 

Adriatic Sea core PRAD 1-2 and Aegean Sea core LC21) palaeoclimate records in the 

Mediterranean region. 

 

1. Introduction 

In light of current anthropogenic climate change, detailed temporal-spatial reconstructions of 

past natural climate variability are required. This holds true particularly for the climatically 

highly sensitive Eastern Mediterranean region, which is currently experiencing increased 

frequency and intensity of droughts and heat waves (e.g., Giorgi and Lionello, 2008; IPCC, 

2014). Past short-term climate change as evidenced in marine cores from the North Atlantic 
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(e.g., Shackleton et al., 2000) and ice cores from Greenland (e.g., NGRIP members, 2004) is 

also registered in Mediterranean palaeoclimate archives. However, the exact age relationships 

of climate signals recorded in these archives have remained difficult to decipher due to a lack 

of precise age control. Long key records from this region include the annually laminated 

archive from Lago Grande di Monticchio (e.g., Allen et al., 1999; Brauer et al., 2007; Martin-

Puertas et al., 2014), the Sulmona and Fucino Basins in Italy (e.g., Giaccio et al., 2012, 2017b; 

Regattieri et al., 2017), and Lake Ohrid (e.g., Sadori et al., 2016; Wagner et al., 2017), Lake 

Prespa (e.g., Damaschke et al., 2013; Panagiotopoulos et al., 2014) and the Tenaghi Philippon 

peatland (e.g., Pross et al., 2015; Tzedakis et al., 2006) in the Balkan Peninsula. In addition, 

precise correlation of terrestrial records with marine records from the Adriatic, Ionian and 

Aegean Seas is notoriously difficult due to dating uncertainties stemming from unknown or 

regionally variable radiocarbon reservoir ages (e.g., Rohling, 1994; Siani et al., 2001). Precise 

land-sea correlations can, however, be obtained through using event markers such as volcanic 

ash (tephra) layers that are preserved in the respective sedimentary archives. Tephras from 

explosive eruptions are deposited synchronously, often over wide geographic areas, and 

provide independent chronological markers in geological archives when well dated (e.g., 

Thorarinsson, 1944; Lowe, 2011). The Eastern Mediterranean region is ideally suited for a 

tephrochronological approach due to (i) the frequent activity of high-explosive, volcanoes in 

central and southern Italy, the Aegean Arc (Greece), central and eastern Anatolia (Turkey), 

and the East Carpathians (Romania) during the Quaternary (Fig. 1a); (ii) distinctive glass 

chemical compositions of tephras derived from different volcanic sources that enable 

unambiguous identification; and (iii) wide tephra dispersal plumes transported by prevailing 

westerly, but also minor northerly and southerly, winds, leading to the stratigraphical layering 

of tephras derived from different source regions (e.g., Druitt et al., 1995; Federman and Carey, 

1980; Keller et al., 1978; Narcisi and Vezzoli, 1999). 

 The Tenaghi Philippon (TP) peatland in NE Greece is situated in an ideal geographical 

position to record eruptions of Eastern Mediterranean volcanoes (Fig. 1), and has a long 

history of palaeoclimatic and environmental research that extends back to coring campaigns 
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during the 1960s (van der Wiel and Wijmstra, 1987a, 1987b; Wijmstra, 1969; Wijmstra and 

Smit, 1976; see review of Pross et al., 2015, and references therein). The millennial-scale-

resolution pollen records generated from these early TP cores for the last c. 1.35 Ma revealed 

strong similarities with deep-sea oxygen isotope records (e.g., Tzedakis et al., 2006; van der 

Wiel and Wijmstra, 1987b; Wijmstra and Groenhart, 1983; Wijmstra and Young, 1992).  

Because the core material recovered through the drilling efforts from the 1960s has long 

since deteriorated and also suffered from partially limited core recovery, the potential of the TP 

archive for the analysis of short-term climate and ecosystem variability has long remained 

untapped. Therefore, two new long cores (TP-2005 and TP-2009) were drilled in 2005 and 

2009 (Pross et al., 2007, 2015). The excellent core recovery achieved during these later drilling 

campaigns allows high-resolution (i.e., decadal to centennial) analyses (e.g., Fletcher et al., 

2013; Milner et al., 2012, 2013, 2016; Müller et al., 2011; Pross et al., 2009).  

 A full, state-of-the-art tephrostratigraphic record for the TP sediment sequence, 

(crypto)tephra analysis has been conducted on the upper 34 m of the TP-2005 core, 

encompassing the time interval of the last c. 130 ka (Marine Isotope Stages [MIS] 1 to 5/6). 

This core interval has been selected because it spans the last full glacial-interglacial cycle and 

reveals pronounced millennial-scale climate variability similar to those reported from other 

high-resolution, tephra-dated Eastern Mediterranean palaeoclimate archives. Hence, it offers 

the potential for distal correlation of palaeoclimate signals in this region using common tephra 

isochrons (see Section 6.4).  

 In this study, we present major and trace element geochemical data for visible and non-

visible (crypto)tephras from the 1–34 m depth interval of the TP-2005 core. Where the new 

data are combined with previously published tephra data (e.g., Müller et al., 2011, Albert et al., 

2015, Pross et al., 2015: see details in Section 3), the results allow refined correlation of 

individual tephra layers to their respective volcanic sources. Published ages for the assigned 

tephra eruptions, together with radiocarbon dates and palynological control points from the TP 

archive, lead to an improved age model for the TP sequence, while refinement of the tephra 

record allows more secure correlations with other high-resolution palaeoclimate archives. Our 
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results therefore provide additional critical anchor points to underpin the distal 

tephrostratigraphical framework of the Eastern Mediterranean region. 

 

2. Regional setting 

The TP site is situated in the Philippi peatland within the southeastern part of the Drama Basin 

in NE Greece (Fig. 1b). The Drama Basin (40–200 m a.s.l.; Fig. 1) formed as a low-elevation 

graben structure resulting from post-orogenic, arc-parallel extension that started in the late 

early or middle Miocene (Christanis, 1983; see Pross et al., 2015, for a discussion of its 

geological evolution). The basin is bordered by the Phalakron Range (2,232 m a.s.l.) to the 

north, the Menikion Range (1,956 m a.s.l.) to the west, the Pangaeon Range (1,956 m a.s.l.) 

to the south, and the Lekanis Mountains (1,150 m a.s.l.) to the east; to the southeast, the 

Symvolon Hills (477 m a.s.l.) separate the basin from the northern Aegean Sea. Today, several 

streams that discharge into the Angitis River and onward into the Strymon River drain the 

Drama Basin.  

 The Philippi peatland harbours nearly 200 m of limnotelmatic sediments, which make it the 

thickest known peat-dominated succession in the world (Christanis, 1987). A shallow 

unconfined aquifer exists at ~1–1.5 m below the surface in the central part of the basin 

(Georgakopoulos et al., 2001). Between 1931 and 1944, the Philippi peatland was drained for 

intensive agricultural cultivation, which has caused severe disturbances at the peat surface 

and subsidence that nowadays exceeds 7 m in the central part of the peatland (Christanis, 

2016).  

 The regional climate is characterised by a typical Mediterranean seasonal regime modified 

by continental influence. During winter, anomalously cold and windy episodes occur that are 

triggered by southward outbreaks of polar air masses from the Russian High (Saaroni et al., 

1996). Today’s average annual precipitation amounts to 459 mm, with September being the 

driest (18 mm) and December being the wettest months (55 mm) (www.geoclima.eu). Moisture 

availability is mainly linked to the penetration of westerly storm tracks and Mediterranean 

cyclogenesis (Lionello et al., 2006; Xoplaki et al., 2004).  

http://www.geoclima.eu/
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 The TP site is located in a favourable downwind position with respect to the potential 

volcanic sources of tephra, c. 820–870 km east of alkaline Roman and Campanian, calc-

alkaline Aeolian Island and peralkaline Pantelleria volcanoes (Italy), and c. 520–550 km north-

northwest of calc-alkaline Aegean Arc volcanoes (e.g., Santorini, Nisyros, Yali, Kos) (Fig. 1a). 

Both the Italian and Aegean volcanic provinces are home to restless volcanoes that have 

explosively erupted during the Late Quaternary (e.g., Druitt et al., 1989, 1999; Keller et al., 

1978; Narcisi and Vezzoli, 1999; Paterne et al., 1988; Sulpizio et al., 2003; Zanchetta et al., 

2011). Widely dispersed trachyphonolitic and rhyolitic-dacitic tephras have been detected in 

numerous sedimentary archives in the Aegean-Levantine (e.g., Eastwood et al., 1999; 

Federman and Carey, 1980; Keller et al., 1978; Leicher et al., 2016; Margari et al., 2007; Satow 

et al., 2015; Vinci, 1985) and Black Sea regions (e.g., Çağatay et al., 2015; Kwiecien et al., 

2008; Wulf et al., 2002), some with trajectories towards the TP site. Other potential Late 

Quaternary tephra sources that may have impacted the TP site include the Ciomadul volcanic 

complex in Romania (c. 600 km north of TP; e.g., Harangi et al., 2015; Karátson et al., 2016; 

Molnár et al., 2018) and Central Anatolia (e.g., Acigöl, Hasan Dagi, and Erciyes Dagi; c. 930 

km east-southeast of TP; e.g., Kuzucuoglu et al., 1998; Sarikaya et al., 2017; Schmitt et al., 

2011) (Fig. 1a). However, erupted calcalkaline (high-silica) rhyolites from both these provinces 

are normally dispersed either towards the east (e.g., Cullen et al., 2014; Wulf et al., 2016) or 

south (e.g., Hamann et al., 2010; Neugebauer et al., 2017) and therefore may not necessarily 

be registered in the TP sequence. 

 

3 Previous tephra studies of the TP sequence 

In the 1980s, short (<15 m long) cores from the Tenaghi Philippon basin were examined for 

their tephrostratigraphic potential. These efforts initially yielded four visible tephra horizons that 

were mineralogically characterised, and tephra ages were constrained by radiocarbon dates 

of over- and underlying sediments (Christanis, 1983). Two prominent tephra layers, labelled 

‘unterer Tuffit’ and ‘oberer Tuffit’ by Christanis (1983), were tentatively correlated with Late 

Pleistocene Campanian and Santorini tephras that occur in deep-sea sediments in the Eastern 
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Mediterranean Sea, namely the Y-5 and Y-2 tephras, radiocarbon dated at TP to >28 14C ka 

BP and c. 14 14C ka BP, respectively. Christanis (1983) also mentioned a Holocene tephra (c. 

3.6–4 14C ka BP) and a layer intercalated between the Y-5 and Y-2 tephras (c. 19 14C ka BP) 

of unknown origin. In a later study, St. Seymour et al. (2004) were the first to geochemically 

analyse three visible tephra horizons (PhT1, PhT2, PhT3) recovered from new cores from the 

marginal zone of the Philippi peatland (cores Ph1, Ph2 and Ph3; Fig.1), but in similar 

stratigraphic positions to those described by Christanis (1983). The major element glass 

compositions of the lowermost tephras PhT2 and PhT3 confirmed the correlations of Christanis 

(1983) with the Y-2/Cape Riva tephra from Santorini (c. 22 cal ka BP; Bronk Ramsey et al., 

2015) and the Y-5/Campanian Ignimbrite (CI) eruption from Italy (39.85 ka; Giaccio et al., 

2017a), respectively. The youngest visible tephra PhT1, dated to c. 13.0 14C ka BP, was found 

to be geochemically similar to the Y-2 tephra and therefore was tentatively assigned to an 

unknown eruption of Thera volcano, Santorini (St. Seymour et al., 2004). These results 

demonstrated that the TP site has received volcanic fall material from both Italian and Aegean 

Arc volcanoes. Hence, from a tephrostratigraphical perspective it can be considered a key 

archive for linking Central and Eastern Mediterranean palaeoclimate records. 

The first studies on visible tephra layers of the newly drilled TP-2005 core (Pross et al., 2007) 

geochemically identified the Y-2 tephra (PhT2, ‘oberer Tuffit’) and CI/Y-5 (PhT3, ‘unterer Tuffit’) 

at 7.61 m and 12.87 m core depth (Müller et al., 2011; Lowe et al., 2012), but failed to detect 

the ~13.0 14C ka PhT1 tephra previously described by St. Seymour et al. (2004). Initial 

cryptotephra studies on the 4–19 m interval of the TP-2005 core were performed within the 

RESET project (Lowe et al., 2015), and as part of the results, Albert et al. (2015) highlighted 

the identification of the Campanian Y-3 tephra (29 cal ka BP; Bronk Ramsey et al., 2015). 

Furthermore, a preliminary account of cryptotephra findings from the 6–15 m interval of the 

TP-2005 core (MIS 2-4) was provided by Pross et al. (2015). Recent cryptotephra studies at 

Heidelberg University focused on TP-2005 core sections from 1-4 m (Middle-late Holocene) 

and 19-34 m (MIS 5) depth. In order to provide a complete tephrostratigraphy for the entire 

MIS 1 to MIS 5 interval, data and results of all (crypto)tephra studies conducted on the TP-
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2005 core are either newly presented or reviewed in this paper.  

 

4 Material and methods  

The deep core TP-2005 was drilled in April 2005 in the southern part of the Philippi peatland 

(coordinates: 40°58’40”N, 24°13’42”E, 40 m a.s.l., Fig. 1c) using a non-rotating probe driven 

by a pneumatic hammer system on a WIRTH Eco l drill rig (Pross et al., 2007, 2015). It extends 

from the surface to 60 m depth and represents a sedimentary sequence that spans the Late 

Holocene to MIS 9c continuously (base at c. 312 ka; Fletcher et al., 2013). The core material 

was used to generate the first high-resolution (decadal- to centennial-scale) pollen record from 

the TP archive (Fletcher et al., 2013; Milner et al., 2012, 2013, 2016; Müller et al., 2011; Peyron 

et al., 2011; Pross et al., 2009, 2015; Schemmel et al., 2017) (Fig. 2). 

 Age control of the upper 15 m of the TP-2005 sequence, as currently published, is based 

on 20 radiocarbon ages and inclusion of the age estimates for the two visible Y-2 and Y-5/CI 

tephra layers (Müller et al., 2011; Pross et al., 2009); beyond the range of 14C dating, the age 

control was based on either tuning to the NGRIP oxygen isotope curve (MIS 4; Müller et al., 

2011) or alignment of the TP pollen data with marine core MD95-2042 from the Iberian Margin 

(MIS 5; Milner et al., 2012, 2016). 

 

4.1 Preparation of tephra samples  

Detailed cryptotephra analyses were carried out for the depth interval from 1 to 34 m of the 

TP-2005 core, spanning the period from the late Holocene (MIS 1; c. 2.8 cal ka BP) to the 

transition from the Penultimate Glacial (MIS 6) to the Last Interglacial (MIS 5e) (c. 130 ka BP). 

The uppermost metre of the TP peat sequence (<2.8 cal ka BP) was not considered for tephra 

sampling because it is compromised by anthropogenic disturbances, notably oxidation and 

self-combustion of the mire surface due to intense drainage and cultivation of the peatland 

(Kalaitzidis and Christanis, 2004). The core interval from 4 to 19 m was analysed at Royal 

Holloway, University of London (RHUL, UK). The core intervals from 1 to 4 m and from 19 to 

34 m were analysed at Heidelberg University (Germany). In addition, the core interval between 
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4.9 and 5.3 m was resampled in Heidelberg in order to extract further glass shards from 

detected tephra layers for geochemical analyses. 

 The investigated sediments consist almost entirely of decomposed fen peat and peaty muds 

with two layers of lake marl at depths of 12.55–12.64 m and 32.00–33.00 m. The sequence 

was continuously subsampled in 10-cm-sections for initial cryptotephra scans. Samples in 

which tephra glass shards were detected were re-examined in 1-cm increments for isochron 

refinement. The preparation procedures for cryptotephra scanning followed slightly different 

methods at the RHUL and Heidelberg laboratories, which, however, did not impact upon the 

quality and comparability of data. 

 In a first step, samples were dried at 105°C for 12-24 hours and weighed, then combusted 

in a muffle furnace for 4 hours at 550°C and subsequently treated overnight with c. 15% H2O2 

solution (Heidelberg) to remove organic matter. Carbonates were dissolved by a 7.5–10% HCl 

solution. The residues were sieved to yield 25–125µm (RHUL) and 20–100 µm (Heidelberg) 

grain-size fractions, to which a density flotation procedure was applied based on the protocols 

of Turney (1998) and Blockley et al. (2005). At RHUL, the residual samples of the light (2.0–

2.55 g/cm3) and heavy fractions (>2.55 g/cm3) were mounted onto slides using EuparalTM or 

Glycerol. The samples in Heidelberg were transferred into rectangular plastic lids using 

Ethanol and dried prior to inspection for glass shards under a transmitted light microscope. 

Counts of detected glass shards were based on the replicated 1-cm interval samples and are 

expressed as ‘shards per g dry weight (shards/gdwt)’. 

 Where the number of glass shards was very low, individual shards were extracted with a 5 

µl gas chromatography syringe fitted with a 110 µm diameter micromanipulator needle, 

transferred onto a resin stub and covered with SpecifixTM resin (RHUL). Alternatively, glass 

shards were handpicked with a single-hair brush into a single-hole aluminium stub and 

embedded in EpofixTM resin (Heidelberg) prior to sectioning and polishing for geochemical 

analyses. Samples with very high tephra-shard concentrations were directly sprayed and 

mounted onto stubs. Identified tephra layers were labelled using the mean isochron depth in 

the TP-2005 core in meters below the surface (e.g., TP05-7.61). 
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 In order to test potential correlations with the tephra samples from TP, medial-distal tephras 

(samples TM-18-1d, TM-18-4, TM-18-9e and TM-27; Wulf et al., 2006, 2012; Wutke et al., 

2015) were sampled from the lacustrine sediment record of Lago Grande di Monticchio 

(southern Italy; Fig. 1) and geochemically re-analysed with the same instrument as the 

potential TP tephra correlatives. In addition, juvenile material from the proximal Cape Tripiti 

pumice fall deposits, which correspond to the 26 ka marine Y-4 tephra (Fabbro et al., 2013), 

was sampled by R. Gertisser (Keele University, UK) at Cape Tripiti at the southern coast of 

Therasia Island, Santorini (coordinates: 36.41401°N, 25.3439°E) and provided for 

geochemical analysis. 

  

4.2 Geochemical analyses 

4.2.1 Electron probe microanalyses (EPMA) 

Single tephra glass shards were analysed for their major element compositions using a JEOL 

JXA8600 wavelength-dispersive (WDS) electron microprobe at the Research Laboratory for 

Archaeology and the History of Art, University of Oxford, UK (RHUL samples from 7 to 19 m), 

a CAMECA-SX51 (WDS) instrument at the Institute of Earth Sciences at Heidelberg University 

(Heidelberg samples from 4.9 to 5.3 m and 19 to 34 m), and a JEOL JXA8500F at the GFZ 

Potsdam (Heidelberg samples from 1 to 4 m and tephra TP05-31.255) (Supplement 1). The 

instrument at Oxford used an accelerating voltage of 15 kV, a 6 nA beam current and a 

defocused 10 µm beam. Count times for elements were 10 seconds for Na, 30 seconds for Si, 

Al, K, Ca, Fe, Mg, Ti and Mn, and 60 seconds for P and Cl. The instrumental setup for the 

Heidelberg instrument was 15 kV, 10 nA and a 10 µm beam; count times were 10 seconds for 

all elements. The probe at GFZ Potsdam used a 15 kV voltage, a 10 nA beam current and a 

10 µm beam with count times of 20 s for the elements Fe, Cl, Mn, Ti, Mg, and P, and 10 s for 

F, Si, Al, K, Ca, and Na. A range of MPI-DING glasses including GOR128-G, GOR132-G, 

ATHO-G and StHs6/80 (see Jochum et al., 2006) and natural Lipari obsidian (Hunt and Hill, 

1996; Kuehn et al., 2011), were employed as secondary glass standards for all instruments in 

order to maintain inter-laboratory consistency of analytical data (Supplement 1). Major element 
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geochemical data were recalculated on a volatile-free basis to 100 wt% (normalised data) for 

comparison with potential proximal and distal tephra correlatives. In this respect, tephras TM-

18-1d, TM-18-4, TM-18-9e, and TM-27 from the Lago Grande di Monticchio record and the 

Santorini Cape Tripiti pumices were additionally analysed with the Oxford and GFZ instruments 

(see Supplement 2). 

 

4.2.2 Laser-Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) 

The trace elemental composition of the coarser-grained TP tephras from the core interval 

corresponding to MIS 2–4 (i.e., TP05-7.07, TP05-7.26, TP05-7.61, TP05-9.70, TP05-9.78, and 

TP05-12.87) and Monticchio tephra samples TM-18-1d, TM-18-4 and TM-18-9e were 

measured using LA-ICP-MS apparatus at the Department of Earth Sciences, RHUL, applying 

an Agilent 7500ce coupled to a Resonetics 193 nm ArF excimer laser-ablation system 

(RESOlution M-50 prototype) with a two-volume ablation cell (Müller et al., 2009; Tomlinson et 

al., 2010). The laser was deployed to analyse single circular ‘spot’ samples, with spot sizes 

varying between 25 and 54 μm; larger spot sizes were always used if possible to increase 

precision (see Section 3.4.10). The repetition rate was 5 Hz and the count time 40 s (200 

pulses) on samples and 20 s on gas blanks (background) before and after each measurement. 

