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Abstract

In this paper we introduce decompositions of diffusion measure which are used to

construct an algorithm for the exact simulation of diffusion sample paths and of dif-

fusion hitting times of smooth boundaries. We consider general classes of scalar time-

inhomogeneous diffusions and certain classes of multivariate diffusions. The method-

ology presented in this paper is based on a novel construction of the Brownian bridge

with known range for its extrema, which is of interest on its own right.

Keywords : Rejection sampling, exact simulation, conditioned Brownian motion, boundary

hitting times.

1 Introduction

In this paper, we shall give explicit and a.s. finite constructions for diffusion processes. Our

methods give rise to efficient algorithms which can simulate exactly (i.e. free of any time dis-

cretisation error and subject only to finite computer precision) from any finite-dimensional

distribution of the diffusion. Moreover, we devise an algorithm for the simulation of diffu-

sion hitting times of smooth boundaries. The methodology presented in this paper is based

on a novel construction of the Brownian bridge with known range for its extrema.
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For ease of exposition, we commence by considering the one-dimensional diffusion pro-

cess X = {Xs; s ∈ [0, t]} defined through the Stochastic Differential Equation (SDE):

dXs = α(Xs) ds+ dBs, X0 = x, s ∈ [0, t] , (1)

where B = {Bs; s ∈ [0, t]} is a scalar Brownian motion and α : R 7→ R some drift function.

In later sections we will discuss generalizations to time-inhomogeneous and multivariate

processes.

Assume that (1) admits a unique weak and non-explosive solution. Let Q and W

denote the law of X and the Wiener measure respectively on [0, t] for the initial condition

X0 = B0 = x. In the rest of the paper we assume the following conditions.

(C0) The Radon-Nikodym derivative of Q w.r.t. W exists and it is given by Girsanov’s

formula,
dQ

dW
= exp

{
∫ t

0
α(Xs)dXs −

∫ t

0

1

2
α2(Xs)ds

}

,

(C1) α ∈ C1,

(C2) α
2 + α

′
is bounded below.

The aim is to perform rejection sampling from Q using candidates from W. Under (C1),

we can use Itô’s lemma to rewrite Girsanov’s formula as

dQ

dW
= exp

{

A(Xt) −A(x) −

∫ t

0

α2(Xs) + α′(Xs)

2
ds

}

, (2)

for

A(u) =

∫ u

0
α(z)dz, u ∈ R .

The theory to be presented extends the work of Beskos et al. (2006) which provides

simulation algorithms under the additional condition:

(*) lim supu→∞(α2 + α
′
)(u) <∞, or lim supu→−∞(α2 + α

′
)(u) <∞.

Whilst (C0)-(C2) will be naturally satisfied in many contexts, (*) is certainly restrictive

(for example is not met in the Ornstein-Uhlenbeck case). In this paper we remove (*).

With small modifications, the resulted algorithm can also provide exact draws from the
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distribution of the hitting time of one-sided smooth boundaries for the Brownian motion

and other diffusions. In comparison with our previous work in Beskos and Roberts (2005)

and Beskos et al. (2006), the methodology is now much more advanced and includes:

probabilistic results on the absolute maximum of Brownian paths and the maximum of

Bessel process paths; a novel rejection sampling algorithm for the simulation of Brownian

paths with known range. In the cited papers, the methodology required only a known

result for the decomposition of a Brownian path at its minimum.

The paper is organised as follows. In Section 2 we introduce the diffusion law factor-

ization which gives rise to the explicit diffusion construction, and we provide two classes of

processes for which this factorization has already been used for their exact simulation in

Beskos et al. (2006). Section 3 provides a general construction for one-dimensional homoge-

neous diffusions made possible under the new methodology presented in this paper. This is

generalised in Section 4 to multivariate and time-inhomogeneous diffusions. Section 5 gives

an explicit construction for the hitting time of Brownian motion to an arbitrary smooth

boundary. This construction extends naturally to non-linear diffusions. Section 6 concludes

with some remarks about possible extensions and future work.

2 The Wiener-Poisson factorisation of Q

Additionally to (C0)–(C2), we assume that the following condition holds for the rest of the

paper:

(C3) The function h(u) = exp{−(u− x)2/(2t) +A(u)} is integrable.

This is a weak assumption, since for example it is satisfied (at least for sufficiently small t)

when a linear growth bound is assumed for the drift. Then, we define the probability

measure Z through its Radon-Nikodym derivative with respect to W:

dZ

dW
∝ exp {A(Xt) −A(x)} . (3)

Note that conditionally on the ending point Xt the two laws coincide. So to simulate

paths from Z one should draw first the ending point Xt ∼ h and then use Brownian bridge

dynamics for the rest of the path.
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Let L denote the law of a unit rate Poisson process on [0, t] × [0,∞) (see Kingman,

1993, for a formal definition) and define the extended law Z ⊗ L with typical realisation

(X,Φ). When necessary, we write Φ = {(χj , ψj)}j≥1, with {ψj} non-decreasing. We define

the non-negative drift functional,

φ(u) :=
α2(u) + α′(u)

2
− ℓ, where ℓ = inf

z∈R

α2(z) + α′(z)

2
,

and consider the epigraph of s 7→ φ(Xs),

epi φ(X) := { (s, u) ∈ [0, t] × R+ : φ(Xs) ≤ u } ,

and the event

Γ := {Φ ⊂ epi φ(X)} =
⋂

j≥1

{φ(Xχj
) < ψj} . (4)

Theorem 1 (Wiener-Poisson factorization). Q is the marginal distribution of X when

(X,Φ) ∼ Z ⊗ L |Γ.

Proof. (2) and (3) yield that

dQ

dZ
∝ exp

{

−

∫ t

0
φ(Xs)ds

}

.

