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Abstract
Objective
To evaluate the inter-rater reliability of semiautomated segmentation of spectral domain optical
coherence tomography (OCT) macular volume scans.

Methods
Macular OCT volume scans of left eyes from 17 subjects (8 patients with MS and 9 healthy
controls) were automatically segmented by Heidelberg Eye Explorer (v1.9.3.0) beta-software
(Spectralis Viewing Module v6.0.0.7), followed by manual correction by 5 experienced oper-
ators from 5 different academic centers. The mean thicknesses within a 6-mm area around the
fovea were computed for the retinal nerve fiber layer, ganglion cell layer (GCL), inner plexiform
layer (IPL), inner nuclear layer, outer plexiform layer (OPL), and outer nuclear layer (ONL).
Intraclass correlation coefficients (ICCs) were calculated for mean layer thickness values.
Spatial distribution of ICC values for the segmented volume scans was investigated using heat
maps.

Results
Agreement between raters was good (ICC > 0.84) for all retinal layers, particularly inner retinal
layers showed excellent agreement across raters (ICC > 0.96). Spatial distribution of ICC
showed highest values in the perimacular area, whereas the ICCs were poorer for the foveola
and the more peripheral macular area. The automated segmentation of the OPL and ONL
required the most correction and showed the least agreement, whereas differences were less
prominent for the remaining layers.

Conclusions
Automated segmentation with manual correction of macular OCT scans is highly reliable when
performed by experienced raters and can thus be applied in multicenter settings. Reliability can
be improved by restricting analysis to the perimacular area and compound segmentation of
GCL and IPL.
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Optical coherence tomography (OCT) can be used to dem-
onstrate retinal atrophy in patients with MS.1–3 The tech-
nique has become a valuable outcome measure in
neuroprotective clinical trials.4,5 There is pathologic evidence
of significant retinal injury in MS,6 which was confirmed by
OCT7,8 including demonstration of progressive retinal
neurodegeneration.3,9 Macular volume scans allow quantifi-
cation of retinal layers such as the ganglion cell layer (GCL)
and inner nuclear layer (INL). These may be predictive of
functional or clinical outcomes, such as visual acuity in the
case of GCL,10,11 or relapse rate and overall disability.12,13

Although further longitudinal investigations are needed, OCT is
already used in clinical trials. The capacity to assess the effects of
investigational compounds on respective retinal layers could
enhance their diagnostic and prognostic value.4 This underscores
the necessity for validated segmentation algorithms, allowing
reliable postprocessing in international, multicenter clinical trial
settings. Currently, fully manual, semiautomatic, and fully auto-
matic intraretinal segmentation are used in OCT studies. Fully
automated and manual segmentation studies have been per-
formed on spectral domain (SD) OCT platforms such as the
Heidelberg Engineering Spectralis andCarl ZeissMeditec Cirrus
machines, but all with a limited number of raters and in single
centers.14 Although these studies have suggested reasonable
within-patient reproducibility and general agreement between
devices, reliability across centers and raters remained unclear.

Here, we tested the multicenter inter-rater reliability of
semiautomatic intraretinal segmentation comparing 5 in-
dependent raters from 5 academic OCT centers in Europe
and the United States.

Methods
Participants
The centers in Barcelona, Berlin, and San Francisco each
provided OCT data sets from 3 patients with MS and 3 age-
(maximal difference of 3 years) and sex-matched healthy
controls from their center’s research database in March 2013.
Data were anonymously shared between the centers using the
devices built-in export function. Demographic data of par-
ticipants were not retained in this process.

Standard protocol approvals, registrations,
and patient consents
All data were originally obtained from studies approved by the
respective local ethics committees, and all participants

provided written informed consent according to the Decla-
ration of Helsinki. Inclusion of fully anonymized OCT data in
this study did not need additional permission.

Optical coherence tomography
All OCTs were recorded with Spectralis SD-OCT (Heidel-
berg Engineering, Inc, Heidelberg, Germany). All participants
were examined with the OCT’s built-in macular volume scan
(25 vertical B-scans and 1024 A-scans, scan angle = 20° × 20°,
automatic real-time function [ART] = 49). For quality control
(QC) of all OCT scans, the quality criteria as defined by the
OSCAR-IB study were used.15 OCT scans of the left eyes
were arbitrarily selected to enter the analysis. One scan had to
be excluded because of file corruption (the file could not be
opened). All other scans passed QC, leading to a total analysis
of 17 scans.

