
CVR-2018-226 
 

 

Understanding the role of the perivascular space in cerebral small vessel disease 

Rosalind Brown1, Helene Benveniste2, Sandra E. Black3, Serge Charpak4, Martin Dichgans5, Anne 

Joutel6, Maiken Nedergaard7, Kenneth J. Smith8, Berislav V. Zlokovic9, Joanna M. Wardlaw10 

1. Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK 
2. Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA 
3. LC Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of 

Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Hurvitz Brain 
Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada; Heart and Stroke 
Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada. 

4. INSERM U1128, Laboratory of Neurophysiology and New Microscopies, Université Paris Descartes, Paris 75006, France. 
5. Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, 

Munich, Germany; German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany; Munich Cluster 
for Systems Neurology (SyNergy), Munich, Germany 

6. Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France and 
DHU NeuroVasc, Sorbonne Paris Cité, Paris, France 

7. Section for Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 
Copenhagen, Denmark; Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University 
of Rochester Medical School, Rochester, New York, USA 

8. Department of Neuroinflammation, UCL Institute of Neurology, London, UK. 
9. Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; 

Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, 
California, USA. 

10. Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute at The 
University of Edinburgh, The University of Edinburgh, Edinburgh, UK; Row Fogo Centre for Research into Ageing and 
the Brain, The University of Edinburgh, Edinburgh, UK. 

 
 
Corresponding author: Professor Joanna Wardlaw  
Address: Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 
Little France Crescent, Edinburgh. EH16 4WJ.  
Tel: 0131 465 9570.  
Email: joanna.wardlaw@ed.ac.uk 
  
Short title: Cerebral perivascular spaces in small vessel disease 
 
Key words: Stroke; cerebrovascular; dementia; small vessel disease; perivascular space 
 

Word count: 5557 

 

 

 

 

 

 

 
 Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2018. . For permissions please email:  

journals.permissions@oup.com. 

Downloaded from https://academic.oup.com/cardiovascres/advance-article-abstract/doi/10.1093/cvr/cvy113/4991897
by UCL (University College London) user
on 01 June 2018

mailto:joanna.wardlaw@ed.ac.uk


CVR-2018-226 
 

2 
 

Abstract 

Small vessel diseases are a group of disorders that result from pathological alteration of the small 

blood vessels in the brain, including the small arteries, capillaries and veins. Of the 35-36 million 

people that are estimated to suffer from dementia worldwide, up to 65% have an SVD component. 

Furthermore, SVD causes 20-25% of strokes, worsens outcome after stroke and is a leading cause of 

disability, cognitive impairment and poor mobility. Yet the underlying cause(s) of SVD are not fully 

understood.  

Magnetic resonance imaging (MRI) has confirmed enlarged perivascular spaces (PVS) as a hallmark 

feature of SVD. In healthy tissue, these spaces are proposed to form part of a complex brain fluid 

drainage system which supports interstitial fluid exchange and may also facilitate clearance of waste 

products from the brain. The pathophysiological signature of PVS, and what this infers about their 

function and interaction with cerebral microcirculation, plus subsequent downstream effects on lesion 

development in the brain has not been established. Here we discuss the potential of enlarged PVS to 

be a unique biomarker for SVD and related brain disorders with a vascular component. We propose 

that widening of PVS suggests presence of peri-vascular cell debris and other waste products that 

forms part of a vicious cycle involving impaired cerebrovascular reactivity (CVR), blood-brain barrier 

(BBB) dysfunction, perivascular inflammation and ultimately impaired clearance of waste proteins 

from the interstitial fluid (ISF) space, leading to accumulation of toxins, hypoxia and tissue damage.  

Here, we outline current knowledge, questions and hypotheses regarding understanding the brain 

fluid dynamics underpinning dementia and stroke through the common denominator of SVD.  
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Introduction 

The umbrella term ’small vessel disease’ (SVD) refers to a heterogeneous group of vascular disorders 

resulting from the pathological impairment of the small vessels of the brain. It is responsible for a large 

proportion of the cases of stroke and dementia worldwide 1. SVD manifests in several different ways, 

showing various pathological, neuroimaging and clinical presentations such as stroke, cognitive 

impairment, dementia, physical disability and depression 2-7, may predispose to delirium, and worsen 

outcome after stroke 8. This multiplicity of clinical expressions has contributed to delays in recognising 

the similarities between such patients and that small vessel damage is a common underlying 

pathophysiology. Importantly, the prevalence of SVD is increasing and effective disease-modifying 

interventions, including pharmacological treatments, are yet to be found. This presents a huge social 

and economic burden that needs to be urgently addressed 9. 