The elements measured were Sc, Ti, V, Ni, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, 

Dy, Er, Yb, Lu, Ta, Pb, Th, and U. Secondary standards included the MPI-DING glasses 

GOR128-G, ATHO-G and StHs6/80, while NIST-612 was used as the internal calibration 

standard. Si values imported from EPMA-WDS analyses were used as the internal standard 

for unknowns and GeoRem values for standards (Jochum et al., 2006). Data reduction was 

performed manually using a Microsoft Excel macro, which allowed removal of data that were 

affected by microcrystals or vesicle components. All LA-ICP-MS trace element data are 

summarised in Supplements 1 and 2. 

 

4.2.3 Secondary Ion Mass Spectrometry (SIMS) 

Trace elemental compositions of finer-grained (<25 µm) cryptotephra samples were obtained 
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by SIMS analyses (Supplement 1). Individual glass shards from the RHUL tephra samples 

(i.e., TP05-7.07, TP05-9.23, TP05-9.38, TP05-9.51, TP05-13.34, TP05-13.54, and TP05-

14.50) were measured at the Institute of Geosciences and Earth Resources (IGG)-CNR, Unit 

of Pavia, Italy, using a CAMECA IMS 4f ion probe with a current intensity of 0.5–0.7 nA and a 

spot diameter of 5–8 μm. The width of the energy slit was 50 eV and the voltage offset applied 

to the sample accelerating voltage (+ 4500 V) was -100 V. The filtered secondary ions were 

extracted and focused under an ion image field of 25 μm. We used the largest contrast 

diaphragm (400 μm) and field aperture (1800 μm) at a mass resolving power of ~600 (M/ΔM). 

A waiting time of 450 s was necessary to obtain steady-state sputtering conditions, and four 

acquisition cycles using the following count times per cycle were performed: Li (5 s), Be (5 s), 

Si (2 s), K (2 s), Sc (5 s), Ti (4 s), V (5 s), Cr (5 s), Rb (5 s), Sr (5 s), Y (5 s), Zr (5 s), Nb (5 s), 

Cs (8 s), Ba (8 s), La (10 s), Ce (10 s), Nd (10 s), Sm (15 s), Dy (20 s), Er and Yb (15 s each), 

Th and U (20 s each). Standards used for calibration and interference correction were the 

following: NIST-SRM 610 (Pearce et al., 1997), BCR-2G (USGS), BB basalt glass (inner CNR-

IGG standard), and WY1 basaltic glass (CEA/CNRS - CE/Saclay, France) (for details of the 

reference concentrations assumed see Supplement 1).  

Cryptotephras processed in Heidelberg (i.e., TP05-5.075, -19.915, -25.195, -25.465, -

27.915, -32.225 and -32.265) and glass shards from the visible Campanian Ignimbrite layer at 

12.87 m core depth were analysed at Heidelberg University using both a CAMECA IMS 3f and 

CAMECA 1280-HR (HIP) ion probe with a respective 5 nA/1 nA current intensity and a spot 

diameter of 10–5 μm. The width of the energy slit was 50 eV and the voltage offset applied to 

the sample accelerating voltage (+ 10 kV) was -105 V/-75 V. Pre-sputtering time was 120 s/30 

s, and five acquisition cycles with the following count times per cycle were obtained: Si (2 s/0.5 

s), Rb (5 s/3 s), Sr (5 s), Y (5 s/3 s), Zr (5 s/3 s), Nb (5 s/6 s), Ba (5 s), La (5 s/6 s), Ce (5 s/6 

s), Th (20 s/10 s) and U (20 s/12 s). The NIST-SRM 612 glass standard was used as an internal 

(primary) standard for both SIMS instruments alongside secondary reference materials such 

as the rhyolitic ATHO-G and the andesitic StHs6/80-G glass standards (Jochum et al., 2006). 
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4.2.4 Bayesian chronological modelling 

In order to refine the age-depth model for the TP-2005 core the Bayesian statistical software 

OxCal ver. 4.3 (Bronk Ramsey, 2017) was applied. Poisson-process deposition sequences 

(‘P_Sequences’) were utilised for successive core sections (Bronk Ramsey, 2008; Bronk 

Ramsey and Lee, 2013). A model averaging approach (‘variable k’) was applied to the section 

for which contiguous (5 cm resolution) 14C data were available (i.e., 12.87–14.80 m core depth, 

c. 39 to 48 cal ka BP; Staff et al., in prep.), whereas a conservatively low rigidity (k=10) was 

applied to the core sections with fewer dated levels, allowing increased uncertainty ranges 

between dated core depths. The IntCal13 calibration curve (Reimer et al., 2013) was used for 

all radiocarbon data, and objective outlier analysis was applied (Bronk Ramsey, 2009b; Bronk 

Ramsey et al., 2010). Median modelled ages were imported into the program AnalySeries 

2.0.8 (Paillard et al., 1996) in order to plot the TP-2005 palaeo-proxy data on the new time 

scale (Supplement 3) and to provide new age estimates of identified tephras (Table 1). 

 

5. Results: Description and correlation of tephras 

Two visible tephras and 40 cryptotephra layers have been identified in the 1–34 m interval of 

core TP-2005 (Fig. 2). With the exception of three cryptotephra layers for which shards could 

not be extracted, all tephra layers have been characterised in terms of their major element 

glass composition. Trace compositional glass data were obtained from the two visible tephras 

and from a total of 24 cryptotephra layers using either LA-ICP-MS or SIMS analysis; two 

tephras (i.e., TP05-7.07 and TP05-12.87) were analysed using both techniques in order to test 

the compatibility of LA-ICP-MS and SIMS data. 

The chemical data repeatedly revealed the presence of redeposited components from the 

Y-2 and/or Y-5/CI visible tephra layers (7.61 m and 12.87 m depth) in most cryptotephra layers. 

Only six layers revealed distinctive geochemical features that enabled confident allocation to 

primary tephra fallout. The new mean age estimates derived from Bayesian modelling, pollen-

based stratigraphical positions, glass shard concentrations, geochemical compositions and 

source correlations of all detected tephra layers are described below in stratigraphic order from 
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top to base of TP-2005. 

 

5.1. MIS 1 (Holocene) tephras 

TP05-2.625 and TP05-3.375 (c. 5.67 and 6.53 cal ka BP) 

The youngest cryptotephras, TP05-2.625 and TP05-3.375, are tightly constrained layers 

confined to 2.62–2.63 m and 3.37–3.38 m core depth, with glass shard peak concentrations of 

95 and 12 shards/gdwt, respectively (Fig. 3a). The major-element glass compositions of both 

cryptotephras are trachyphonolitic with narrow concentration ranges of 61.5–62.4 wt% SiO2, 

18.8–19.6 wt% Al2O3, 3.0–3.3 wt% FeO, 1.8–2.5 wt% CaO, and alkali (K2O/Na2O) ratios of 

1.7–3.2 (TP05-2.625) and 1.1–1.5 (TP05-3.375) (Fig. 4a). This alkaline composition suggests 

a Campanian (Italian) source, more specifically within the Campi Flegrei (CF) volcanic field. 

Widespread mid-Holocene tephras from this region are only known from the Astroni sequence, 

Agnano Monte Spina and Averno 1 eruptions (Di Vito et al., 1999; referred to hereafter as the 

‘AAA’ cluster). They form a geochemically relatively homogenous cluster of tephra layers dated 

to c. 4.1–4.6 cal ka BP and c. 5.1–5.4 cal ka BP in proximal tephra deposits (Smith et al., 

2011), and have been previously described from distal sites in the southern Adriatic Sea (Siani 

et al., 2004) and in Lake Shkodra in Albania/Montenegro (Sulpizio et al., 2010a). Other widely 

dispersed tephras from the Campanian province include the phonolitic Avellino (3945 ± 20 cal 

yr BP; Sevink et al., 2011) and older Mercato tephras (8,535 ± 90 cal yr BP; Zanchetta et al., 

2011) from Mount Vesuvius, both identified in lake records from the Balkans (Damaschke et 

al., 2013; Leicher et al., 2016; Sulpizio et al., 2010a, 2010b). However, despite some 

similarities in silica and CaO concentrations none of the TP cryptotephra chemistries match 

the major-element composition of Holocene CF (Smith et al., 2011) or Vesuvian tephras 

(Tomlinson et al., 2015) (Fig. 4a). Instead, they fully fall within the compositional field of the 

Campanian Ignimbrite (CI) that occurs as a thick layer in TP sediments c. 9-10 m further down-

core. Therefore, we interpret cryptotephras TP05-2.625 and TP05-3.375 as re-deposited CI 

tephra material most likely through anthropogenically induced erosional processes (see 

Section 6.1). Thus, these layers cannot serve as marker horizons for the TP-2005 sequence. 



POST-PRINT 

 
 

15 

 

TP05-5.075 (c. 8.26 cal ka BP) 

TP05-5.075 (5.05–5.10 m depth) is an early Holocene cryptotephra with low glass shard 

concentrations (12 shards/gdwt) that immediately precedes the palynologically and organic 

geochemically defined 8.2 ka climatic event (Pross et al., 2009; Schemmel et al., 2016) (Fig. 

3a). The major element composition of five glass shards is bimodal between alkaline 

trachyphonolitic (n=4) and calc-alkaline rhyolitic (n=1). The trachyphonolitic component is 

similar to that of cryptotephra TP05-3.375 and is characterised by concentration ranges of 

60.8–62.2 wt% SiO2, 18.8–20.6 wt% Al2O3, 2.6–3.3 wt% FeO, 1.9–2.1 wt% CaO, and alkali 

ratios of 1.0–1.3 (Fig. 4a). SIMS trace elemental data display a rather heterogeneous 

composition with 271–343 ppm Rb, 33–44 ppm Sr, 9–49 ppm Y, 187–563 ppm Zr, 42–97 ppm 

Nb, 23–381 ppm Ba, 40–106 ppm La, 52–197 ppm Ce, 10–45 ppm Th, and 4–15 ppm U. The 

geochemical data suggest a Campanian origin. During the early Holocene, violent eruptions 

of Somma-Vesuvius and the CF produced several tephra deposits, notably the widespread 

Mercato tephra (Vesuvius; 8,535 ± 90 cal yr BP; Zanchetta et al., 2011), which has also been 

detected in sediments from Lake Ohrid (Leicher et al., 2016), and CF tephra deposits at Fondi 

di Baia (9,610 ± 85 cal yr BP; Smith et al., 2011) and Pigna San Nicola (9,367 ± 166 cal yr BP; 

Di Vito et al., 1999; Smith et al., 2011). Comparisons of major element glass data obtained 

from these tephras yield a tentative correlation with the Fondi di Baia eruption, although this 

cannot be confirmed by trace-element data (Fig. 4a). Instead, the best chemical match of all 

analysed trachyphonolitic glass shards is with Campanian Ignimbrite compositional data (Fig. 

4a), suggesting again the impact of secondary re-deposition processes. 

The rhyolitic glass component of cryptotephra TP05-5.075 has concentrations in SiO2 of 

76.7 wt%, in FeO of 1.55 wt%, in CaO of 0.68 wt%, in Cl of 0.45 wt%, and an alkali ratio of 1.3. 

Hence, it shows a good match with the glass composition of the Gabellotto-Fiumebianco 

pumices from Lipari, Aeolian Islands (Fig. 4b). These deposits represent the proximal 

equivalent of the marine E1 tephra (e.g., Albert et al., 2017), which has been identified in 

Tyrrhenian (Paterne et al., 1988), Adriatic (7,770 ± 70 14C yr BP; Siani et al., 2004) and Ionian 
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deep-sea sediments (7,810 ± 45 14C yr BP; Caron et al., 2012) within early Holocene sapropel 

S1. The calibrated age of the E1 tephra at 8,270 ± 96 cal yr BP (Caron et al., 2012) is in 

excellent agreement with the stratigraphic position of the rhyolitic component of cryptotephra 

TP05-5.075 right below the 8.2 ka climatic event, implying that it reflects primary deposition. 

 In summary, the 5-cm-thick sediment segment across which cryptotephra TP05-5.075 

occurs contains both a re-deposited CI component and low concentrations of a primary fall of 

the E1 tephra. Due to the lack of reproducibility of chemical data at higher resolution (viz. 1-

cm sample increments), it was impossible to further constrain the positions of the reworked 

and primary tephra components. Therefore, a mean depth of 5.075 m has been adopted for 

the E1 tephra isochron in the TP-2005 core. 

 

5.2 MIS 2 tephras 

TP05-7.07, TP05-7.26 and TP05-7.61 (c. 18–22 cal ka BP) 

TP05-7.61 is one of two visible tephra layers occurring diffusively throughout the 7.46–7.61 m 

interval (Fig. 3a). This primary fallout layer sits within MIS 2, just after a sharp increase and 

contraction in total tree pollen percentages (up to c. 20%). A cryptotephra component appears 

above the visible layer for a further 16 cm (Fig. 3a). Major and trace element glass 

compositions of TP05-7.61 reveal a homogenous calc-alkaline rhyolitic composition with 

narrow geochemical ranges of 70.9–72.0 wt% SiO2, 14.1–14.7 wt% Al2O3, 2.7–3.3 wt% FeO, 

4.8–5.6 wt% Na2O, and 2.8–3.1 wt% K2O (Fig. 5), a homogeneity that is also apparent in trace-

element concentrations of Zr (289–322 ppm), Rb (104–109 ppm), Sr (72–80 ppm), and Th 

(14.5–16.7 ppm). Based on major element data, the visible TP05-7.61 tephra layer in core TP-

2005 has previously been assigned by Müller et al. (2011) to the Cape Riva eruption of Thera 

volcano, Santorini (22,024 ± 321 cal yr BP; Lee et al., 2013; Bronk Ramsey et al., 2015, and 

references therein) and its marine distal equivalent, the Y-2 tephra (e.g., Keller et al., 1978; 

Wulf et al., 2002). Our trace elemental data support this correlation. The TP05-7.61/Y-2 tephra 

is likely identical to the c. 4 cm thick PhT2 tephra previously identified by St. Seymour et al. 

(2004) in previous short cores Ph1, Ph2 and Ph3, and most likely to the Upper Tephra (‘obere 
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Tuffitlage’, c. 13,900 14C yr BP), generally found between depths of 3.2 and 8.7 m in numerous 

short cores from across the Philippi peatland (Christanis, 1983). Therefore, TP05-7.61 forms 

a valuable tephrochronological marker in the TP-2005 core dating to 22,024 ± 321 cal yr BP. 

Two further dispersed cryptotephra layers (>10,000 shards/gdwt) of identical rhyolitic major 

and trace element glass compositions appear at depths of 7.07 m and 7.26 m in the TP-2005 

core (Figs. 3a, 5). They most likely represent re-deposited material of the underlying primary 

TP05-7.61/Y-2 tephra. However, it is worth noting that the shard concentration in these layers 

is much higher than in the majority of the cryptotephra layers detected in the TP-2005 

sequence (see Figs. 3, 7). St. Seymour et al. (2004) described a visible tephra layer, PhT1, 

with a geochemical affinity to Y-2 in a similar stratigraphic position only a few decimeters above 

the primary PhT2/Y-2 tephra. The PhT1 layer has been radiocarbon-dated in core Ph2 to c. 

10,152 ± 57 14C yr BP (11,735 ± 325 cal yr BP) and thereby assigned to a potentially younger, 

as yet unknown eruptive event from Thera (Santorini) volcano (St. Seymour et al., 2004). This 

correlation, however, was based solely on comparison with a conventional radiocarbon age of 

12,950 ± 756 14C yr BP obtained from carbonized plant remains in a palaeosol directly 

overlying the Cape Riva ignimbrites at a proximal site on Santorini (Pichler and Friedrich, 

1976). To date, there is no field, geochemical or additional geochronological evidence for an 

early Holocene/Lateglacial tephra from Thera volcano that approximates the Cape Riva/Y-2 

glass composition (e.g., Druitt et al., 1999, 2015). The only distal tephra originating from 

Santorini with an early Holocene age has been reported from SE Aegean Sea core LC21 

(cryptotephra LC21-2.005; Satow et al., 2015; Fig. 1). The major and trace element glass 

composition of this tephra, however, is more similar to that of the 3.6 ka Minoan/Z-2 tephra 

than to the Cape Riva/Y-2 tephra (Fig. 5). Consequently, we interpret tephra PhT1 not as a 

primary fallout deposit, but as a result of post-depositional recycling of PhT2/Y-2 material (see 

Section 6.1), which may correlate with either the TP05-7.07 or the TP05-7.26 cryptotephra 

layers. 

 

TP05-8.90 and TP05-8.96 (c. 27.6 and 27.7 cal ka BP) 
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TP05-8.90 and TP05-8.96 are two cryptotephra layers with negative glass shard distribution 

skews over 4-5 cm wide intervals and low shard peak concentrations of 275 and 65 shards/gdwt, 

respectively. Both tephra layers sit within early MIS 2 in an interval of low, but increasing total 

tree-pollen percentages (c. 2.7–8.1 %; Fig. 3a). Unfortunately, geochemical data could not be 

obtained from these layers due to problems of reproducibility during subsampling for 

geochemical analyses.  

 

5.3 MIS 3 tephras 

TP05-9.23, TP05-9.38, TP05-9.51, TP05-9.70 and TP05-9.78 (c. 28.2–29.2 cal ka BP) 

This cluster of five cryptotephra deposits comprises one primary cryptotephra layer (TP05-

9.70) and redeposited tephra material. The primary layer TP05-9.70 sits within a MIS 3 interval 

of low (c. 8 %) total tree pollen percentages (Figs. 2, 3b). It shows a highly positive distribution 

skew with a peak of ca. 2060 shards/gdwt and a vertical stratigraphic spread of glass shards 

over 8 cm (Fig. 3b). Glass chemical data reveal a bi-modal mixed geochemical population of 

both alkaline trachytic and sub-alkaline rhyolitic composition in a 2:1 ratio, respectively (Fig. 

5). Major elements in the main, trachytic component range from 60.1–62.7 wt% SiO2, 18.1–

18.7 wt% Al2O3, 2.8–3.8 wt% FeO, and 2.2–2.8 wt% CaO with alkali ratios of 2.1–2.8. Trace 

element concentrations also show a heterogeneous composition with ranges of 211–307 ppm 

Zr, 300–347 ppm Rb, 92–116 ppm Ce, 49–63 ppm La, 145–1601 ppm Ba, 314–845 ppm Sr, 

32–48 ppm Nb, 22–28 ppm Y, and 17–26 ppm Th. Glass shards of the same trachytic major 

and trace element compositions are also found in three cryptotephra layers up to 47 cm above 

tephra TP05-9.70, i.e., in TP05-9.23 (56 shards/gdwt), TP05-9.38 (1258 shards/gdwt) and TP05-

9.51 (1028 shards/gdwt) (Fig. 3b). Both the major and trace element compositions of the 

trachytic component of TP05-9.70 and of the overlying cryptotephras best match that of the Y-

3 tephra from the Campi Flegrei (29,059 ± 178 cal yr BP; Bronk Ramsey et al., 2015) as 

previously recognized by Albert et al. (2015) (Fig. 5). Because it has the highest shard count, 

we define TP05-9.70 as the primary fallout layer and consider the overlaying cryptotephras 

TP05-9.23, TP05-9.38 and TP05-9.51 as re-deposited material derived from the primary layer. 
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Consequently, TP05-9.70 is considered a reliable isochron dating to 29,059 ± 178 cal yr BP. 

The rhyolitic component of TP05-9.70 is rather homogenous, with major element 

concentration ranges of 71.3–71.5 wt% SiO2, 14.4–14.6 wt% Al2O3, 2.9–3.3 wt% FeO, 1.6–1.8 

wt% CaO, 5.1–5.5 wt% Na2O, and 2.9–3.0 wt% K2O, and trace element values of 309–336 

ppm Zr, 106–112 ppm Rb, 59-62 ppm Ce, 29-31 ppm La, 489-491 ppm Ba, 76–82 ppm Sr, 11-

12 ppm Nb, 50-52 ppm Y, and 14.7–15.0 ppm Th. Both the major and trace element glass 

compositions are identical to a single glass shard in the overlying tephra TP05-9.51 and to 

rhyolitic cryptotephra TP05-9.78 (952 shards/gdwt) that directly underlies and merges into the 

primary TP05-9.70/Y-3 tephra. Comparisons of glass data from rhyolitic volcanic centres in the 

Eastern Mediterranean region that were active during MIS 3 (e.g., Santorini, Nisyros, Yali, 

Acigöl, and Lipari) strongly suggest a Santorini provenance for the TP05-9.78 tephra (Fig. 5). 

Considering the timing of tephra deposition at TP at c. 29 cal ka BP, a potential source eruption 

could be the Cape Tripiti/Y-4 eruption of Santorini (c. 26 ka BP; Fabbro et al., 2013; Schwarz, 

2000). However, the glass chemical composition of Cape Tripiti/Y-4 differs significantly from 

that of TP05-9.78, with lower SiO2 (68.8–71.4 wt%) and higher FeO (2.9–4.6 wt%) and CaO 

(1.8–2.6 wt%) values as well as slightly different trace-element concentrations (Fig. 5). The 

good chemical match with the Cape Riva/Y-2 tephra (Fig. 5), however, is inconsistent with the 

stratigraphic position of TP05-9.78, more than two meters below the visible TP05-7.61/Y-2 

tephra. Such a displacement of primary tephra material could result from post-depositional 

processes (see Section 6.1). 

