

Abstract—The progress of Parkinson’s disease (PD) in patients

is conventionally monitored through follow-up visits. These may
be insufficient for clinicians to obtain a good understanding of
the occurrence and severity of symptoms in order to adjust
therapy to the patients’ needs. Portable platforms for PD
diagnostics can provide in-depth information, thus reducing the
frequency of face-to-face visits. This paper describes the first
known on-site PD detection and monitoring processor. This is
achieved by employing complementary detection which uses a
combination of weak k-NN classifiers to produce a classifier with
a higher consistency and confidence level than the individual
classifiers. Various implementations of the classifier are
investigated for trade-offs in terms of area, power and detection
performance. Detection performances are validated on an FPGA
platform. Achieved accuracy measures were: Matthews
correlation coefficient of 0.6162, mean F1-score of 91.38%, and
mean classification accuracy of 91.91%. By mapping the
implemented designs on a 45 nm CMOS process, the optimal
configuration achieved a dynamic power per channel of 2.26 µW
and an area per channel of 0.24 mm2.

Index Terms—Biomedical signal processor, classifier, deep
brain stimulation (DBS), event detection, feature extraction,
Parkinson’s disease (PD).

I. INTRODUCTION
ARKINSON’S disease (PD) has complex mechanisms [1],
and to optimize therapy, a better understanding of its

dynamics is required. Currently, the standard for diagnosing
and monitoring parkinsonian progress in patients is
observation of visual feedbacks from them [2]. These may be
insufficient since it is only monitored during follow-up visits.
Research in disease monitoring has ranged from using mobile
devices that have short message service, web-based
applications and Bluetooth capability to measure the
frequency of symptom onset so that medical interventions
could be delivered or better diagnosis can be made [3]. These
systems can be implemented on software applications running
on the patient’s commercial smartphone and connected to the
clinician's information systems [4], for example, the
WebBioBank, a web-based system for collecting clinical and

Manuscript received January 06, 2018; revised March 31, 2018. This work
was partially supported by the Presidential Special Scholarship Scheme for
Innovation and Development (PRESSID), Nigeria.

A. Mohammed and A. Demosthenous are with the Department of
Electronic and Electrical Engineering, University College London, Torrington
Place, WC1E 7JE London, U.K. (e-mail: ameer.mohammed.13@ucl.ac.uk;
a.demosthenous@ucl.ac.uk).

neurophysiological data [5]. It is specifically created for deep
brain stimulation (DBS) management, and can also be
connected to the patient's mobile applications so that it can
safely be used for web-based tele-monitoring and caregiver
support [3]. Such disease monitoring can be used to provide a
more refined therapy and for biomarker selection based on
patient data collected.

The power required to transmit data in neural signal
processing systems dominates that for recording and data
conversion [6] and offline processing based on transmitting
raw time series data as suggested in [3], [5], is an inefficient
approach. Based on the power and bandwidth constraints
involved in continuously sending neural signals, it will be
more resource efficient to periodically send patient progress as
state estimates after on-site and online analysis. Such an
integrated platform for on-site and online analysis and
monitoring of PD signals is still unavailable. For on-site and
online analysis, there is a need to develop miniaturized real-
time platforms that could monitor disease progress. These
specialized hardware platforms would facilitate mobile
diagnostics for better disease management. Portable platforms
for PD diagnostics could provide more in-depth information
and reduce the number of face-to-face visits required to
optimize therapy. In PD monitoring, the aim is to provide
long-term monitoring of the patient's condition for clinicians
to better understand the symptoms so that therapy could be
more accurately tailored to patients’ needs.

This work presents an interface processor that can process
local field potentials (LFP) 1 at the point of recording so that
Parkinsonian states are communicated and logged onto an
external platform. The processing chain is shown in Fig. 1.
The analog-front-end (AFE) consisting of the low noise
amplifier (LNA) and band-pass filter (BPF) are interfaced to
an analog-to-digital converter (ADC). Digitized neural signals
are sent to the PD detection processor. After PD events are
detected they are sent over a communications link to a PD
event log for monitoring. The system consisting of the LNA,
BPF, ADC and PD detection processor is intended to be fully
online and on-chip.

1 LFP is the electric potential recorded in the extracellular space in brain

tissue, typically recorded using microelectrodes. LFP have temporal structure
mainly in the frequency range of 0-100 Hz.

Ameer Mohammed, Member, IEEE and Andreas Demosthenous, Fellow, IEEE

Complementary Detection for Hardware
Efficient On-site Monitoring of Parkinsonian

Progress

P

Fig. 2. Physical implementation of the PD detection processor. (a)
Architecture; (b) Nexys 4 DDR FPGA board.

Serial
communicationMATLAB UART

Receiver
(Deserializer)

UART
Transmitter
(Serializer)

PD
Detection
Processor

Electrode 1

Electrode 8

DE-
MUX

...