From the explicit calculation of the zero probability of a Poisson random variable:

L(Γ |X) = exp

{

−

∫ t

0
φ(Xs)ds

}

.

Thus the result holds by Bayes’s theorem.

Theorem 1 suggests a rejection sampling for the simulation of sample paths from Q: propose

X from Z, simulate Φ, and if Γ has occurred then return X. This algorithm can be seen as

a construction on the space C[0, t]× ([0, t]× [0,∞))N. However, the aim of this paper is to

provide exact but finite constructions of X. This can be done, under the following general

scheme. We construct a finite-dimensional random variable Υ, and a positive function r

with the properties that:

1. r(Υ) <∞ a.s.,
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2. sups∈[0,t] φ(Xs) ≤ r(Υ) a.s..

In Section 5 we will allow Υ to be constructed on an enlargement of the canonical probability

space for X. However, for immediate application we shall just use Υ = Υ(X). Hence, under

the scenario described in 1., 2. above, the event Γ in (4) occurs if and only if the points of

Φ which lie in the domain [0, t] × [0, r(Υ)] are also in the epigraph of s 7→ φ(Xs). That is

Γ ≡ Γr(Υ) :=
⋂

j:ψj<r(Υ)

{φ(Xχj
) < ψj} .

We define

Φr(Υ) = Φ ∩ ([0, t] × [0, r(Υ)]) ,

which is easy to construct as a Poisson process on [0, t] × [0, r(Υ)].

Exact Algorithm (EA)

1. Simulate Xt ∼ h.

2. Simulate Υ conditionally on Xt.

3. Simulate Φr(Υ).

4. Simulate {Xχi
; 1 ≤ i ≤ |Φr(Υ)|}} from Z |Xt,Υ.

5. If Γr(Υ) has occurred output {Xχi
; 1 ≤ i ≤ |Φr(Υ)|}}, otherwise goto 1.

When Γr(Υ) has occurred, {Xχi
; 1 ≤ i ≤ |Φr(Υ)|} ∼ Q. Thus, the only remaining challenge

is to characterise the conditional distributions at steps 2. and 4. of the algorithm. The

two steps are carried out conditionally on the ending point Xt. From the definition of Z,

this implies that we will actually work with Brownian bridge dynamics. In the rest of this

Section we describe two special cases of EA already presented in Beskos et al. (2006). We

present novel applications of EA in the sections that follow.
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2.1 Exact Algorithm 1 (EA1)

In Beskos et al. (2006) the Exact Algorithm (EA) was developed under the strong condition

(**) the function φ is bounded above.

In this simplified setting, additional information about the proposed path is not required

to determine the restricted Poisson process, since it suffices to take

r(u) ≡ r = sup
z∈R

φ(z) .

Thus, step 4. merely involves Brownian bridge simulation. We define the skeleton

S = {(0,X0), (t,Xt)} ∪ {(χi,Xχi
); 1 ≤ i ≤ |Φr|} .

An important feature of the method, stated in Theorem 2 below, is that the distribution of

X | S,Γ is derived solely from the proposal measure Z. Let BB(s1, s2;u1, u2) denote the law

of a Brownian bridge starting at time s1 at u1 and ending at time s2 at u2. When s1 = 0

we write BB(s2;u1, u2); we simplify the notation to BB when the parameters specifying the

bridge are clearly understood from the context.

Theorem 2. Under (C0)–(C3) and (**),

X | S,Γ ∼

|Φr|+1
⊗

i=1

BB(si−1, si;Xsi−1 ,Xsi
)

where {si; 0 ≤ i ≤ |Φr| + 1} is an increasing ordering of the set {0, t} ∪ {χi; 1 ≤ i ≤ |Φr|}.

Proof. Notice that X | S,Γ
d
= X | S.

2.2 EA2 and decomposition of the Brownian path at its minimum

Beskos et al. (2006) replaced condition (**) with the weaker (*). Without loss of generality,

assume that lim supu→∞(α2 + α
′
)(u) < ∞, so the function φ is bounded above on [u,∞)

for any real u. Let m = inf{Xs; s ∈ [0, t]}. It suffices to set

Υ = m, and r(u) = sup
z∈[u,∞)

φ(z), u ∈ R .
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The law of the minimum of a Brownian bridge is known (Shepp, 1979) and it can be

easily simulated using the inverse CDF method (see Proposition 2 of Beskos et al., 2006).

Step 4. of EA requires the simulation of a Brownian bridge with a given minimum. This

conditioned process can be represented in terms of two independent Bessel bridges (see for

example Asmussen et al., 1995). The construction proceeds as follows.

We will need the instance of the minimum τ = sup{s ∈ (0, t) : Xs = m}. We denote

by S(s1, s2;u1, u2) the law of a (3-dimensional) Bessel bridge starting at time s1 at u1 ≥ 0

and finishing at time s2 at u2 ≥ 0. We simplify to S(s2;u1, u2) when s1 = 0. Assume that

Xt = y. Let R1 ∼ S(τ ;x−m, 0) and R2 ∼ S(t− τ ; 0, y −m) independently. The process

m+Rs,1 I [ 0 ≤ s < τ ] +Rs−τ,2 I [ τ ≤ s ≤ t ], s ∈ [0, t] ,

has law BB(t;x, y). Simulation of τ conditionally on m can be carried out following the

algorithm given in Beskos et al. (2006). Also, Bessel bridges starting or finishing at 0 can

be easily constructed in terms of three independent Brownian bridges. The explicit formula

is stated in Section 5.

In this setting,

S = {(0,X0), (t,Xt), (τ,Xτ )} ∪ {(χi,Xχi
); 1 ≤ i ≤ |Φr(Υ)|} .

As in EA1, the conditional law of X given all simulated variables is easily identified.