 

TP05-12.87 (c. 39.7 cal ka BP) 

TP05-12.87 (12.64–12.87 m depth) is the lowermost and thickest visible tephra layer in the 

TP-2005 sequence. There is also a cryptotephra component that is distributed over a 20 cm 

interval above the primary layer. Total tree-pollen percentages immediately below and above 

the visible tephra are c. 5 % and 1.4 %, respectively, indicating deposition well after the onset 

of Heinrich Stadial H4 (Fig. 3b). Glass shards of TP05-12.87 reveal a phonotrachytic 

composition with ranges of 60.0–62.3 wt% SiO2, 18.1–18.9 wt% Al2O3, 0.3–0.5 wt% TiO2, 2.7–
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4.1 wt% FeO, 0.2–0.9 wt% MgO, 1.6–2.8 wt% CaO, and bimodal alkali ratios of 1.1–1.3 and 

2.5–3.7. Trace element concentrations also show a heterogeneous composition with large 

ranges of 176–678 ppm Zr, 276–477 ppm Rb, 84–251 ppm Ce, 44–133 ppm La, 13–662 ppm 

Ba, 18–563 ppm Sr, 28–126 ppm Nb, 19–56 ppm Y, and 13–55 ppm Th. 

 TP05-12.87 corresponds stratigraphically to the lower tephra (‘untere Tuffitlage’) of 

Christanis (1983) and to tephra PhT3 of St. Seymour et al. (2004); it has been previously 

correlated in the TP-2005 sequence by Müller et al. (2011) and Lowe et al. (2012) with the 

Campanian Ignimbrite (CI) eruption of the Campi Flegrei, Italy, (39.85 ± 0.14 ka; 40Ar/39Ar; 

Giaccio et al., 2017a). This attribution is supported by our new trace element data (Figs. 5, 6). 

TP05-12.87 therefore provides a valuable independent marker for calibrating the TP-2005 

chronology. 

 

TP05-13.25 to TP05-14.50 (6 layers, c. 40.1–46.7 cal ka BP) 

Below the visible Campanian Ignimbrite deposit, a total of six cryptotephra layers were 

detected between 13.25 and 14.50 m core depth (Fig. 3b). TP05-13.25, TP05-13.28 and TP05-

13.34 form three tightly clustered peaks between 13.22 and 13.35 m depth, and all sit within a 

period of elevated total tree pollen percentages (c. 30–40 %) (Figs. 2, 3b). TP05-13.25 is a 

well-constrained layer with a negative distribution skew between 13.22 and 13.26 m and a 

maximum peak of 1311 shards/gdwt. TP05-13.28 is confined to a 3-cm-thick interval with a peak 

of 1455 shards/gdwt. TP05-13.34 shows the strongest cryptotephra peak below the visible CI 

layer at 3092 shards/gdwt. The geochemical glass compositions of all three cryptotephra layers 

are alkaline phonotrachytic with ranges of 60.4–62.2 wt% SiO2, 18.2–19.0 wt% Al2O3, 0.32–

0.46 wt% TiO2, 2.4–3.6 wt% FeO, 0.27–0.79 wt% MgO, and 1.5–2.8 wt% CaO, and bimodal 

alkali ratios of 1.0–1.5 and 2.5–3.8 (Fig. 6). SIMS trace element concentrations of TP05-13.34 

show a less homogenous composition with ranges of 263–793 ppm Zr, 305–431 ppm Rb, 116–

275 ppm Ce, 65–160 ppm La, 42–136 ppm Ba, 17–292 ppm Sr, 39–136 ppm Nb, 29–63 ppm 

Y, and 23–70 ppm Th (Fig. 6).  

Cryptotephra TP05-13.54 forms a 5-cm-thick horizon with a peak of c. 1582 shards/gdwt. 
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TP05-13.92, in turn, is a tightly (3-cm-thick) constrained cryptotephra with a peak of ca. 2038 

shards/gdwt. TP05-13.54 and TP05-13.92 are situated within periods of low tree-pollen 

percentages (c. 6 % and 1.4–7.9 %, respectively; Fig. 3b). Both cryptotephras have 

heterogeneous trachyphonolitic major and trace element glass compositions that are 

indistinguishable from the overlying triple-cryptotephra set (Fig. 6, Supplement 1). 

The lowermost cryptotephra TP05-14.50 has a diffuse shard distribution between 14.46 and 

14.54 m core depth, with a maximum shard count of c. 40 shards/gdwt, and lies in a period of 

low total tree percentages (c. 3–6 % total tree pollen). It has a homogenous trachytic 

geochemical glass composition with relatively low alkali ratios of 1.0–1.3, which overlaps with 

that of the five overlying cryptotephras (Fig. 6). 

 Glass compositions of all six cryptotephras that precede the CI suggest an origin from the 

Campi Flegrei in southern Italy, and best match the major and trace element composition of 

tephra TP05-12.87/CI. Only cryptotephra TP05-13.34 reveals an additional different 

component that more closely resembles the composition of the medial-distal tephra TM-18-1d 

in the Lago Grande di Monticchio sediment record (Fig. 6). TM-18-1d has a major element 

affinity to the CI, but differs in trace element composition by having higher concentrations in Y 

( 50–64 ppm), Zr (618–795 ppm), Nb (115–143 ppm), La (116–148 ppm), Ce (227–281 ppm), 

Th (47–64 ppm), and U (17–22 ppm), and lower values in Rb (447–636 ppm), Sr (4–20 ppm), 

and Ba (4–95 ppm) (Supplement 2). At Lago Grande di Monticchio, TM-18-1d is dated by 

annual layer counting to 37,360 varve yr (Brauer et al., 2007). It precedes the deposition of the 

CI in this record by approximately 590 years (Wutke et al., 2015). Given that the 40Ar/39Ar age 

for the CI eruption is 39.85 ± 0.14 ka (Giaccio et al., 2017a), the varve age of TM-18-1d can 

be considered too young, and therefore this date should be used with caution.  

 In summary, all six pre-CI cryptotephras appear to consist of re-deposited CI material that 

was moved from the primary fall layer to lower peat levels by post-depositional processes (see 

Section 6.1). Only tephra TP05-13.34 contains some glass shards that are slightly more 

distinctive, and which we tentatively correlate with tephra TM-18-1d at Lago Grande di 

Monticchio. Due to the uncertain varve age of this tephra in the Monticchio record, cryptotephra 
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TP05-13.34 is not included as a chronological marker for the TP-2005 age model. 

 

5.4 MIS 4 tephra 

TP05-17.91 (c. 65.1 ka) 

TP05-17.91 is a tightly constrained cryptotephra layer with a glass shard concentration peak 

of 749 shards/gdwt that occurs in the middle of MIS 4 where there is a slight increase in relatively 

low tree-pollen percentages (to c. 12 %; Fig. 3b). Unfortunately, it was not possible to extract 

glass shards from this tephra for geochemical analyses at this stage, and hence the volcanic 

source is yet unknown. 

 

5.5 MIS 5 tephras 

TP05-19.915 to TP05-25.135 (8 layers, c. 74 – 95.6 ka) 

Eight cryptotephra layers occur between 19.91 and 25.15 m depth, showing mainly tight (within 

1-2 cm wide intervals) glass shard distributions with the following peak concentration values: 

144 shards/gdwt (TP05-19.915), 76 shards/gdwt (TP05-21.045), 64 shards/gdwt (TP05-22.065), 

73 shards/gdwt (TP05-23.055), 217 shards/gdwt (TP05-24.055), 234 shards/gdwt (TP05-24.915), 

22 shards/gdwt (TP05-25.085), and 83 shards/gdwt (TP05-25.135). Only the lowermost 

cryptotephras (TP05-25.085 and TP05-25.135) show rather dispersed distributions over 5- and 

4-cm-wide intervals, respectively (Fig. 7). Cryptotephras TP05-19.915, TP05-21.045 and 

TP05-22.065 sit within the palynologically defined MIS 5a interval, which records abrupt 

increases of temperate tree pollen (to c. 50–70 %). TP05-23.055 and TP05-24.055 occur at 

the end and the beginning of MIS 5b, respectively, in intervals that are characterised by short-

term increases in temperate tree pollen percentages (c. 50 %). The preceding layers TP05-

24.915, TP05-25.085 and TP05-25.135 were deposited during late MIS 5c, within a period of 

increased temperate tree pollen (c. 55–80 %) (Figs. 2, 7). All eight cryptotephra layers show 

similar heterogeneous phonotrachytic compositions that are characterised by ranges in 

concentrations of 59.7–64.2 wt% SiO2, 17.8–20.8 wt% Al2O3, 2.6–3.8 wt% FeO, and 1.5–3.0 

wt% CaO, and bimodal alkali ratios of 1.0–1.5 and 1.7–3.3 (Fig. 8a+b). SIMS trace element 
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data from cryptotephras TP05-22.065, TP05-24.055 and TP05-25.135 confirm this 

heterogeneity and strongly suggest a correlation of all layers with the Campanian Ignimbrite 

(Figs. 8a+b, 9). Two single glass shards extracted from cryptotephras TP05-21.045 and TP05-

22.065 are rhyolitic, with the same compositional field as the Cape Riva/Y-2 tephra (Fig. 8a). 

The overall chemical evidence and the fact that most of the TP tephras occur within the top 10 

cm of individual core segments suggests that they all consist of re-distributed material from 

the overlying visible CI and Y-2 tephras and thus cannot be used as tephrochronological 

markers. The remobilization of tephra material is here most likely due to drilling procedures 

(see Section 6.1).  

 

TP05-25.195 (c. 95.8 ka) 

Cryptotephra TP05-25.195 is a well-constrained, stratigraphically normally distributed 

cryptotephra layer (39 shards/gdwt) that occurs between 25.18 and 25.20 m depth. It sits in the 

middle of MIS 5c within an interval of decreased temperate tree pollen (c. 50 %) (Figs. 2, 7). 

Major element glass compositions indicate a heterogeneous trachytic chemistry with 

concentration ranges of 60.2–62.9 wt% SiO2, 18.2–20.1 wt% Al2O3, 2.6–4.2 wt% FeO, and 

1.7–2.9 wt% CaO, and bimodal alkali ratios of 1.0–1.5 and 1.6–3.5 (Fig. 8b, Table 2). Trace 

element glass compositions confirm this heterogeneity with concentration ranges of 235–392 

ppm Rb, 18–582 ppm Sr, 19–54 ppm Y, 170–638 ppm Zr, 25–113 ppm Nb, 14–770 ppm Ba, 

39–118 ppm La, 75–217 ppm Ce, 12–47 ppm Th, and 4–16 ppm U. Most major and associated 

trace element glass compositions match that of the CI (Figs. 8b, 9a), implying that there is also 

re-deposited material in this core section. However, a minor component (2 glass shards) 

deviates from the CI composition and plots within the geochemical field of the prominent MIS 

5c tephra TM-23-11/POP1 (Fig. 8b). This tephra derives from a yet unknown Campanian 

eruption; it has been described from the Sulmona Basin (POP1) and Lago Grande di 

Monticchio (TM-23-11) records in central and southern Italy, respectively (Giaccio et al., 2012; 

Wulf et al., 2006), and correlated with marine tephras C-22 in the Tyrrhenian basin (Paterne 

et al., 2008) and PRAD-2517-2525 in the Adriatic Sea (Bourne et al., 2010, 2015). The TM-
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23-11/POP1 tephra is dated in Sulmona by 40Ar/39Ar to 92.4 ± 4.6 ka (Giaccio et al., 2012) and 

in Monticchio by annual layer counting to 96,210 ± 4,810 varve yr (Martin-Puertas et al., 2014), 

respectively. Our results strongly suggest an allocation of TP05-25.195 to TM-23-11/POP1, 

which leads us to integrate the 40Ar/39Ar age of this tephrochronological marker into the new 

TP age model. 

 

TP05-25.465 to TP05-27.035 (5 layers, c. 96.7–105.4 ka) 

Another five cryptotephra layers have been identified in peat-dominated lithologies between 

25.46 and 27.04 m core depth, corresponding to the middle to early phase of the MIS 5c 

interval. They are tightly constrained in the core, with shard peaks of ca. 956 shards/gdwt (TP05-

25.465), 41 shards/gdwt (TP05-26.055), 8 shards/gdwt (TP05-26.35), 34 shards/gdwt (TP05-

26.915), and 110 shards/gdwt (TP05-27.035). The glass shards of cryptotephras TP05-25.465, 

TP05-26.055, TP05-26.915 and TP05-27.035 are dominated by a heterogeneous 

phonotrachytic composition with concentration ranges of 59.7–65.4 wt% SiO2, 16.4–20.6 wt% 

Al2O3, 2.7–3.6 wt% FeO, and 1.6–2.8 wt% CaO, and bimodal alkali ratios of 1.0–1.5 and 2.2–

3.1. Major element data and additional trace element data available for TP05-25.465 strongly 

suggest a correlation of the phonotrachytic glass component in all four cryptotephras with the 

CI (Figs. 8b,c, 9a). A minor rhyolitic component found in tephras TP05-25.465 and TP05-

26.915 best matches the Y-2 composition (Fig. 8b, c). Within this reworked material, an 

additional minor, but distinctive alkaline glass composition is evident, i.e., TP05-25.465 

contains a phonotrachytic glass with CaO concentrations of 1.4 wt% and an alkali ratio of 0.9, 

which are both lower than in the CI (Supplement 1). However, to date no Campanian tephra 

of comparable composition has been described for this time interval, thus preventing a firm 

tephra assignment. Furthermore, cryptotephras TP05-26.35 and TP05-26.915 both exhibit a 

single trachytic glass composition with concentrations in SiO2 of 61.9–62.2 wt%, FeO of 2.7–

3.0 wt%, CaO of 1.7–1.9 wt%, and low alkali ratios of 0.7–0.8 (Fig. 8c, Supplement 1). This 

composition best matches the chemistry of the primary X-6 tephra deposited one meter further 

down-core in the TP-2005 sequence. The composition of another single glass shard in 
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cryptotephras TP05-26.915 and TP05-27.035 slightly resembles the composition of the 

Campanian X-5 tephra (106.2 ± 1.3 ka 40Ar/39Ar; Regattieri et al., 2015) (Fig. 8c), but a firm 

correlation cannot be established at this point due to the lack of trace element data. 

 In summary, out of the five cryptotephras discussed here only TP05-25.465 may relate to a 

primary eruption at c. 97.5 ka, which is of a yet unknown, but likely Campanian origin. 

Therefore, to date no tephrochronological tie-point for the TP age model is available from this 

part of the TP-2005 core. 

 

TP05-27.915 and TP05-27.995 (c. 109.4–109.7 ka) 

Cryptotephras TP05-27.915 and TP05-27.995 form tightly constrained normal and reversed 

distributed layers with peak glass shard concentrations of 92 and 128 shards/gdwt, respectively. 

They are positioned in the middle (TP05-27.995) and at the onset (TP05-27.995) of MIS 5d 

and C24, a cold period that is characterised by sharp declines in total (c. 30 %) and temperate 

tree-pollen percentages (c. 5 %; Figs. 2, 7). Both cryptotephras are phonotrachytic in 

composition, which suggests a Campanian origin. The major element chemistry is 

heterogeneous with concentration ranges of 60.2–64.9 wt% SiO2, 18.3–20.6 wt% Al2O3, 2.7–

3.6 wt% FeO, and 1.1–2.6 wt% CaO, and bimodal alkali ratios of 0.75–0.95 and 1.1–3.1 (Fig. 

8c, Table 2). The bimodality of alkali ratios (Na2O>K2O and K2O>Na2O) implies the presence 

of two distinct tephra components, which likely derive from different eruptions. Larger glass 

shards with K2O>Na2O values and trace element compositions of 350–451 ppm Rb, 20–550 

ppm Sr, 19–53 ppm Y, 172–676 ppm Zr, 26–131 ppm Nb, 20–648 ppm Ba, 42–118 ppm La, 

76–220 ppm Ce, 13-48 ppm Th, and 4-19 ppm U suggests a correlation with re-deposited CI 

tephra material (Figs. 8c, 9b). The second component with Na2O>K2O is restricted to smaller 

glass shards (<50 µm) and best matches the composition of the late Last Interglacial X-6 

tephra. The X-6 tephra is a widespread tephra marker in the central-eastern Mediterranean 

that derived from a Plinian and co-ignimbritic plume from the Campanian region, but the 

specific centre is yet unknown (see e.g., Albert et al., 2012; Bourne et al., 2015; Giaccio et al., 

2012; Keller et al., 1978; Leicher et al., 2016; Lucchi et al., 2008; Sulpizio et al., 2010b; Wulf 
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et al., 2012). X-6 is characterised by a typical bimodal peralkaline and low-K-alkaline 

chemistry, of which the latter is partly indistinguishable from the CI composition (Fig. 8c, Table 

2, Supplement 2). The X-6 tephra has been precisely dated for the Sulmona Basin (POP4 

tephra) and Lago Grande di Monticchio locations (TM-27) by 40Ar/39Ar methods using sanidine 

to 109.5 ± 0.9 ka (Regattieri et al., 2017) and by annual layer counting to 109,370 ± 5,469 

varve yr (Martin-Puertas et al., 2014; Wulf et al., 2012), respectively. When compared to the 

tephrostratigraphic record from Lago Grande di Monticchio, cryptotephra TP05-27.915 shows 

the best fit to the X-6 tephra, which accords with its stratigraphic position in the middle of the 

C24 stadial, and therefore it is considered a useful isochron layer with an age of c. 109.5 ka. 

 

TP05-31.255 (c. 120.9 ka) 

Cryptotephra TP05-31.255 is a well-constrained layer between 31.24 and 31.26 m core depth, 

with a low glass shard peak concentration of 11 shards/gdwt at 31.255 m depth. The tephra 

occurs in the middle of MIS 5e in an interval of high percentages of total tree (c. 97 %) and 

temperate tree taxa percentages (c. 78 %; Figs. 2, 7). TP05-31.255 has a heterogeneous 

trachyphonolitic glass composition with concentration ranges of 61.4–63.0 wt% SiO2, 18.7–

19.8 wt% Al2O3, 2.9–3.6 wt% FeO, and 1.1–2.5 wt% CaO, and low alkali ratios of 0.8–1.5. 

Trace element compositions of two larger glass shards show ranges in values of 282–382 ppm 

Rb, 33–92 ppm Sr, 21–46 ppm Y, 230–519 ppm Zr, 36–90 ppm Nb, 26–60 ppm Ba, 45–95 

ppm La, 87–172 ppm Ce, 14–34 ppm Th, and 6–11 ppm U (Fig. 9). These shards can be 

confidently correlated with the CI, once again suggesting downward tephra remobilization in 

this core interval. The majority of TP05-31.255 major element chemical data, however, plots 

into the discrimination field of tephra TM-33-1a from Lago Grande di Monticchio (Martin-

Puertas et al., 2014; Wulf et al., 2012) (Fig. 8d). This tephra has been assigned to the Punta 

Imperatore deposits on Ischia (116 ± 2.9 ka to 123 ± 3.8 ka K/Ar; Gillot et al., 1982) and is 

likely dated  more accurately by annual layer counting to 116,700 ± 5,835 varve yr (Martin-

Puertas et al., 2014). We use the varve age for integrating tephra TP05-33.255 into the new 

TP-2005 age model. 
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TP05-31.95 (c. 123.8 ka) 

This cryptotephra has very low glass shard concentrations (7 shards across a 10-cm-thick 

interval) and occurs during early MIS 5e at the onset of a slight decline in total tree pollen (c. 

91 %; Figs. 2, 7). TP05-31.95 shows both alkaline and calcalkaline glass compositions. The 

alkaline glass population is bimodal trachyphonolitic with one component (consisting of two 

shards) showing concentration ranges of 63.0–63.7 wt% SiO2, 18.2–18.7 wt% Al2O3, 2.7–2.9 

wt% FeO, and 1.8–2.0 wt% CaO, and alkali ratios of 1.3–1.4 (Fig. 8d). The second component 

(consisting of four shards) mainly differs in higher values of Al2O3 (18.8–19.3 wt%) and lower 

values of SiO2 (62.1–62.7 wt%), CaO (0.7–1.3 wt%) and alkali ratios (0.7–1.1). Both 

compositions have a Campanian affinity and show similarities to Eemian tephras TM-33-1a, 

TM-33-2a and TM-37a recorded at Lago Grande di Monticchio (Wulf et al., 2012) but also to 

the Campanian Ignimbrite (Fig. 8d). However, due to the lack of trace element data for both 

the TP05-31.95 and the potentially correlative Monticchio tephras, it is not possible to make a 

firm correlation. The calcalkaline glass population (two shards) is rhyolitic, approximating both 

the major and trace element compositions of the Y-2 tephra from Santorini (Figs. 8d, 9b). The 

rhyolitic component in addition to the potential CI material suggests drilling-related tephra 

remobilization processes in this part of the TP-2005 sequence (see Section 6.1). 