PD Detection

ARTIX-7 FPGA

NEXYS 4-DDR FPGA BOARD
PERIPHERAL DEVICES

Artix-7 FPGAUSB-JTAG for serial
communication

16-bit switches (some of the peripheral
devices used as reset and enable signals)

(a)

(b)

8 b

8 b
8 b

1 b

The PD detection processor detects PD events and sends
them over a communication interface (instead of sending raw
LFP data) to a PD event log. This reduces the amount of data
sent over the communication link, which in turn reduces
communication energy as well as bandwidth requirements of
the system. Detection performance is assessed by validating
various k-nearest neighbors (k-NN) classifier configurations
on a field programmable gate array (FPGA) platform. In
addition, on-chip power and area estimates for each of the PD
classifiers is obtained by mapping the implemented designs to
a 45 nm CMOS process. The main motivation for using 45 nm
CMOS process is that it provides an optimal balance in terms
of fabrication cost and on-chip power. The long-term plan is to
implement fully implantable systems that manage DBS
therapy.

The rest of paper is organized as follows. Section II
describes the FPGA prototyping platform for the processor.
Section III details the major functional units of the PD
detection processor. The measured results are described in
Section IV. Discussion and concluding remarks are presented
in Section V and Section VI respectively.

II. HARDWARE IMPLEMENTATION
The objective is to provide a hardware platform for real-

time processing of acquired neural data so that PD events can
be distinguished from non-PD events. A fully online
implementation performs on-site and real-time PD detection
so that only PD events are transmitted to caregivers or
stimulation devices to trigger actionable outputs. Currently,
the mechanisms of PD are still under debate and the PD
detection algorithms may need to be updated as a deeper
understanding of the mechanisms of PD are gained. The most
suitable candidate is an FPGA-based platform since it
provides more flexibility for investigating various
implementations of the PD detector compared with an
application specific integrated circuit (ASIC) implementation.
An FPGA based platform offers the best compromise between
adaptability and portability. Moreover, register transfer level
(RTL) implementations used on FPGAs are easy to translate to
ASICs and microcontrollers. The PD detection processor was
programmed on an Artix-7 FPGA as shown in Fig. 2 (a). The
FPGA based PD detection tool was implemented in three
major layers: the MATLAB layer, universal asynchronous
receiver/transmitter (UART) layer and the FPGA layer.
Synthesised LFP test data are transferred from MATLAB to
the FPGA board through the serial communication link [USB-
JTAG cable in Fig. 2 (b)] to the Artix-7 FPGA for processing.

Processed data is sent back to MATLAB for performance
evaluation of the PD detector (using signal ground truth stored
in MATLAB).

A. Test Datasets
The original test datasets used were LFP recordings from

the subthalamic nucleus (STN) of subjects exhibiting a
combination of bradykinesia and/or rigidity during the onset
of PD, with less noticeable tremor. Recordings were made
from nine patients with PD who had bilaterally implanted
DBS electrodes in their STN and are referred to as dataset A–
I. The datasets contained separate ON and OFF levodopa (L-
dopa) data between 5 to 10 minutes long. The ON and OFF L-
dopa LFP data are used as representative non-PD and PD data
respectively. The data was obtained from the Department of
Clinical Neurology, University of Oxford. Recordings were
made prior to the connection of a subcutaneous DBS
pacemaker and stimulation was stopped during recording.
Details on the daily drug dosage, on and off UPDRS score and

Fig. 1. The functional block diagram of the PD monitoring platform.

LNA

...

Electrode 8

Electrode 2

Electrode 1

fLP

BPF ADC
PD

Detection
Processor

PD
Event
LogfHP

dominant symptoms for eight of the nine patients are
summarized in [7]. The permanent quadri-polar macro-
electrode used was model 3389 (Medtronic Neurologic
Division, Minneapolis, MN) consisting of 4 platinum-iridium
cylindrical contacts. Its contacts are numbered 0, 1, 2 and 3,
with 0 being the most caudal and 3 being the most cranial for
both right and left electrodes – making a total of eight
monopolar channels for each patient.

The semi-synthetic LFP signals consist of PD and non-PD
semi-synthetic templates created from the original LFP
recordings. The LFP synthesis, involved fitting autoregressive
moving average (ARMA) models to the real LFP recordings to
produce semi-synthetic LFP templates. The semi-synthetic
templates are concatenated to create PD and non-PD episodes
of long duration. The duration of the PD and non-PD episodes
are defined in a pseudorandom manner using a Poisson
distribution. Fitting an ARMA model provides the flexibility
to manipulate the signal characteristics so that all underlying
conditions can be represented. The complete LFP data
synthesis process and a detailed description of the LFP
recordings are provided in [8].