Semiautomatic intraretinal segmentation
All B-scans were automatically presegmented using segmen-
tation beta-software (Spectralis Viewing Module version
6.0.0.7) of the Heidelberg Eye Explorer (version 1.9.3.0)
provided by the manufacturer, which is almost identical to the
final release version of the segmentation algorithm. Five
operators from different medical centers (Hospital Cĺınic de
Barcelona; NeuroCure Clinical Research Center Berlin;
University of California, San Francisco; University Hospital
Zürich; and VU University Medical Center, Amsterdam)
manually corrected the 25 segmentation lines of each of the
17 presegmented B-scans. The segmentation lines indicate
the following retinal layers: retinal nerve fiber layer, GCL,
inner plexiform layer (IPL), INL, outer plexiform layer
(OPL), and outer nuclear layer (ONL). The ONL includes
the inner segments of the photoreceptors (figure 1A). As an
additional parameter, the compound thickness of the GCL
and IPL was calculated (ganglion cell inner plexiform layer
[GCIP]). The mean thickness of the individual retinal layers
was computed in an area of 6 mm around the fovea as defined
by the Early Treatment Diabetic Retinopathy Study
(ETDRS) (figure 1B).16

Statistical analysis
Intraclass correlation coefficients (ICCs) with the degree of
consistency among measurements (norm-referenced re-
liability) were used to analyze the level of agreement between
individual grader-corrected segmentation results. Local dif-
ferences across the volume scans were analyzed by calculating
the ICC for each A-scan of all layers and visualizing the results
as color-coded ICC heat maps. Correlations between the
mean layer thicknesses and SD of corrected scans from

Glossary
ETDRS = Early Treatment Diabetic Retinopathy Study;GCIP = ganglion cell inner plexiform layer;GCL = ganglion cell layer;
ICC = intraclass correlation coefficient; INL = inner nuclear layer; IPL = inner plexiform layer; OCT = optical coherence
tomography; ON = optic neuritis; ONL = outer nuclear layer; OPL = outer plexiform layer; QC = quality control; RNFL =
retinal nerve fiber layer; SD = spectral domain.
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different centers were analyzed using the Spearman rho.
Quantitative OCT analysis and statistical analysis were
performed using MATLAB 2012b (Mathworks, Ismaning,
Germany) and R (version 3.3.3).

Results
First, we investigated whether intraretinal segmentation
produced similar results on a group level between the different
centers (figure 2). This was the case for RNFL, GCL, IPL, and
GCIP, but not for INL, OPL, and ONL.

On an individual measurement level, overall reliability be-
tween raters was excellent for RNFL, GCL, IPL, GCIP, and
ONL (all ICCs > 0.96) and good for INL and OPL (all ICCs
> 0.85). Reliability was similar when patients with MS and
controls were analyzed separately (table).

To identify the image areas of disagreement between the
centers, we calculated intercenter reliability as an ICC for
every A-scan. Here, the perimacular area showed the highest
reliability, while the scan’s borders and the fovea were subject
to higher disagreement between graders (figure 3). RNFL,
GCL, GCIP, and ONL showed high local agreement. Of note,
the temporal RNFL (figure 3A) and the peri-foveal area in the
ONL (figure 3G) showed weaker agreement. The latter most
likely reflects Henle fibers.16,17 IPL, INL, and OPL showed
weak local agreement (figure 3). In addition, on single B-
scans, areas with blood vessels showed higher disagreement
between centers (figure 1A). The intercenter variabilities for
the different retinal layers were not correlated with the re-
spective mean layer thicknesses (all p > 0.05).

Finally, we analyzed whether segmentation results differed
after manual correction in comparison with uncorrected
segmentation directly derived from the software (figure 4).

After manual correction, the outer retinal layers showed the
most pronounced differences in comparison with purely
automated segmentation and the broadest distribution of
differences (range OPL = 8.8 μm; range ONL = 9.4 μm). The
inner retinal layer thicknesses differed less profoundly
(range RNFL = 1.9 μm, range GCL = 3.4 μm, range IPL =
3.8 μm, and range GCIP = 2.4 μm). The differences between
manual and automatic segmentation were centered on zero
for the inner layers. By contrast, the manual corrected seg-
mentation volume tended to be lower in outer layers (OPL
and ONL).

Discussion
We analyzed the inter-rater reliability of semiautomatic
intraretinal segmentation of macular volume B-scans from
OCT. Color-coded heat maps illustrating ICCs between
segmentation results from 5 different experienced, academic
OCT readers provide a fast overview of the agreement be-
tween raters and help to rapidly identify areas of disagree-
ment. Furthermore, analysis on a single B-scan level as
illustrated in figure 1A visualizes local deviations between
segmentation lines of different raters revealing areas of higher
inter-rater variability. An automated segmentation algorithm
for Spectralis OCT macular volume scans was recently made
available, and a version almost identical to it has been applied
in our study. We aimed to determine the inter-rater reliability
of manually corrected segmentation of retinal layers com-
pared with results from automated segmentation.

