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Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure
the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The
movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered
motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square
displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation
(CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green’s function of
the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel
numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper
spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of
the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction
of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with
applications to blood flow imaging in regions where the Brownian motion is dominant.
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I. INTRODUCTION

Over the last two decades, noninvasive tomographic optical
imaging of multiply scattering biological tissues has attracted
significant attention [1–3]. A relatively novel development in
this field of research is diffuse correlation tomography (DCT).
This family of methods utilizes the electric-field autocorrela-
tion of the diffuse laser speckles to estimate the mean-square
displacement of the scatterers inside the medium over a given
period of time. This, in turn, can be related to the microvascular
blood flow index [4–6] and to other types of internal motion
of particles.

The vast majority of the proposed DCT implementations
rely on the use of the diffusion equation as the mathematical
model for propagation of the field correlations. Correspond-
ingly, the technique has been applied under the conditions
when the diffusion approximation to the more fundamental
correlation transport equation (CTE) is valid. In this case, some
information about the medium is lost due to the near-isotropy
of radiation in the diffuse propagation regime [6]. In the
mesoscopic scattering regime, it is possible to increase the
information content of the data by exploring some additional
degrees of freedom such as polarization or the source and
detector collimation directions. However, this requires the use
of the CTE as the mathematical model to capture correctly
the strong anisotropy of the light scattering. Utilization of the
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CTE in the context of DCT is the main subject of this paper.
Correspondingly, we consider samples of relatively smaller
size than in the traditional implementations. However, multiple
scattering is still important for us.

A technique related to DCT that relies on single scattering
only is known as dynamic light scattering. This approach is
based on measuring temporal fluctuations of the scattered light
that are effected by the motion of particles within the medium.
Dynamic light scattering has been successfully applied to char-
acterize dilute media [7]. However, in more dense and turbid
media, multiple scattering sets in. The theory of correlation
propagation in the multiple-scattering regime was developed
in Refs. [8–10] and is known as diffusing-wave spectroscopy
(DWS). It was shown that, within the diffusion approximation
and considering only uncorrelated single-scattering events, the
detected correlation function is equal to the angle-averaged
signal for single scattering elevated to the power equal to the
number of random-walk steps along the photon path [4–6].
DWS was highly successful in modeling uniform, concentrated
systems. Still, the biggest challenge in applying this theory
to practical biomedical imaging has been the lack of a quan-
titative mathematical model for propagation of correlations
carrying the spatial information inside the medium, especially
when it is nonuniform. This problem was solved in DCT,
wherein the correlation diffusion equation was introduced as
an approximation to the CTE, enabling the development of
practical imaging modalities [4–6]. Thus, the CTE can be seen
as an integro-differential equation formulation of DWS which
remains valid in the transport regime [6]. To increase the depth
penetration and resolution, DCT employs point sources rather
than wide-field illumination [4–6,11] and can be operated
as a three-dimensional fully tomographic modality [12] by
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using many source-detector pairs, similar to the diffuse optical
tomography.

Another related technique is laser speckle contrast imaging,
which can produce two-dimensional images of superficial
blood flow [13]. Typically, a CCD camera collects the scattered
light when a tissue is illuminated with a wide-field laser. This
modality uses the laser speckle statistics. The camera integrates
the fluctuating speckles during the exposure time and the image
can be constructed after the speckle contrast is calculated. Due
to the wide-field illumination, the penetration depth of this
method is limited to less than about a millimeter. However,
a relatively good lateral resolution is achieved. A somewhat
higher depth resolution is obtained in the spatial frequency
domain (e.g., with the use of structured illumination) [14,15].

A hybrid method with an increased signal-to-noise ratio
known as the speckle contrast optical tomography (SCOT)
has been recently proposed [16]. It is based on the use of
massively parallel detectors such as CMOS cameras. In some
implementations, SCOT can utilize the degrees of freedom in
the data characteristic of the transport regime in addition to
those typically used in the diffuse regime [17].

All methods described above are based on the use of the
correlation diffusion equation for modeling the propagation
of field correlations. It was shown experimentally [18] that the
breakdown of the diffusion approximation in DCT experiments
occurs in samples thinner than ∼3�∗, where �∗ is the transport
mean free path. Theoretically, simulations showed that the
diffusion approximation can be modified by accounting for the
asymmetry parameter in order to be applicable down to few �∗
[19,20]. Indeed, the validity of the diffusion approximation
depends on the level of anisotropy of the scatterers. It turns
out that the diffusion approximation remains valid in smaller
samples if they are highly anisotropic, as are some biological
tissues such as muscles. As a result of the diffusion approxima-
tion, the reconstructed images have low spatial resolution [21].
Therefore, it is interesting to explore the transport regime. The
mathematical model for propagation of correlations in this case
is the CTE, which is similar but not equivalent to the radiative
transport equation (RTE) that describes the intensity.