B. FPGA Implementation
FPGA is a hardware platform that is configured using

hardware description language (HDL). Compared to
microcontrollers and ASICs, FPGA provides the best trade-off
between speed and flexibility. FPGAs have a mix of the fixed
architecture in ASIC and the structured programme execution
style synonymous with microcontrollers [9]; this makes them
in between the two extremes regarding speed and flexibility
and serves as a good compromise. It is for this reason that the
hardware-efficient implementation of the PD detector is
validated on an FPGA platform. Also, since it is structured to
perform complex operations in parallel as in ASICs and the
long-term goal is to implement fully online and real-time
implantable ASICs that can be deployed for PD monitoring
and DBS modulation, it serves as a design step towards ASIC
implementation. A further important reason for the choice of
an FPGA based PD detector, is the need to implement and
validate on a platform that provides flexibility to investigate
the performance of various functional units and update the PD
detection algorithm.

The hardware used is the Nexys4 DDR processing board
from Xilinx with Artix-7 FPGA shown in Fig. 2(b). The
Nexys4 DDR uses its own expansion system and has 60 I/O
pins that can be interfaced to external devices. The board uses
3.3V I/O. It has on board peripheral devices that are accessible
to the Artix-7 chip as peripheral I/O devices. Its FPGA is the
XC7A100T-1CSG324C [10]. In addition to the FPGA chip,
the Nexys4 DDR board has a number of peripheral devices
such as LEDs, switches, temperature sensor, accelerometer, a
speaker amplifier, microelectromechanical systems (MEMS)
digital microphone, and a number of input and output devices
for a variety of interfaces [11]. The USB-JTAG port is used
for FPGA programming and data streaming through UART.
For communication with a host PC and programming the
Artix-7 FPGA, it uses a USB mini-B connector.

C. Input/Output Interface
Semi-synthetic LFP signals (Section II.A) are fed to the

FPGA from MATLAB. LFP samples are quantized to 8-bit
fixed point representation. Serial communication is
implemented using UART protocol. From Fig. 2(a), the input
data from MATLAB is divided into packets of 8 bits that are
sent in serial format to the FPGA platform. The UART
receiver implemented on FPGA receives serial input data from
MATLAB, buffers them until a complete word (8-bits) is
obtained before it sends it as input to the PD detection
processor. The UART data packets are sent with a channel
identifier packet to determine the recording channel from
which the LFP signal originates. The packet and channel
identifier are used to demultiplex the input signal to the
appropriate channel of the PD detection processor, where LFP
epochs are classified as ‘1’ (PD) or ‘0’ (non-PD) binary events
via the UART transmitter to MATLAB.

III. SYSTEM OVERVIEW
The PD detection processor performs feature extraction,

feature selection and classification. Its top-level diagram is
shown in Fig. 3. It consists of five major functional units:
feature extraction for training, feature extraction for detection,
PD detection processor finite state machine (FSM), memory
banks and k-NN unit. The processor has two operating
regimes: concurrent training and detection, and detection only.
During concurrent detection and training, time multiplexing is
used to acquire training data via the feature extraction for
training unit from each of the recording channels. The training
data is stored in the memory banks. It is used to train the
feature selection (for feature and channel selection) as well as
the k-NN classifier. To avoid interrupting PD detection, two
feature extraction engines are used: the first is active only
during training, and the second is active all the time and is
used for detection. The PD processor FSM coordinates all
these units.

The PD detection processor has four input clocks. clk1
operates at 128 Hz and controls real-time acquisition of input
LFP data. clk2 operates at 1 Hz and controls feature extraction
(and PD event log). Features are computed from 256
samples/channel, with 50% overlap in samples. Five features
are computed from the buffered 256 samples. Feature
extraction is necessary because for direct use of time-series
data as input to classifiers for detection, the dynamic power of
the classifier may be impractical for real-time detection. There
are preliminary processing stages before classification; feature
extraction and feature selection. The maximum ratio method
(MRM) is used for feature and channel selection [8]. It has
two operating clocks: clk1 and clk3. MRM training is
conducted sequentially per channel and is controlled by clk3,
whose frequency varies for various configurations of the PD
detection processor. It varies between 1/81 Hz to 1/756 Hz
depending on the configuration (the various configurations are
discussed in later sections). The final clock is clk4, which is
only used by the ‘PD detection processor FSM’ to trigger a
new training cycle; clk4 is 200 times slower than clk3. All

clocks are controlled from a 1024 Hz master for a maximum
clock frequency for clk1 of 128 Hz.

Since fully implantable hardware is expected to operate
under high-reliability requirements and strict power-density
regimes, algorithmic and hardware optimizations that strike
the optimal balance between efficacy and complexity need to
be investigated. It is for this reason various configurations of
the PD detection processor are investigated. The following
sections describe the functional units in more detail.

A. Feature Extraction
A common algorithm that is widely used for time-frequency

analysis of neural signals is the discrete wavelet transform
(DWT). To extract useful information, DWT decomposes a
signal into different levels based on frequency content. DWT
is suitable for feature because the decomposition into different
levels enhances the signal to noise ratio of the neural signals,
which facilitates the identification of PD and non-PD events.

The Haar wavelet has been commonly used due to its
favourable balance between complexity of hardware
implementation and detection performance. The Haar wavelet
is ideal for capturing non-continuous frequencies [12]. Also,
Haar-wavelets have been shown to be suitable in hardware-
aware implementations for time-frequency analysis [13].