Theorem 3. Under (C0)–(C3), and (*),

X − Υ | S,Υ,Γ ∼

|Φr(Υ)|+2
⊗

i=1

S(si−1, si;Xsi−1 − Υ,Xsi
− Υ)

where {si; 0 ≤ i ≤ |Φr(Υ)| + 2} is an increasing ordering of {0, t, τ} ∪ {χi; 1 ≤ i ≤ |Φr(Υ)|}.

3 Exact Algorithm 3 (EA3)

In this section we demonstrate how to apply EA when only (C0)–(C3) are assumed. Thus,

we now make no upper bound assumptions on the function φ. Recall that the random

element Υ = Υ(X) should be selected in way that sups∈[0,t] φ(Xs) ≤ r(Υ) <∞ so it should
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now contain information for the whole range of the path X, not just the minimum as for

EA2. We will define Υ as the label to an appropriate partition of the path space. Each set

in the partition contains paths that move within a known interval. Thus, conditionally on

Υ = Υ(X) we will be in position to obtain a superset of [min(X),max(X) ] and, then, the

required upper bound on s 7→ φ(Xs). Recall that the construction should respect steps 2.

and 4. of EA, that is allow for the simulation of Υ and, then, of X given Υ at any given

time instances (of finite number).

We begin with the definition of the above-mentioned partition of the path space. Let

{ai}i≥1 and {bi}i≥1 be two increasing sequence of positive real numbers, and a0 = b0 = 0.

Given X0 = x, Xt = y, we set x̄ = x ∧ y, ȳ = x ∨ y, and define the following events:

Ui =

{

sup
0≤s≤t

Xs ∈ [ȳ + bi−1, ȳ + bi)

}

∩

{

inf
0≤s≤t

Xs > x̄− ai

}

,

Li =

{

inf
0≤s≤t

Xs ∈ (x̄− ai, x̄− ai−1]

}

∩

{

sup
0≤s≤t

Xs < ȳ + bi

}

,

and

Di = Ui ∪ Li, i ≥ 1 . (5)

The required partition of the sample space consists of the sets Di, i ≥ 1. We introduce the

discrete random variable I = I(X) such that {I = i} = Di. Note that {I ≤ i} is equivalent

to {x̄− ai < Xs < ȳ + bi, for all s ∈ [0, t]}. Thus, we set

Υ = I, and r(i) = sup {φ(z); z ∈ (x̄− ai, ȳ + bi) }, i ∈ N .

Figure 1 demonstrates the construction.

In the remainder of the section we exploit a representation of the CDF of I in terms of

monotone alternating series, to develop a novel algorithm for its simulation. We then show

how to simulate the Brownian bridge conditioned on I. In the sequel, we will sometimes call

I the layer of the Brownian bridge. Accordingly, we refer to a Brownian bridge conditioned

on some value of I as layered Brownian bridge. The algorithm devised for the simulation

of I can be readily modified to develop a rejection sampler of the layered Brownian bridge

using Brownian bridge proposals. However, the number of proposed paths until the first
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y+a1

y+a2

y+a3

y+a4

x−a1

x−a2

x−a3

x−a4

y

x

Figure 1: A sample path from X0 = x to Xt = y, with x < y. In this example we have used

symmetric layers, ai = bi, i ≥ 1. For the specific choice of {ai} illustrated in the graph, the

event U4 has occurred. Thus, in this case I(X) = 4.

acceptance has infinite expectation, where the expectation is taken w.r.t. proposed paths

and I. This problem is alleviated by introducing an alternative rejection sampler for the

simulation of the layered Brownian bridge.

3.1 Some auxiliary results

In the following subsections we identify events relevant to the construction of the layered

Brownian bridge whose probability, p say, is not known explicitly but it can be expressed

as the limit of the following series of over/under-estimations:

0 < S2 < S4 < S6 < · · · < p < · · · < S5 < S3 < S1 ,

for some explicitly known {Sj}. To simplify exposition we consider the following definition.

Definition 1. Let T be the subset of Cauchy sequences with values in R+, such that

{Sj} ∈ T if and only if

S2j < S2j+2 < S2j+1 < S2j−1, for all j ≥ 1 . (6)
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For our constructions we will require simulation of events of probability p = limj→∞ Sj ,

where {Sj} ∈ T. Thus, we need to simulate the binary random variable I [U < p ], where

U ∼ Un [0, 1]. This is accomplished in the following way. Let

J = inf{j : j even, Sj > U or j odd, Sj < U} .

Then

I [U < p ] = I [J is even ] .

Thus, one needs to consider only J terms of {Sj} to simulate the event of probability p. The

specific alternating series that appear in our algorithms and are presented in the sequel,

are converging in their limit faster than exponentially, so J will be typically of a very small

value.

In the sequel we will need to simulate events whose probabilities are linear transforma-

tions or ratios of alternating sequences in T. The following proposition illustrates that, for

the case of these simple transformations, such probabilities can be also expressed as the

limit of some easily identifiable sequences in T, therefore the corresponding events can be

simulated as described above.

Proposition 1. Let f : Rm
+ → R+, for some m ∈ N, be a C1 function with

∣

∣

∣

∣

∂f

∂ui
(u)

∣

∣

∣

∣

> 0 for all 1 ≤ i ≤ m, and u ∈ Rm
+ .

Let {S i
j } ∈ T, for all 1 ≤ i ≤ m, with pi = limj→∞ S i

j , and set p = f(p1, . . . , pm). Consider

the sequences {T i
j } defined for each 1 ≤ i ≤ m as follows:

T i ≡ S i if
∂f

∂ui
> 0 , whereas T i

· = S i
·+1 if

∂f

∂ui
< 0 .

Consider the sequence {Sj} defined as follows:

Sj = f(T 1
j , T

2
j , . . . , T

m
j ) .