In this paper, we calculate the field correlation function
in the transport regime as a solution to the CTE introduced
in Refs. [5,22,23]. We show how perturbation theory can be
applied to the CTE in order to calculate the sensitivity kernel
relating the variation of the local Brownian motion of particles
to the typical data. The Green’s function of the standard
radiative transport equation (RTE) can be used to construct
the sensitivity kernel in the first Born approximation where
the correlation time is considered to be the small parameter.
We stress that the sensitivity kernel is defined for every point
within the scattering medium. The sensitivity kernel is then the
Jacobian matrix required in DCT in order to perform the image
reconstruction [16]. Eventually, we demonstrate how the use of
the CTE instead of the diffusion approximation can increase
the contrast and resolution of reconstructions of dynamical
properties of a scattering medium.

The paper is organized as follows: First, we develop the
perturbation theory for the CTE and calculate the correlation
sensitivity kernel in Sec. II. Then, we apply these results in
order to evaluate the normalized field correlation function
and the speckle contrast sensitivity in Sec. III. Examples of

numerical evaluation of these quantities are shown in Sec. IV.
A summary of the obtained results is given in Sec. V.

II. PERTURBATIVE SOLUTION OF CORRELATION
TRANSPORT EQUATION

Two approaches can be chosen to treat the problem of
multiple dynamic light scattering [6]. The first approach is to
consider the sum of the “single” dynamic light scattering events
over all allowed photon paths (i.e., the DWS). The second
approach is based on the CTE. The second approach is the one
we apply in this work due to its formal similarity with diffuse
optical tomography.

We consider a multiply scattering medium with moving
constituent particles, which can scatter light at the working
wavelength. The statistics of laser speckles in the medium
can be related to the field correlation function �(r,ŝ,τ ). This
function has been defined in Refs. [5,22,23] in terms of a
Fourier transform of the two-point correlation function for the
electric field (we use different notations: � instead of G1 with
the symbol G being reserved for the Green’s function). What is
important for us here is that � can be related to measurements
of the speckle contrast. Note that � depends on the position
r, direction of propagation ŝ, and the correlation time τ .
In a diffusion approximation-based approach, the directional
degree of freedom ŝ is averaged out. We however do not
disregard the dependence of � on ŝ. In the continuous-wave
illumination regime, � obeys the stationary CTE

(ŝ · ∇ + μt )�(r,ŝ,τ ) = μs

∫
γ s(r,ŝ,ŝ′,τ )A(ŝ,ŝ′)

× �(r,ŝ′,τ )d2s ′ + ε(r,ŝ). (1)

Here μs and μt are the scattering and extinction coefficients
(assumed to be known), A and ε are the scattering phase
function and the source term (the same functions that appear
in the ordinary RTE), and γ s is the normalized temporal field
correlation function for single scattering (defined in Ref. [5])
with the incoming and outgoing directions ŝ′ and ŝ. Although
the CTE (1) is stationary, it contains explicitly the correlation
time τ . Moreover, this equation is somewhat different from the
ordinary RTE due to the presence of the function γ s . The latter
is given by [5]

γ s(r,ŝ,ŝ′,τ ) = exp
[− 1

3k2
0〈�2(r,τ )〉(1 − ŝ · ŝ′)

]
. (2)

In this expression, k0 is the wave number at the central
frequency of the laser (assumed to be quasimonochromatic)
and 〈�2(r,τ )〉 is the average squared drift of the moving
particles initially located in the vicinity of the point r during
the time τ . Obviously, this mathematical description requires
that � be much smaller than the characteristic scale on
which the medium properties change. Equivalently, we can
require the correlation time τ to be sufficiently small.

In the case of free Brownian motion of a particle in a liquid,
we can use the well-known expression for the mean-square
drift, viz, 〈�2(r,τ )〉 = 6DB(r)τ , where DB(r) is the diffusion
coefficient for the moving particles (not to be confused with the
diffusion coefficient for the energy density of light). Note that
DB is a function of r since the medium properties can change.
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If τ is sufficiently small, we can expand γ s to first order as

γ s(r,ŝ,ŝ′,τ ) ≈ 1 + (ŝ · ŝ′ − 1)2DB(r)k2
0τ, (3)

and substituting the approximate expansion of γ s into (1)
yields

(ŝ · ∇ + μt )�(r,ŝ,τ )

= μs

∫
A(ŝ,ŝ′)�(r,ŝ′,τ )d2s ′

+μd (r,τ )
∫

(ŝ · ŝ′ − 1)A(ŝ,ŝ′)�(r,ŝ′,τ )d2s ′ + ε(r,ŝ).

(4)

We define the dynamic absorption coefficient as μd (r,τ ) =
2DB(r)k2

0μsτ . It plays the same role as the absorption co-
efficient in diffuse optical tomography (and has the same
dimensionality of inverse length) but has a different physical
origin. The field correlation function can be expanded in
powers of τ as

�(r,ŝ,τ ) = �0(r,ŝ) + �1(r,ŝ)τ + �2(r,ŝ)τ 2 + · · · . (5)

Upon substituting this expansion into (4) we find the equations
for �0 and �1:

(ŝ · ∇ + μt )�0(r,ŝ)

= μs

∫
A(ŝ,ŝ′)�0(r,ŝ′)d2s ′ + ε(r,ŝ), (6a)

(ŝ · ∇ + μt )�1(r,ŝ)

= μs

∫
A(ŝ,ŝ′)�1(r,ŝ′)d2s ′

+ μd (r,τ )

τ

∫
(ŝ · ŝ′ − 1)A(ŝ,ŝ′)�0(r,ŝ′)d2s ′. (6b)