 
Pathological evidence of SVD has been recognised since the 1800s. Since then, further post-mortem 

studies and advanced imaging technologies have allowed the hallmarks of SVD to be studied in greater 

detail 10,11. MRI images from patients with SVD show characteristic abnormalities, such as white matter 

hyperintensities (WMH), cerebral microbleeds, lacunes and enlarged PVS 2,12,13. These individual 

imaging features of SVD are inter-related, contribute to a ‘total SVD burden’, and both the individual 

features and the total SVD burden are associated with increased exposure to vascular risk factors in 

adulthood (particularly hypertension and smoking), stroke risk, concurrent cognitive dysfunction plus 

early life factors such as lower educational attainment, lower socioeconomic status and low childhood 

IQ 13-18, 19,20.  

 
Clinically ‘silent’ neuroimaging signs of SVD can appear during ageing, and markers of cerebrovascular 

disease are fairly common incidental findings on MRI performed for other reasons 21-24. Most cases 

occur sporadically, although a small proportion are caused by genetic mutations. These latter include 

cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL), the most common monogenic SVD, and others such as cerebral autosomal recessive 
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arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL; 25-31), with more monogenic 

variants being identified all the time. 32 

Although these genetic variants show phenotypic similarities to sporadic cases, the underlying cause 

of most sporadic SVD remains unknown. WMH are highly heritable 33-36, making the limited genetic 

associations identified so far with sporadic SVD somewhat surprising.  However, recent genome-wide 

association studies 28,33,37-39, and recent targeted studies, have identified some genetic variants 

associated with sporadic SVD 40,41, suggesting that genetic common variants with small effect sizes but 

with lifelong action could increase vulnerability to various exposures in later life, leading to 

accumulating small vessel damage and dysfunction 28,41. Since intelligence in part reflects white matter 

integrity, which in turn is partially determined genetically, this could partly explain the association 

between childhood IQ and the SVD burden seen in later life in any one individual, and the heritability 

of WMH. 

Amongst several potential molecular mechanisms that could link genetic traits to pathogenesis, are 

advanced glycation endproducts (AGEs) and activation of the receptor for AGE (RAGE). AGEs 

accumulate during hypertension and ageing, leading to vascular stiffening and inflammation, both of 

which we discuss later as important known mechanisms in SVD. AGE accumulation is increased when 

inflammation is present, and in the presence of oxidative stress and diabetes 42 indicating one of 

several ways that adverse effects of combinations of risk factors may be much worse than might be 

expected from adding together the effects of individual risk factors alone. RAGE activation leads to 

production of reactive oxygen species (ROS) and altered gene expression 42, 43. Furthermore RAGE is 

activated in animal models of hypertension, and inhibition of RAGE activation prevents amyloid 

deposition 44.  RAGE activation is believed to be implicated in vascular diseases and neurodegenerative 

conditions such as Alzheimer’s Disease (AD; 45) – for example RAGE expression is increased in cerebral 

blood vessels of animal AD models and transports amyloid β across the BBB 46, 47- but there is not yet 

specific evidence relating to SVD or PVS dysfunction, particularly not yet in humans.  
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Environmental influences, such as education and socioeconomic status, appear to modify the risk of 

both developing imaging features of SVD and of having a stroke, while factors such as cognitive reserve 

may protect cognitive function against a developing burden of SVD brain damage and contribute to 

variability in disease expression between patients 14,20,48,49. Further evidence for a complex ‘nature-

nurture’ balance underlying SVD is that although genetic and vascular risk factors, particularly 

hypertension, diabetes and smoking, increase the risk of developing SVD, these multiple common 

vascular risk factors combined explain only a small proportion of the variance in SVD imaging features; 

thus they may exacerbate a predisposition, rather than being the sole cause of SVD 2,50. This 

interpretation is further borne out by the disappointing results to date of clinical trials of vascular risk 

factor reduction therapies: these have not prevented recurrent lacunar stroke, cognitive decline, or 

made much impression on reducing SVD lesion progression (for example, the SPS3 trial 51), further 

suggesting that SVD-specific treatments will require other approaches 52,53. 