Then {Sj} ∈ T and p = limj→∞ Sj.

Proof. We need to prove that (6) holds for {Sj} given that it holds for each of {S i
j }.

Such a conclusion is obvious when one considers the monotonicity structure of f . For the
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statement S2j+1 < S2j−1, simply note that, when calculating S2j−1, f takes as input higher

values (compared to S2j+1) along the directions that f is increasing and lower values along

the directions that f is decreasing. Similar considerations give the complete proof.

3.1.1 The absolute maximum of a Brownian bridge

For K > |u1|∨|u2|, let γ(s, u1, u2,K) denote the probability under BB(s;u1, u2) that a path

does not leave the interval [−K,K]. This probability has a known expression in terms of an

infinite series, a result which can be traced back to Doob (1949), although see Pötzelberger

and Wang (2001) for a more recent reference. We define for j ≥ 1,

σ̄
j
(s, u1, u2,K) = exp

{

−
2

s
[ 2Kj − (K + u1) ] [ 2Kj − (K + u2) ]

}

,

τ̄
j
(s, u1, u2,K) = exp

{

−
2j

s
[ 4K2j + 2K(u1 − u2) ]

}

.

Then, Theorem 3 of Pötzelberger and Wang (2001) yields

γ(s, u1, u2,K) = 1 −

∞
∑

j=1

{

σ
j
(s, u1, u2,K) − τ

j
(s, u1, u2,K)

}

, (7)

where

σj = σ̄
j
(s, u1, u2,K) + σ̄

j
(s,−u1,−u2,K), τ

j
= τ̄

j
(s, u1, u2,K) + τ̄

j
(s,−u1,−u2,K) .

Notice that due to symmetry properties of the Brownian bridge, (7) can be used to compute

the probability that an arbitrary Brownian bridge does not escape any given interval. Sim-

ulation of events of probability (7) can be achieved as described earlier due to Proposition 2

below.

Proposition 2. Let {Sj} be constructed as follows:

S2j−1 =

j−1
∑

k=1

(σk − τk) + σj , S2j = S2j−1 − τj , j ≥ 1 ,

where σj = σj(s, u1, u2,K), τj = τj(s, u1, u2,K). Then {Sj} ∈ T for any u1, u2 ∈ R, s > 0,

and K > |u1| ∨ |u2|.

Proof. Routine calculation reveals that σ̄
j
> τ̄

j
> σ̄

j+1 , for all j ≥ 1. The result follows

directly.
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3.1.2 Hitting probabilities of the Bessel Bridge

Consider some u1 ≥ 0, u2 > 0 and K > u1 ∨ u2. Let δ(s, u1, u2,K) denote the probability

under the Bessel bridge law S(s;u1, u2) that a path does not exceed K. Similarly, forK < L

we let δ(s, u1, u2,K;L) denote the probability under S(s;u1, u2) that a path conditioned

to remain below L, does not exceed K. The derivation of these probabilities exploits the

representation of a Bessel bridge as a Brownian bridge conditioned to stay positive. Thus,

for u1 > 0 and omitting the arguments of the Brownian bridge measure,

δ(s, u1, u2,K;L) =
BB [X does not leave (0,K) ]

BB [X does not leave (0, L) ]
=
γ(s, u1 −K/2, u2 −K/2,K/2)

γ(s, u1 − L/2, u2 − L/2, L/2)
,

δ(s, u1, u2,K) = lim
L→∞

δ(s, u1, u2,K;L) =
γ(s, u1 −K/2, u2 −K/2,K/2)

1 − exp{−2u1u2/s}
.

In this setting, BB ≡ BB(s;u1, u2). For the special case u1 = 0, we take the limit u1 → 0

in the above expressions and find that,

δ(s, 0, u2,K;L) =
u2 −

∑∞
j=1

{

ζ
j
(s, u2,K) − ξ

j
(s, u2,K)

}

u2 −
∑∞

j=1

{

ζ
j
(s, u2, L) − ξ

j
(s, u2, L)

} ,

δ(s, 0, u2,K) = 1 −
1

u2

∞
∑

j=1

{ζj(s, u2,K) − ξj(s, u2,K)} ,

where

ξj(s, u2,K) = (2Kj + u2) exp {−2Kj(Kj + u2)/s} , ζj(s, u2,K) = ξj(s,−u2,K) .

Simulation of events of probability δ(s, u1, u2,K;L) and δ(s, u1, u2,K) can be easily achieved

for any u1, u2 > 0, L > K > u1∨u2, exploiting Proposition 1. For the limiting case, u1 = 0,

we additionally require the following result.

Proposition 3. Let {Sj} be constructed as follows:

S2j−1 =

j−1
∑

k=1

(ζk − ξk) + ζj, S2j = S2j−1 − ξj , j ≥ 1,

where ζj = ζj(s, u2,K), ξj = ξj(s, u2,K), with K > u2 > 0. If 3K2−s > 0, then {Sj} ∈ T.
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Proof. Notice that when 3K2−s > 0, then f(u) := ζj(s, u,K)/ξj(s, u,K) is increasing with

f(0) = 1. Thus, ζj > ξj for all appropriate values of their arguments. We will now show

that ξj > ζj+1. The ratio ξj/ζj+1 is increasing in j so it suffices to show that ξ1 > ζ2. Note

that when 8K2 − s > 0, then g(u) := ξ1(s, u,K)/ζ2(s, u,K) is decreasing with g(K) = 1,

thus ξ1 > ζ2. Having established the ordering ζj > ξj > ζj+1, the required result follows

directly.

The restriction 3K2 > s will not effect of general applicability of the algorithms that follow.

As we show in the sequel, the user can easily specify an upper and lower bound on the

possible range of values of K and s respectively so that it is guaranteed that 3K2 > s.