 

TP05-32.225 and TP05-32.265 (c. 124.9 and 125.1 ka) 

Cryptotephras TP05-32.225 and TP05-32.265 are two closely spaced, tightly constrained 

layers with low glass peak concentrations of 13 and 21 shards/gdwt, respectively. They are 

positioned within early MIS 5e in an interval of very high tree-pollen percentages (c. 95 %; 

Figs. 2, 7). Glass chemical compositions of both tephras are dominated by a relatively 

homogenous trachytic composition with concentration ranges in SiO2 of 60.6–64.3 wt%, Al2O3 

of 17.5–20.1 wt%, FeO of 2.8–3.3 wt%, and CaO of 1.7–2.1 wt%, and alkali ratios of 0.9–1.5 

(Fig. 8d). Additional SIMS trace element data of a total of eight shards reveal values of 342–

498 ppm Rb, 19–29 ppm Sr, 51–56 ppm Y, 616–731 ppm Zr, 105–135 ppm Nb, 13–26 ppm 
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Ba, 110–126 ppm La, 203–235 ppm Ce, 42–50 ppm Th, and 16–18 ppm U, strongly suggesting 

a correlation with the CI (Fig. 8d, 9b). TP05-32.225 has an additional rhyolitic component that 

approximates the Santorini Y-2 composition (Fig. 8d). Since no other large eruptions with 

similar compositions are known to have occurred from these centres during this time period, 

we consider both the trachytic and rhyolitic glass components as reworked tephra material, 

which may not be used as time markers for the TP chronology. 

 

TP05-32.53 (c. 126.2 ka) 

TP05-32.53 (32.52–32.54 m depth) is the deepest cryptotephra in the investigated core 

interval. It is a tightly constrained layer with a low glass shard concentration (2 shards/gdwt, >10 

shards in the 10-cm-thick scanning sample) that lies within early MIS 5e (c. 122.4–130 ka BP), 

where tree-pollen percentages are high (c. 87 %; Figs. 2, 7). Major element glass data reveal 

a heterogeneous phonotrachytic composition with concentration ranges of 60.1–62.6 wt% 

SiO2, 18.8–20.2 wt% Al2O3, 2.8–3.5 wt% FeO, and 1.7–2.5 wt% CaO, and bimodal alkali ratios 

of 1.0–1.4 and c. 2.8 (Fig. 8d). The trace element composition of two glass shards with values 

of 372–398 ppm Rb, 23–24 ppm Sr, 48 ppm Y, 578–600 ppm Zr, 100–102 ppm Nb, 21–23 

ppm Ba, 99 ppm La, 183–187 ppm Ce, 36 ppm Th, and 13–17 ppm U suggest a correlation of 

this glass population with the CI (Fig. 9b). One single glass shard shows a slightly more 

distinctive phonotrachytic composition with a lower CaO value of 1.3 and an alkali ratio of 0.7. 

The data indicate a Campanian origin, but the eruption cannot be further constrained at this 

time. 

 

6. Discussion 

6.1 Re-deposition of tephra shards 

Our results show that in addition to in situ cryptotephras a considerable number of the recorded 

cryptotephra layers in the TP-2005 core contain secondary glass shards from the Campanian 

Ignimbrite and/or the Y-2 tephra. This suggests a complex history of re-deposition of tephra 

shards, with cross contamination between tephra layers. In the TP-2005 sequence, thick, 
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macroscopically visible layers represent the Campanian Ignimbrite and the Y-2 tephra at 7.61 

and 12.87 m depth, respectively. Based on the stratigraphic positions of CI and Y-2 tephra 

material throughout the core sequence (Fig. 10), three main processes of tephra displacement 

are thought to be involved: 

 

1) Post-depositional movement of tephra particles 

Some of the reworked CI and Y-2 material is found stratigraphically close to the visible primary 

tephra layers. In the case of the TP05-7.61/Y-2 tephra, primary material has been displaced 

as much as c. 58 cm up-core (cryptotephra layers TP05-7.07 and TP05-7.26) and up to c. 220 

cm down-core (cryptotephra layers TP05-9.23 to TP05-9.78) with respect to the visible layer. 

Reworked shards from the CI, in turn, were detected up to c. 167 cm below the primary deposit 

(cryptotephra layers TP05-13.25 to TP05-14.50), but are absent from the overlying lake marls 

and peat. This re-distribution is likely due to post-depositional movement of tephra material. 

Several experimental studies on peat deposits have shown that tephra shards can be moved 

vertically after deposition on a peat bog surface (e.g., Bjarnason, 1991; Payne and Gehrels, 

2010; Payne et al., 2005). In lightly compacted peat, downward displacement is mainly by 

gravitational sinking, rainfall percolation and root penetration, particularly during times of a 

lowered water table, whilst upward displacement can result from vigorous plant growth or a 

rising water table (Payne and Gehrels, 2010). The scale of vertical tephra movement likely 

depends on the density and porosity of the surface peat and on the size of the tephra shards 

(Payne and Gehrels, 2010; Payne et al., 2005). These mechanisms might explain the vertical 

movement of most of the displaced Y-2 and CI tephra material within the subsurface of the 

Philippi peatland. The rather surprising extent to which Y-2 shards have been displaced both 

up-core and down-core suggests substantial fluctuations in the depth of the local water table 

leading to secondary re-deposition of tephra shards in the Philippi peatland. In contrast, tephra 

material derived from the CI is displaced exclusively down-core, possibly because the 

subsequent deposition of dense lake marls prevented upward movements when the water 

table was rising.  
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2) Secondary deposition of tephra particles 

The re-distribution of CI tephra material in the 2–5 m section of the TP-2005 core (cryptotephra 

layers TP05-2.625, TP05-3.375 and TP05-5.075) is unlikely to reflect the displacement 

processes inferred above due to the long, vertical distance to the primary CI deposit (>7.5 m). 

Instead, they may be explained by secondary re-deposition resulting from anthropogenic 

exploitation of unconsolidated sediments and soils around the margins of the peat basin, 

leading to a release of tephra shards, which are then transported by wind or water to the peat 

surface into the basin (e.g., Payne and Gehrels, 2010). Other disturbance mechanisms that 

could lead to erosion and remobilisation of buried tephras include earthquake activity, natural 

fires, self-combustion or peat cutting (Payne and Gehrels, 2010). At TP, human agro-pastoral 

activities at the margin of the basin have been detected in sediments dating from c. 8.4 cal ka 

BP (Glais et al., 2016), suggesting that erosional and re-depositional processes may have 

played a role in this area since the onset of the Neolithic. Furthermore, drainage of the TP 

basin in 1931–1944 caused severe subsidence of the peatland resulting in the flooding of large 

areas and in the destruction of crop yields, which necessitates frequent deepening of the 

modern ditches and channels in the basin (e.g., Christanis, 2016). 

 

3) Coring-related displacement of tephra particles 

The third type of tephra displacement is associated with coring processes, particularly in the 

deeper part of the TP-2005 core. It is evidenced by the repeated occurrence in particular of CI, 

but also of Y-2 material at the tops and the ends of individual 1-m-long core segments between 

17 and 34 m depth (Table 1). This repeating pattern most likely relates to the core-driving 

mechanism during drilling: When the core barrel is retracted, loose sediment (including tephra 

components) can slump into, and accumulate at the bottom of the borehole. In the next core 

segment recovered, these reworked sediments form a displaced top layer of variable 

thickness, which has to be rejected for pollen and tephra sampling. Between individual core 

retrievals small tephra shards can be gravitationally forced with water into lower peat levels as 
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a result of the load of the borehole water column. The latter was maintained constantly at a 

depth of 0–2 m below surface in order to avoid peat expansion at the bottom of the hole. The 

only exception was for the recovery of cores between 29 and 31 m depth, when the water level 

was minimized to c. 20 m depth below surface; these cores do not contain reworked tephra 

material. The distribution of re-mobilised CI and Y-2 tephra shards (Table 1) suggests that their 

penetration depth is not only a function of the load of the water column, but also of the loading 

residence time (i.e., the time interval between successive core recoveries). Core segments 

recovered within a routine time of 15–25 minutes generally exhibit evidence of reworked 

shards only in the uppermost 10 cm (e.g., cryptotephra layers TP05-21.045, Table 1), while 

longer time gaps of c. 45–60 minutes appear to result in displaced tephra shards being forced 

to depths of 20 cm or more into the top part of the subsequent core segment (e.g., cryptotephra 

layers TP05-32.225 and TP05-32.265). 

 Glass shard peak concentrations in top and basal samples affected by coring-related 

displacement of Y-2 and CI tephra particles in the 17–34 m interval is lower than 250 

shards/gdwt (Fig. 10, Table 1). However, two exceptions are cryptotephras TP05-17.91 and 

TP05-25.465, which exhibit significantly higher concentrations of 749 and 956 shards/gdwt (Fig. 

10). These tephras most likely contain a primary tephra component that adds to the reworked 

CI and Y-2 material. 

In terms of the reliability of the palynological results, we do not expect pollen grains to be 

displaced by water into deeper peat levels, since pollen grains are more adhesive and 

substantially less dense than tephra shards (c. 1 g/cm3 [e.g., van Hout and Katz, 2004] 

compared with glass-shard densities of >2 g/cm3). Also, the concentration of in situ pollen 

grains would greatly exceed the number of any potentially re-deposited pollen grains and 

hence have only a negligible, if any impact on pollen spectra from the respective sections. 

 

6.2 Revision of the TP-2005 age model 

As described in the previous section, distinguishing between primary and re-deposited tephra 

material requires careful analysis of geochemical datasets, including trace-element 
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determinations, and independent stratigraphic control, which in this case is provided by high-

resolution pollen stratigraphy. Integration of these data has enabled identification of six primary 

cryptotephras (TP05-5.075, TP05-9.70, TP05-13.34, TP05-25.195, TP05-27.915 and TP05-

31.255), along with two visible tephras (CI and Y-2) the ages of which have previously been 

determined elsewhere by radiometric methods and/or varve chronology and can therefore be 

incorporated into a revised age model for the TP-2005 core. 

 Prior to this study, the chronology for the 1–34 m interval of the TP-2005 sequence has 

been established: (i) for the upper 15 m by radiocarbon dating, tephrochronology (visible Y-2 

and CI tephras) and alignment of the Lateglacial to early Holocene pollen curve from the core 

with marine core SL152 (Müller et al., 2011; Pross et al., 2009); (ii) for the temperate tree 

pollen data between 15 and 19 m depth by alignment with the NGRIP oxygen isotope curve 

(Müller et al., 2011); and (iii) for the 19–34 m depth interval, by alignment with the pollen curve 

of marine core MD95-2042 from the Iberian Margin (Milner et al., 2012, 2016). Here we present 

a revised age model for the TP-2005 sequence that incorporates the ages of the additional 

primary tephra layers identified in the present study.  

 The timing of the eruptions to which the primary tephra layers reported here have been 

assigned are well constrained by a variety of approaches (Table 1). The ages of the youngest 

tephra correlatives (E1, Y-2 and Y-3) are based on radiocarbon dates obtained from marine 

sediments (E1; Caron et al., 2012), proximal volcanic deposits (Y-2; Bronk Ramsey et al., 

2015, and references therein) and distal terrestrial sites (Y-3; Bronk Ramsey et al., 2015, and 

references therein). The original 14C dates obtained for these eruptions have been calibrated 

using the Marine13 or IntCal13 calibration curves (Reimer et al., 2013) prior to their integration 

into the revised TP-2005 age model (Fig. 11). The corresponding tephra calendar ages, which 

are given in cal yr BP (1950) and include a 2σ error range, are 8,270 ± 96 cal yr BP for the E1 

eruption, 22,024 ± 642 cal yr BP for Y-2, and 29,059 ± 356 cal yr BP for Y-3. The age of the 

visible tephra layer TP05-12.87 is well constrained by a new, precise 40Ar/39Ar date of the 

Campanian Ignimbrite (CI) eruption at 39.85 ± 0.14 ka (before AD 2015, 2σ error) ka (39,785 

± 140 cal yr before AD 1950; Giaccio et al., 2017a). 



POST-PRINT 

 
 

33 

 The tephra correlatives of the MIS 5 cryptotephras TP05-25.195, TP05-27.915 and TP05-

31.255 have been dated both radiometrically and by varve chronologies, but these are not 

always in statistical agreement and have different precisions (Fig. 11b). For the integration of 

the ages of cryptotephras TP05-25.195 and TP05-27.915 into the new age model, preference 

is therefore given to the 40Ar/39Ar sanidine ages of the tephra correlatives POP1 (92.4 ± 4.6 ka, 

2σ; Giaccio et al., 2012) and POP4 (X-6; 109.5 ± 0.9 ka, 2σ; Regattieri et al., 2017) rather than 

the varve-based ages of the respective Lago Grande di Monticchio tephra equivalents (96,210 

± 4,810 and 109,370 ± 5,470 varve yr, respectively; Martin-Puertas et al., 2014). For TP05-

31.255, we use the Monticchio varve age of tephra TM-33-1a at 116,700 ± 5,825 varve yr 

(Brauer et al., 2007; Martin-Puertas et al., 2014) because of its higher precision compared with 

the wider range of the corresponding K/Ar dates (116 ± 2.9 ka to 123 ± 3.8 ka; Gillot et al., 

1982) obtained from the proximal ‘Punta Imperatore’ deposits from Ischia. 

 In a first step towards constructing a revised age-depth model for the MIS 1–5 interval of 

the TP-2005 core, the above-mentioned tephra ages were compared with the previous 

chronologies established by Müller et al. (2011) and Milner et al. (2016). Figure 11a shows a 

comparison of all MIS 1–3 tephra ages (this study) with the former tephra-supported 

radiocarbon chronology for the uppermost c. 15 m of the TP-2005 sequence. The radiocarbon 

chronology is based on 17 AMS 14C dates of bulk peat samples and three dates of snail shell 

fragments from the uppermost middle-late Holocene section (Müller et al., 2011), which have 

been re-calibrated here using the more recent IntCal13 calibration curve (Reimer et al., 2013) 

and incorporated into a Poisson-process (‘P_Sequence’) depositional model using the OxCal 

4.3 program (Bronk Ramsey, 2008, 2009a). The comparison shows that most radiometric 

tephra ages agree with the radiocarbon chronology within 2σ error ranges. The only exception 

is in the early Holocene (Fig. 11a); here, a mean temporal deviation of 870 years can be 

observed between the published age of the E1/TP05-5.075 tephra (8,270 ± 96 cal yr BP; Caron 

et al., 2012) and the 14C-interpolated age in the TP core (9,140 ± 695 cal yr BP). This deviation 

can be explained by an enhanced hard-water effect within the TP basin during the wet early 

Holocene period (Pross et al., 2009), although based on our data this hard-water effect 
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appears slightly less pronounced than the ~1000–1200 years originally proposed.  

However, our new tephrochronological results for the MIS 5 interval of the TP-2005 core 

suggest that a more thorough revision of the former, pollen-based chronology of Milner et al. 

(2016) may be necessary (Fig. 11b). The original age model used ten age-control points at 

mid-transitions for the onset and end of the MIS 5 interglacial (Pangaion), interstadials 

(Doxaton-Drama and Elevtheroupolis) and stadials (Lydia I and II) to correlate the total tree 

pollen curves of cores TP-2005 and MD95-2042 (Milner et al., 2016) (Fig. 11b). According to 

this chronology, the cryptotephras TP05-25.195/TM-23-11, TP05-27.915/TM-27 and TP05-

31.255/TM-33-1a would have mean ages of c. 98.8, 112.6 and 122.4 ka, respectively. These 

mean ages deviate systematically from the tephra-based ages derived from both the above-

mentioned radiometric or Monticchio varve chronologies by >2600 years at the beginning of 

MIS 5c and by up to c. 5700 years during MIS 5e (Fig. 11b).  

In view of these age discrepancies, we established a revised age-depth model for the MIS 

1 to MIS 5 interval of TP-2005, integrating independent 14C and tephra age estimates with 

those based on tuning with other high-resolution, well-dated proxy records in those core 

sections for which independent dates are not available (Figs. 11c, d, e; Supplement 3): 

• For the uppermost 13 m (<40 cal ka BP), four imported tephra radiometric ages, twelve 

AMS-14C dates based on snail fragments and bulk peat from Müller et al. (2011), and one 

14C age from pollen concentrates (Pross et al., 2009) have been included. In addition, the 

ages of five palynological tie points with marine core SL152 (Kotthoff et al., 2008a, b) were 

used instead of the reservoir-age affected radiocarbon dates obtained from early Holocene 

bulk peat samples (c. 7–11 cal ka BP; Pross et al., 2009). Radiocarbon dates from the 

glacial part of the record, however, do not appear to suffer from this reservoir-age effect, 

with radiocarbon age estimates corresponding well with independent ages of the visible 

TP05-7.61 (Y2) and TP05-12.87 (CI) tephra layers (see Albert et al., 2015 for details). 

• The ~40–50 cal ka BP section is based on 44 new AMS-14C dates of bulk peat samples 

(Supplement 3; Staff et al., in prep.) that substantially increase the temporal resolution of 

the previous radiocarbon chronology of Müller et al. (2011). 
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• The early MIS 3–MIS 5b interval (c. 50–90 ka) does not yet have independent time control, 

and hence recourse has been made to alignment of the TP pollen record with other well-

dated proxy records that are considered to offer the best control points for this long time 

interval. Previous research has suggested that vegetation response to North Atlantic 

climate change was rapid and effectively synchronous across southern Europe (Roucoux 

et al., 2001; Sánchez Goñi et al., 2002; Tzedakis et al., 2002), which may justify a direct 

alignment of the TP pollen curve with other Mediterranean vegetation records. However, 

the 50–90 ka chronologies of the two available high-resolution pollen records, Lago Grande 

di Monticchio in southern Italy (Allen et al., 1999; Brauer et al., 2007) and marine core 

MD95-2042 from the Iberian margin (Sánchez Goñi et al., 1999), either exhibit large 

uncertainties (Lago Grande di Monticchio; Wulf et al., 2012) or are tuned to the NGRIP 

oxygen isotope record (MD95-2042; Sánchez Goñi et al., 2013, 2017). Since the ages of 

the onsets of Greenland Interstadials (GI) 9 to 12 in the NGRIP oxygen isotope record 

(Svensson et al., 2008) are within 2σ dating uncertainties of radiometrically-obtained ages 

for abrupt increases in total tree pollen concentrations (Fig. 12), tuning of the MIS 4–5 pollen 

record from TP directly to the NGRIP oxygen-isotope record is considered reasonable. 

Hence, for the 50–75 ka interval, seven chronological tie points of the onsets of Greenland 

Interstadials (GI) 13 to 19 based on NGRIP annual layer counting (GICC05; Svensson et 

al., 2008) and ss09sea age scale estimations (Wolff et al., 2010) have been transferred to 

midpoint transitions of defined peaks in total tree pollen percentages in the TP record (Fig. 

12; Supplement 3). Because of increased dating uncertainties in the NGRIP chronology 

beyond 75 ka, we have integrated three original control points of Milner et al. (2016) for the 

75–90 ka interval into the new TP-2005 age model by tuning the onset of GI 20/C19 and 

the transitions of the Lydia II (GI 21/C21) cold stage with the Mediterranean forest pollen 

signals of core MD95-2042 (Sánchez Goñi et al., 1999) (Supplement 3). These dates were 

derived by aligning the MD95-2042 planktonic δ18O record (Shackleton et al., 2000) with 

the synthetic Greenland record of Barker et al. (2011). 

• The chronology of the MIS 5c–MIS 5e section (c. 90–130 ka) is based on three imported 
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tephra ages, two of them derived from sanidine 40Ar/39Ar dating and one from the Lago 

Grande di Monticchio varve chronology. In addition to these independent time markers, 

tephrochronologically confirmed Monticchio varve ages (Martin-Puertas et al., 2014; Wulf 

et al., 2012) for five palynological tie points were transferred to the new TP-2005 chronology 

(Fig. 12). These represent palynologically and sedimentologically well-defined transitions at 

the ends and onsets of cold stages MON3/GS-24/C23 (103,000 ± 5,150 and 105,500 ± 

5,275 varve yr) and MON2/GS-25/C24 (108,630 ± 5,431 and 110,429 ± 5,521 varve yr), 

and the MIS 6/MIS 5 boundary at 127,750 ± 6,388 varve yr (Martin-Puertas et al., 2014). 

 

Consequently, the new age-depth model of the MIS 1–MIS 5 interval of the TP-2005 

sequence synthesises a total of 61 independent time markers and 20 palynological alignment 

points (Supplement 3). Linear interpolation of these chronological markers, however, suggests 

a virtual hiatus at c. 25 m depth (Fig. 11c), which is not reflected in the sedimentological and/or 

palynological data. Therefore, an alternative age-depth model was generated using the 

Bayesian statistical software OxCal ver. 4.3 (Bronk Ramsey, 2017) (Figs. 11d, e), which is 

more consistent than the linear interpolation (Fig. 11c) with credible estimates of mean peat 

accumulation rates of c. 1 mm/a and 0.4 mm/a during the late/middle and early Holocene, 

respectively. For the core interval representing MIS 2 to MIS 5, mean accumulation rates were 

relatively constant at c. 0.2–0.3 mm/a, being in agreement with previous studies (Christanis, 

1983; Kalaitzidis, 2007).  