 
Research into the causes and pathophysiological mechanisms of SVD has been hampered by the 

difficulty in visualising small vessels in the human brain during life and the fact that pathology at death 

is often not reflective of the early disease stages 2. While specific lesions such as WMH or lacunes have 

received much research attention, features such as the perivascular space and its relevance to brain 

fluid balance have only been recognised more recently. Furthermore, while much clinical research and 

practice has focused separately on ‘stroke’ and ‘dementia’, and thus overlooked until recently the 

common underlying importance of microvessels and their dysfunction, similarly, much laboratory 

research has focused on either the blood vessels or the neurons/glia and thus overlooked the 

integration between microvessels and brain tissue and the importance of the perivascular space.  

To this end, a Fondation Leducq Transatlantic Network of Excellence (TNE) is now focused on 

understanding the role of perivascular spaces in SVD (Figure 1). Knowledge about PVS and brain fluid 

and waste drainage systems in health and disease is growing. How PVS become enlarged, at what 

stage in the progression of SVD this occurs, and what the downstream consequences are, remain 
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unanswered questions. Below, we discuss the role of PVS in the healthy brain, the association between 

disease and enlarged PVS, and propose hypotheses for the potential involvement of these enlarged 

spaces in the pathogenesis of SVD which are being addressed as part of the Fondation Leducq TNE 

programme.  

 

Perivascular Spaces 

PVS, also known as Virchow-Robin spaces, are fluid filled compartments surrounding the small blood 

vessels in the brain.  PVS were originally named after Rudolf Virchow and Charles Philippe Robin, who 

individually provided detailed descriptions in the 1800s 54. While historical descriptions of PVS and 

their function have been controversial 55,56, recent advances now recognise potentially important 

features such as architectural differences between PVS in different brain regions in humans 57.  

 
The current literature consensus is that PVS form a network of spaces around cerebral microvessels 

that acts as a conduit for fluid transport, exchange between cerebrospinal fluid (CSF) and interstitial 

fluid (ISF) and clearance of waste products from the brain. Indeed, a central brain lymphatic-like 

system has been proposed since the 1700s 58. This clearance system has been identified in both animal 

models and humans and is varyingly referred to as ‘para-arteriolar’, ‘para-venular’, ‘paravascular’ or 

‘glymphatic’ - a term derived from the observed dependence on functional glial cells and its similarities 

to the lymphatic system elsewhere in the body 59,60.  

 
This proposed clearance pathway has most recently been explored in experiments involving the study 

of movement of fluorescent tracers in rodents 56,61-63. However, the system of fluid drainage is not 

completely understood. Efflux of ISF via PVS is proposed to facilitate waste clearance from the brain, 

while influx of CSF from the basal cisterns or superficial subarachnoid spaces into the periarteriolar 

spaces is thought to not only help flush out waste but also to deliver various signalling molecules and 

metabolic factors required for brain function 64,65. However, the precise routes of fluid clearance and 

whether these occur passively by diffusion or undergo periods of more active exchange by convection 
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as a consequence of vascular pulsation, or both, are controversial 57. Fluid transport along this pathway 

is thought to be driven by cerebrovascular pulsatility 60,64 (although there is conflicting evidence for 

this 66 and others argue in favour of diffusion). The rate and direction of fluid movement is also 

controversial 56,57,67-69. Many of these apparent differences in space function and fluid fluxes may 

reflect the effects of different experimental designs, closed versus open craniotomy, temperature 

control, and anaesthetic agents to name but a few, on the delicate intracranial haemodynamics and 

perivascular space systems. In addition, the ability to capture beat-to-beat variations by real time 

imaging in the context of differentiating between convective versus diffusion mass transport of CSF 

and solutes is currently limited.  

 

The concept of this complex brain fluid and waste clearance system is controversial, as recently 

reviewed elsewhere 70-72. Nevertheless, this pathway appears to be important for the clearance of 

interstitial solutes from the brain, and is most likely vital for maintaining brain homeostasis. This view 

is supported by a reasonable body of human data demonstrating widening, and increasing visibility, 

of PVS in various presentations of SVD, stroke, dementia 73, systemic inflammation 74, and associations 

of PVS themselves with impaired cognition and poor blood pressure or glucose control 17,75,76. A recent 

small study in patients being investigated for hydrocephalus, who had gadolinium contrast injected 

into the CSF followed by serial brain MRI, also suggested that fluid uptake into PVS is more active in 

humans during the night 77. Compromised function (potentially indicated by widening of PVS, 

discussed below) may therefore have a negative impact on brain health 78 and be involved in 

conditions such as AD, diabetes, increased risk of stroke and brain injury 79,80. If PVS can be measured 

accurately and dynamically, they present a potential biomarker and novel therapeutic target 81. 