3.2 Construction of layered Brownian bridge

We return now to the setup we introduced at the beginning of Section 3. The distribution

function of I can be written as

F (i) := P [ I ≤ i ] = γ

(

t,
x− y

2
+
ai − bi

2
,
y − x

2
+
ai − bi

2
,
|y − x|

2
+
ai + bi

2

)

, i ≥ 1 ,

with F (0) = 0. Notice that P [ I = i ] = P [F (i − 1) < U ≤ F (i) ], for a U ∼ Un[ 0, 1 ],

therefore I can be simulated as follows. For any i ≥ 1, let {S i
j } ∈ T be the alternating

sequence converging to F (i), as obtained from the representation of γ in (7). We also define

the sequence {S 0
j } with S 0

j = 0 for all j ≥ 1. Then, we set I = i when S i−1
j < U < S i

j+1,

for some odd j.

Having simulated the layer I of the Brownian bridge, we proceed to step 4. of EA,

that is to simulate the resulted layered Brownian bridge at the finite collection of time

instances determined by the Poisson process. The most obvious approach for doing so is to

use rejection sampling with candidates from BB(t;x, y): for a proposed Brownian bridge

path we simulate its layer and reject the path if this layer is different from the conditioned

realisation of I. However this solution is theoretically and practically unappealing since if

N0 is the number of tries until (and including) the first success then:

E [N0 ] = E [E [N0 | I ] ] =

∞
∑

i=1

1

P [ I = i ]
× P [ I = i ] = ∞ .
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Therefore we adopt an alternative rejection sampling procedure which proposes sample

paths which are more likely to be accepted. For the proposed construction we will consider

symmetric layers, i.e. we choose ai = bi, i ≥ 1. The construction could proceed even in the

general case, however this user-specified tuning will simplify the formulae appearing in the

sequel. Also, there is no obvious reason to give different weights to the upper and lower

behaviour of the Brownian bridge.

Let BBD
I

denote the law of the target layered Brownian bridge. We will propose from

a mixture of two conditioned Brownian bridges. Specifically, consider the events

Mi =

{

sup
0≤s≤t

Xs ∈ [ ȳ + ai−1, ȳ + ai)

}

, Mi =

{

inf
0≤s≤t

Xs ∈ (x̄− ai, x̄− ai−1]

}

, i ≥ 1 .

Let BBM
I

and BBM
I

be the Brownian bridge law BB(t;x, y) restricted to MI and MI

respectively. Our rejection sampling algorithm will use candidate paths from

PD
I

:=
1

2
BBM

I
+

1

2
BBM

I
.

This proposal measure forces the minimum or the maximum of the realised paths to be in

the correct interval, that is the interval where the maximum or the minimum of the target

paths also lie. More analytically, recall the definition of the conditioning event DI from

(5): DI = UI ∪ LI . The definition of the various events suggests that Brownian bridges

from MI (resp. from MI) are extremely good candidates for bridges from UI (resp. from

LI). The following theorem derives the appropriate acceptance probability. For a general

subset of paths, say ∆, BB [∆ ] is the probability under BB(t;x, y) that a path is in ∆.

Theorem 4. BBD
I

is absolutely continuous w.r.t. PD
I

with density

dBBD
I

dPD
I

(X) =
2 BB [MI ]

BB [D
I
]
×

I [X ∈ DI ]

1 + I [X ∈ U
I
∩ L

I
]
.

Proof. One only has to use the unconditioned Brownian bridge BB = BB(t;x, y) as a

reference measure. Then:

dBBD
I

dPD
I

(X) =
dBBD

I
/dBB (X)

1
2 dBBM

I
/dBB (X) + 1

2 dBBM
I
/dBB (X)

=
2 I [X ∈ DI ] BB [DI ]−1

I [X ∈ MI ] BB [MI ]−1 + I [X ∈ MI ] BB [MI ]−1
.
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From the symmetricity of the layers it is clear that BB [MI ] = BB [MI ], and the required

density expression then follows directly.

Assume that N is the number of proposed paths until the first accepted one. Then,

E [N | I ] =
2 BB [MI ]

BB [D
I
]

≤
2 BB [MI ]

BB [U
I
]

≤
2

BB [ inf0≤s≤tXs > x̄− a1]
,

so, even for moderate a1, E [N ] will be small. Note also that selecting symmetric layers

(ai = bi) simplifies the expression for the acceptance probability of the rejection sampler

since, when that is the case, BB [MI ] = BB [MI ]; see the proof of the theorem above.

Our algorithm w.p. 1/2 proposes a path X ∼ BBM
I

and with equal probability a path

X ∼ BBM
I
. Simulation from BBM

I
(and by symmetry from BBM

I
) can be easily carried

out following the decomposition of a Brownian bridge at its minimum in terms of two

Bessel bridges summarized in Section 2.2. The calculation of the probability of accepting

X requires also the simulation of the indicators I [X ∈ DI ] and I [X ∈ UI ∩LI ] which will

be carried out using the results about the hitting times of a Bessel bridge given in Section

3.1.2. Analytically, we proceed as follows.

First, we simulate the minimum m of the proposed Brownian bridge X conditionally

on that being in (x̄ − a
I
, x̄ − a

I−1 ], and then the time τ when the minimum is attained.

Recall that the target layered path, thus also the proposed path, needs to be simulated

only at the time instances of the Poisson process Φr(Υ). In the simple case when Φr(Υ) has

no points, the binary variable I [X ∈ DI ] is easy to simulate, since it is equal to 1 w.p.

δ(τ, 0, x̄ −m, ȳ + a
I
−m) × δ(t− τ, 0, ȳ −m, ȳ + a

I
−m) .