It can be seen that �0 is the solution to the ordinary RTE and
is formally equal therefore to the specific intensity I (r,ŝ). In
particular, we can write

�0(r,ŝ) =
∫

G(r,ŝ; r′,ŝ′)ε(r′,ŝ′)d3r ′d2s ′, (7)

where G(r,ŝ; r′,ŝ′) is the RTE Green’s function for a homo-
geneous medium. Substituting this result into (6b), we can
find �1:

�1(r,ŝ) = 1

τ

∫
G(r,ŝ; r′,ŝ′)μd (r′,τ )(ŝ′ · ŝ′′ − 1)A(ŝ′,ŝ′′)

×G(r′,ŝ′′; r′′,ŝ′′′)ε(r′′,ŝ′′′)d3r ′d2s ′d2s ′′d3r ′′d2s ′′′.

(8)

Note that iterative evaluation of higher-order terms �2, �3, etc.,
is not mathematically justified because we have expanded γ s

to first order in τ in (3). Evaluation of higher-order terms �n

will require the use of higher-order expansion of γ s . Thus the
theory built here is restricted to first order in τ .

Consider a point collimated source at ra with the unique
illumination direction ŝa so that ε(r,ŝ) = δ2(ŝ,ŝa)δ(r − ra),
where δ2 is the angular δ function. For the point of observation
rb and the direction of observation ŝb, we define the data

function as τ�1(rb,ŝb)|ε=δ(r−ra )δ2(ŝ,ŝa ) = 	 so that we can write

	(rb,ŝb; ra,ŝa,τ ) =
∫

K1(rb,ŝb; ra,ŝa; r)μd (r,τ )d3r, (9)

where

K1(rb,ŝb; ra,ŝa; r) =
∫

G(rb,ŝb; r,ŝ)(ŝ · ŝ′ − 1)

× A(ŝ,ŝ′)G(r,ŝ′; ra,ŝa)d2sd2s ′, (10)

is the sensitivity kernel of DCT. It quantifies the variations of
the field correlation function due to the inhomogeneities of the
diffusion coefficient DB(r). We emphasize that �1(r,ŝ) can be
computed if the correlation time-dependent function �(rb,ŝ,τ )
is known for some range of τ by using linear regression.

It is important for us that the sensitivity kernel K1 defined
in (10) is expressed in terms of the Green’s function of the
ordinary RTE. The kernel is similar to the sensitivity kernel
of diffuse optical tomography for the absorptive contrast [24]
but contains an extra factor (ŝ · ŝ′ − 1)A(ŝ,ŝ′); in the theory
of Ref. [24], this factor is replaced by the angular δ function
δ2(ŝ,ŝ′). In spite of some mathematical similarities, the two
kernels describe sensitivity to very different contrast mecha-
nisms. The kernel of diffuse optical tomography quantifies the
sensitivity to absorbing chromophores while the kernel derived
here quantifies sensitivity to local mobility of the particles
comprising the medium.

III. APPLICATION TO SPECKLE CONTRAST
OPTICAL TOMOGRAPHY

In the following we show how the correlation sensitivity
kernel of DCT can be used to calculate quantities useful in
SCOT.

In SCOT [16], the reconstruction of the distribution of the
mean-square displacement 〈�r2(r,τ )〉 into the sample volume
is recovered from measurements at the surface of the speckle
contrast sensitivity. The speckle contrast is defined as [16,21]

σ 2(rb,ŝb,T ) = 2β

T

∫ T

0
|γ (rb,ŝb,τ )|2

(
1 − τ

T

)
dτ, (11)

whereβ is an experimental parameter depending on the number
of speckles and the detection conditions. The term T is the
exposure time of the CCD camera collecting the scattered
radiation and in order to apply the linearization of (3) it is
required that T < 400 μs. The measurable quantity is the
normalized correlation function [8,25]

γ (rb,ŝb,τ ) = �(rb,ŝb,τ )

I (rb,ŝb)
. (12)

Here I (rb,ŝb) is the specific intensity at the detector, which
is characterized by the position rb and collimation direction
ŝb. For sufficiently small correlation times, we can use (5) to
approximate the right-hand side of (12) to first order in τ .
Recalling that the expansion coefficient �0 in (5) is, in fact, the
specific intensity, we arrive at

γ (rb,ŝb,τ ) = 1 + �1(rb,ŝb)

�0(rb,ŝb)
τ. (13)
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Substituting (13) into (11) yields

σ 2(rb,ŝb,T ) = 2β

T

∫ T

0

∣∣∣∣1 + �1(rb,ŝb)

�0(rb,ŝb)
τ

∣∣∣∣
2(

1 − τ

T

)
dτ.

(14)

For a point collimated source characterized by position ra and
direction ŝa , keeping just the terms at first order in τ , we can
define the SCOT data function according to

	SCOT(rb,ŝb; ra,ŝa,T ) = σ 2(rb,ŝb,T ) − β, (15)

and it follows that

	SCOT(rb,ŝb; ra,ŝa,T ) = 4β

T

�1(rb,ŝb)

�0(rb,ŝb)

∫ T

0

(
τ − τ 2

T

)
dτ.