 
 
Enlarged PVS in disease 

Possibly the earliest description of dilated PVS pathologically was in the 1800s by Durant-Fardel 11,54. 

PVS become visible on MRI when enlarged, and though they may be detected on MRI in healthy 

individuals, widened PVS become more frequent during ageing and when associated with pathological 
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alterations to the brain tissue such as with increasing burden of SVD lesions 73,82-86. Interestingly, as 

well as WMH being highly heritable, these enlarged PVS themselves are also highly heritable 87. 

Depending on the scan orientation these enlarged PVS will appear punctate or linear. PVS were 

defined in the STRIVE guidelines to aid the description of SVD pathophysiological features as having a 

diameter ‘smaller than 3mm when imaged perpendicular to the course of the vessel’ 88. Most are 

much smaller than 3mm in diameter and there is acknowledged to be overlap between larger PVS and 

small lacunes about which more research is needed. 

 
It may seem odd that enlargement of PVS, rather than shrinkage, should be abnormal, but as we 

discuss later, it appears likely that widening of PVS indicates obstruction by protein and cell debris and 

thus stagnation of fluid drainage. There is substantial evidence that enlarged PVS are abnormal. For 

example, they indicate increased stroke risk 89  particularly with lacunar rather than large vessel stroke, 

and other SVD features particularly WMH 73,90. Their presence also correlates with vascular dementia, 

decreased performance in measures of cognitive function in healthy older men 17,91, hypertension 92-

94, WMH 73,74,76 and reduced von Willebrand factor suggesting reduced vessel elasticity 86 in SVD. PVS 

enlargement can also be seen in cerebral amyloid angiopathy (CAA; 95,96), CADASIL 97,98, is a marker of 

SVD 73,90,93,99,100 and is possibly associated with brain atrophy. Furthermore, enlarged PVS are 

associated with systemic inflammation 74, blood-brain barrier (BBB) dysfunction in SVD 101 and with 

inflammatory exacerbations in multiple sclerosis (MS; 102,103).  

 
 
 
Role of enlarged PVS in SVD 

PVS are considered to play a role in normal brain homeostasis, while enlarged PVS are a feature of 

several diseases, and are associated with SVD. How PVS become enlarged in SVD and what the 

downstream effects of this are remains unclear. There are numerous potential ways in which PVS are 

likely to be involved in disease progression, and untangling the causes and consequences from the 

range of evidence in the literature is a challenge to be addressed. To investigate the factors that 
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contribute to the enlargement of PVS, the consequences of these enlarged spaces, and the effect on 

clearance of waste products from the brain via the brain drainage system, four main areas of study 

can be identified and are discussed below and highlighted in Figure 1. 

 

1. What are the pathophysiological causes and consequences of the expanded PVS in SVD?  

We propose that expansion of PVS is likely to involve inflammation and that this in turn will result in 

increased oxygen consumption. Inflammatory markers are elevated in a range of vascular disorders, 

in ageing mice and in elderly people with cognitive decline 104-106. There is evidence for systemic 

inflammatory processes occurring in SVD 74,107,108. Interestingly, SVD burden is increased in lupus, an 

inflammatory disorder associated with increased stroke risk 109. Inflammatory markers are also 

associated with WMH, a hallmark feature of SVD 110. However, the role of inflammation in SVD is still 

to be fully elucidated 111-113 and may lead to WMH development via triggering dysfunction of PVS 74. 

The triggers of inflammation are unknown, but potential factors could include salt intake 114 and 

systemic inflammatory disorders such as rheumatoid arthritis 50,108,109,115.  

Inflammatory markers accumulate around cerebral blood vessels as shown pathologically in traumatic 

brain injury, intracerebral haemorrhage (ICH; 116) and MS 103. Pro-inflammatory markers are associated 

with enlarged PVS and inflammatory cells are known to accumulate in the perivascular space 117-121. 

Release of inflammatory cells can cause breakdown of the extracellular matrix and affect the integrity 

of the BBB, along with triggering demyelination 122. In the stroke-prone spontaneously hypertensive 

rat (SHRSP), a model of SVD, inflammation is associated with impaired myelin integrity and BBB 

dysfunction 123,124. Furthermore, perivascular macrophages are thought to be involved in AD, and may 

contribute to the neurovascular dysfunction seen in this disease 116,125.   