An approach using four-level Harr wavelet decomposition
was used here because it separated features into the desired
brain wave bands as seen in Fig. 4:

• Gamma band activity is greater than 30 Hz. Level 1
detail coefficients produce LFP characteristics between
32–49.5 Hz. The input LFP signal is band-pass filtered
between 0.5–49.5 Hz, and then down-sampled to
fs = 128 Hz and the maximum frequency is 64 Hz.

• Beta band activity is between 13–30 Hz. Level 2 detail
coefficients characterise LFP activity into frequencies
between 16–32 Hz.

• Alpha band activity is 8–12 Hz. Level 3 detail

Fig. 3. The functional units of the PD detection processor.

Feature Extractor FSM

Four Level
Haar

Wavelet

Power
CalculationMUX

8 b

8 b

FI
FO

W

rit
e

clk1

LFP
Data

in

En

24 b

Test Case (f1, f2)

Feature Extraction for Detection

...

C
ha

nn
el

Se

le
ct

ed

Fe
at

ur
e

Se
le

ct
ed

FIFO

Channel 1

Channel 8

Enable

3-NN
kd-tree

5-NN
kd-tree

7-NN
kd-tree

Complementary kd-tree

Simple Majority Vote Complementary
Decision

... L 127 L 128L 1 L 2Label Stack

k-NN Controller

Training Examples and Labels

Median 1
Median 2-1
Median 2-2

Median 5-16
Median 5-15

...

Tr
ai

ni
ng

 D
at

a
St

ac
k

Ex
am

pl
e

2
Ex

am
pl

e1

...

Ex
am

pl
e

12
8

1

0

Complementary k-NN

PD and Non-PD
Feature Coefficient

Stack

1

0Feature 5

1

0

Label

Feature 1

Accumulator Banks

DEMUX

DEMUX
Feature 1

Accumulator
(Non-PD)

Feature Sorting and
Channel Weighting

MRM Division
and Feature Sorting

Quotient Remainder

>

DividendDivisor

Label
Sum 1

Label
Sum 0

Efficient Unsigned
Division

Division and
Sorting FSM

Feature 1
Accumulator

(PD)

MRM FSM

Channel Sorting and Channel
Selection

Feature Selection ‒ Maximum Ratio Method

Memory Bank

...

SR
A

M
 R

ea
d

C
on

tro
l

SRAM Write
Control

Channel 1
RAM

Channel 8
RAM

VDD7 VDD0

MIMO
MUX

PD Detection Processor FSM

Training Exam
ple

(f1, f2)

Training Labels

Storing
Channel Training

Channel

Channel and
Feature Selection

Enable
Feature

Extraction

Training Complete

Get k-NN Training Data

Sort Level Median

M
R

M
 S

el
ec

te
d

Fe
at

ur
e

M
R

M
 S

el
ec

te
d

C
ha

nn
el

M
R

M
 S

ta
te

Feature Extraction for Training

Four Level
Haar

Wavelet

Power
CalculationMUX8 b

clk1

LFP
Data

in Training Exam
ple

(f1, f2, …
, f5)

...

Label in FIFO and Feature Label
Accumulator >> 8

9 b1 b

FIFO

Label

Tr
ai

n
M

R
M

Get MRM
Training Data

clk1

clk1

clk2

clk3
clk4 Feature

Selected

clk2

rst clk2

clk3

clk1

clk2

48 b

Training Example
(f1, f2, …, f5)

rst

rst

rst

clk1

rst

rst

8 b
8 b

65 b

120 b

8 b
13 b

13 b
13 b

13 b

coefficients are representative of LFP activity of
frequencies between 8–16 Hz.

• Theta band activity is between 3–8 Hz. Level 4 detail
coefficients of the LFP activity are between 4–8 Hz.

• Delta band is between 0.5–3 Hz. The level 4
approximation coefficients obtained represent LFP
activity between 0.5–4 Hz.

Each level of decomposition is down-sampled by two at
each successive level. More decomposition levels may not be
useful because it results in reduced frequency bands which
may contain little or no relevant information.

1) Hardware implementation

The two operating phases of the PD processor FSM are
concurrent detection and training and detection only. Two
feature extraction units are used because during concurrent
detection and training, a separate feature extraction stage is
used to store training data from each of the channels. To
extract the five features (sub-band LFP power) in hardware,
three major blocks are required:

• A four-level Haar DWT block that computes the wavelet
coefficients at each decomposition level.

• A power calculation block that computes the features at
each level based on their corresponding coefficients.

• A first-in, first-out (FIFO) memory block to synchronise
the four-level Haar wavelet block with the power
calculation block.