Mean layer thickness when corrected manually showed only
little variation between graders in the case of the innermost layers
RNFL, GCL and IPL, and ONL. Consistency of results could
even be improved when GCL and IPL were segmented as
a compound layer (GCIP; figures 2 and 3). The heat maps again
emphasize themuch better inter-rater reliability of RNFL,GCIP,

Figure 1 Example OCT scan

(A) Optical coherence tomography B-scan with segmentation lines generated from the mean of all 5 raters with color-coded SD between raters (1 pixel ≙
3.78 μm). Shown are the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer
(OPL), and outer nuclear layer (ONL). For analysis, theGCL and IPLwere also segmented as a compound layer (GCIP). In the example B-scan, the segmentation
lines with higher levels of disagreement between raters (indicated by higher SDs) are the IPL, the area of the fovea, and segmentation lines crossing blood
vessel artifacts. (B) Example thickness map of the GCIP on the fundus image. Themean of all thickness values within the 6-mm ETDRS circle (white circle) was
used for analysis. GCIP = ganglion cell inner plexiform layer.
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and ONL compared with INL and OPL. Spatial reliability
analysis using heat maps revealed the fovea and the scan pe-
riphery as sites of greatest disagreement. Segmentation variation
at the fovea is most probably due to thinning of the innermost
retinal layers at the foveal pit. Whereas in the scan periphery
(outreaching the ETDRS macular volume), major sources of
disagreement were induced by retinal vessel artifacts (figure 1A).
Comparing manually corrected with automated segmentation
results revealed that inner retinal layers (RNFL, GCL, IPL, and
GCIP) were accurately identified by automatic segmentation
with little spread of thickness differences, whereas the outer
retinal layers (INL, OPL, and ONL) showed stronger dis-
agreement and improved with manual correction.

Accurate quantification of retinal layer integrity is relevant
in the context of degenerative diseases involving the retina

such as MS, especially for understanding the extent and
timing of injury to neurons beyond the site of the presumed
initial injury. For neurodegenerative diseases, OCT allows
evaluation of injury to partially segregated neuronal and
axonal compartments and is at a resolution 2–3 orders of
magnitude better than what can be achieved via MRI.
OCT’s quantification also has a tremendous advantage,
given its ease and immediacy. However, for multicenter
clinical trials, quality criteria and standardized correction
methods are required, and a standardized training of expert
OCT readers needs to be established. The methods used
here are far less labor intensive than those required for
brain MRI. In addition, the afferent visual pathway is an
increasingly recognized model that allows quantifying MS
and optic neuritis (ON) related neuro-axonal damage
through solid structure-function investigations.18–22

Figure 2 Intraretinal layer thickness measurements

Boxplots for different retinal layer thicknesses of OCT
scans from all 17 subjects corrected by all 5 raters
(Hospital Cĺınic de Barcelona [HCB]; NeuroCure Clinical
Research Center [NCRC], Berlin; University of Cal-
ifornia, San Francisco [UCSF]; University Hospital Zürich
[USZ]; and VU University Medical Center [VUMC],
Amsterdam). The dots represent outliers. GCIP = gan-
glion cell inner plexiform layer; GCL = ganglion cell
layer; INL = inner nuclear layer; IPL = inner nuclear
layer; ONL = outer nuclear layer; OPL = outer plexiform
layer; RNFL = retinal nerve fiber layer.

Table Intraretinal segmentation inter-rater reliability

All (N = 17) HC (n = 9) MS (n = 8)
ICC [CI] ICC [CI] ICC [CI]

RNFL 0.998 [0.995–0.999] 0.998 [0.994–0.999] 0.998 [0.993–0.999]

GCL 0.986 [0.971–0.994] 0.984 [0.960–0.996] 0.987 [0.965–0.997]

IPL 0.964 [0.930–0.985] 0.960 [0.899–0.989] 0.971 [0.922–0.993]

GCIP 0.998 [0.995–0.999] 0.996 [0.990–0.999] 0.999 [0.997–1.000]

INL 0.883 [0.784–0.949] 0.784 [0.558–0.936] 0.949 [0.868–0.988]

OPL 0.847 [0.726–0.933] 0.898 [0.764–0.972] 0.774 [0.525–0.940]

ONL 0.963 [0.927–0.985] 0.965 [0.913–0.991] 0.969 [0.917–0.993]