 
The precise interaction between inflammation, enlarged PVS and brain fluid dynamics is still to be 

determined. It is possible that aggregation of inflammatory cells in the PVS leads to remodelling and 

alterations in fluid clearance. Targeting inflammation may therefore present a therapeutic avenue for 
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SVD. In fact, reducing perivascular macrophages in the SHRSP model improved endothelial function 

and remodelling of the middle cerebral artery 126. Depletion of perivascular macrophages also reduces 

oxidative stress and endothelial function and cognitive dysfunction 127.  Further studies of 

inflammation in rodent models of SVD, with relation to the time course of vascular alterations and 

fluid movement, will help elucidate the role of inflammation in SVD.  

 
Inflammation in SVD may be linked to reduced blood flow, hypoperfusion and hypoxia 128. It is 

traditionally thought that structural alterations in blood vessels and reduced blood flow are central 

mechanisms in SVD – in fact, hypoperfusion is used to model aspects of SVD in rodents 129,130. In 

Fisher’s seminal studies he described ‘segmental arteriolar disorganisation’ associated with lacunes, 

showing enlargement of the lumen and abnormalities in arterial architecture 131. It has since been 

proposed that dysfunction of the vessel endothelial cells leads to alterations to blood vessel 

architecture. These changes could lead to both enlargement and narrowing of the vessel lumen, along 

with vessel stiffening 2. Vascular smooth muscle cells are also involved in blood vessel remodelling 132, 

for example a narrowed lumen has also been associated with an increase in vascular smooth muscle 

cells in the SHR model 133. Further work is needed to confirm the cause and time course of vessel 

alterations, but multiple studies in both patients and animal models show that overall CBF is reduced, 

potentially as a result of these alterations. However, the exact role of reduced CBF in SVD pathogenesis 

is contentious due to the lack of longitudinal studies designed to illuminate causation. 

Attenuated cerebrovascular reactivity (CVR) and CBF in CADASIL mouse models have been noted prior 

to other alterations in brain pathology, such as lacunes 134,135. Regions of normal appearing WM in 

patients with WMH can show reduced CVR, suggesting that vascular alterations may precede WMH 

development 136,137, however direct evidence for this is surprisingly scarce. WM has fewer capillaries 

than the cortex 138, which along with slower blood flow and presence of a watershed area may 

contribute to greater susceptibility of WM to hypoperfusion than grey matter 139, 140. However, while 

increased WMH are consistently associated with decreased CBF cross-sectionally, evidence to support 
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the assumption that decreased CBF leads to white matter damage is somewhat lacking, as highlighted 

in a recent systematic review 141. This meta-analysis draws attention to the lack of convincing evidence 

that reduced CBF predates WMH in humans, the data suggesting that increased WMH precede 

decreased CBF rather than the opposite. Interestingly, recent studies in the CADASIL model suggest 

that reduced CBF and WML occur independently 142. Therefore, the temporal relationship between a 

reduction in blood flow and progressive damage to the brain, such as WMH, needs to be clarified 143 

as a priority.  

Whether reduced CBF is cause or effect, there is strong evidence that it is a factor in SVD 141, and as 

such we can hypothesise that reduced blood flow could trigger hypoxia, neuronal death and other 

neuropathological alterations adding to worsening of the cerebral environment 122,128,144. These 

changes could occur alongside inflammation and demyelination because the resulting reduction in 

oxygen delivery could lead to activation of microglia and macrophages, triggering demyelination 145 

exacerbate dysfunction of the BBB 122 and in turn encourage enlargement of PVS. We could further 

hypothesise that if fluid flow along the brain drainage pathway is driven by cerebral arterial pulsatility 

146,147, then increased stiffness and loss of pulsatility could lead to reduced waste clearance.  

While it is likely that reduced CBF and vascular dysfunction are key events in SVD pathogenesis, the 

temporal association between reduced CBF and SVD pathogenesis, and its relationship with enlarged 

PVS remains unclear. This association can be examined using a range of techniques, including two-

photon phosphorescence lifetime (2PLM) measurements of oxygen delivery 148, and histological 

measures of hypoxia 149, in rodent models of SVD.  