(16)

Finally, it can be seen that this data function is coupled through
μd (r,T ) by the linear integral equation

	SCOT = 2

3
β

∫
K1(rb,ŝb; ra,ŝa; r)

�0(rb,ŝb)
μd (r,T )d3r

= 2β

3�0(rb,ŝb)
	. (17)

Therefore, to first order in τ , the sensitivity kernel of SCOT
is the same as the sensitivity kernel of DCT normalized to
the local intensity and multiplied by 2

3β. This kernel can
be calculated with (10). Here 	SCOT is expressed in terms
of experimentally measurable quantities as σ 2 and β. Corre-
spondingly, (17) can be inverted by standard methods of linear
algebra to find the unknown contrast μd (r,T ). The difference
between SCOT and DCT is that different measurements must
be performed and then differently postprocessed to obtain the
data function 	. Note that linearization of the correlation
function � in τ , which was used to arrive at the definition
(9) of the data function, is valid in typical experiments for
τ � 400 μs assuming DB ∼ 0.5 × 10−8 cm2 s−1 and for the
laser frequency in the visible spectral range.

Moreover, it is necessary to stress the importance of writing
the sensitivity through kernels since the local dependence on
position inside the medium is maintained (equivalently to DCT
Jacobians while, the sensitivity as defined in this paper depends
on the source and detector positions only). In addition, (17)
takes into account the variation with respect to a static medium,
i.e., satisfying the RTE. Thus, the sensitivity can be calculated
by summing only onto the dynamic portion of the medium (i.e.,
the perturbation) and no modification of (11) is necessary in
order to correct for scattering from the static part (as proposed
in Ref. [21]).

In what follows we show results for the temporal field
correlation sensitivity kernel which are relevant for DCT in
the correlation transport regime.

IV. RESULTS

We now consider the imaging of a scattering medium in
the shape of a slab. The scattering and absorption coefficients
(μs = 10 cm−1 and μa = 0.02 cm−1), and the scattering
phase function (for Mie particles with asymmetry parameter
g = 0.95 and size parameter x = 7.15), which corresponds
to a transport mean free path �∗ = 1/[μa + (1 − g)μs] =

FIG. 1. Correlation function sensitivity kernel computed via
Monte Carlo simulations in (a), (c) transmission geometry and (b), (d)
reflection geometry. The solution of the CTE is shown in panels (a)
and (b) and its P1 approximation in panels (c) and (d). All distances
are shown in units of �∗. The source-detector separation in panels (b)
and (d) is 1.5�∗.

1.92 cm are constant inside the medium but the scatterer
Brownian motion diffusion coefficient DB can vary in space.
The propagation of the field temporal correlation is assumed
to obey the CTE. The source is a continuous-wave, collimated
laser beam incident at some location rA on the surface of the
slab and in the direction of the unit vector ŝA.

Since the temporal field correlation function cannot be
measured directly, the detector measures the intensity fluc-
tuations within a single speckle area centered at a point rB

and in the direction ŝB . A correlator should be used to get
the normalized temporal intensity correlation function [12]
and, under the assumption of Gaussian statistics of the field
fluctuations, the Siegert relationship can then be used to convert
it into the normalized electric-field autocorrelation. Then, the
presence of heterogeneities of the mean-squared displacement
inside the slab will result in a detectable variation of the
measured field correlation function due to the variations in
the dynamic absorption. Within the accuracy of the first Born
approximation, the equation that relates the fluctuations of the
Brownian motion diffusion coefficient DB to the sensitivity
function is expressed through (9).

First, simulations relevant for DCT are presented in the
form of sensitivity to dynamic absorption. The field correlation
sensitivity kernel K1 (10) is illustrated in Fig. 1. To compute
K1, we use Monte Carlo simulations solving numerically the
RTE (and thus find the Green’s function G). The coordinates
are in unit of �∗, the transport mean free path. The Green’s
function is calculated with N = 108 number of photons for a
slab of thickness L = 1�∗. In addition, the reciprocity relation
[26] is applied to the Green’s function propagating to the
detector (although here we do not consider polarization).
Then, an expansion in spherical harmonics of all angularly
dependent functions is used; details of angular integration of
(10) are explained in Appendix A. The approximated solution
to the RTE is evaluated through the P1 approximation. Strictly
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FIG. 2. Correlation function sensitivity kernel computed via
Monte Carlo simulations in reflection geometry. The solution of the
CTE is shown in panels (a)–(c) and its P1 approximation in panel
(d). The source-detector separation is 2.7�∗. In panels (a) and (c) the
source and detector are rotated.

speaking, theP1 approximation can be in general more accurate
than the diffusion approximation. Consequently, the results can
be extrapolated to the diffusion approximation also.

The left and right columns of images in Fig. 1 show
the results obtained in the transmission and the reflection
geometries, respectively. The top row shows K1 obtained by
solving the CTE rigorously as described above and the bottom
row was obtained by using the P1 approximation wherein the
spherical function expansion of the phase function is truncated
at l = 1 and the correlation diffusion kernel is truncated at
l = 0 since, for τ � (2Dk2

0)−1, the l = 1 term goes rapidly
to zero. In addition, the correlation sensitivity kernel in the P1

approximation is calculated for an isotropic source. In contrast,
the CTE solutions are obtained considering up to l = 15 terms
in the spherical harmonic expansion of the sensitivity kernel.
As expected, increasing the source-detector distance leads to
a larger sensitivity to deep regions.