If I [X ∈ DI ] = 0 the path X is rejected. In the opposite case, we proceed to the indicator

I [X ∈ UI ∩DI ]. Conditionally on I [X ∈ DI ] = 1, it is true that I [X ∈ U
I
∩ L

I
] = 0,

w.p.

δ(τ, 0, x̄ −m, ȳ + a
I−1

−m; ȳ + a
I
−m) × δ(t− τ, 0, ȳ −m, ȳ + a

I−1
−m; ȳ + a

I
−m) .

If I [X ∈ U
I
∩ L

I
] = 1, then the proposed path is accepted w.p. 1/2, otherwise w.p. 1.

In the general case when Φr(Υ) has a positive number of points, the procedure is similar.

We simulate, m, τ , and the location of the proposed path at the time instances determined

15



by Φr(Υ). Conditionally on this information, the path is retrieved as a product of Bessel

bridges. Thus, the distribution of the binary variables I [X ∈ DI ] and I [X ∈ UI ∩LI ] can

be expressed in terms of products of hitting probabilities of the Bessel bridge and can be

simulated following the alternating series method shown in Section 3.1.

For more concreteness, we can formulate a pseudo-algorithm describing step 4. of EA3.

We will need the maximum of a path m∗ := sup{Xs; s ∈ [0, t]}.

EA3 - Step 4. Simulation of {Xχi
; 1 ≤ i ≤ |Φr(Υ)|}} from Z |Xt = y, I.

4.1 For X ∼ BB(t;x, y), simulate {Xχi
; 1 ≤ i ≤ |Φr(Υ)|}} together with either

it’s minimum (τ,m), w.p. 1/2, or it’s maximum (τ,m∗), w.p. 1/2,

conditionally on m ∈ (x̄− a
I
, x̄− a

I−1 ] or m∗ ∈ [ ȳ + a
I−1 , ȳ + a

I
).

4.2 If I [X ∈ DI ] = 0 reject X and go to 4.1.

4.4 If I [X ∈ U
I
∩ L

I
] = 0 (resp. 1) return {Xχi

; 1 ≤ i ≤ |Φr(Υ)|}} w.p. 1

(resp. 1/2). Otherwise reject X and go to 4.1.

For step 4.2, we note that, in the case that the minimum m is simulated at step 4.2,

I [X ∈ DI ] = 1 is an event of probability

|Φr(Υ)|+2
∏

i=1

δ(si − si−1,Xsi−1 −m,Xsi
−m, ȳ + a

I
−m) ,

where {si; 0 ≤ i ≤ |Φr(Υ)| + 2} is an increasing ordering of {0, t, τ} ∪ {χi; 1 ≤ i ≤ |Φr(Υ)|}.

For the case of the maximum m∗, one should only replace each of the terms in the above

product with δ(si − si−1,m
∗ −Xsi−1 ,m

∗ −Xsi
,m∗ − x̄+ a

I
). Then, for step 4.3, the event

I [X ∈ U
I
∩ L

I
] = 0 is of probability:

|Φr(Υ)|+2
∏

i=1

δ(si − si−1,Xsi−1 −m,Xsi
−m, ȳ + a

I−1
−m; ȳ + a

I
−m)

for the case of m, with δ(si−si−1,m
∗−Xsi−1,m

∗−Xsi
,m∗− x̄+a

I−1
;m∗− x̄+a

I
) replacing

the terms in the above product for the case of m∗.
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Figure 2: A skeleton of (8) generated by EA3. We used µ = 0.01, ν = −0.02, σ = 1 and

starting point V0 = 0.5. We applied iteratively EA3 for time increments t = 0.1 up to the

time 1000. The increasing sequences {ai}, {bi} involved in the algorithm were chosen as

ai = bi = 0.3 · i.

3.3 Examples

The methodology we have developed applies easily to one-dimensional diffusions, V say,

with positive and continuously differentiable coefficient σ(·). We first apply the standard

transformation: Vs 7→
∫ Vs

v∗ σ(z)−1 dz =: Xs, for some arbitrary v∗ in the state space of V ,

and then apply EA to X, provided that (C0)–(C3) hold for X.

As an illustration of EA3, we consider the following diffusion model arising in genetics

(see e.g. ch.7 of Kloeden and Platen, 1992):

dVs = (µ+ νVs) ds+ σ Vs(1 − Vs) dWs, (8)

with σ > 0 and µ, ν assumed to satisfy the restrictions µ > 0 and µ+ ν < 0 implying that

V stays in (0, 1). Under this parameter choice, straightforward calculations show that the

corresponding unit coefficient process X, which moves in R, satisfies conditions (C0)–(C3).

Thus, we can apply EA3 to simulate sample paths of X and, equivalently, of V . Figure 2

shows a skeleton of V simulated using EA3.

17



4 Extensions

In this section we shall consider extensions of the results obtained and algorithms described

thus far in the paper. We shall consider both multivariate and time-inhomogeneous gener-

alizations.

4.1 Multivariate diffusions

We now consider unit diffusion coefficient d-dimensional diffusions satisfying

dXs = α(Xs) ds+ dBs, X0 = x, s ∈ [0, t] . (9)

Let Q and W denote the law of X and the d-dimensional Wiener measure respectively on

[0, t] for the initial condition X0 = B0 = x. We will assume the following multi-dimensional

equivalents to (C0)–(C3):

(MC0) The Radon-Nikodym derivative of Q w.r.t. W exists and it is given by the multi-

variate Girsanov’s formula,

dQ

dW
= exp

{
∫ t

0
α(Xs) · dXs −

∫ t

0

1

2
‖α(Xs)‖

2 ds

}

.

(MC1) α is continuously differentiable in all its arguments.

(MC2) There exists ℓ > −∞ such that φ(u) :=
(

‖α(u)‖2 + div α(u)
)

/2 − ℓ ≥ 0.