 

2. The role of pericytes and BBB disruption in SVD 

Endothelial dysfunction is a recognised contributor to SVD 2,150,151. BBB dysfunction increases with 

ageing, in vascular dementia, AD and with increased WM lesion load 152-157 and has been found to 

precede the development of dementia 154. Furthermore, breakdown of the BBB is found in patients 

Downloaded from https://academic.oup.com/cardiovascres/advance-article-abstract/doi/10.1093/cvr/cvy113/4991897
by UCL (University College London) user
on 01 June 2018



CVR-2018-226 
 

12 
 

with lacunar stroke 101,158-160, in WMH on MRI 137,160-163, in vascular cognitive impairment and dementia 

(VCID; 152,153,164,165) and is associated with poor functional outcome after minor cortical or lacunar 

stroke 166. 

 

In patients with SVD, BBB leakage is also apparent in normal-appearing WM, increases together with 

increasing SVD-lesion burden, and appears to predict cognitive dysfunction 150, indicating an important 

role for BBB dysfunction in the pathogenesis and clinical expression of SVD. Patients with SVD have 

also been found to have elevated circulating levels of markers of endothelial activation and damage 

167, elevated serum levels of homocysteine, an endothelial toxin and presumed risk factor for SVD 

168,169, and there is evidence that the association between homocysteine levels and SVD risk is 

mediated by endothelial dysfunction 169.  

Interestingly, recent genome-wide association studies identified the Foxf2 gene region as a major risk 

locus for small vessel stroke 39. Foxf2 is expressed in brain vascular endothelial cells and pericytes 

170,171, and mice deficient for Foxf2 develop prominent structural and functional abnormalities of 

endothelial cells along with a disruption of the BBB 171.  

The cause of the BBB dysfunction is unclear, but inflammation has been indicated as a causative factor 

that can trigger endothelial dysfunction (32, see above). Another potential culprit is pericyte 

dysfunction. Pericytes are proposed to play a variety of roles within the neurovascular unit 172 

including control of the dilation of capillaries 173,174. Some controversy has arisen over the role of 

pericytes in capillary dilation 175, however this could potentially be explained by the presence of 

subclasses of pericytes and the correct labelling of pericytes vs smooth muscle cells 176. Pericytes are 

also involved in the ischaemic response, contracting and causing capillary constriction, thereby 

presenting a potential therapeutic target 174,176. Animal models developed to have reduced numbers 

of pericytes show reduced CBF and CVR, BBB breakdown and neurodegeneration 155,177,178. More 

recently, pericyte loss has been demonstrated to underlie white matter damage, which is associated 

Downloaded from https://academic.oup.com/cardiovascres/advance-article-abstract/doi/10.1093/cvr/cvy113/4991897
by UCL (University College London) user
on 01 June 2018



CVR-2018-226 
 

13 
 

with both SVD and dementia 179. Animals with white matter damage resulting from pericyte loss were 

shown to develop axonal degeneration, enlarged PVS, and functional deficits in behavioural tests.  

 
Pericyte dysfunction has been linked to several disorders, including AD and diabetic retinopathy 179-181 

and they are among a number of cells of the neurovascular unit that are affected in SVD 182. Pericyte 

cells have been proposed to be lost in rodent models of SVD such as the CADASIL mouse model 183,184, 

in models of cerebral hypoperfusion 185 as well as in human post-mortem tissue 186, although an up-

regulation of pericytes has been noted in some CADASIL patients 187. When pericytes are lost in SVD, 

nearby endothelial cells also show signs of dysfunction, and these changes together may contribute 

to alterations in CBF and BBB function 186.  

 
Markers of endothelial dysfunction correlate with enlarged PVS in SVD 86,101 and in MS 102,103, indicating 

a relationship between enlarged PVS and BBB breakdown. We propose that in SVD, pericyte 

degeneration results in opening of the blood brain barrier and aggravates inflammation in PVS. These 

events may further compromise pericyte and PVS function triggering a vicious cycle of events. 

 
Of course, it is not only pericytes that are affected in SVD. Oligodendrocytes 188, the basement 

membrane 189 and the extracellular matrix 122,190 have all been proposed to play a role. The 

mechanisms underlying BBB dysfunction, and underlying the association between abnormal PVS and 

endothelial dysfunction are yet to be determined, and could be studied by cross-comparison between 

specific models of pericyte loss and models of other putative SVD mechanisms such as SHRSP. The 

therapeutic value of BBB preservation and how this would affect the appearance of enlarged PVS and 

the progression of SVD is also to be tested.  

 

3. How are PVS and brain fluid clearance affected in rodent SVD models?  

Enlarged PVS are evidently an imaging biomarker for cerebrovascular disease 73,76,89 and could indicate 

dysfunction of fluid clearance due to excess accumulation (e.g. from BBB failure) or failure to drain 
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the usual amount of interstitial fluid (e.g. from obstructed PVS), which may further result in impaired 

drainage of toxins and build-up of harmful waste products 191,192. Perivascular drainage is impaired in 

aged wildtype mice and in models of AD 193-195. PVS contribute to amyloid-β clearance from the brain. 