Fig. 3 shows the structure of the two implementations of the
feature extraction units. The four-level Haar wavelet block is
synchronised to operate at the same sampling rate as the input
data (clk1 = 128 Hz) because the system is designed to adopt
real-time PD detection. However, features are updated every
second and the power calculation block is synchronised to
operate at clk2 = 1 Hz. The power features are obtained using
a 2-second window (consisting of 256 samples) of LFP signals
with 50% overlap between windows so that features are
updated every second. The average power of the coefficients
in each level is:

 𝑃# = 		

1
𝑁#
	 (|𝑥[𝑛]|.
/012

345

(1)

where Ni is the number of samples x[n]. Ni is 128 for level 1

detail coefficients, 64 for level 2 detail coefficients, 32 for
level 3 detail coefficients and 16 for level 4 coefficients. The
four-level Haar wavelet block is synchronised to the power
calculation block using a FIFO memory. The FIFO block is a
dual-port RAM consisting of a memory and controller block.
It has separate read and write pointers that are used for
controlling reading and writing operations in the feature
extraction unit. Below is a brief description of the two
implementations of the feature extraction units.

a) Feature extraction for training: All coefficients from the
four-level Haar wavelet are transferred to the power
calculation block through a five-level FIFO corresponding to
coefficients from each level. The FIFO for level 1 detail
coefficients is made up of 128 memory locations, level 2 detail
uses 64 memory locations and so on; with level 4
approximation coefficients consisting of 16 memory locations.
The ‘feature label accumulator and FIFO’ block collects
ground truth information from training data. Each epoch of
training data consists of a stream of labels for input samples
which are used as ground truth information for training
purposes as well as to validate performance.

b) Feature extraction for detection: Since 50% of buffered
coefficients are reused by the feature extractor, the PD
processor FSM controls reading samples from the FIFO.
However, the number of samples buffered varies depending on
the decomposition level of the DWT. The feature extractor
controls the reading and writing based on the feature selected.
The channel with the most pronounced variation is adopted.
The best two of the five features from the adopted channel are
used for classification.

2) Four-level Haar wavelet

To obtain the detail and approximation coefficients at the
𝑖-th level, approximation coefficients from the previous level
𝑎#12 serve as input as in (2). These are convolved with a half-
band low-pass filter (LPF) ℎ5 generating the approximation
coefficients 𝑎#, and with a half-band high-pass filter (HPF) 𝑔5
to generate the detail coefficients 𝑑#. This can be represented
mathematically as,

𝑎#(𝑘) = 		(ℎ5(𝑛)	𝑎#12(2𝑘 − 𝑛)
3

 (2)

𝑑#(𝑘) = 		(𝑔5(𝑛)	𝑎#12(2𝑘 − 𝑛)
3

 (3)

where 𝑛 represents the index of the filter coefficients (low and
high pass filters), 𝑘 is the index of the input signal
(approximation coefficients, 𝑎#12 and detail coefficients,
𝑑#12). In the first part of the equations for both approximation
and detail coefficients there is a down-sampling by two at
each level before filtering. Computationally efficient Haar
wavelet adopts the polyphase implementation in [13]. The
filters for the Haar wavelet are 2-tap FIR filters given by g0=
1
√2A [1, -1] and h0= 1

√2A [1, 1].

Fig. 4. A frequency domain illustration of four-level wavelet decomposition.
(f = fs/2, where fs = sampling frequency).

ff/16
Frequency

f/8 f/4 f/2

Am
pl
itu
de

B. Memory Bank
To facilitate concurrent training and detection, and efficient

sharing of other computational resources, the PD detection
processor has a memory bank for storing training data. The
major functional units of the memory bank are shown in Fig.
3, which include an eight-channel random access memory
(RAM), a static RAM (SRAM) write control and an SRAM
read control. Each channel RAM is used for storing training
data from its corresponding channel. The memory locations of
the channel RAMs are scalable depending on the number of
training examples required. The number of training examples
stored depends on the configuration of the PD detection
processor (mainly determined by the k-NN configuration
adopted). The training data for each channel consists of half
PD examples and of non-PD examples. This is to ensure
generalizability for both PD and non-PD events. Training data
for feature and channel selection (five features/training
example) as well as k-NN training data (two features/training
example) after channel selection, are obtained from the
memory bank. The memory bank uses power and clock gating
to reduce power consumption.

C. Feature Selection
Feature selection chooses the most relevant features to

reduce the memory and computational resources. It also
reduces data over-fitting at the classification stage, since some
features are noisy and can lead to degradation in classifier
performance. Feature selection results in significant reductions
in the area and power of the PD detection hardware. For
multichannel application, the classification phase has to be
trained channel by channel either in sequence or parallel, and
the best performing channel is selected for use. This can be
computationally intensive. Alternatively, the MRM estimates
the most informative channel and uses the features from this
channel (as against using all channels [8]). The complete
procedure for feature selection using the MRM is described in
[8]. Fig. 3 shows the function blocks of the MRM unit:
accumulator bank, MRM division and feature sorting, channel
sorting and selection, and the MRM FSM. The latter controls
the MRM training for each channel and the ranking of
channels based on the separability of their PD and non-PD
classes. Feature and channel ranking are time-multiplexed to
enable logic reuse.