In Fig. 2, we show that using the CTE allows one to exploit
some additional degrees of freedom in the data, which are lost
in the P1 approximation, i.e., the source-detector orientation.
It is possible to rotate the source-detector system in a way
to maximize the signal from a specific area of the sample or
even to scan in depth the sample without changing the source-
detector distance.

It is also appreciable that, both in transmission and reflection
geometries, the volume sampled using the CTE solution is
much smaller than in the case when the P1 approximation is
used. As a consequence, if a scanning strategy is adopted (see
the setup in Fig. 3), an increased resolution of dynamically
absorbing objects is obtained within the transport regime.
This is demonstrated in Fig. 4. To obtain these results, it is
necessary to scan the sample with fixed relative position of the
source and detector (both in the transmission and reflection
geometries the source and detector are aligned). See Ref. [27]
for more details about the direct imaging procedure. Then, a
dynamically absorbing object in the shape of a straight line is

FIG. 3. Geometry used in simulated experiment for imaging a
dynamic absorber (straight capillary). The source and detector have
normal orientation with respect to the surface.

considered (see again Fig. 3). This simulates the presence in the
sample of a region with particles (red blood cells) undergoing
Brownian motion and can be thought of as a straight capillary in
a tissue. The correlation sensitivity kernel needs to be summed
over the volume occupied by the object in order to calculate
the sensitivity at the detector [i.e., evaluating (9)]. Scanning
on the sample surface, the sensitivity can be visualized as an
image displaying the shadow of the dynamic absorbing object.
It is interesting to note the higher resolution obtained using the
CTE while, in the P1 approximation the image is blurred due
to long path photons. In addition, within this scanning strategy,
the transmission geometry seems to provide better resolution.
All the results were calculated for the same Mie particles as
the previous examples. The slab thickness in this experiment

FIG. 4. Correlation function sensitivity computed via Monte
Carlo simulations. The images are obtained by scanning on the surface
of the sample containing a tube filled with particles undergoing Brow-
nian motion with DB = 0.5 × 10−8 cm2 s−1. The images correspond
to the shadow of the dynamically absorbing object (straight capillary)
shown in panel (c). The solution of the CTE is shown in panels (a)
and (b) for transmission and reflection geometries respectively. The
result for the P1 approximation is shown in panel (d) in transmission
geometry (very similar result is obtained in reflection geometry). The
slab thickness is 1�∗.
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FIG. 5. (a), (b) Correlation function sensitivity kernel in trans-
mission geometry. (c), (d) Correlation function sensitivity, where the
images correspond to the shadow of the dynamically absorbing object.
(a), (c) The CTE solution and (b), (d) its P1 approximation. The slab
thickness is 2.5�∗.

was set to 1�∗ thus constraining the photons into the transport
regime. The diffuse propagation regime can be achieved by
increasing the slab thickness thus forcing the photons to travel
over longer paths before arriving at the detector. The transition
to the diffuse propagation regime is presented in Fig. 5. It
is then clear that for samples thicker than around 2.5�∗ the
photons start to travel along trajectories that are far from the
source-detector axis. Hence, image blurring is appearing due
to the broad distribution of photons presented in the first row of
Fig. 5. The solution of the CTE tends to the P1 approximation
at a scale that is consistent with the results of Ref. [18] (in
transmission geometry for high anisotropic media g = 0.95).

FIG. 6. Correlation function sensitivity kernel computed via
Monte Carlo simulations in reflection geometry solving the CTE
with dynamic absorption corresponding to different correlation times
(a) τ = 1 μs, (b) τ = 10 μs, (c) τ = 100 μs, and (d) τ = 300 μs.
The source-detector separation is 1.5�∗.

Finally, Fig. 6 shows the sensitivity kernel to dynamic
absorption in reflection geometry at different correlation times
(τ = 1, 10, 100, 300 μs). These results are relevant for SCOT
demonstrating sensitivity to different regions depending on
the timescale of the experiment (the CCD camera exposure
time T ). As the correlation time increases, the measurement
becomes more and more sensitive to the region between the
source and detector. In addition, the volume around the source
and detector gets a very high sensitivity which can lead to
the suppression of the signal coming from the interstitial
region. Experimentally, a method should be designed in order
to minimize the contribution of sample volumes around the
source and detector. A fast solution can be the subtraction from
the measurement at late times of the data at early times in a
way to cancel the high-intensity contributions of the source
and detector.

V. SUMMARY

An analytical expression for the temporal field correlation
function sensitivity in the transport regime is derived by
perturbative analysis of the CTE. Its kernel is the Jacobian
required in DCT in order to perform image reconstruction and
it is also directly relevant to SCOT. The DCT kernel is evaluated
numerically in order to demonstrate the higher resolution and
contrast that can be obtained when operating DCT imaging
in the transport regime (source-detector separation lower than
approximately 2 cm for the medium considered here).