Normally, transvascular clearance across the BBB is thought to clear most amyloid-β from the brain 

(~60-85%), whereas ISF flow across PVS removes the remaining smaller fraction (~ 15-40%) of amyloid-

β depending on whether the animal is awake 196,197 or asleep 192 and better amyloid-β clearance is also 

associated with physical activity  198-201. Faulty transvascular clearance of brain amyloid-β across the 

BBB is likely to play an important role in amyloid-β accumulation in the brain, both in human AD and 

animal models 59,202 and might explain associations between reduced physical activity 203, poor sleep 

patterns and increased risk of cognitive decline and dementia 204,205. In CAA, AD and other disorders, 

dysfunction of clearance via ISF flow additionally contributes to amyloid-β accumulation. Amyloid-β 

deposits are therefore suggestive of dysfunction of fluid clearance 193-195,206-210. In fact, amyloid- β 

clearance is reduced in aged mice, alongside reduced fluid transport 147, indicating a potentially key 

role for this process in the pathogenesis of AD and CAA 211.  

 
Fluid clearance is significantly impaired in models of stroke, multiple infarcts, diabetes and traumatic 

brain injury 79,212-215. Closure of PVS and impaired fluid transport has been shown in a model of 

migraine – commonly experienced in CADASIL 216. Ageing and brain injury may therefore impair 

function of the brain clearance pathway. Dysfunction of this system could contribute to interstitial 

oedema, accumulation of waste toxins, and trigger pathological events that could have a devastating 

impact on brain health. Enlarged PVS may therefore provide not only a biomarker for SVD but also 

indicate impaired fluid transport and waste clearance. However, it is not currently clear whether 

enlarged PVS result from impaired clearance of fluid, or conversely that impaired clearance occurs as 

a result of enlarged PVS. It is also possible to speculate that enlarged PVS may be a compensatory 

response, designed to improve fluid flow. While there is evidence for reduced fluid movement in 

models of AD, stroke and other disorders 79,195,212-215, interestingly, a recent report is suggestive of 
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increased ISF flow in the hippocampus of the SHR model 217 – more long-term studies are needed since 

increased flow may predate reduced flow and failure of fluid clearance or vice versa.  

Further studies of fluid dynamics in SVD and the role of enlarged PVS in this process are therefore 

warranted, and clarifying potential changes to flow in SVD presents an interesting avenue of research. 

It can be hypothesised that fluid transport is impaired in SVD, and in vivo MRI imaging and modelling 

in rodent models of SVD could be used to determine its role in disease pathophysiology 218-220. The 

timecourse of these alterations could be studied alongside investigations of the role of inflammation, 

hypoxia and vessel alterations to build a more complete picture of the pathophysiology of SVD, which 

the field is currently lacking.  

 
4. Understanding PVS morphology and cerebrovascular function in patients with SVD 

Currently, there is no gold-standard animal model for SVD. However, animal models do provide 

opportunities to examine certain aspects of SVD pathophysiology 221. Translational research is hugely 

important, and combining our knowledge of SVD at the cellular and network level in animal models 

with advanced imaging studies in both animals and humans will help us to develop a more complete 

picture of the pathophysiology of SVD (Figure 2).  

 
As discussed above, MRI abnormalities are recognised hallmarks of SVD 88. In addition to structural 

changes, such as WMH, functional abnormalities indicating impaired cerebrovascular function can 

also be detected. CVR and cardiac pulse transmission are both altered in SVD 222,223. PVS quantification 

in humans has been based on visual scoring to date, which has limitations. We have developed a 

computational method of analysing PVS structure 224,225, which can calculate centrum semiovale PVS 

volume and numbers meaning that we can now determine whether PVS morphology correlates with 

makers of cerebrovascular dysfunction, such as CVR, BBB dysfunction or serum markers in SVD. As 

clearance via PVS has been shown to occur diurnally, with enhanced clearance during sleep via an 

enlargement of the ISF space 219, it is also likely that sleep dysfunction will affect brain homeostasis 

via this pathway. A small convenience study in patients undergoing investigation of hydrocephalus 
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provided some evidence that clearance increases during sleep in humans 77. Abnormal PVS have been 

observed in patients with sleep apnoea 226 and sleep disruption occurs commonly in patients with AD 

and other neurodegenerative conditions 227. Sleep disruption also negatively impacts amyloid 

deposition in mice 228. Clearance during sleep may therefore provide a novel therapeutic avenue 78. 