One of the highlights of establishing a partly independent, high-precision chronology for the 

TP-2005 sequence is the potential it provides for yielding more precise age estimates for 

currently poorly dated tephra layers (Table 1). For example, the age of TP05-13.34 (TM-18-

1d) is estimated to between 40,900 and 41,660 cal yr BP based on our new chronology, which 

is slightly older than the age of 40,440 cal yr BP approximated from incremental varve counting 

for its counterpart in the Lago Grande die Monticchio record. Moreover, tephras TP05-25.195 

(POP1/TM-23-11) and TP05-31.255 (TM33-1a) have been re-dated to 93,250–98,430 yr and 

117,780–123,970 yr, respectively; these new ages are, however, still within the 2σ error range 
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of previously determined radiometric ages and/or varve-count estimates. All of the other 

Bayesian modelled TP tephra ages, E1, Y-2, Y-3, CI and X-6, are in very close agreement with 

published radiometric ages. 

 

6.3 Re-evaluation of regional tephra deposition patterns 

The (crypto)tephra results for the TP-2005 sequence show that some Italian tephras that are 

prominent in, for example, nearby lake records in the western Balkans (e.g., Lakes Ohrid and 

Prespa; c. 270–300 km from the TP site) are either not represented at all or are present in 

trace amounts only in the TP-2005 record (Fig. 12). This does not appear to be the result of 

chemical degradation, since glass shards in the visible tephra layers in the TP sequence are 

very well preserved.  

 These different distribution patterns can be explained by a number of factors. First of all, 

they may be due to differences in the depositional processes that were at work in the 

environmental settings of the respective archives. Such processes include hydrological 

focussing of tephra particles via fluvial transportation from the terrestrial catchment into the 

depocentres of Lakes Ohrid and Prespa, whereas the mire setting at TP predominantly 

captured the direct air fall. On the other hand, the variations in tephra thicknesses and 

occurrences can also be related to differences in atmospheric tephra dispersal caused by 

variations in local wind and precipitation patterns. Lakes Ohrid, Lake Prespa and Tenaghi 

Philippon are positioned in a climatic transition zone that is influenced by the complex interplay 

between moist Westerlies, cold-dry Etesian air masses from the North, warm-humid air from 

the south and cyclonic/anticyclonic atmospheric circulation patterns in the Aegean region (e.g., 

Hamann et al., 2008; Koutsodendris et al., 2017; Kutiel and Benaroch, 2002; Maheras et al., 

2000; Wagner et al., 2017). It is particularly noteworthy that precipitation patterns differ 

substantially in the western and eastern Balkans: whereas mean annual precipitation in the 

Lake Ohrid and Lake Prespa region was c. 1000–1600 mm/yr during the 1940–1995 period, it 

was merely c. 500–800 mm/yr at Tenaghi Philippon (Fotiadi et al., 1999; Hijmans et al., 2005; 

https://www.eea.europa.eu). The two times higher rainfall received in the western part of the 



POST-PRINT 

 
 

38 

Balkans results partially from orographic forcing of the moist Westerlies by the Dinarides and 

Pindos mountain ranges (Metaxas, 1978; Xoplaki et al., 2000). This enhanced precipitation 

results in a higher likelihood for atmospheric fallout of eastward-transported fine-grained Italian 

tephra in the western Balkans. Differences in precipitation between the western Balkans and 

TP may have played an even more important role during the last glacial, when a generally drier 

climate prevailed across the Balkan Peninsula compared to the warmer/moist conditions 

during MIS 1 and MIS 5 (e.g., Milner et al., 2012, 2013, 2016; Sadori et al., 2016; Tzedakis et 

al., 2002).  

 Furthermore, moist southerly winds during spring, summer and autumn can also enhance 

the dispersal and fallout of Aegean Arc tephras in the eastern Balkans and western Black Sea 

region. This is reflected, for example, by the striking thickness of the Y-2 tephra at TP (4-15 

cm; St. Seymour et al., 2004; this study) and in the Sea of Marmara (1-7 cm; Wulf et al., 2002), 

approximately 530 km from the Santorini source volcano. Other Santorini eruptions of 

comparable magnitude such as the Late Holocene Minoan eruption are recorded in the Black 

Sea (e.g., Kwiecien et al., 2008) but not in sediments from the northern Aegean Sea, the Sea 

of Marmara (e.g., Aksu et al., 2008; Çağatay et al., 2015; Wulf et al., 2002) or at TP. This may 

indicate a stronger influence of westerly winds during the time of that eruption.  

These considerations highlight the important influence of atmospheric and climatic conditions 

on tephra dispersal in the greater Balkan region. Additional dispersal complexities may arise 

from atmospheric circulation contrasts between glacial/stadial and interglacial/interstadial 

times. 

 

6.4 Climatostratigraphic context of tephras in Eastern Mediterranean records 

The identification of eight primary tephra layers in the MIS 1 to MIS 5 section of the TP-2005 

sequence allows climate-proxy datasets from TP to be correlated with those from other long 

terrestrial and marine records in the Mediterranean region that have been analysed for their 

tephra content (Figs. 12, 13). For the time being, the terrestrial climate-proxy archives 

comprise mainly pollen data from lacustrine sediments, such as Lago Grande di Monticchio in 
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southern Italy and Lake Ohrid in Albania/Macedonia. Lago Grande di Monticchio provides a 

continuous high-resolution (decadal- to centennial-scale) vegetation and tephra record for the 

MIS 1-5 interval (e.g., Allen et al., 1999; Brauer et al., 2007; Martin-Puertas et al., 2014; Wulf 

et al., 2004, 2012), and therefore is the most suitable for comparison with the TP record (Figs., 

12, 13). In the case of Lake Ohrid, high-resolution pollen data are presently only available for 

the MIS 5 interval (Sinopoli et al., 2018), while the generation of a continuous high-resolution 

pollen and cryptotephra record is still in progress (e.g., Leicher et al., 2016; Sadori et al., 2016; 

Wagner et al., 2017) (Figs. 1, 12, 13). Other valuable terrestrial tephra archives include the 

Sulmona and Fucino basins in central Italy (Fig. 1), although these are either incomplete for 

the MIS 1 to MIS 5 interval (Sulmona; Giaccio et al., 2012; 2013; Regattieri et al., 2015, 2017) 

or lack a comprehensive palaeoenvironmental dataset (Fucino; Giaccio et al., 2015, 2017b) 

(Fig. 13). A recent study has, however, provided a high-resolution oxygen isotope record for 

the MIS 5 interval in Sulmona (Regattieri et al., 2017) enabling a detailed comparison of 

precipitation data for the Central Mediterranean with the TP vegetation record for this time 

period (Fig. 12). The palaeoclimatic record from Ioannina in southwestern Greece (e.g., 

Tzedakis et al., 2003; Fig. 1) also offers the potential for detailed comparison with the TP 

record, but lacks a detailed tephrochronology. 

Mediterranean deep-sea records, on the other hand, have rarely been examined for their 

(crypto)tephra content so far. The only marine records in the Central Mediterranean with 

detailed tephrostratigraphies spanning the MIS1 to MIS 5 time period are cores PRAD 1-2 from 

the Adriatic Sea (Bourne et al., 2010, 2015) and KC01B from the Ionian Sea (Insinga et al., 

2014; Lourens, 2004); these cores register a number of tephra layers in common with TP (e.g. 

Y-3, CI, TM-23-11, and X-6; Fig. 13) but lack high-resolution proxy data. Aegean Sea core 

LC21, on the other hand, provides temporally highly resolved proxy datasets (Grant et al., 

2012) and a detailed (crypto)tephrochronology (Satow et al., 2015); however the only common 

tephra is the CI, and proxy data from core LC21 are not available for this time interval (Satow 

et al., 2015) (Figs. 1, 13).  

Hence detailed comparisons of Mediterranean palaeoclimatic records spanning the MIS-1 
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to MIS-5 interval are presently restricted to few terrestrial records (Figs. 1, 12, 13). 

Nevertheless, progress is being made in the identification of tephra isochrons that can aid 

these comparisons, and some of the key points to emerge from the new results presented here 

are as follows.   

  

 E1 tephra. The early Holocene E1 tephra from Lipari, Aeolian Islands, only occurs in the 

TP record and has been re-dated by the new TP-2005 age model to 8,255 ± 95 cal yr BP, 

which is in close agreement with the marine-reservoir corrected, calibrated 14C ages of its 

marine tephra equivalents (Caron et al., 2012; Siani et al., 2004). The climatostratigraphic 

position of the E1 tephra in the TP record is c. 120 years prior to the onset of the palynologically 

well-defined 8.2 ka-event, which is dated in TP to 8140 ± 90 cal yr BP. 

Y-2 tephra. The Santorini Y-2 tephra also only occurs in TP and is dated by the new TP-

2005 age model to 21,885 ± 625 cal yr BP. This age accords with the age constrained by Lee 

et al. (2013) and Bronk Ramsey et al. (2015) based on two deposition records and proximal 

14C dates. In TP, the Y-2 tephra occurs within MIS 2, c. 530 years after the onset of Greenland 

Interstadial GI2. 

Y-3 tephra. The Campanian Y-3 tephra, re-dated in TP-2005 to 29,040 ± 280 cal yr BP, 

occurs at TP and Lago Grande di Monticchio in a similar palynostratigraphic position within 

Greenland Stadial (GS) 5 and Heinrich Stadial H3. More specifically, the new TP-2005 

chronology places the Y-3 deposition c. 2400 years after the onset of GS5/H3 (c. 31.44 cal ka 

BP) and 930 years prior to the onset of GI4 (c. 28.1 cal ka BP) (Fig. 12). The timing at TP 

differs from varve counts and sedimentation rate estimates at Lago Grande di Monticchio; 

here, deposition of the Y-3 tephra occurred c. 3430 years after the onset of GS5/H3 and 590 

years before the onset of GI4, but is within 2σ uncertainties of both chronologies.  

CI tephra. The new TP-2005 chronology re-dates the Campanian Ignimbrite to 39,680 ± 

140 cal yr BP and places it at c. 1000 years after the onset of GS9/H4 (c. 40.58 cal ka BP) and 

3280 years before the onset of GI8 (c. 36.3 cal ka BP). The resulting total duration of c. 4280 

years for H4, however, strongly deviates from the c. 2000 years obtained through high-
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precision incremental varve dating at Lago Grande di Monticchio (Wutke et al., 2015); there, 

the CI was deposited c. 820 years after the onset and c. 1170 years before the end of GS9/H4 

(Wutke et al. (2015). 

TM-18-1d tephra. This tephra occurs in Lago Grande di Monticchio c. 590 years prior to 

the deposition of the CI and therewith c. 230 years after the onset of GS9/H4 (Wutke et al., 

2015). In TP, where the TM-18-1d tephra correlative is newly dated to 41,280 ± 380 cal yr BP, 

the time difference  between the GS9/H4 onset and tephra deposition is estimated to c. 720 

years.  

TM-23-11/POP1. The climatostratigraphic position of the TM-23-11 tephra in Monticchio is 

roughly defined within MIS 5c and c. 6800 years after the end of GS24/C23 (Martin-Puertas et 

al., 2014). The new TP-2005 age model re-dates this tephra to 95,840 ± 2,590 yr and allows 

a more precise palynostratigraphical placement c. 4,800 years after the decline of GS24/C23 

and c. 2,690 years prior to the onset of GS23/C22. The position of TM-23-11 in TP at the onset 

of a short decline in total tree pollen percentages within the GI23 warm/wet interval coincides 

with the position of the POP1 tephra equivalent in the Sulmona Basin at the onset of a brief 

drier event during GI23 (Giaccio et al., 2012; Regattieri et al., 2015, 2017). 

X-6 tephra. The X-6 tephra was first reported from MIS 5d deep-sea cores from the Eastern 

Mediterranean Sea by Keller et al. (1978). Its stratigraphic position was subsequently more 

tightly constrained in the Lago Grande di Monticchio records, where it occurs during cold event 

GS25/C24, c. 740 years before the onset of GI24 (Brauer et al., 2007; Martin Puertas et al., 

2014). High-resolution oxygen isotope and new high-resolution vegetation data for the MIS 5 

intervals in the Sulmona Basin and Lake Ohrid sediments (Regattieri et al., 2017; Sinopoli et 

al., 2018) allow a more detailed assessment of the climatostratigraphic position of the X-6 

tephra and hence a direct comparison with the MIS 5 pollen record from TP. In Sulmona, the 

X-6 (POP4) tephra is positioned at the end of a brief wetter period that occurs in the middle of 

the arid interval correlated with the North Atlantic C24 cooling event (Regattieri et al., 2017). 

This position is in striking agreement with the occurrence of the X-6 tephra in the pollen records 

from Lago Grande di Monticchio, Lake Ohrid and TP at the end of a short event of increased 
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total pollen percentages, interpreted as a wetter incursion during the C24 dry period (Fig. 12). 

The age of the X-6 tephra has been re-modelled by the new TP-2005 chronology to 109,380 

± 860 yr, which is in accordance with the Lago Grande di Monticchio varve age and previous 

radiometric dates. 

TM-33-1a tephra. This tephra is placed in the Lago Grande di Monticchio record within MIS 

5e, c. 11,050 years after the MIS 6/5e transition (Martin Puertas et al., 2014). In TP, its tephra 

equivalent is re-dated to 120,875 ± 3095 yr, which makes it c. 4000 years older than its age 

estimate based on varve counting at Monticchio. The timing of the MIS 6/5e boundary is re-

dated by the new TP-2005 age model to 129,040 ± 4170 yr, hence placing the deposition of 

TM-33-1a in TP c. 9,170 years after the onset of the Last Interglacial. 

 

The comparison of the climatostratigraphic positions of tephras in the Monticchio and TP pollen 

records indicates similarities in the relative positions of tephras, but some divergence in 

absolute ages as they would derive from the pollen records (e.g., tephras Y-3, CI, TM-23-11, 

TM-33-1a). These differences do most likely not represent temporal leads or lags of vegetation 

responses to climate changes, but rather reflect resolution issues and chronological 

uncertainties of the different dating methods, namely varve counting at Monticchio versus 

radiometric dating and palynological tuning at TP. Hence, for a more robust assessment of the 

proposed climatostratigraphic positions of tephras, additional well-dated MIS 1-5 records from 

the Mediterranean region are much needed. 

 

7. Summary and Conclusions 

Examination of the 1–34 m interval of the TP-2005 core for cryptotephra content has led to the 

detection of five new cryptotephra layers that represent new primary fall events, adding to the 

Y-2, Y-3 and Campanian Ignimbrite volcanic ash layers previously identified. The new 

cryptotephras, which represent the most distal findings with regard to their sources, are the 

early Holocene E1 tephra from the Aeolian Islands, the Campanian POP1/TM-23-11 (92.4 ka) 

and X-6 tephras (109.5 ka), and two Italian tephras that have so far only been identified at 
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Lago Grande di Monticchio, namely tephras TM-18-1d (c. 41.3 cal ka BP) and TM-33-1a (116.7 

ka). Integration of tephra ages, additional 14C dates on TP sediments and high-resolution 

palynological alignments resulted in an improved age-depth model of the MIS 1-5 interval of 

the TP-2005 sequence, and is a major step towards increasing the number of well-dated, long 

and temporally highly resolved palaeoclimate records in the Eastern Mediterranean region. 

The new cryptotephra data provide additional isochrons for improving the correlation of long 

terrestrial and marine palaeoenvironmental records in the eastern Mediterranean region. 

 The tephra results furthermore imply that the Tenaghi Philippon record is key to further 

refining atmospheric circulation patterns for the Eastern Mediterranean and adjacent regions 

for the MIS 1-5 interval. It is located in an ideal position for receiving tephra from both Italian 

and Aegean Arc volcanoes, and modern atmospheric patterns hold the potential to transport 

volcanic ash also from East Carpathian and central Anatolian volcanic centres towards TP. 

This makes TP an important reference archive for correlating palaeoenvironmental sequences 

from sites in the central Mediterranean with those in the Eastern Mediterranean region. 

Our new cryptotephra investigation at TP has also provided new insight into the factors that 

can affect the preservation of volcanic glass shards in peat-dominated sedimentary 

sequences. The evidence for extensive displacement/re-deposition of tephra shards in the TP-

2005 core can provide additional information about past environmental influences, such as 

potential changes in ground water level.The identification of potentially redeposited tephra 

glass shards versus in situ components critically hinges on the detailed major and trace 

element geochemical characterisation of a high number of shards, which requires elaborated 

shard extraction techniques and the application of high-precision micro-analytical techniques. 

Hence, detailed cryptotephra studies may help to better understand post-depositional 

taphonomic processes in peat bogs, but potentially also in other terrestrial and marine 

sediments.  

 

Acknowledgments 

SW and JP acknowledge support through the Senckenberg Gesellschaft für Naturforschung 



POST-PRINT 

 
 

44 

and Heidelberg University. MH was funded by the Natural Environment Research Council 

(NERC) via the RESET consortium (project number NE/E015905/1). RS is supported by an 

Early Career Fellowship from the Leverhulme Trust (ECF-2015-396). AK, JP and GS 

acknowledge support through the German Research Foundation (DFG; grant KO4960/3 to AK 

and JP, and grant PR651/3 to JP and GS). The Heidelberg Ion Microprobe (HIP) facility at 

Heidelberg University is operated under the auspices of the DFG Scientific Instrumentation 

and Information Technology programme. We are very grateful to Ilse Glass, Monika Doubrawa 

and Kai Uwe Käser for laboratory support during tephra sample processing, and Thomas 

Ludwig for help during SIMS measurements at Heidelberg University. Alexander Varychev was 

responsible for SEM sample mapping, and Johannes Grimm and Hans-Peter Meyer for the 

EPMA setup at Heidelberg University. Ralf Gertisser provided pumice samples of the Cape 

Tripiti tephra deposit from Santorini. We thank Biagio Giaccio and an anonymous reviewer for 

their constructive comments that helped to improve this contribution. 

 

SUPPLEMENTARY FILES 

Supplement 1: EPMA, LA-ICP-MS and SIMS glass analytical data of TP-2005 tephra layers. 

Supplement 2: EPMA and LA-ICP-MS glass data of distal (Lago Grande di Monticchio) and 

proximal Santorini tephra deposits. 

Supplement 3: Revised age-depth model of the TP-2005 sequence (0–135 ka BP) and 

palynological data re-calibrated on the new time scale. 

  



POST-PRINT 

 
 

45 

References 

Aksu, W.E., Jenner, G., Hiscott, R.N., İşler, E.B., 2008. Occurrence, stratigraphy and 
geochemistry of Late Quaternary tephra layers in the Aegean Sea and the Marmara Sea. 
Marine Geology 252, 174-192. 

Albert, P.G., Hardiman, M., Keller, J., Tomlinson, E.L., Smith, V.C., Bourne, A.J., Wulf, S., 
Zanchetta, G., Sulpizio, R., Müller, U.C., Pross, J., Ottolini, L., Matthews, I.P., Blockley, S.P.E., 
Menzies, M.A., 2015. Revisiting the Y-3 tephrostratigraphic marker: a new diagnostic glass 
geochemistry, age estimate, and details on its climatostratigraphical context. Quaternary 
Science Reviews 118, 105-121. 

Albert, P.G., Tomlinson, E.L., Smith, V.S., Di Traglia, F., Pistolesi, M., Morris, A., Donato, P., 
De Rosa, R., Sulpizio, R., Keller, J., Rosi, M., Menzies, M., 2017. Glass geochemistry of 
pyroclastic deposits from the Aeolian Islands in the last 50 ka: A proximal database for 
tephrochronology. Journal of Volcanology and Geothermal Research 336, 81-107. 

Albert, P.G., Tomlinson, E.L., Smith, V.C., Di Roberto, A., Todman, A., Rosi, M., Marani, M., 
Müller, W., Menzies, M.A., 2012. Marine-continental tephra correlations: Volcanic glass 
geochemistry from the Marsili Basin and the Aeolian Islands, Southern Tyrrhenian Sea, Italy. 
Journal of Volcanology and Geothermal Research 229-230, 74-94. 

Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.-W., Huntley, B., Keller, J., Kraml, M., 
Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhänsli, H., Watts, 
W.A., Wulf, S., Zolitschka, B., 1999. Rapid environmental changes in southern Europe during 
the last glacial period. Nature 400, 740-743. 

Barker, S., Knorr, G., Edwards, R.L., Parrenin, F., Putnam, A.E., Skinner, L.C., Wolff, E., 
Ziegler, M., 2011. 800,000 years of abrupt climate variability. Science 334, 347-351. 

Bjarnason, Á.H., 1991. Vegetation on lava fields in the Hekla area, Iceland, Acta 
Phytogeographica Suecica. PhD Thesis, University of Uppsala, p. 110. 

Blockley, S., Pyne-O'Donnell, S.D.F., Lowe, J.J., Matthews, I.P., Stone, A., Pollard, M., Turney, 
C.S.M., Molyneux, E.G., 2005. A new and less destructive laboratory procedure for the 
physical separation of distal glass tephra shards from sediments. Quaternary Science Reviews 
24, 1952-1960. 

Bourne, A.J., Albert, P.G., Matthews, I.P., Trincardi, F., Wulf, S., Asioli, A., Blockley, S.P.E., 
Keller, J., Lowe, J.J., 2015. Tephrochronology of core PRAD 1-2 from the Adriatic Sea: insights 
into Italian explosive volcanism for the period 200-80 ka. Quaternary Science Reviews 116, 
28-43. 

Bourne, A.J., Lowe, J.J., Trincardi, F., Asioli, A., Blockley, S., Wulf, S., Matthews, I.P., Piva, 
A., Vigliotti, L., 2010. Distal tephra record for the last ca 105,000 years from core PRAD 1-2 in 
the central Adriatic Sea: implications for marine tephrostratigraphy. Quaternary Science 
Reviews 29, 3079-3094. 