The MRM process starts by streaming the training data of
each channel sequentially. For each channel, training
examples for PD and non-PD events are accumulated and
stored in the PD and non-PD coefficient stack in Fig. 3. The
MRM dividend and divisor are determined for each of the five
features (of each channel) for PD and non-PD training
examples. The ‘division and sorting FSM’ controls this. Both
PD and non-PD events have five features. The separability of
each feature is determined using the ratio of the mean for
features of PD and non-PD examples. Subsequently, the ratio

of all the features for each channel is obtained, and the
channel weight is obtained using the ‘feature sorting and
channel weighting’ unit. The channel weights and feature
ranks are sent to the ‘channel sorting and selection’ unit,
where the channel weights and feature ranks of each channel
are stored. The process is repeated for all the other channels.
This is used to assess the most separable channel and features
for use in PD detection. The channel and features with the
most pronounced variation are communicated to the PD
processor FSM.

D. PD Classifier
Machine-learning algorithms offer the benefit of

understanding disease progression in patients. However, their
computations are not well supported by conventional DSP
platforms; particularly when high order models are used. Pre-
processing stages like feature extraction and feature selection
are necessary to reduce the computational demands of
detection algorithms. In PD monitoring, the classifier is
required to select PD events from non-PD events using
acquired neural signals. The PD classifier produces a binary
output; high is a PD event and low a non-PD event. The
detection results are intended for use either by caregivers or
are interfaced to stimulation devices. PD monitoring and event
detection can be implemented either by using online or offline
classification. This work has implemented fully online
classification to facilitate real-time PD detection.

The PD classifier employs a k-NN classifier. Its overall
architecture is shown in Fig. 3. The k-NN classifier consists of
four functional units: training examples and label block, level
median stack, k-NN controller and kd-tree block. Training
data from the memory bank is stored in the ‘training examples
and labels’ block. This data is used to obtain the various
medians for different levels of the kd-tree search (nearest
neighbors are obtained using kd-tree search). The medians in
the level median stack are used for kd-tree implementation of
the k-NN classifier. The k-NN classifier uses a kd-tree
approach. The kd-tree was chosen because it uses a hardware
efficient implementation of k-NN [14]. The kd-tree distance
metric uses the minimum number of computations, but it has
reduced accuracy. It is for this reason this work investigates its
use in different k-NN configurations, which are investigated
using different levels of the kd-tree search as well as nearest
neighbors. The PD classifier in Fig. 3 uses kd-tree
implementation in a complementary k-NN configuration
where consensus is established using majority voting between
different implementations to produce a classifier with a
confidence level stronger than that of the three disparate and
weak classifiers in the configuration. The following section
provides more detail on kd-tree implementation.

1) k-dimensional tree implementation

PD classification using k-NN usually compares the input
feature vector to the k-closest training examples. This distance
is computed using different metrics, namely; Euclidean [15],
LP distances [16], Mahalonobis distance [17], and approximate
distance metrics like kd-tree implementations. Among these,
the kd-tree implementation is the least computationally
intensive [14]. It uses a binary decision tree to drill down n-
levels, with each level generating a splitting hyperplane that
divides the space into two parts, known as half-spaces. The
splitting hyperplane is chosen such that every node in the tree
is related to one of the k-dimensions (in this case two-
dimensions, since there are two dimensional features) and its
direction is perpendicular to the axis it splits as indicated in
Fig. 5 which shows a four-level kd-tree search. The feature
space is divided into 16 compartments by the kd-tree search.
For an N level kd-tree, there are 2N nodes.

In Fig. 5, for level 1, a splitting hyperplane is chosen at the
median of the x-axis (feature 1) values, all points with a value
below the median are categorized in the left sub-tree
(consisting of compartments labelled I–P) and those greater
than the median are categorised to the right tree (with
compartments labelled A–H). In this situation, the hyperplane
is determined by the x-axis. However, for level 2 splitting, two
new hyperplanes are used to further split the left and right
compartments of the feature space into four compartments.
The process of binary splitting returns to the x-axis in level 3,
which further splits each of the four compartments into eight
compartments. Level 4 splitting then splits the eight
compartments into 16 compartments. These 16 compartments
are shown for the feature space of dataset C, with each
compartment having four training examples making a total of
64 training examples. Fig. 5 shows how the 3-NN can be used
to classify a test case, as the three closest training examples
from compartment ‘H’ are used. However, to use 5-NN or 7-
NN classification, only three level kd-tree is required. For 5-
NN or 7-NN classification, the nearest neighbours from
compartments ‘G’ and ‘H’ in Fig. 5 are used in classifying the
test data. This work uses a maximum of a five level kd-tree.
Various implementations for the 3-NN, 5-NN, 7-NN and the
complementary k-NN (which will be indicated by X-NN from

now onwards) are discussed in the following section.