Furthermore, we investigated the region of transition be-
tween the correlation transport regime and the diffuse propa-
gation regime. For the high scattering anisotropy of the medium
(g = 0.95), the P1 approximation is expected to yield accurate
results already for a source-detector separation of ∼2�∗. How-
ever, at smaller propagation distances, the solution to the CTE
captures the angular dependence of the correlation function
exactly while, the P1 approximation distorts significantly the
single-scattering angular distribution. One can say that, in the
P1 approximation, as well as in the more general family of
diffusion approximations [28], the only trace of the phase
function is the scattering asymmetry parameter g. However,
this parameter does not characterize the scattering process
completely, and at small propagation distances, different phase
functions with the same values of g can produce significantly
different results. The use of CTE provides a systematic way to
account for this effect.

An inaccurate representation of the scattering phase func-
tion in the P1 approximation has the consequence of predicting
longer photon paths that, in turn, cause blurring of the image
of the capillary. For the simulated imaging procedure based
on scanning with an on-axis source-detector pair, the photon
path information is relevant. Hence, it is advantageous in
the transport regime to use the CTE solution as this can
yield substantially improved images. This is in agreement
with the results obtained in Ref. [10]. As expected, if the
source-detector separation is �3�∗, the two approaches yield
essentially the same result (for the medium considered here).

To conclude, the application of our method to DCT allows
one to image arbitrary-shaped regions filled with particles
undergoing Brownian motion. Moreover, arbitrary source-
detector separations and orientations can be evaluated with a
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single simulation, providing additional degrees of freedom in
the data. This is important for DCT when many source-detector
positions are employed. Concerning SCOT, it is demonstrated
how the sensitivity changes increasing the exposure time of
the CCD camera. We expect that the above results will be
useful for DCT and SCOT and will facilitate the development
of efficient and accurate reconstruction methods for high-
resolution tomographic imaging of the dynamical properties
of multiply scattering media.
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APPENDIX: ANGULAR INTEGRATION

We first make use of the reciprocity relation for the Green’s
function as introduced in Ref. [26] (although here we do
not consider polarization). The sensitivity kernel can then be
rewritten as

K1(rb,ŝb; ra,ŝa; r′) =
∫

G(r2, − ŝ′; ra,ŝa)

× (ŝ′ · ŝ′′ − 1)A(ŝ′,ŝ′′)G(r′,ŝ′′; ra,ŝa)d2s
′
d2s

′′
, (A1)

where using the translational invariance for a homogeneous
sample gives r2 = r′ + ra − rb.

As noted in Ref. [5], the PN approximation can be applied
to the correlation transport equation (1) with the additional
expansion in spherical harmonics, Ylm, of the normalized
temporal field correlation function for single scattering γ s .
Following this approach, we consider the expansion of the
sensitivity kernel as introduced in (A1). The unperturbed
Green’s function solving the RTE reads

G(r′,ŝ′′; ra,ŝa) =
lmax∑
l=0

l∑
m=−l

alm(r′)Ylm(ŝ′′). (A2)

The phase function truncated expansion (up to the maximum
angular-momentum order lmax) is

A(ŝ′,ŝ′′) =
lmax∑
l=0

l∑
m=−l

glY
∗
lm(ŝ′)Ylm(ŝ′′), (A3)

where gl are the phase function moments. Lastly, the pertur-
bation of the phase function caused by γ s reads

ŝ′ · ŝ′′ − 1 = −1 + 4π

3

1∑
m=−1

Y ∗
1m(ŝ′)Y1m(ŝ′′). (A4)

Hence, the sensitivity kernel can be rewritten as

K1(rb,ŝb; ra,ŝa; r′)

=
∫ lmax∑

l=0

l∑
m=−l

(−1)lalm(r2)Ylm(ŝ′)

×
lmax∑
l′=0

l′∑
m′=−l′

gl′Y
∗
l′m′(ŝ′)Yl′m′(ŝ′′)

×
[
−1 + 4π

3

1∑
m′′=−1

Y ∗
1m′′(ŝ′)Y1m′′ (ŝ′′)

]

×
lmax∑

l′′′=0

l′′′∑
m′′′=−l′′′

al′′′m′′′ (r′)Yl′′′m′′′ (ŝ′′)d2s
′
d2s

′′
, (A5)

where we made use of the relation Ylm(−ŝ) = (−1)lYlm(ŝ) for
the inversion of direction. Then, considering only the first term
into the square brackets and doing the integrals, exploiting the
orthogonality of the spherical harmonics, we get

−
lmax∑
l=0

l∑
m=−l

gl(−1)lalm(r2)alm(r′). (A6)

The second term in the square brackets is more complicated.
This needs to be calculated considering the following products:

Ylm(ŝ)Y1−1(ŝ) =
√

3

8π
Bm−1

l+1 Yl+1m−1(ŝ)

−
√

3

8π
B−m

l Yl−1m−1(ŝ),

Ylm(ŝ)Y10(ŝ) =
√

3

4π
Am

l+1Yl+1m(ŝ)

+
√

3

4π
Am

l Yl−1m(ŝ),

Ylm(ŝ)Y11(ŝ) =
√

3

8π
B−m−1

l+1 Yl+1m+1(ŝ)

−
√

3

8π
Bm

l Yl−1m+1(ŝ), (A7)

where the coefficients Am
l and Bm

l are special cases of the 3j

symbols

Am
l =

[
(l − m)(l + m)

(2l − 1)(2l + 1)

] 1
2

,

Bm
l =

[
(l − m)(l − m − 1)

(2l − 1)(2l + 1)

] 1
2

.