Brauer, A., Allen, J.R.M., Mingram, J., Dulski, P., Wulf, S., Huntley, B., 2007. Evidence for last 



POST-PRINT 

 
 

46 

interglacial chronology and environmental change from Southern Europe. Proceedings of the 
National Academy of Science, 104, 450-455. 

Bronk Ramsey, C., 2008. Deposition models for chronological records. Quaternary Science 
Reviews 27, 42-60. 

Bronk Ramsey, C., 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337-360. 

Bronk Ramsey, C., 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 
51, 1023-1045. 

Bronk Ramsey, C., 2017. OxCal ver.4.3, in: https://c14.arch.ox.ac.uk/oxcal/OxCal.html (Ed.). 

Bronk Ramsey, C., Albert, P.G., Blockley, S.P.E., Hardiman, M., Housley, R.A., Lane, C.S., 
Lee, S., Matthews, I.P., Smith, V.C., Lowe, J.J., 2015. Improved age estimates for key Late 
Quaternary European tephra horizons in the RESET lattice. Quaternary Science Reviews 118, 
18-32. 

Bronk Ramsey, C., Dee, M., Lee, S., Nakagawa, T., Staff, R.A., 2010. Developments in the 
calibration and modelling of radiocarbon dates. Radiocarbon 52, 953-961. 

Bronk Ramsey, C., Lee, S., 2013. Recent and planned developments of the program OxCal. 
Radiocarbon 55, 720-730. 

Çağatay, M.N., Wulf, S., Sancar, Ü., Özmaral, A., Vidal, L., Henry, P. Appelt, O., Gasperini, L., 
2015. The tephra record from the Sea of Marmara for the last ca. 70 ka and its 
palaeoceanographic implications. Marine Geology 361, 96-110. 

Caron, B., Siani, G., Sulpizio, R., Zanchetta, G., Paterne, M., Santacroce, R., Tema, E., 
Zanella, E., 2012. Late Pleistocene to Holocene tephrostratigraphic record from the Northern 
Ionian Sea. Marine Geology 311-314, 41-51. 

Christanis, K., 1983. Genese und Fazies der Torf-Lagerstätte von Philippi (Griechisch-
Mazedonien) als Beispiel der Entstehung einer Braunkohlen-Lagerstätte vom stark 
telmatischen Typ. PhD Thesis, University of Braunschweig, p. 170. 

Christanis, K., 1987. Philippi/Greece: a peat deposit awaiting development. International Peat 
Journal 2, 45-54. 

Christanis, K., 2016. The Philippi Peatland (Greece). In: C.M. Finlayson et al. (eds.), The 
Wetland Book, Springer Science+Business Media Dordrecht. doi: 10.1007/978-94-007-6173-
5_147-1. 

Cullen, V.L., Smith, V.C., Arz, H.W., 2014. The detailed tephrostratigraphy of a core from the 
south-east Black sea spanning the last ~60 ka. Journal of Quaternary Science 29, 675-690. 

Damaschke, M., Sulpizio, R., Zanchetta, G., Wagner, B., Böhm, A., Nowaczyk, N., 
Rethemeyer, J., Hilgers, A., 2013. Tephrostratigraphic studies on a sediment core from Lake 
Prespa in the Balkans. Climate of the Past 9, 267-287. 

de Beaulieu, J.-L., Brugiapaglia, E., Joannin, S., Guiter, F., Zanchetta, G., Wulf, S., Peyron, 

http://link.springer.com/referenceworkentry/10.1007/978-94-007-6173-5_147-1
http://link.springer.com/referenceworkentry/10.1007/978-94-007-6173-5_147-1


POST-PRINT 

 
 

47 

O., Bernardo, L., Didier, J., Stock, A., Rius, D., Magny, M., 2017. Lateglacial-Holocene abrupt 
vegetation changes at Lago Trifoglietti in Calabria, southern Italy: The setting of ecosystems 
in a refugial zone. Quaternary Science Reviews 158, 44-57. 

De Rosa, R., Donato, P., Gioncada, A., Masetti, M., Santacroce, R., 2003. The Monte Guardia 
eruption (Lipari, Aeolian Islands): an example of a reversely zoned magma mixing sequence. 
Bulletin of Volcanology 65, 530-543. 

Di Vito, M., Isaia, R., Orsi, G., Southon, J., di Vita, S., D' Antonio, M., Pappalardo, L., Piochi, 
M., 1999. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). 
Journal of Volcanology and Geothermal Research 91, 221-246. 

Druitt, T.H., Brenchley, P.J., Gökten, Y.E., Francaviglia, V., 1995. Late Quaternary rhyolitic 
eruptions from the Acigöl Complex, central Turkey. Journal of the Geological Society of London 
152, 655-667. 

Druitt, T.H., Edwards, L., Mellors, R.M., Pyle, D.M., Sparks, R.S.J., Lanphere, M., Davies, M., 
Barriero, B., 1999. Santorini Volcano. Geological Society, London, Vol. 19, p. 165. 

Druitt, T.H., Francalanci, L., Fabbro, G., 2015. Field guide to Santorini volcano. MeMoVolc 
short course, Santorini, p. 56. 

Druitt, T.H., Mellors, R.A., Pyle, D.M., Sparks, R.S.J., 1989. Explosive volcanism on Santorini, 
Greece. Geological Magazine 126, 95-126. 

Eastwood, W.J., Pearce, N.J.G., Westgate, J.A., Perkins, W.T., Lamb, H.F., Roberts, N., 1999. 
Geochemistry of Santorini tephra in lake sediments from Southwest Turkey. Global and 
Planetary Change 21, 17-29. 

Fabbro, G.N., Druitt, T.H., Scaillet, S., 2013. Evolution of the crustal magma plumbing system 
during the build-up to the 22-ka caldera-forming eruption of Santorini (Greece). Bulletin of 
Volcanology 75, 767-788. 

Federman, A.N., Carey, S.N., 1980. Electron microprobe correlation of tephra layers from 
Eastern Mediterranean abyssal sediments and the island of Santorini. Quaternary Research 
13, 160-171. 

Fletcher, W.J., Müller, U.C., Koutsodendris, A., Christanis, K., Pross, J., 2013. A centennial-
scale record of vegetation and climate variability from 312 to 240 ka (Marine Isotope Stages 
9c-a, 8 and 7e) from Tenaghi Philippon, NE Greece. Quaternary Science Reviews 78, 108-
125. 

Fotiadi, A.K., Metaxas, A.D., Bartzokas, A., 1999. A statistical study of precipitation in 
northwest Greece. International Journal of Climatology 19, 1221-1232. 

Georgakopoulos, A., Femández-Turiel, J.L., Christanis, K., Kalaitzidis, S., Kassoli-Foumaraki, 
A., Llorens, J.F., Filippidis, A., Gimeno, D., 2001. The Drama basin water: quality and 
peat/lignite interaction. Environmental Geology 41, 121-127. 

Giaccio, B., Castorina, F., Nomade, S., Scardia, G., Voltaggio, M., Sagnotti, L., 2013. Revised 
chronology of the Sulmona lacustrine succession, central Italy. Journal of Quaternary 



POST-PRINT 

 
 

48 

Science 28, 545-551. 

Giaccio, B., Hajdas, I., Isaia, R., Deino, A., Nomade, S., 2017a. High-precision 14C and 
40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scale of climatic cultural 
processes at 40 ka. Scientific Reports 7, 45940. 

Giaccio, B., Niespolo, E.M., Pereira, A., Nomade, S., Renne, P.R., Albert, P.G., Arienzo, I., 
Regattieri, E., Wagner, B., Zanchetta, G., Gaeta, M., Galli, P., Mannella, G., Peronace, E., 
Sottili, G., Florindo, F., Leicher, N., Marra, F., Tomlinson, E.L., 2017b. First integrated 
tephrochronological record for the last ~190 kyr from the Fucino Quaternary lacustrine 
succession, central Italy. Quaternary Science Reviews 158, 211-234. 

Giaccio, B., Nomade, S., Wulf, S., Isaia, R., Sottili, G., Cavuoto, G., Galli, P., Messina, P., 
Sposato, A., Sulpizio, R., Zanchetta, G., 2012. The late MIS 5 Mediterranean tephra markers: 
a reappraisal from peninsular Italy terrestrial records. Quaternary Science Reviews 56, 31-45. 

Giaccio, B., Regattieri, E., Zanchetta, G., Wagner, B., Galli, P., Mannella, G., Niespolo, E., 
Peronace, E., Renne, P.R., Nomade, S., Cavinato, G.P., Messina, P., Sposato, A., Boschi, C., 
Florindo, F., Marra, F., Sadori, L., 2015. A key continental archive for the last 2 Ma of climatic 
history of the central Mediterranean region: A pilot drilling in the Fucino Basin, central Italy. 
Scientific Drilling 20, 13-19. 

Gillot, P.Y., Chiesa, S., Pasquare, G., Vezzoli, L., 1982. <33.000 yr K/Ar dating of the volcano-
tectonic horst of the isle of Ischia, Gulf of Naples. Nature 299, 242-245. 

Giorgi F, Lionello P, 2008. Climate change projections for the Mediterranean region. Global 
and Planetary Change 63, 90-104. 

Glais, A., López-Sáez, J.A., Lespez, L., Davidson, R., 2016. Climate and human-environment 
relationships on the edge of the Tenaghi-Philippon marsh (Northern Greece) during the 
Neolithization process. Quaternary International 403, 237-250. 

Grant, K.M., Rohling, E.J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Bronk Ramsey, 
C., Satow, C., Roberts, A.P., 2012. Rapid coupling between ice volume and polar temperature 
over the past 150,000 years. Nature 491, 744-747.  

Hamann, Y., Ehrmann, W., Schmiedl, G., Krüger, S., Stuut, J.-B., Kuhnt, T., 2008. 
Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and 
Holocene revealed by end-member modelling of the terrigenous fraction in marine sediments. 
Marine Geology 248, 97-114. 

Hamann, Y., Wulf, S., Ersoy, O., Ehrmann, W., Aydar, E., Schmiedl, G., 2010. First evidence 
of a distal early Holocene ash layer in Eastern Mediterranean deep-sea sediments derived 
from the Anatolian volcanic province. Quaternary Research 73, 497-506. 

Harangi, S., Lukács, R., Schmitt, A.K., Dunkl, I., Molnár, K., Kiss, B., Seghedi, I., Novothny, 
Á., Molnár, M., 2015. Constraints on the timing of Quaternary volcanism and duration of 
magma residence at Ciomadul volcano, east-central Europe, from combined U-Th/He and U-
Th zircon geochronology. Journal of Volcanology and Geothermal Research 301, 66-80. 



POST-PRINT 

 
 

49 

Hardiman, J.C., 1999. Deep sea tephra from Nisyros Island, eastern Aegean Sea, Greece, in: 
Firth, C.R., McGuire, W.J. (Eds.), Volcanoes in the Quaternary. Geological Society of London, 
London, pp. 69-88. 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution 
interpolated climate surfaces for global land areas. International Journal of Climatology 25, 
1965-1978. 

Hunt, J.B., Hill, P.G., 1996. An inter-laboratory comparison of the electron probe microanalysis 
of glass geochemistry. Quaternary International 34-36, 229-241. 

Insinga, D.D., Tamburrino, S., Lirer, F., Vezzoli, L., Barra, M., De Lange, G.J., Tiepolo, M., 
Vallefuoco, M., Mazzola, S., Sprovieri, M., 2014. Tephrochronology of the astronomically-
tuned KC01B deep-sea core, Ionian Sea: insights into the explosive activity of the Central 
Mediterranean area during the last 200 ka. Quaternary Science Reviews 85, 63-84. 

IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and 
III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Core 
Writing Team, Pachauri RK, Meyer LA (eds.). IPCC, Geneva, Switzerland, 151 pp. 

Jochum, K.P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A.W., Amini, M., Aarburg, S., et al., 
2006. MPI-DING reference glasses for in situ microanalysis: New reference values for element 
concentrations and isotope ratios. Geochemistry, Geophysics, Geosystems 7, Q02008. 

Kalaitzidis, S., 2007. Peatification and evolution of peatlands in Greece. Ph.D. Thesis, 
Department of Geology, University of Patras, Greece, 532 p. 

Kalaitzidis, S., Christanis, K., 2004. Peat petrography as a tool to interpret peat-accumulation 
features – case studies from Greece. In J. Päivänen (ed.), Wise use of Peatlands, Proc. 12th 

Int. Peat Congress (June 2004, Tampere, Finland), vol. 1, 42-47. 

Karátson, D., Wulf, S., Veres, D., Magyari, E.K., Gertisser, R., Timar-Gabor, A., Novothny, Á., 
Telbisz, T., Szalai, Z., Anechitei-Deacu, V., Appelt, O., Bormann, M., Jánosi, C., Hubay, K., 
Schäbitz, F., 2016. The latest explosive eruptions of Ciomadul (Csomád) volcano, East 
Carpathians – a tephrostratigraphic approach for the 51–29 ka BP time interval. Journal of 
Volcanology and Geothermal Research 319, 29-51. 

Keller, J., Ryan, W.B.F., Ninkovich, D., Altherr, R., 1978. Explosive volcanic activity in the 
Mediterranean over the past 200,000 yr as recorded in deep-sea sediments. Geological 
Society of America Bulletin 89, 591-604. 

Kotthoff, U., Müller, U.C., Pross, J., Schmiedl, G., Lawson, I.T., van de Schootbrugge, B., 
Schulz, H., 2008a. Lateglacial and Holocene vegetation dynamics in the Aegean region: an 
integrated view based on pollen data from marine and terrestrial archives. The Holocene 18, 
1019-1032. 

Kotthoff, U., Pross, J., Müller, U.C., Peyron, O., Schmiedl, G., Schulz, H., Bordon, A., 2008b. 
Climate dynamics in the borderlands of the Aegean Sea during formation of sapropel S1 
deduced from a marine pollen record. Quaternary Science Reviews 27, 832-845. 



POST-PRINT 

 
 

50 

Koutsodendris, A., Brauer, A., Reed, J.M., Plessen, B., Friedrich, O., Hennrich, B., Zacharias, 
I., Pross, J., 2017. Climate variability in SE Europe since 1450 AD based on a varved sediment 
record from Etoliko Lagoon (Western Greece). Quaternary Science Reviews 159, 63-76. 

Kuehn, S.C., Froese, D.G., Shane, P.A.R., INTAV Inter-comparison Participants, 2011. The 
INTAV inter-comparison of electron-beam microanalysis of glass by tephrochronology 
laboratories: Results and recommendations. Quaternary International 246, 19-47. 

Kutiel, H., Benaroch, Y., 2002. North Sea-Caspian Pattern (NPC) – an upper level atmospheric 
teleconnections affecting the Eastern Mediterranean: Identification and definition. Theoretical 
and Applied Climatology 71, 17-28. 

Kuzucuoglu, C., Pastre, J.F., Black, S., Ercan, T., Fontugne, M., Guillou, H., Hatté, C., 
Karabiyikoglu, M., Orth, P., Türkecan, A., 1998. Identification and dating of tephra layers from 
Quaternary sedimentary sequences of Inner Anatolia, Turkey. Journal of Volcanology and 
Geothermal Research 85, 153-172. 

Kwiecien, O., Arz, H.W., Lamy, F., Wulf, S., Bahr, A., Röhl, U., Haug, G.H., 2008. Estimated 
reservoir ages of the Black Sea since the Last Glacial. Radiocarbon 50, 1-20. 

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-
term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 
428, 261-285. 

Lee, S., Bronk Ramsey, C., Hardiman, M., 2013. Modeling the age of the Cape Riva (Y–2) 
tephra. Radiocarbon 55, 3-4. 

Leicher, N., Zanchetta, G., Sulpizio, R., Giaccio, B., Wagner, B., Nomade, S., Francke, A., Del 
Carlo, P., 2016. First tephrostratigraphic results of the DEEP site record from Lake Ohrid 
(Macedonia and Albania). Biogeosciences 13, 2151-2178. 

Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., 
May, W., Trigo, R., Tsimplis, M., Ulbrich, U., Xoplaki, E., 2006. The Mediterranean climate: An 
overview of the main characteristics and issues, in: Lionello, P., Malanotte-Rizzoli, P., Boscolo, 
R. (Eds.), Mediterranean climate variability. Elsevier, Amsterdam, pp. 1-26. 

Lourens, L.J., 2004. Revised tuning of Ocean Drilling Program Site 964 and KC01B 
(Mediterranean) and implications for the δ18O, tephra, calcareous nannofossil, and 
geomagnetic reversal chronologies of the past 1.1 Myr. Paleoceanography 19, PA3010. 

Lowe, D.J., 2011. Tephrochronology and its application: A review. Quaternary Geochronology 
6, 107-153. 

Lowe, J.J., Bronk Ramsey, C., Housley, R.A., Lane, C.S., Tomlinson, E.L., Team, R., 
Associates, R., 2015. The RESET project: constructing a European tephra lattice for refined 
synchronisation of environmental and archaeological events during the last c. 100 ka. 
Quaternary Science Reviews 118, 1-17. 

Lowe, J., Barton, N., Blockley, S.P.E., Bronk Ramsey, C., Cullen, V.L., Davies, W., Gamble, 
C., Grant, K., Hardiman, M., Housley, R., Lane, C.S., Lee, S., Lewis, M., Macleod, A., Menzies, 



POST-PRINT 

 
 

51 

M., Müller, W., Pollard, M., Price, C., Roberts, A.P., Rohling, E.J., Satow, C., Smith, V.C., 
Stringer, C.B., Tomlinson, E.L., White, D., Albert, P., Arienzo, I., Barker, G., Bori_C, D., 
Carandente, A., Civetta, L., Ferrier, C., Guadelli, J.L., Karkanas, P., Koumouzelis, M., Müller, 
U.C., Orsi, G., Pross, J., Rosi, M., Shalamanov-Korobar, L., Sirakov, N., Tzedakis, P.C., 2012. 
Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to 
natural hazards. Proceedings of the National Academy of Science 109, 13532-13537. 

Lucchi, F., Tranne, C.A., De Astis, G., Keller, J., Losito, R., Morche, W., 2008. Stratigraphy 
and significance of Brown Tuffs on the Aeolian Islands (southern Italy). Journal of Volcanology 
and Geothermal Research 177, 49-70. 

Maheras, P., Patrikas, I., Karacostas, T., Anagnostopoulou, C., 2000. Automatic classification 
of circulation types in Greece: methodology, description, frequency, variability and tend 
analysis. Theoretical and Applied Climatology 67, 205-223. 

Margari, V., Pyle, D.M., Bryant, C., Gibbard, P.L., 2007. Mediterranean tephra stratigraphy 
revisited: Results from a long terrestrial sequence on Lesvos Island, Greece. Journal of 
Volcanology and Geothermal Research 163, 34-54. 

Martin-Puertas, C., Brauer, A., Wulf, S., Ott, F., Lauterbach, S., Dulski, P., 2014. Annual proxy 
data from Lago Grande di Monticchio (southern Italy) between 76 and 112 ka: new 
chronological constraints and insights on abrupt climatic oscillations. Climate of the Past 10, 
2099-2114. 

Metaxas, A.D., 1978. Evidence on the importance of diabatic heating as a divergence factor 
in the Mediterranean. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A 27, 69-
80.  

Milner, A.M., Collier, R.E.L., Roucoux, K.H., Müller, U.C., Pross, J., Christanis, K., Tzedakis, 
P.C., 2012. Enhanced seasonality of precipitation in the Mediterranean during the early part of 
the Last Interglacial. Geology 40, 919-922. 

Milner, A.M., Müller, U.C., Roucoux, K.H., Collier, R.E.L., Pross, J., Kalaitzidis, S., Christanis, 
K., Tzedakis, P.C., 2013. Environmental variability during the last Interglacial: A new high-
resolution pollen record from Tenaghi Philippon, Greece. Journal of Quaternary Science 28, 
113-117. 

Milner, A.M., Roucoux, K.H., Collier, R.E.L., Müller, U.C., Pross, J., Tzedakis, P.C., 2016. 
Vegetation responses to abrupt climatic changes during the Last Interglacial Complex (Marine 
Isotope Stage 5) at Tenaghi Philippon, NE Greece. Quaternary Science Reviews 154, 169-
181. 

Molnár, K., Harangi, S., Lukács, R., Dunkl, I., Schmitt, A.K., Kiss, B., Garamhegyi, T., Seghedi, 
I., 2018. The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern 
Carpathians): Eruption chronology and magma type variation. Journal of Volcanology and 
Geothermal Research, https://doi.org/10.1016/j.jvolgeores.2018.01.025. 

Müller, U.C., Pross, J., Tzedakis, P.C., Gamble, C., Kotthoff, U., Schmiedl, G., Wulf, S., 
Christanis, K., 2011. The role of climate in the spread of modern humans into Europe. 
Quaternary Science Reviews 30, 273-279. 



POST-PRINT 

 
 

52 

Müller, W., Shelley, M., Miller, P., Broude, S., 2009. Initial performance metrics of a new 
custom-designed ArF eximer LA-ICP-MS system coupled to a two-volume laser ablation cell. 
Journal of Analytical Atomic Spectrometry 24, 209-214. 

Narcisi, B., Vezzoli, L., 1999. Quaternary stratigraphy of distal tephra layers in the 
Mediterranean – an overview. Global and Planetary Change 21, 31-50. 