Abbreviations: GCIP = ganglion cell inner plexiform layer; GCL = ganglion cell layer; INL = inner nuclear layer; IPL = inner plexiform layer; ONL = outer nuclear
layer; OPL = outer plexiform layer; RNFL = retinal nerve fiber layer.
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Therefore, measures of retinal atrophy assessed by OCT
have gained significant interest as a powerful outcome tool
to monitor neurodegeneration and protective therapies.23

Recently, RNFL thickness quantified by OCT proved its
value as a primary outcome measure in patients with acute
ON treated with erythropoietin vs placebo in addition to
steroids,4 while a number of other trials are ongoing.
However, there has been increasing interest in measuring
deeper retinal layers such as the GCIP that do not exhibit
the acute swelling seen in the RNFL in ON.24 Results from
OCT macular B-scan segmentation (GCIP thickness at
month 1) proved to be predictive of visual outcomes at
month 6 following MS associated ON.25 Given the in-
creasing use of OCT in multicenter clinical trials, the inter-
rater reliability of macular multilayer segmentation along

with OCT quality reading15,26 will be key to reduce noise
and subsequently the sample size required for therapeutic
clinical trials. Quality criteria have not yet been proposed
for macular volume scans, as it remains unclear how the
built-in algorithms perform. With respect to segmentation
of macular volume B-scans, the results of our study suggest
that restriction to the inner sections of the ETDRS grid and
inner retinal layers (including some layers improved with
manual correction such as INL) should reduce noise. The
inner ETDRS grid has also been shown to have good retest
reliability.16 Fortuitously, these areas and layers also have
been suggested to demonstrate the most pronounced
changes over the course of the disease. In addition to its
potential use as an end point in clinical trials, recent OCT
studies on disease mechanisms provided evidence of retinal

Figure 3 Local intraclass correlation coefficients

Color-coded interclass correlation coefficients (ICCs) for themanually corrected intraretinal layer segmentation across all positions in macular volume scans
(1024 A-scans and 25 B-scans). Seven different intraretinal layers were assessed (A-G): retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner
plexiform layer (IPL), combinedGCL and IPL (GCIP), inner nuclear layer (INL), outer plexiform layer (OPL), and outer nuclear layer (ONL). The central foveal scan
and peripheral areas outside the ETDRS macular volume are predilection sites of disagreement. GCIP = ganglion cell inner plexiform layer.
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pathology and neuro-axonal damage appearing as early as in
the stage of non-ON clinically isolated syndromes.6,27

For the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA,
USA), single-center inter-rater correlation coefficients of 0.99
for GCL + IPL and RNFL + GCL + IPL, 0.91–0.94 for INL +
OPL, and 0.92–0.93 for ONL + photoreceptor segments have
been reported in patients with MS using prototype segmen-
tation software.7

Regarding Spectralis SD-OCT scans, Hood et al.28 reported
single-center inter-rater correlations between 2 graders using
MATLAB-derived segmentation software for one horizontal B-
scan in 30 patients with retinitis pigmentosa and 23 control
subjects. Correlation coefficients were 0.95–0.96 for RNFL and
GCL + IPL. Correlation coefficients were not reported for other
retinal layers. Seigo et al.14 assessed inter-rater reliability for fully
manual MATLAB-derived segmentation of the central hori-
zontal macular B-scan traversing the fovea acquired with Spec-
tralis SD-OCT in 52 patients with MS and 30 control subjects.
GCIP, ONL, and ONL + photoreceptor segment thickness
measures demonstrated excellent inter-rater reproducibility with
correlation coefficients of 0.94–0.95, whereas the correlation
coefficient for the RNFL was only 0.64 and for the INL 0.51.

A limitation of our study is the rather small sample size.
However, given that 25 B-scans per subject were segmented,
the analysis is based on 425 B-Scans from 17 subjects.

To conclude, automated segmentation with manual correc-
tion by trained raters of Spectralis macular OCT scans is
highly reliable and can thus be applied in multicenter settings.
Reliability can be improved by restricting analysis to the
perimacular area and by compound segmentation of GCL and
IPL. The foveal pit and the scan periphery with retinal vessel
artifacts were the sites of greatest disagreement.

Intraretinal layer thicknesses might serve as important out-
comes for trials inMS orMSON in the future, and established
methods for optimizing the inter-rater reliability of retinal
layer segmentation will be crucial. When fully automated
segmentation becomes broadly available, the approaches
presented in this study could easily be adapted to longitudinal
OCT data to compare segmentation results across follow-up
visits. This may help to reliably identify segmentation errors
and discriminate them from true degenerative changes.
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