(A8)

Thus, we can simplify the term (see the appendix in Ref. [5])

4π

3

lmax∑
l′=0

l′∑
m′=−l′

gl′Y
∗
l′m′(ŝ′)Yl′m′ (ŝ′′)

1∑
m′′=−1

Y ∗
1m′′ (ŝ′)Y1m′′ (ŝ′′)

= 4π

3

lmax∑
l′=0

l′∑
m′=−l′

gl′

×
{

3

8π

[
Bm′−1

l′+1 Y ∗
l′+1m′−1(ŝ′) − B−m′

l′ Y ∗
l′−1m′−1(ŝ′)

]
× [

Bm′−1
l′+1 Yl′+1m′−1(ŝ′′) − B−m′

l′ Yl′−1m′−1(ŝ′′)
]
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+ 3

4π

[
Am′

l′+1Y
∗
l′+1m′ (ŝ′) + Am′

l′ Y ∗
l′−1m′ (ŝ′)

]
×[

Am′
l′+1Yl′+1m′ (ŝ′′) + Am′

l′ Yl′−1m′ (ŝ′′)
]

− 3

8π

[
B−m′−1

l′+1 Y ∗
l′+1m′+1(ŝ′) − Bm′

l′ Y ∗
l′−1m′+1(ŝ′)

]
×[

B−m′−1
l′+1 Yl′+1m′+1(ŝ′′) − Bm′

l′ Yl′−1m′+1(ŝ′′)
]}

. (A9)

Furthermore, we can proceed evaluating the integral over ŝ′

∫ lmax∑
l=0

l∑
m=−l

(−1)lalm(r2)Ylm(ŝ′)

× 4π

3

lmax∑
l′=0

l′∑
m′=−l′

gl′Y
∗
l′m′(ŝ′)Yl′m′(ŝ′′)

×
1∑

m′′=−1

Y ∗
1m′′ (ŝ′)Y1m′′(ŝ′′)d2s

′

= 4π

3

lmax∑
l=0

l∑
m=−l

(−1)lalm(r2)

×
{

3

8π
gl−1B

m
l

[
Bm

l Ylm(ŝ′′) − B−m−1
l−1 Yl−2m(ŝ′′)

]

− 3

8π
gl+1B

−m−1
l+1

[
Bm

l+2Yl+2m(ŝ′′) − B−m−1
l+1 Ylm(ŝ′′)

]
+ 3

8π
gl+1B

−m−1
l+1

[
Bm

l+2Yl+2m(ŝ′′) − B−m−1
l+1 Ylm(ŝ′′)

]
+ 3

4π
gl−1A

m
l

[
Am

l Ylm(ŝ′′) + Am
l−1Yl−2m(ŝ′′)

]
+ 3

4π
gl+1A

m
l+1

[
Am

l+2Yl+2m(ŝ′′) + Am
l+1Ylm(ŝ′′)

]
− 3

8π
gl−1B

−m
l

[−B−m
l Ylm(ŝ′′) + Bm−1

l−1 Yl−2m(ŝ′′)
]

+ 3

8π
gl+1B

m−1
l+1

[−B−m
l+2Yl+2m(ŝ′′) + Bm−1

l+1 Ylm(ŝ′′)
]}

.

(A10)

The last step is the integral over ŝ′′ which gives the final result
for the sensitivity kernel:

K1(rb,ŝb; ra,ŝa; r′)

=
lmax∑
L=0

L∑
M=−L

(−1)L+1gLaLM (r2)aLM (r′)

+ aLM (r′)
{

1

2
(−1)LgL−1B

M
L BM

L aLM (r2)

+ 1

2
(−1)L+3gL+1B

M
L+2B

−M−1
L+1 aL+2M (r2)

+ 1

2
(−1)L−1gL−1B

−M−1
L−1 BM

L aL−2M (r2)

+ 1

2
(−1)LgL+1B

−M−1
L+1 B−M−1

L+1 aLM (r2)

+ (−1)LgL−1A
M
L AM

L aLM (r2)

+ (−1)L+2gL+1A
M
L+2A

M
L+1aL+2M (r2)

+ (−1)L−2gL−1A
M
L−1A

M
L aL−2M (r2)

+ (−1)LgL+1A
M
L+1A

M
L+1aLM (r2)

+ 1

2
(−1)LgL−1B

−M
L B−M

L aLM (r2)

+ 1

2
(−1)L+3gL+1B

−M
L+2B

M−1
L+1 aL+2M (r2)

+ 1

2
(−1)L−1gL−1B

M−1
L−1 B−M

L aL−2M (r2)

+ (−1)L+1gL+1B
M−1
L+1 BM−1

L+1 aLM (r2)

}
, (A11)

where to simplify the notation we set L = l′′′ and M = m′′′.
The Monte Carlo model as in Ref. [26] is used to calculate
the Green’s functions and the expansion in spherical harmon-
ics with coefficients aLM up to lmax = 15. The translational
invariance is then used so that one coefficient is evaluated
at the position r2 which is just the position of the source
translated by the vector joining the source and detector. Hence,
the expression of (A11) can be evaluated in postprocessing, i.e.,
just reading the output coefficients of the Monte Carlo model
and performing the sum over L and M . It is also worth noting
that the same kernel K1 can be used for DCT and SCOT.
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[17] T. Dragojević, H. M. Varma, J. L. Hollmann, C. P. Valdes, J. P.
Culver, C. Justicia, and T. Durduran, NeuroImage 153, 283
(2017).