2) k-NN configurations
Different levels of kd-tree search, as well as nearest

neighbors, are implemented and tested for accuracy and
hardware resource trade-offs. For k-NN, the best value of k is
very dependent on the dataset. For k-value selection, a larger
k-value suppresses the effects of outliers. However, it creates
less distinct decision boundaries [18]. It is for this reason
various orders and configuration of nearest neighbors
algorithms are investigated.

The classifiers studied include k-NN with three, five and
seven neighbors; and an ensemble of the classifiers which is
the complementary configuration. The ‘k-NN controller’ block
in Fig. 3 controls the sorting of features in the training
examples and the storing of the hyperplane (median) points for
each level of the kd-tree. In the complementary configuration,
a multi-classifier vote is adopted based on the outputs from
each of the three classifiers and a simple majority vote is used
to generate a consensus. Below is a brief description of the
various implementations.

a) 3-NN kd-tree: These implementations are designed to
terminate the search at nodes with three training examples
such that each test case is classified according to the class
dominated by the node it falls into, using simple majority vote.
Configurations using three, four and five levels kd-tree having
24, 48 and 96 training examples respectively, are investigated
for accuracy and hardware resource trade-offs.

b) 5-NN kd-tree: These implementations are designed to
terminate the search at nodes with five training examples.
Configurations using three, four and five levels kd-tree using
40, 80 and 120 training examples respectively, are
investigated for accuracy and hardware resource trade-offs.

c) 7-NN kd-tree: These implementations are designed to
terminate the search at nodes with seven training examples.
Configurations using three, four and five levels kd-tree using
56, 112 and 224 training examples respectively, are
investigated for accuracy and hardware resource trade-offs.

d) Complementary kd-tree: In this configuration, a multi-
classifier vote is adopted based on the outputs from each of the
three classifiers (3-NN, 5-NN and 7-NN). A simple majority
vote is used to generate a consensus between the three
classifiers. The kd-tree configuration consists of nodes with
four training examples such that 3-NN could be obtained from
the final nodes. 5-NN and 7-NN are obtained from the second-
to-last level, since it is a node with eight training examples. A
typical example of this implementation is shown in Fig. 5,
which uses 3/4 kd-tree levels. 5-NN and 7-NN can be obtained
at level 3, while 3-NN is obtained at level-4. Implementations
using 3/4 kd-tree levels, which have 64 training examples and
implementations using 4/5 kd-tree levels, which have 128
training examples are investigated for accuracy and hardware
resource trade-offs. Table I summarises the various kd-tree

Fig. 5. Feature space depicting kd-tree compartmentalization.

A

B
EG

C

D

F

H

I
K

L J

P N

O
M

JL

K I

3-NN

5-NN
Test case

Feature 1 (µV2/s)

Fe
at

ur
e

2
(µ

V2 /s
)

Non-PD PD

TABLE I
SUMMARIZING THE VARIOUS 𝑘𝑑-TREE IMPLEMENTATIONS INVESTIGATED

k-NN
Implementation

kd-tree
Levels

Number of
Training
Examples

Relative
Training

Frequency*
3-NN 3 24 5.33

4 48 2.67
5 96 1.33

5-NN 3 40 3.20
4 80 1.60
5 160 0.80

7-NN 3 56 2.29
4 112 1.14
5 224 0.57

X-NN 3/4 64 2
4/5 128 1

* Training frequency measured relative to X-NN (4/5), which is
trained once a day.

TABLE II
OPERATING MODES OF THE PD DETECTION PROCESSOR

Operating
Mode

Sub-Mode Duration
(×1/clk3)†

Active Functional
Units (aside from
processor FSM)

Concurrent
Detection

and Training

Training
example
storage

8 Feature extraction for
training, memory bank,
feature extraction for
detection and k-NN.

MRM
training

2 Memory bank, MRM,
feature extraction for
detection and k-NN.

k-NN
training

1 Memory bank, feature
extraction for detection
and k-NN.

Detection
only

– 189 Feature extraction for
detection and k-NN.

†clk3 varies for each implementation. For X-NN (4/5) it is 1/432 Hz; this
frequency has to be multiplied by the relative training frequency in Table I
to obtain the equivalent value of clk4 for other implementations of the PD
detection processor.

Fig. 6. Detection performance for various implementations of the PD
detection processor (number of training examples for each configuration
summarized in Table I).

3 4 5 3 4 5 3 4 5 3/4 4/5
 3-NN 5-NN 7-NN X-NN

F1
-s

co
re

 (%
)

(a)

3 4 5 3 4 5 3 4 5 3/4 4/5
 3-NN 5-NN 7-NN X-NN

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

(b)

implementations and their training data requirements.