Then, analogously to the one-dimensional case, we consider the the epigraph of s 7→ φ(Xs),

epi φ(X) := { (s, u) ∈ [0, t] × R+ : φ(Xs) ≤ u },

and the event

Γ := {Φ ⊂ epi φ(X)} =
⋂

j≥1

{φ(Xχj
) < ψj} .

Theorem 1 extends readily to the multivariate case, however (C3) has to be appropriately

modified. Notice that (MC3.1) below appears frequently in applications of multivariate

diffusions.

(MC3.1) There exists a function A : Rd → R such that α(u) = ∇A(u),
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(MC3.2) The function exp{A(u) − ‖u− x‖2/(2t)} is integrable in u ∈ Rd.

We then define the probability measure Z w.r.t. the d-dimensional Wiener measure as

dZ

dW
∝ exp {A(Xt) −A(x)} .

Theorem 5 (Multivariate Wiener-Poisson factorization). Q is the marginal law of X when

(X,Φ) ∼ Z ⊗ L |Γ.

Theorem (5) leads directly to a simulation methodology as in the one-dimensional case.

The most natural approach is to construct the proposed d-dimensional paths by means

of d independent Brownian bridges with some corresponding layer choice. However, the

assumption of unit diffusion coefficient is not as innocuous as in the one-dimensional case.

Unfortunately, there is no obvious way to generalize this given the currently available

methodology.

4.2 Time-inhomogeneous diffusions

EA can also be applied to diffusion processes of the form:

dXs = α(s,Xs) ds+ dBs, X0 = x, s ∈ [0, t] .

The necessary conditions for the applicability of EA are straightforward restatements of

(C0)–(C3), thus we do not present them here explicitly. In the sequel, (IC0)–(IC3) will

stand for the extension of (C0)–(C3) in the time-inhomogeneous context. In summary, we

now ask that α ∈ C1,1, we define A(s, u) =
∫ u
0 α(s, z)dz, and we let Z be the law determined

through the following density:

dZ

dW
∝ exp{A(t,Xt)}.

Thus the Wiener-Poisson construction and its associated algorithms go through unchanged,

setting

φ(s, u) =
1

2

{

α2(s, u) +
∂α(s, u)

∂u
+ 2

∂A(s, u)

∂s

}

− ℓ

where

ℓ = inf
s∈[0,t]

inf
z∈R

{

1

2
α2(s, z) +

1

2

∂α(s, z)

∂z
+
∂A(s, z)

∂s

}

.
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Whereas (C2) is a standard assumption, its extension to this setting, i.e. the condition

that ℓ > −∞ for ℓ defined defined above, might not be easy to meet in great generality.

A characteristic example is when X is Brownian motion with time-varying drift, that is

Xs = Bs + f(s) for some smooth function f .

Simulation of time-inhomogeneous diffusions is an essential ingredient of the exact sim-

ulation algorithm of one-sided boundary hitting times that we present in the next section.

5 Simulation of boundary hitting times

In this section we recast the methodology we have already developed to devise an al-

gorithm for the simulation of diffusion hitting times of one-sided smooth boundaries.

These problems can be equivalently stated as constant boundary crossing times for time-

inhomogeneous diffusions, hence the extension of EA3 described in Section 4.2 will be

required. We will restrict ourselves to the important special case of Brownian motion and

consider the problem of the exact simulation of the first time that the Brownian motion

exceeds a non-linear boundary f ∈ C2. Thus, we will present a method for the simulation

of the random variable

ζ = inf{s ≥ 0 : Bs = f(s)} .

where B is a standard Brownian motion. Without loss of generality we will assume that

f(0) > 0.

An attempt to simulate the time-inhomogeneous process Bs − f(s) using EA with the

objective to exploit the availability of results for crossing times of linear boundaries for

the Brownian motion would fail since (IC2) does not hold. Notice that there are more

general diffusion processes for which this inconvenience will not appear. We get around

this difficulty by re-expressing the problem in terms of an Ornstein-Uhlenbeck process.

For an arbitrary tuning constant a ∈ R+, we consider the process

Hs := e−as/2B(eas−1)/a ,

which satisfies dHs = −(a/2)Hs ds + dWs, H0 = 0, for a suitable Brownian motion W .
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We define the modified boundary

g(s) = e−as/2f((eas − 1)/a)

and consider the hitting time

η = inf{s ≥ 0 : Hs = g(s)} .

It is clear that ζ = (ea η − 1)/a a.s., thus is suffices to simulate η. We define the time-

inhomogeneous diffusion Xs := g(s) −Hs which satisfies

dXs = ( g′(s) + a g(s)/2 − aXs/2 ) ds+ dWs, X0 = g(0) > 0 .

Now, η is the first passage time of X from 0.

We will simulate η through rejection sampling on the path space, using a variation

of EA3 for time-inhomogeneous diffusions. The target diffusion will be X defined above.

It can be easily shown that conditions IC0–IC3 are satisfied. The algorithm will exploit

the fact that the crossing times of linear boundaries of the proposed Brownian bridges are

explicitly known and can be easily simulated.

We begin with the following well-known first passage time decomposition of BB(t;x, y).

Recall the definitions of m, τ and S given in Section 2.2 as the minimum of a path, the

time that the minimum occurs, and the law of a Bessel bridge, respectively.

Theorem 6. Assume that x > 0 and let η denote the first time the bridge X ∼ BB(t;x, y)

hits 0, where by convention we set η = t if the hitting time does not occur in [0, t].

1. For η < t, the law of X | η admits the decomposition

S(η;x, 0) ⊗ BB(η, t; 0, y) .

2. For η = t, the law of X −m | η = t,m, τ can be decomposed as

S(τ ;x−m, 0) ⊗ S(τ, t; 0, y −m) .