We aim to address this by investigating the presence of SVD-related brain changes in patients with 

severe sleep apnoea, and determining whether treatment with continuous positive airways pressure 

therapy will affect the appearance of MRI and serum markers of cerebrovascular dysfunction. 

 
As reviewed by 229, advanced imaging techniques have been essential in developing our understanding 

of SVD. Rating scales and improved analysis methods will aid assessment of PVS 73,86,224,225,230,231, while 

advances in imaging technology, such as 7T MRI, will aid the study of the role of PVS in SVD and other 

disorders 85,232. While current clinical evidence for dysfunction of the brain clearance pathway in 

disease is limited, newly developed techniques are being used to image fluid flow in PVS in patients 

233,234. However, we need to reduce variability and cement reproducibility in MRI markers by 

harmonising protocols and quantification methods 12. Validation of advanced imaging techniques for 

use in multicentre studies provides promise for using new methods in clinical trials 235. Longitudinal 

clinical studies are needed to help us to fully understand disease progression 236,237.  

 
Conclusions 

SVD has a complex pathophysiology with many contributing factors. A combination of vascular 

dysfunction, inflammation and BBB dysfunction are likely to underlie this disease and have devastating 

effects on brain health. However, the timing and contribution of these events to SVD pathophysiology 

is yet to be confirmed. MRI has provided imaging biomarkers for SVD 88, including enlarged PVS, which 

correlate with SVD burden. There is recent, and increasing, evidence for the association between 

abnormal PVS and SVD. However, how PVS come to be enlarged in SVD and their role in the 

pathogenesis of the disease, is yet to be determined. Here we discussed potential pathways that could 

lead to enlarged PVS and the effects this may have on brain health, and present the work that is being 
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addressed in the Fondation Leducq funded TNE. This network aims to tackle the problem of SVD using 

a cross-disciplinary approach, linking findings from animal studies (both in vivo and in vitro) to studies 

in patients with sporadic SVD. Furthermore, we aim to provide novel insight into related pathological 

mechanisms by studying SVD-related brain changes in sleep apnoea patients.  

 
SVD is a pressing issue, with a global health impact. Enlarged PVS are just one factor in this complex 

disorder and there are many contributing factors that are not discussed here. Furthermore, there are 

many suppositions in the literature that remain to be proven. By looking at each of the processes that 

are known to occur in SVD in detail, and providing proof for some of the assumed knowledge we may 

further our understanding and uncover novel therapeutic avenues for SVD.   
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Figure 1: A. Enlarged perivascular spaces are key pathological features of SVD as shown on MRI from 

patients with sporadic SVD (Top panel, insert: PVS detected on T2 MRI), and associate with WMH 

(bottom panel). B. The cycle of events we believe are involved in SVD pathogenesis and PVS 

dysfunction, including altered blood flow, BBB dysfunction and disrupted brain fluid flow. C. Some of 

the key outstanding questions in SVD research, which also outline the scientific goals of the Fondation 

Leducq TNE ‘Understanding the role of the perivascular space in cerebral small vessel disease’.  

   

 

Figure 2: Translation between preclinical and clinical findings will be facilitated by comparing and 

harmonising rodent and human imaging techniques, allowing the relationship between enlarged PVS 

on MRI (A,B) to fluid flow (C,D) to be determined. A. Clinical imaging. Top: FLAIR (L) and T2 (R) MRI 

shows WMH (L) form along the PVS (R, arrow). Below: T2 shows a PVS running inwards from cortex 

(arrow); T2* shows white matter venule (arrow) closely related to the PVS. B. T2*-weighted MRI of a 

normotensive mouse (top panel) and hypertensive mouse showing cortical vessels associated with 

susceptibility contrast probably due to thickening of the vessel wall and/or altered perivascular 

spaces (lower panel). C. ‘Glymphatic’ transport pathways detected by T1 MRI and Optimal Mass 

Tomography analysis in a rodent brain following tracer infusion into the CSF. The timecourse of fluid 

flow from the cisterna magna throughout the brain can be revealed using this technique D. Fluid 

transport in the perivascular space detected by macroscopic fluorescent optical imaging in the cortex 

following injection of fluorescent markers into the CSF and vasculature. 
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