Neugebauer, I., Wulf, S., Schwab, M.J., Serb, J., Plessen, B., Appelt, O., Brauer, A., 2017. 
Implications of S1 tephra findings in Dead Sea and Tayma palaeolake sediments for marine 
reservoir age estimation and palaeoclimate synchronisation. Quaternary Science Reviews 
170, 269-275. 

NGRIP members, 2004. High-resolution record of Northern Hemisphere climate extending into 
the last interglacial period. Nature 431, 147-151. 

Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. 
Eos Trans. AGU 77, 379. 

Panagiotopoulos, K., Böhm, A., Leng, M.J., Wagner, B., Schäbitz, F., 2014. Climate variability 
over the last 92 ka in SW Balkans from analysis of sediments from Lake Prespa. Climate of 
the Past 10, 643-660. 

Paterne, M., Guichard, F., Duplessy, J.C., Siani, G., Sulpizio, R., Labeyrie, J., 2008. A 90,000-
200,000 yrs marine tephra record of Italian volcanic activity in the Central Mediterranean Sea. 
Journal of Volcanology and Geothermal Research 177, 187-196. 

Paterne, M., Guichard, F., Labeyrie, J., 1988. Explosive activity of the South Italian volcanoes 
during the past 80,000 years as determined by marine tephrochronology. Journal of 
Volcanology and Geothermal Research 34, 153-172. 

Payne, R., Gehrels, M., 2010. The formation of tephra layers in peatlands: An experimental 
approach. Catena 81, 12-23. 

Payne, R.J., Kilfeather, A.A., van der Meer, J.J.M., Blackford, J.J., 2005. Experiments on the 
taphonomy of tephra in peat. Suoseuro 56, 147-156. 

Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., 
Chenery, S.P., 1997. A compilation of new and published major and trace element data for 
NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21, 
115-144. 

Peyron, O., Goring, S., Dormoy, I., Kotthoff, U., Pross, J., de Beaulieu, J.-L., Drescher-
Schneider, R., Vannière, B., Magny, M., 2011. Holocene seasonality changes in the central 
Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and 
Tenaghi Philippon (Greece). Holocene 21, 131-146. 

Pichler, H., Friedrich, W., 1976. Radiocarbon dates of Santorini volcanics. Nature 262, 373-
374. 

Pross, J., Kotthoff, U., Müller, U.C., Peyron, O., Dormoy, I., Schmiedl, G., Kalaitzidis, S., Smith, 
A.M., 2009. Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean 



POST-PRINT 

 
 

53 

region associated with the 8.2 kyr B.P. climatic event. Geology 37, 887-890. 

Pross, J., Koutsodendris, A., Christanis, K., Fischer, T., Fletcher, W.J., Hardiman, M., 
Kalaitzidis, S., Knipping, M., Kotthoff, U., Milner, A.M., Müller, U.C., Schmiedl, G., Siavalas, 
G., Tzedakis, P.C., Wulf, S., 2015. The 1.35-Ma-long terrestrial climate archive of Tenaghi 
Philippon, northeastern Greece: Evolution, exploration, and perspectives for future research. 
Newsletters on Stratigraphy 48, 253-276. 

Pross, J., Tzedakis, P.C., Schmiedl, G., Christanis, K., Hooghiemstra, H., Müller, U.C., 
Kotthoff, U., Kalaitzidis, S., Milner, A.M., 2007. Tenaghi Philippon (Greece) revisited: Drilling a 
continuous lower-latitude terrestrial climate archive of the last 250,000 years. Scientific Drilling 
5, 44-46. 

Regattieri, E., Giaccio, B., Nomade, S., Francke, A., Vogel, H., Drysdale, R.N., Perchiazzi, N., 
Wagner, B., Gemelli, M., Mazzini, I., Boschi, C., Galli, P., Peronace, E., 2017. A Last 
Interglacial record of environmental changes from the Sulmona Basin (central Italy). 
Palaeogeography, Palaeoclimatology, Palaeoecology 472, 51-66. 

Regattieri, E., Giaccio, B., Zanchetta, G., Drysdale, R.N., Galli, P., Nomade, S., Peronace, E., 
Wulf, S., 2015. Hydrological variability over the Apennines during the Early Last Glacial 
precession minimum, as revealed by a stable isotope record from Sulmona basin, Central Italy. 
Journal of Quaternary Science 30, 19-31. 

Reimer, P.J., Bard, E., Bayliss, A., J.W., B., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., 
Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., 
Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., 
Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., 
Staff, R.A., Turney, S.M., van der Plicht, J., 2013. INTCAL13 and MARINE13 radiocarbon age 
calibration curves 0-50,000 years cal BP. Radiocarbon 55, 1869-1887. 

Rohling, E.J., 1994. Review and new aspects concerning the formation of eastern 
Mediterranean sapropels. Marine Geology 122, 1-28. 

Roucoux, K.H., Shackleton, N.J., de Abreu, L., 2001. Combined marine proxy and pollen 
analyses reveal rapid Iberian vegetation response to north Atlantic millennial-scale climate 
oscillations. Quaternary Research 56, 128-132. 

Saaroni, H., Bitan, A., Alpert, P., Ziv, B., 1996. Continental polar outbreaks into the Levant and 
Eastern Mediterranean. International Journal of Climatology 16, 1175-1191. 

Sadori, L., Koutsodendris, A., Panagiotopoulos, K., Masi, A., Bertini, A., Combourieu-Nebout, 
N., Francke, A., Kouli, K., Joannin, S., Mercuri, A.M., Peyron, O., Torri, P., Wagner, B., 
Zanchetta, G., Sinopoli, G., and Donders, T.H., 2016. Pollen-based paleoenvironmental and 
paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka. 
Biogeosciences 13, 1423–1437. 

Sánchez Goñi, M.F., Bard, E., Landais, A., Rossignol, L., d'Errico, F., 2013. Air-sea 
temperature decoupling in western Europe during the last interglacial-glacial transition. Nature 
Geoscience 6, 837-841. 



POST-PRINT 

 
 

54 

Sánchez Goñi, M.F., Cacho, I., Turon, J.L., Guiot, J., Sierro, F.J., Peypouquet, J.-P., Grimalt, 
J.O., Shackleton, N.J., 2002. Synchroneity between marine and terrestrial responses to 
millennial scale climate variability during the last glacial period in the Mediterranean region. 
Climate Dynamics 19, 95-105. 

Sánchez Goñi, M.F., Desprat, S., Daniau, A.-L., Bassinot, F.C., Polanco-Martínez, J.M., 
Harriso, S.P., Allen, J.R.M., Anderson, R.S., Behling, H., Bonnefille, R., Burjachs, F., Carrión, 
J.S., Cheddadi, R., Clark, J.S., Combourieu-Nebout, N., Courtney-Mustaphi, C.J., Debusk, 
G.H., Dupont, L.M., Finch, J.M., Fletcher, W.J., Giardini, M., González, C., Gosling, W.D., 
Grigg, L.D., Grimm, E.C., Hayashi, R., Helmens, K., Heusser, L.E., Hill, T., Hope, G., Huntley, 
B., Igarashi, Y., Irino, T., Jacobs, B., Jiménez-Moreno, G., Kawai, S., Kershaw, P., Kumon, F., 
Lawson, I.T., Ledru, M.-P., Lézine, A.-M., Liew, P.M., Magri, D., Marchant, R., Margari, V., 
Mayle, F.E., McKenzie, M., Moss, P., Müller, S., Müller, U.C., Naughton, F., Newnham, R.M., 
Oba, T., Pérez-Obiol, R., Pini, R., Ravazzi, C., Roucoux, K.H., Rucina, S.M., Scott, L., 
Takahara, H., Tzedakis, P.C., Urrego, D.H., van Geel, B., Valencia, B.G., Vandergoes, M.J., 
Vincens, A., Whitlock, C.L., Willard, D.A., Yamamoto, M., 2017. The ACER pollen and charcoal 
database: a global resource to document vegetation and fire response to abrupt climate 
changes during the last glacial period. Earth System Science Data. DOI: 
http://dx.doi.org/10.5194/essd-2017-4. 

Sánchez Goñi, M.F., Eynaud, F., Turon, J.L., Shackleton, N.J., 1999. High resolution 
palynological record off the Iberian margin: direct land-sea correlation for the last interglacial 
complex. Earth and Planetary Science Letters 171, 123-137. 

Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Donahue, 
D.J., Joron, J.L., 2008. Age and whole rock-glass compositions of proximal pyroclastics from 
the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal 
tephrostratigraphy. Journal of Volcanology and Geothermal Research 177, 1-18. 

Sarikaya, A.M., Çiner, A., Sen, E., Ersoy, O., Zreda, M., 2017. Dating Young Lava Flows with 
Cosmogenic 36Cl: AN Example from the Late Pleistocene-Early Holocene Erciyes Monogenetic 
Lava Domes in Central Turkey. EGU General Assembly Conference Abstracts, 19, 3937. 

Satow, C., Tomlinson, E.L., Grant, K.M., Albert, P.G., Smith, V.C., Manning, C.J., Ottolini, L., 
Wulf, S., Rohling, E.J., Lowe, J.J., Blockley, S.P.E., Menzies, M.A., 2015. A new contribution 
to the Late Quaternary tephrostratigraphy of the Mediterranean: Aegean Sea core LC21. 
Quaternary Science Reviews 117, 96-112. 

Schemmel, F., Niedermeyer, E.M., Koutsodendris, A., Pross, J., Fiebig, J., Mulch, A., 2017. 
Paleohydrological changes in the Eastern Mediterranean region during the early Holocene 
recorded in plant wax n-alkane distributions and δ13CTOC – new data from Tenaghi Philippon, 
NE Greece. Organic Geochemistry 110, 100-109. 

Schemmel, F., Niedermeyer, E.M., Schwab-Lavrič, V., Gleixner, G., Pross, J., Mulch, A., 2016. 
Plant-wax δD values record changing Eastern Mediterranean atmospheric circulation patterns 
during the 8.2 ka BP climatic event. Quaternary Science Reviews 133, 96-107. 

Schmiedl, G., Hemleben, C., Keller, J., Segl, M., 1998. Impact of climatic changes on the 
benthic foraminiferal fauna in the Ionian Sea during the last 330,000 years. Paleoceanography 
13, 447-458. 



POST-PRINT 

 
 

55 

Schmitt, A.K., Danišík, M., Evans, N.J., Siebel, W., Kiemele, E., Aydin, F., Harvey, J.C., 2011. 
Acigöl rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and 
zircon growth rates. Contributions to Mineralogy and Petrology, 162, 1215-1231. 

Schwarz, M., 2000. Tephrakorrelation im östlichen Mittelmeer (Meteor M40/4 Kerne). Diploma 
Thesis, Albert-Ludwigs-Universität Freiburg, p. 257. 

Sevink, J., van Bergen, M.J., van der Pflicht, J., Feiken, H., Anastasia, C., Huizinga, A., 2011. 
Robust date for the Bronze Age Avellino eruption (Somma-Vesuvius): 3945 +/- 10 cal BP (1995 
+/- 10 cal BC). Quaternary Science Reviews 30, 1035-1046. 

Shackleton, N.J., Hall, M.A., Vincent, E., 2000. Phase relationships between millennial-scale 
events 64,000–24,000 years ago. Paleoceanography 15, 565-569. 

Siani, G., Paterne, M., Michel, E., Sulpizio, R., Sbrana, A., Arnold, M., Haddad, G., 2001. 
Mediterranean Sea surface radiocarbon reservoir age changes since the last glacial maximum. 
Science 294, 1917-1920. 

Siani, G., Sulpizio, R., Paterne, M., Sbrana, A., 2004. Tephrostratigraphy study for the last 
18,000 14C years in a deep-sea sediment sequence for the South Adriatic. Quaternary Science 
Reviews 23, 2485-2500. 

Sinopoli, G., Masi, A., Regattieri, E., Wagner, B., Francke, A., Peyron, O., Sadori, L., 2018. 
Palynology of the Last Interglacial Complex at Lake Ohrid: palaeoenvironmental and 
palaeoclimatic inferences. Quaternary Science Reviews 180, 177-192. 

Smith, V.C., Isaia, R., Engwell, S.L., Albert, P.G., 2016. Tephra dispersal during the 
Campanian Ignimbrite (Italy) eruption: implications for ultra-distal ash transport during the large 
caldera-forming eruption. Bulletin of Volcanology 78, 45-59. 

Smith, V.C., Isaia, R., Pearce, N.J.G., 2011. Tephrostratigraphy and glass compositions of 
post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic 
markers. Quaternary Science Reviews 30, 3638-3660. 

St. Seymour, K., Christanis, K., Bouzinos, A., Papazisimou, S., Papatheodorou, G., Moran, E., 
Dénès, G., 2004. Tephrostratigraphy and tephrochronology in the Philippi peat basin, 
Macedonia, Northern Hellas (Greece). Quaternary International 121, 53-65. 

Sulpizio, R., Van Welden, A., Caron, B., Zanchetta, G., 2010a. The Holocene 
tephrostratigraphic record of Lake Shkodra (Albania and Montenegro). Journal of Quaternary 
Science 25, 633-650. 

Sulpizio, R., Zanchetta, G., D'Orazio, M.D., Vogel, H., Wagner, B., 2010b. Tephrostratigraphy 
and tephrochronology of lakes Ohrid and Prespa, Balkans. Biogeosciences, 3273-3288. 

Sulpizio, R., Zanchetta, G., Paterne, M., Siani, G., 2003. A review of tephrostratigraphy in 
central and southern Italy during the last 65 ka. Il Quaternario 16, 91-108. 

Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., 
Johnsen, S.J., Muscheler, R., Parrenin, F., Rasmussen, S.O., Röthlisberger, R., Seierstad, I., 
Steffensen, J.P., Vinther, B.M., 2008. A 60,000 year Greenland stratigraphic ice core 



POST-PRINT 

 
 

56 

chronology. Climate of the Past 4, 47-57. 

Thorarinsson, S., 1944. Tefrokronologiska studier pa Island. Geogr. Analer, 1-215. 

Tomlinson, E.L., Arienzo, I., Civetta, L., Wulf, S., Smith, V.C., Hardiman, M., Lane, C.S., 
Carandente, A., Orsi, G., Rosi, M., Müller, W., Menzies, M.A., 2012a. Geochemistry of the 
Phlegrean Fields (Italy) proximal sources for major Mediterranean tephras: Implications for the 
dispersal of Plinian and co-ignimbritic components of explosive eruptions. Geochimica et 
Cosmochimica Acta 93, 102-128. 

Tomlinson, E.L., Kinvig, H.S., Smith, V.C., Blundy, J.D., Gottsmann, J., Müller, W., Menzies, 
M.A., 2012b. The Upper and Lower Nisyros Pumices: Revisions to the Mediterranean 
tephrostratigraphic record based on micron-beam glass geochemistry. Journal of Volcanology 
and Geothermal Research 243-244, 69-80. 

Tomlinson, E.L., Smith, V.C., Albert, P.G., Aydar, E., Civetta, L., Cioni, R., Cubukcu, E., 
Gertisser, R., Isaia, R., Menzies, M.A., Orsi, G., Rosi, M., Zanchetta, G., 2015. The major and 
trace element glass compositions of the productive Mediterranean volcanic sources: tools for 
correlating distal tephra layers in and around Europe. Quaternary Science Reviews 118, 48-
66. 

Tomlinson, E.L., Thordarson, T., Müller, W., Thirlwall, M.F., Menzies, M.A., 2010. Micro 
analysis of tephra by LA-ICP-MS - strategies, advantages and limitations assessed using the 
Thorsmork ignimbrite (Southern Iceland). Chemical Geology 279, 73-89. 

Turney, C.S.M., 1998. Extraction of rhyolitic component of Vedde microtephra from 
minerogenic lake sediments. Journal of Paleolimnology 19, 199-206. 

Tzedakis, P.C., Frogley, M.R., Heaton, T.H.E., 2003. Last Interglacial conditions in southern 
Europe: evidence from Ioannina, northwest Greece. Global and Planetary Change 36, 157-
170. 

Tzedakis, P.C., Hooghiemstra, H., Pälike, H., 2006. The last 1.35 million years at Tenaghi 
Philippon: revised chronostratigraphy and long-term vegetation trends. Quaternary Science 
Reviews 25, 3416-3430. 

Tzedakis, P.C., Lawson, I.T., Frogley, M.R., Hewitt, G.M., Preece, R.C., 2002. Buffered tree 
population changes in a Quaternary refugium: evolutionary implications. Science 297, 2044-
2047. 

van der Wiel, A.M., Wijmstra, T.A., 1987a. Palynology of the lower part (78–120 m) of the core 
Tenaghi Philippon II, Middle Pleistocene of Macedonia, Greece. Review of Palaeobotany and 
Palynology 52, 73-88. 

van der Wiel, A.M., Wijmstra, T.A., 1987b. Palynology of the 112.8–197.8 m interval of the 
core Tenaghi Philippon III, Middle Pleistocene of Macedonia, Greece. Review of Palaeobotany 
and Palynology 52, 89-117. 

van Hout, R., Katz, J., 2004. A method for measuring the density of irregularly shaped 
biological aerosols such as pollen. Journal of Aerosol Science 35, 1369-1384. 



POST-PRINT 

 
 

57 

Vinci, A., 1985. Distribution and chemical composition of tephra layers from Eastern 
Mediterranean abyssal sediments. Marine Geology 64, 143-155. 

Wagner, B., Wilke, T., Francke, A., Albrecht, C., Baumgarten, H., Bertini, A., Combourieu-
Nebout, N., Cvetkoska, A., D´Addabbo, M., Donders, T.H., Föller, K., Giaccio, B., Hauffe, T., 
Holtvoeth, J., Joannin, S., Jovanovska, E., Just, J., Kouli, K., Koutsodendris, A., Krastel, S., 
Lacey, J.H., Leicher, N., Leng, M.J., Levkov, Z., Lindhorst, K., Masi, A., Mercuri, A.M., 
Nomade, S., Nowaczyk, N., Panagiotopoulos, K., Peyron, O., Reed, J.M., Regattieri, E., 
Sadori, L., Sagnotti, L., Stelbrink, B., Sulpizio, R., Tofilovska, S., Torri, P., Vogel, H., Wagner, 
T., Wagner-Cremer, F., Wolff, G.A., Wonik, T., Zanchetta, G., Zhang, X.S., 2017. The 
environmental and evolutionary history of Lake Ohrid (FYROM/Albania): Interim results from 
the SCOPSCO deep drilling project. Biogeosciences 14, 2033-2054. 

Wijmstra, T.A., 1969. Palynology of the first 30 m of a 120 m deep section in northern Greece. 
Acta Botanica Neerlandica 18, 511-527. 

Wijmstra, T.A., Smit, A., 1976. Palynology of the middle part (30–78 meters) of a 120 m deep 
section in northern Greece (Macedonia). Acta Botanica Neerlandica 25, 297-312. 

Wijmstra, T.A., Groenhart, M.C., 1983. Record of 700,000 years vegetational history in Eastern 
Macedonia (Greece). Revista de la Academia Colombiana Ciencias Exactas, Fı´sicas y 
Naturales 15, 87-98. 

Wijmstra, T.A., Young, R., 1992. Vegetational and climatic transitions between interglacial and 
glacial periods during the last 1 million years in northern Greece. In: Kukla, G.J., Went, E. 
(eds), Start of a Glacial. NATO ASI Series 13, 97-112. 

Wolff, E.W., Chappellaz, J., Blunier, T., Rasmussen, S.O., Svensson, A., 2010. Millennial-
scale variability during the last glacial: The ice core record. Quaternary Science Reviews 29, 
2828-2838. 

Wulf, S., Brauer, A., Kraml, M., Keller, J., Negendank, J.F.W., 2004. Tephrochronology of the 
100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quaternary 
International 122, 7-30. 

Wulf, S., Brauer, A., Mingram, J., Zolitschka, B., Negendank, J.F.W., 2006. Distal tephras in 
the sediments of Monticchio maar lakes, in: Principe, C. (Ed.), La geologia del monte Vulture. 
Consiglio Nazionale delle Ricerche, pp. 105-122. 

Wulf, S., Fedorowicz, S., Veres, D., Lanczont, M., Karátson, D., Gertisser, R., Bormann, M., 
Magyari, E.K., Appelt, O., Hambach, U., Gozhyk, P.F., 2016. The 'Roxolany Tephra' (Ukraine) 
– new evidence for an origin from Ciomadul volcano, East Carpathians. Journal of Quaternary 
Science 31, 565-576. 

Wulf, S., Keller, J., Paterne, M., Mingram, J., Lauterbach, S., Opitz, S., Sottili, G., Giaccio, B., 
Albert, P.G., Satow, C., Tomlinson, E.L., Viccaro, M., Brauer, A., 2012. The 100–133 ka record 
of Italian explosive volcanism and revised tephrochronology of Lago Grande di Monticchio. 
Quaternary Science Reviews 58, 104-123. 

Wulf, S., Kraml, M., Kuhn, T., Schwarz, M., Inthorn, M., Keller, J., Kuscu, I., Halbach, P., 2002. 



POST-PRINT 

 
 

58 

Marine tephra from the Cape Riva eruption (22 ka) of Santorini in the Sea of Marmara. Marine 
Geology 183, 131-141. 