[18] P. Kaplan, M. H. Kao, A. Yodh, and D. J. Pine, Appl. Opt. 32,
3828 (1993).

[19] R. Pierrat, N. B. Braham, L. F. Rojas-Ochoa, R. Carminati, and
F. Scheffold, Opt. Commun. 281, 18 (2008).

[20] L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and
F. Scheffold, J. Opt. Soc. Am. A 21, 1799 (2004).

[21] P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold,
Opt. Lett. 31, 3465 (2006).

[22] B. Ackerson, R. Dougherty, N. Reguigui, and U. Nobbmann,
J. Thermophys. Heat Transfer 6, 577 (1992).

[23] R. Dougherty, B. Ackerson, N. Reguigui, F. Dorri-Nowkoorani,
and U. Nobbmann, J. Quant. Spectrosc. Radiat. Transfer 52, 713
(1994).

[24] J. C. Schotland and V. A. Markel, Inverse Probl. Imaging 1, 181
(2007).

[25] D. A. Boas, Opt. Express 1, 404 (1997).
[26] U. Tricoli, C. M. Macdonald, A. Da Silva, and V. A. Markel,

Opt. Lett. 42, 362 (2017).
[27] C. M. Macdonald, U. Tricoli, A. Da Silva, and V. A. Markel,

J. Opt. Soc. Am. A 34, 1330 (2017).
[28] U. Tricoli, C. M. Macdonald, A. Da Silva, and V. A. Markel,

J. Opt. Soc. Am. A 35, 356 (2018).

022408-9

https://doi.org/10.1364/BOE.2.001553
https://doi.org/10.1364/BOE.2.001553
https://doi.org/10.1364/BOE.2.001553
https://doi.org/10.1364/BOE.2.001553
https://doi.org/10.1364/JOSAA.28.002108
https://doi.org/10.1364/JOSAA.28.002108
https://doi.org/10.1364/JOSAA.28.002108
https://doi.org/10.1364/JOSAA.28.002108
https://doi.org/10.1364/BOE.5.001275
https://doi.org/10.1364/BOE.5.001275
https://doi.org/10.1364/BOE.5.001275
https://doi.org/10.1364/BOE.5.001275
https://doi.org/10.1016/j.neuroimage.2017.04.003
https://doi.org/10.1016/j.neuroimage.2017.04.003
https://doi.org/10.1016/j.neuroimage.2017.04.003
https://doi.org/10.1016/j.neuroimage.2017.04.003
https://doi.org/10.1364/AO.32.003828
https://doi.org/10.1364/AO.32.003828
https://doi.org/10.1364/AO.32.003828
https://doi.org/10.1364/AO.32.003828
https://doi.org/10.1016/j.optcom.2007.09.008
https://doi.org/10.1016/j.optcom.2007.09.008
https://doi.org/10.1016/j.optcom.2007.09.008
https://doi.org/10.1016/j.optcom.2007.09.008
https://doi.org/10.1364/JOSAA.21.001799
https://doi.org/10.1364/JOSAA.21.001799
https://doi.org/10.1364/JOSAA.21.001799
https://doi.org/10.1364/JOSAA.21.001799
https://doi.org/10.1364/OL.31.003465
https://doi.org/10.1364/OL.31.003465
https://doi.org/10.1364/OL.31.003465
https://doi.org/10.1364/OL.31.003465
https://doi.org/10.2514/3.11537
https://doi.org/10.2514/3.11537
https://doi.org/10.2514/3.11537
https://doi.org/10.2514/3.11537
https://doi.org/10.1016/0022-4073(94)90037-X
https://doi.org/10.1016/0022-4073(94)90037-X
https://doi.org/10.1016/0022-4073(94)90037-X
https://doi.org/10.1016/0022-4073(94)90037-X
https://doi.org/10.3934/ipi.2007.1.181
https://doi.org/10.3934/ipi.2007.1.181
https://doi.org/10.3934/ipi.2007.1.181
https://doi.org/10.3934/ipi.2007.1.181
https://doi.org/10.1364/OE.1.000404
https://doi.org/10.1364/OE.1.000404
https://doi.org/10.1364/OE.1.000404
https://doi.org/10.1364/OE.1.000404
https://doi.org/10.1364/OL.42.000362
https://doi.org/10.1364/OL.42.000362
https://doi.org/10.1364/OL.42.000362
https://doi.org/10.1364/OL.42.000362
https://doi.org/10.1364/JOSAA.34.001330
https://doi.org/10.1364/JOSAA.34.001330
https://doi.org/10.1364/JOSAA.34.001330
https://doi.org/10.1364/JOSAA.34.001330
https://doi.org/10.1364/JOSAA.35.000356
https://doi.org/10.1364/JOSAA.35.000356
https://doi.org/10.1364/JOSAA.35.000356
https://doi.org/10.1364/JOSAA.35.000356