Therefore, the additional conditioning on the hitting time η has the effect that the proposed

paths on [0, η] are now expressed in terms of Bessel bridges. Although simulation of I is
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still possible (using the Bessel bridge hitting probabilities of Section 3.1.2), the algorithm

of Section 3.2 for simulating the layered path cannot be applied, since that construction

only applies to Brownian bridges.

We will nonetheless obtain lower and upper bounds for the proposed path by exploiting

the well-known representation (see for instance Bertoin and Pitman, 1994) of the Bessel

bridge starting from 0, in terms of three independent Brownian bridges. Analytically, for

some δ > 0 and a time increment v > 0, the stochastic process

√

Z2
s,1 + Z2

s,2 + Z2
s,3, s ∈ [0, v], where Z1 ∼ BB(v; 0, δ), Z2, Z3 ∼ BB(v; 0, 0) ,

is distributed according to S(v; 0, δ). All Bessel bridges appearing in Theorem 6 are covered

by this result due to the time-homogeneity of the Bessel bridge and its time-reversing

property.

Our approach is to determine separate layers for each of the Brownian bridges that

constitute the proposed Bessel bridge, using the techniques of Section 3. These layers will

imply a bound on the range of the Bessel bridge. Simulation of the Bessel bridge conditional

on this information will be done via the simulation of each constituent Brownian bridge

conditional on its layer using the efficient rejection sampler of Section 3.2.

The precise mathematical construction is as follows. We will consider ten independent

Brownian bridges. The first four

Z1 ∼ BB(η;x, 0), Z2, Z3 ∼ BB(η; 0, 0), Z ∼ BB(η, t; 0, y),

will be used in the case η < t, and the rest

Z5 ∼ BB(τ ;x−m, 0), Z6, Z7 ∼ BB(τ ; 0, 0) ,

Z8 ∼ BB(τ, t; 0, y −m), Z9, Z10 ∼ BB(τ, t; 0, 0) ,

when η = t. For each bridge Zi, we define x̄i (ȳi) to be the minimum (maximum) between

its starting and finishing point, and provide a positive increasing sequence {aj} for the

development of symmetric layers around x̄i and ȳi in the way shown in Section 3. For

simplicity, we assume the choice of an identical sequence {aj} for all ten bridges. In greater
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generality, one can select a different sequence for each bridge. Let Ii be the discrete random

variable which specifies the layer of Zi and I = {Ii; 1 ≤ i ≤ 10}. In this setting, Υ is defined

on an enlargement of the canonical probability space for X, as

Υ =
(

η, I, m I [ η = t ], τ I [ η = t ]
)

.

Then, the proposed Brownian bridge and a bound on its range are constructed as follows.

- If η < t, then

Xs =
√

Z2
s,1 + Z2

s,2 + Z2
s,3, s ∈ [0, η), Xs = Zs,4, s ∈ [η, t],

and l(I) ≤ Xx ≤ u(I) for all s ∈ [0, t], where

l(I) = x̄4 − aI4 , u(I) = max
{

√

(x+ aI1)
2 + a2

I2
+ a2

I3
, ȳ4 + aI4

}

- If η = t, then

Xs = m+
√

Z2
s,5 + Z2

s,6 + Z2
s,7, s ∈ [0, τ); Xs = m+

√

Z2
s,8 + Z2

s,9 + Z2
s,10, s ∈ [τ, t],

and l(I) ≤ Xs ≤ u(I) for all 0 ≤ s ≤ t, where l(I) = m and

u(I) = m+ max
{
√

(x−m+ aI5)
2 + a2

I6
+ a2

I7
,

√

(y −m+ aI8)
2 + a2

I9
+ a2

I10

}

.

Given l(I), u(I) we can compute the rate of the auxiliary Poisson process as

r(Υ) = sup
{

φ(s, z) : s ∈ [ 0, t ], z ∈ [ l(I), u(I)]
}

and, subsequently, complete the program prescribed in EA to decide whether or not to

accept the proposed path and the corresponding hitting time. Notice, that in practice it

is not necessary to find apriori ranges for all ten bridges since the specific bridges required

depend on the value of η.

Hitting times of two sided boundaries are in general not possible by this approach.
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6 Discussion

In this paper we have reconstructed the law of a family of diffusions in terms of the Wiener

and the Poisson measures. Based on this representation, we devised a simulation algorithm

for un-solvable SDEs. Our algorithm, EA3, is described in Section 3 as an explicit finite

construction for exact realisations from the finite dimensional distributions of the diffusion

law. The methodology extends easily to time-inhomogeneous and multivariate diffusions,

though the latter generalization is restricted to diffusions with gradient drift functions.

Crucial to our approach is the layered Brownian bridge construction which we initially

describe in the EA3 context. In Section 5 we show that the same device used in a modified

way can generate realisations of boundary crossing times for diffusions. The layered Brow-

nian bridge construction is rather versatile. For instance it is straightforward to construct

diffusion sample paths conditioned to remain within a region, E, (compact or otherwise)

by just arranging that the initial layer (I = 1) corresponds to the sample path remaining

within E. Furthermore diffusions with finite entrance boundaries such as

dXt = − tan(Xt) dt+ dBt

can be easily simulated by choosing sequences of layers with edges converging to ±π/2.

A close inspection of the EA3 construction reveals that it allows the condition (C0) to

be relaxed. The algorithm certainly requires the diffusion to be non-explosive. However

the layered construction only requires the Radon-Nikodym derivative of Q w.r.t. W to exist

individually on each layer event {I ≤ i}. By (C1), the path s 7→ α(Xs) is bounded on the

event {I ≤ i} and so Girsanov’s formula holds on each of these truncations. Thus we can

relax (C0) to the statement that

(C0)
′ X is a non-explosive diffusion.
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