Wutke, K., Wulf, S., Tomlinson, E.L., Hardiman, M., Dulski, P., Luterbacher, J., Brauer, A., 
2015. Geochemical properties and environmental impacts of seven Campanian tephra layers 
deposited between 40 and 38 ka BP in the varved lake sediments of Lago Grande di 
Monticchio, southern Italy. Quaternary Science Reviews 18, 67-83. 

Xoplaki, E., González-Rouco, J.F., Luterbacher, J., Wanner, H., 2004. Wet season 
Mediterranean precipitation variability: influence of large-scale dynamics and trends. Climate 
Dynamics 23, 63-78. 

Xoplaki, E., Luterbacher, J., Burkard, R., Patrikas, I., Maheras, P., 2000. Connection between 
the large-scale 500 hPa geopotential height fields and precipitation over Greece during 
wintertime. Climate Research 14, 129-146. 

Zanchetta, G., Sulpizio, R., Roberts, N., Cioni, R., Eastwood, W.J., Siani, G., Caron, B., 
Paterne, M., Santacroce, R., 2011. Tephrostratigraphy, chronology and climatic events of the 
Mediterranean basin during the Holocene: An overview. Holocene 21, 33-52. 
  



POST-PRINT 

 
 

59 

Table 1: Overview of occurrences, glass shard counts, chemical characteristics, published 
radiometric and new Bayesian modelled ages of (crypto)tephra layers in the 1–34 m depth 
interval of Tenaghi Philippon core TP-2005. Primary tephras are highlighted in bold and grey 
shading. The references for tephra radiometric ages are: 1 Caron et al. (2012); 2 Bronk Ramsey 
et al. (2015); 3 Giaccio et al. (2017a); 4 Wutke et al. (2015), this study; 5 Giaccio et al. (2012); 
6 Martin-Puertas et al. (2014), Wulf et al. (2012); 7 Regattieri et al. (2017); 8 Gillot et al. (1982). 
* total number of glass shards in investigated sediment volume. 

Tephra TP-2005 
full depth 

interval (m) 

Peak 
shards/

gdwt 

Glass 
chemistry 

Tephra source Published age of 
tephra correlative 
with 2σ error (cal 

yr BP) 

TP-2005 Bayesian 
modelled age range 

(cal yr BP) 95.4% 
uncertainty, 
this study 

TP05-2.625 2.62-2.63 19 Tr/P re-deposited CI  5,550 – 5,790 
TP05-3.375 3.37-3.38 5* (1) Tr/P re-deposited CI  6,430 – 6,630 
TP05-5.075 5.05-5.10 5* (2) Tr/P + R E-1 (Aeolian Islands) 

re-deposited CI 
8,270 ± 96 1 8,160 – 8,350 

TP05-7.07 7.03-7.14 >10,000 R re-deposited Y-2  17,710 – 18,270 
TP05-7.26 7.22-7.33 >10,000 R re-deposited Y-2  20,120 – 20,880 
TP05-7.61 7.43-7.61 visible R Cape Riva/Y-2 (Santorini) 22,024 ± 642 2 21,260 – 22,510 
TP05-8.90 8.88-8.92 275 - unidentified  27,330 – 27,840 
TP05-8.96 8.95-9.00 65 - unidentified  27,430 – 27,960 
TP05-9.23 9.20-9.26 56 Tr re-deposited Y-3  27,880 – 28,510 
TP05-9.36 9.34-9.43 1258 Tr re-deposited Y-3  28,120 – 28,760 
TP05-9.51 9.44-9.56 1028 Tr (+R) re-deposited Y-3 

Y-2 contamination 
 28,400 – 29,000 

TP05-9.70 9.68-9.76 2060 Tr + R Y-3 (Campi Flegrei) 
Y-2 contamination 

29,059 ± 356 2 28,760 – 29,320 

TP05-9.78 9.76-9.81 952 R Y-2 contamination  28,860 – 29,450 
TP05-12.87 12.50-12.87 visible Tr/P Campanian Ignimbrite 

(Campi Flegrei) 
39,850 ± 140 3 39,540 – 39,820 

TP05-13.25 13.24-13.27 1311 Tr/P CI contamination  40,670 – 41,310 
TP05-13.28 13.27-13.30 1191 Tr/P CI contamination  40,760 – 41.400 
TP05-13.34 13.31-13.35 3092 Tr/P TM-18-1d (Campi Flegrei) 

CI contamination 
c. 40,440 4 40,900 – 41,660 

TP05-13.54 13.50-13.55 1582 Tr/P CI contamination  41,770 – 42,530 
TP05-13.92 13.90-13.93 2038 Tr/P CI contamination  43,720 – 44,700 
TP05-14.50 14.46-14.54 40 Tr/P CI contamination  46,030 – 47,310 
TP05-17.91 17.90-17.92 749 - unidentified  63,940 – 66,350 
TP05-19.915 19.91-19.93 144 Tr CI contamination  72,860 – 75,110 
TP05-21.045 21.03-21.05 76 Tr CI and Y-2 contamination  77,210 – 79,530 
TP05-22.065 22.05-22.07 64 Tr/P (+R) CI and Y-2 contamination  80,710 – 83,270 
TP05-23.055 23.05-23.07 73 Tr/P CI contamination  84,930 – 88,060 
TP05-24.055 24.04-24.06 217 Tr/P CI contamination  88,820 – 92,910 
TP05-24.915 24.91-24.92 234 Tr/P (+R) CI and Y-2 contamination  92,160 – 97,070 
TP05-25.085 25.05-25.10 22 Tr/P (+R) CI and Y-2 contamination  92,820 – 97,890 
TP05-25.135 25.11-25.15 83 Tr/P CI contamination  93,020 – 98,140 
TP05-25.195 25.18-25.20 39 Tr TM-23-11/POP1 

(Campania) 
CI contamination 

92,400 ± 4600 5 
96,210 ± 4810 6 

 

93,250 – 98,430 

TP05-25.465 25.46-25.47 956 Tr/P (+R) unknown Campanian 
CI and Y-2 contamination 

 94,890 – 100,030 

TP05-26.055 26.04-26.06 41 Tr/P CI contamination  98,430 – 103,430 
TP05-26.35 26.30-26.40 8 Tr/P Re-deposited X-6  100,000 – 104,770 
TP05-26.915 26.91-26.92 34 Tr/P (+R) X-5 (Campania)? 

Re-deposited X-6, 
CI and Y-2 contamination 

 102,960 – 107,150 

TP05-27.035 27.02-27.04 110 Tr/P CI, X-5(?) contamination  103,570 – 107,600 
TP05-27.915 27.91-27.93 92 Tr/P X-6/TM-27 (Campania), 

CI contamination 
109,500 ± 900 7 
109,370 ± 5470 6 

108,520 – 110,240 

TP05-27.995 27.98-28.00 128 Tr/P X-6 and CI contamination  108,670 – 110,660 
TP05-31.255 31.24-31.26 11 Tr/P  TM-33-1a (Ischia), 

CI contamination 
113,100 – 126,900 8 

116,700 ± 5825 6 
117,780 – 123,970 

TP05-31.95 31.91-32.00 7* Tr/P - R unknown Campanian 
CI and Y-2 contamination 

 120,290 – 127,240 

TP05-32.225 32.21-32.23 13 Tr/P – R CI and Y-2 contamination  121,280 – 128,530 
TP05-32.265 32.26-32.27 21 Tr/P CI contamination  121,430 – 128,720 
TP05-32.53 32.52-32.54 4* (2) Tr/P unknown Campanian 

CI contamination 
 122,380 – 129,960 
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Sample TP05-5.075 TP05-7.61 TP05-9.70 TP05-12.87 A TP05-12.87 B TP05-13.34 TP05-25.195 TP05-27.915 A TP05-27.915 B TP05-31.255 
Correlative E1 Y-2 Y-3 CI fall CI flow TM-18-1d TM-23-11 X-6/TM-27 X-6/TM-27 TM-33-1a 
(wt%)           
SiO2 75.38 70.79 60.94 60.23 58.80 59.29 61.04 59.89 59.83 61.44 
TiO2 0.13 0.47 0.35 0.40 0.34 0.37 0.36 0.41 0.45 0.31 
Al2O3 12.44 14.31 17.65 18.15 17.75 17.96 18.69 19.55 18.88 18.50 
FeO 1.52 3.11 2.70 2.98 3.43 3.05 3.55 3.09 3.00 3.01 
MnO 0.01 0.13 0.09 0.18 0.14 0.22 0.23 0.11 0.19 0.11 
MgO 0.05 0.40 0.48 0.30 0.68 0.31 0.65 0.34 0.33 0.56 
CaO 0.67 1.67 2.27 1.74 2.55 1.65 2.61 1.56 1.63 1.18 
Na2O 3.50 5.53 3.76 6.28 2.66 6.49 4.21 7.00 6.05 5.92 
K2O 4.54 2.92 8.82 6.88 9.53 6.98 8.03 6.68 6.81 6.49 
P2O5 0.02 0.06 0.10 0.07 0.16 0.06 0.20 0.00 0.00 0.02 
Cl 0.45 0.27 n.a. 

 
0.88 0.34 n.a. 

 
0.48 0.76 0.87 0.62 

Total 98.71 99.65 97.15 98.09 96.37 96.37 100.02 99.38 98.04 98.17 
           

(ppm)           

Rb - 105 347 459 282 431 291 - - 
 
 

282 
Sr - 72 341 19 564 22 412 - - 

 
92 

Y - 48 28 55 20 63 20 - - 22 
Zr - 301 307 660 177 793 186 - - 231 
Nb - 11 48 118 28 136 31 - - 36 
Ba - 472 182 16 657 18 381 - - 60 
La - 28 63 124 46 160 44 - - 45 
Ce - 58 116 238 86 275 80 - - 88 
Th - 15 26 52 13 70 13 - - 14 
U - 5 9 18 5 27 5 - - 6 
           

 
 

Table 2: Representative EPMA glass analyses (non-normalized data) of primary tephras of the TP-2005 sequence for the last 135 ka. The full 

dataset is provided in Supplement 1. 

 



 

 

 

 

 

Figure 1: a) Location of Tenaghi Philippon (yellow star) and other palaeoclimatic archives 
mentioned in the text (circles) with respect to the positions of high-explosive Quaternary 
volcanoes (red symbols) in the Eastern Mediterranean region. Inset map shows the location 
of marine core MD95-2042 at the western Iberian Margin. b) Overview map of the Drama 
basin in NE Greece. c) Detailed map of the Philippi peatland showing the location of the TP-
2005 borehole (yellow star) and of other drilling sites mentioned in the text (circles); modified 
after Pross et al. (2015). 



 

 

 

 

Figure 2: Positions of the tephra layers detected in the Tenaghi Philippon TP-2005 core 
plotted against total and temperate tree-pollen percentages (Milner et al., 2012, 2013, 2016; 
Müller et al., 2011). Stars indicate the positions of primary correlated tephras (red) and likely 
primary cryptotephra layers of unknown origin (blue); grey stars show the positions of 
reworked tephra material (see text for further detail); large red stars represent visible tephra 
layers. Positions of boundaries of marine isotope stages (MIS) after Müller et al. (2011) and 
Milner et al. (2016). 



 

 

 

 

Figure 3: Composite of stratigraphic information for core TP-2005 for the intervals (a) MIS 1–
MIS 2 and (b) MIS 3–MIS 4 comprising: total tree pollen curves (Müller et al., 2011; Pross et 
al., 2009); photographic images of lithostratigraphic changes; magnetic susceptibility (Pross 
et al., 2007); positions of detected tephras layers (dotted lines); glass shard counts; and 
transmitted light and backscattered electron (BSE) images of visible tephra layers. Note that 
visible tephras and some cryptotephras exceed 10,000 shards/gdwt. Solid red lines indicate the 
positions of primary (crypto)tephra layers, dotted black and blue lines indicate reworked and 
yet unidentified tephra material, respectively. Grey shaded and white areas indicate warmer 
(MIS 1, 3) and cooler (MIS 2, 4) intervals, respectively. 

 



 

 

Figure 4: Bivariate plots of chemical components of cryptotephras TP05-2.625, TP05-3.375 
and TP05-5.075 that discriminate (a) trachyphonolitic from (b) rhyolitic characteristics in 
Holocene Eastern Mediterranean tephras. The data are based on EPMA/SEM and LA-ICP-
MS glass measurements obtained from proximal and distal tephra deposits of the following 
eruptions: (a) Agnano Monte Spina (AMST), Fondi di Baia, and Pigna San Nicola: Smith et al. 
(2011); ‘AAA’ cluster: Siani et al. (2004), Sulpizio et al. (2010a); Avellino and Mercato: 
Santacroce et al. (2008), Tomlinson et al. (2015), Wulf et al. (2004); Campanian Ignimbrite 
(CI): Smith et al. (2016), Tomlinson et al. (2012a). (b) Minoan: Kwiecien et al. (2008); Cape 
Riva/Y-2: Tomlinson et al. (2015); Dikkartin, Perikartin, Karagüllü: Hamann et al. (2010), 
Tomlinson et al. (2015); Gabellotto-Fiumebianco/E1: Albert et al. (2017), Caron et al. (2012), 
de Beaulieu et al. (2017), Siani et al. (2004). 



 

 

 

Figure 5: Bivariate plots of (a) EPMA major and (b) LA-ICP-MS/SIMS trace element glass 
composition of tephras detected in the 7-13 m depth interval of the TP-2005 sequence. 
Tephras in bold are interpreted as primary fall deposits, while tephras in italics indicate 
redeposited material. The reference data used are: Y-3: Albert et al. (2015), Wulf et al. (2004); 
Campanian Ignimbrite/CI: Smith et al. (2016), Tomlinson et al. (2012a); Mt. Guardia: De Rosa 
et al. (2003); Nisyros: Tomlinson et al. (2012b); Cape Riva/Y-2, Acigöl: Tomlinson et al. (2015); 
Yali: Hardiman (1999); Minoan/Z-2: Kwiecien et al. (2008), Satow et al. (2015); Y-4, LC21-
2.005: Satow et al. (2015), Vinci (1985); Cape Tripiti: this study (see Supplement 2). 

 



 

 

 

 

Figure 6: Bivariate plots of (a) EPMA major and (b) LA-ICP-MS/SIMS trace element chemical 
compositions of MIS 3 tephras deposited between 12 and 15 m depth in the TP-2005 core 
and potential proximal tephra equivalents. The data used for this comparison were: 
Campanian Ignimbrite (CI): Smith et al. (2016), Tomlinson et al. (2015); TM-18-1d, TM-18-4, 
TM-18-9e: this study (see Supplement 2). 

 



 

 

 

Figure 7: Composite stratigraphic profile of core TP-2005 for the MIS 5 interval showing: total 
tree pollen curve (Milner et al., 2012, 2013, 2016); photographic images of lithological 
variations; magnetic susceptibility (Pross et al., 2007); position of cryptotephras; glass shard 
counts; and transmitted light images of some typical glass shards in the cryptotephra layers. 
Solid red lines indicate the positions of primary (crypto)tephra layers, dotted black and blue 
lines indicate reworked and yet unidentified tephra material, respectively. Grey shaded and 
white areas indicate warmer (MIS 5a, 5c, 5e) and cooler (MIS 5b, 5d) intervals, respectively. 

 



 

 

Figure 8: Bivariate plots of FeO versus alkali ratio K2O/Na2O and SiO2 versus CaO for 
discriminating between MIS 5 tephras in the TP-2005 sequence. Tephra samples are shown 
in stratigraphic order: (a) TP05-19.915 to TP05-24.055; (b) TP05-24.915 to TP05-25.465; (c) 
TP05-26.055 to TP05-27.995; (d) TP05-31.255 to TP05-32.53. The reference data used are: 
Lago Grande di Monticchio tephras (TM): Wulf et al. (2004, 2006, 2012), this study (see 
Supplement 2); PRAD-2040: Bourne et al. (2010); POP1-POP3: Giaccio et al. (2012, 2013), 
Regattieri et al. (2017); OH-DP-0404, -0435: Leicher et al. (2016); Vourvoulos, Gölcük cycle 
III: Tomlinson et al. (2015); Middle Pumice: Druitt et al. (1999). Data of tephras TP05-7.61/Y-
2 and TP05-12.87/CI (this study) are included for comparison. 



 

 

 

Figure 9: Bivariate plots of trace element ratios of MIS 5 tephras in the TP-2005 sequence, 
including data for tephra TP05-12.87/CI, shown for comparison. Tephra samples are shown 
in stratigraphic order: (a) TP05-19.915 to TP05-25.465; (b) TP05-27.915 to TP05-32.52. The 
reference data used: Campanian Ignimbrite/CI: Smith et al. (2016), Tomlinson et al. (2012a); 
Y-2: Tomlinson et al. (2015); PRAD-2517-2525: Bourne et al. (2010, 2015); TM-23-11, TM-
27: Bourne et al. (2015); TM-24a, TM-24b, TM-25/POP3: Wulf et al. (2012); X-6: Giaccio et 
al. (2017b). 

 



 

 

 

Figure 10: Numbers of glass shard peak concentrations of visible tephra and cryptotephra 
layers in the TP-2005 sequence that contain CI and/or Y-2 glass components and those of 
unknown origin. Three types of re-deposition patterns can be distinguished: (1) Post-
depositional movement of tephra particles (yellow shaded area next to primary Y-2 and CI 
tephras); (2) secondary deposition of tephra particles (uppermost grey shaded area); and (3) 
coring-related displacement of tephra particles (lowermost grey shaded area). Two 
cryptotephras (TP05-17.91 and TP05-24.465) are outliers that most likely contain an 
additional primary tephra component. 

 



 

 

Figure 11: Age-depth plots for the TP-2005 record for the last 130 ka.  (a) Re-modelled 
Bayesian radiocarbon chronology of the MIS 1-3 interval after Müller et al. (2011) using 
the OxCal v4.3 program (Bronk Ramsey, 2008, 2009a) and the IntCal13 calibration 
curve (Reimer et al., 2013) compared with 2σ-error ranges of ages of tephras identif ied 
in TP in this study (red triangles); yellow shading represents the 15-cm-thick Y-2 and 
23-cm-thick CI tephras. (b) Palynologically tuned age model of the TP MIS 5 interval 
after Milner et al. (2016) compared with 2σ-error ranges of radiometric dates (blue 
triangles) and Lago Grande di Monticchio varve ages (red triangles, with 5 % dating 
error) of tephra correlatives. Dotted blue line represents the range of four K/Ar ages of 
the Ischia Punta Imperatore eruption (Gillot et al., 1982). (c) Linear-interpolated 
revised chronology of the TP-2005 sequence (this study). (d) and (e): Best estimate 
Bayesian modelled age-depth plot of the last 50 ka (d) and 135 ka (e) of the TP-2005 
core with symbol legend shown below; yellow shading represents the 15-cm-thick Y-2 
and 23-cm-thick CI tephras. For details see Supplement 3. 



 

 

 

Figure 12: Correlation of Eastern Mediterranean pollen and oxygen isotope records with the 
NGRIP ice-core record for the last c. 140 ka. (a) Marine isotope stages, Eastern Mediterranean 
sapropel chronology (Schmiedl et al., 1998) and summer insolation curve for 65°N (Laskar et 
al., 2004). (b) Mediterranean forest pollen curve of marine core MD95-2042 from the Iberian 
Margin (Sánchez Goñi et al., 1999, 2013, 2017); note that the pollen data for the upper 23 ka 
of this sequence was obtained from surface core SU81-18. (c) Record of mesic woody pollen 
taxa from Lago Grande di Monticchio, southern Italy (Brauer et al., 2007; Martin-Puertas et 
al., 2014). (d) Lake Ohrid low-resolution total tree (excluding Pinus) pollen taxa (Sadori et al., 
2016) and high-resolution AP curve for MIS 5 (Sinopoli et al., 2018). (e) total tree-pollen taxa 
record of Tenaghi Philippon core TP-2005 re-calibrated to the new time scale (this study, see 
Supplement 3). Original pollen data are from Milner et al. (2012, 2013, 2016), Müller et al. 
(2011) and Pross et al. (2009). Crosses mark the positions of palynological tie-points. Note 
that assignments of stadials and interstadials of the MIS 5 pollen record (Milner et al., 2016) 
have been revised in this study. (f) Oxygen isotope data for the MIS 5 interval from Sulmona 
basin, central Italy (Regattieri et al., 2017). (g) NGRIP oxygen isotope temperature record 
(NGRIP members, 2004). All records are plotted on their own independent time scales. Pink 
dotted lines indicate positions of tephra layers; black dotted lines show the tie-points of DO 
events (black numbers) for tuning the TP vegetation record to the NGRIP oxygen isotope 
curve. Blue fields and dotted lines indicate cold events/stadials mentioned in the text. 

 

 



 

 

 

Figure 13: Generalised tephrostratigraphic framework for the Eastern Mediterranean region 
for the past 140 ka. Green and blue columns indicate archives from terrestrial and marine 
environments, respectively. The archives included are (from west to east): Fucino (Giaccio et 
al., 2017b); Sulmona (Giaccio et al., 2012); core PRAD 1-2, Adriatic Sea (Bourne et al., 2010, 
2015); Lago Grande di Monticchio (Wulf et al., 2004, 2012); core KC01B, Ionian Sea (Insinga 
et al., 2014); Lake Ohrid (Leicher et al., 2016); Tenaghi Philippon (core TP-2005; Albert et al., 
2015; Müller et al., 2011; Pross et al., 2015; this study); core LC21, South Aegean Sea (Satow 
et al., 2015). 
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