E. Operating Modes
The PD detector has two modes of operation: concurrent

detection and training, and detection only. During both modes,
real-time PD detection continues and both operating modes
use fully on-site computation. During concurrent detection and
training, the PD detector concurrently detects PD events and
trains to determine the appropriate input channel and features
for PD monitoring as well as the kd-tree hyperplanes for each
level. This mode requires the most computing and memory
requirement. Nevertheless, it only lasts for 5.5% of the time. It
involves three sub-modes: training example storage, MRM
training and k-NN training. These sub-modes take 4%, 1% and
0.5% of the time respectively. Table II summarizes the active
functional units during each of the sub-modes of concurrent
detection and training. The second mode is PD detection only,
which happens most of the time. During this mode, the PD
detector transmits PD events at one-second intervals. Only
three functional units are active for majority (94.5%) of the
time as highlighted in Table II.

IV. PERFORMANCE EVALUATION
To evaluate the performance of the proposed PD detection

system, semi-synthetic neural signals constructed from real
LFP recordings were used (Section II.A). A major bottleneck
in validating implantable electronics is access to patients due
to the necessary detailed clinical regulatory oversight. Semi-
synthetic neural signals were preferred to experimentally-
recorded neural signals because all underlying conditions in
the original LFP signal can be modeled alongside the ground
truth information. In addition, semi-synthetic signals offer the
opportunity to synthesise longer LFP recordings from real
LFP recordings with short duration. Detection performance

TABLE III
SUMMARIZING COMPLEXITY AND MEAN ACCURACY FOR VARIOUS

IMPLEMENTATIONS
S/No Implementation Complexity

Measures
(per channel)

Accuracy Measures

(µW) (mm2) Mean
MCC

Mean F1
(%)

Mean
class. acc.

(%)
1 3-NN 3 2.28 0.0433 0.0012 51.29 49.74
2 4 2.37 0.1175 0.2479 56.69 55.70
3 5 2.31 0.1915 0.3513 68.20 64.76
4 5-NN 3 2.23 0.0465 0.1608 56.12 60.00
5 4 2.34 0.1651 0.3275 68.43 69.48
6 5 2.53 0.2873 0.5081 68.11 77.96
7 7-NN 3 1.80 0.0496 0.1315 50.20 51.18
8 4 2.49 0.2126 0.4820 78.37 79.79
9 5 2.73 0.3815 0.6422 92.68 89.66
10 X-NN 3/4 2.22 0.1414 0.3542 86.18 82.14
11 4/5 2.26 0.2385 0.6162 91.38 91.93

Fig. 7. On-chip power and area. (a) MCC vs dynamic power; (b) MCC vs
area.

and hardware resource utilisation were observed. Detection
performance results were obtained from the FPGA and
estimate of hardware resources were obtained both from post-
synthesis power and area estimates when mapped onto a
45 nm CMOS process. Design of ASICs for PD detection and
monitoring has not been considered largely due to insufficient
empirical evidence on the behavior of the DBS mechanism. It
may not be cost-effective to fabricate the processor on a
silicon chip. At this stage of development an adaptable
platform such as a FPGA is required.

A. Detection Performance
For the hardware test, performance measures were obtained

over a complete training and test period clk4. It has a
frequency of 1 86400⁄ 	Hz for the X-NN (4/5)
implementation. For other implementations the frequencies are
multiples of X-NN (4/5) clk4 as summarised in the relative
training frequency in Table I. Before performance evaluation,
training is conducted which lasts 5.5% of the time. Then for
the other 94.5% of the time, test cases are detected. The box
plots in Fig. 6 (a) are the F1-score for the various
configurations. It can be seen that the F1-score increases with
an increase in the number of training examples, except in the
case of 5-NN (5), 7-NN (3), X-NN (3/4) and X-NN (4/5). In
the case of 5-NN (5), this could be attributed to outliers in the
training examples due to an increased number of training
examples. Outliers tend to bias the classifier model. In the
case of 7-NN (3), the use of seven nearest neighbours in a
training set consisting of 56 training examples can increase
susceptibility to outliers i.e. if outliers are a large part of the
training examples.

With a median F1-score of 95.02%, the X-NN (3/4) has a
better performance than the 5-NN (5) and 7-NN (4) which
have 67.75% and 92.54% respectively. However, they use
more training examples than the X-NN (3/4). The improved
performance in X-NN (3/4) can be attributed to the
complementary detection it uses. For the X-NN (4/5), its
median F1-score trails that of the best, which is the 7-NN (5)

by less than 1% even though the 7-NN (5) uses 224 training
examples compared to 128 training examples used by the X-
NN(4/5). The top three implementations in terms of F1-score
are: 7-NN (5) with a median of 96.29%, X-NN (4/5) with a
median of 95.34% and X-NN (3/4) with a median of 95.02%.

The classification accuracy measures in Fig. 6 (b) follow
almost the same pattern as the F1-score in Fig. 6 (a). However,
the major difference is that the X-NN (4/5) has a better
classification accuracy performance than the 7-NN (5). The
top three in terms of classification accuracy are: X-NN (4/5)
with a median of 91.93%, 7-NN (5) with a median of 89.66%
and X-NN (3/4) with a median of 82.14%. The effect of
outliers was reduced using complementary detection to
establish consensus between weak and disparate classifiers.
Periodical updating the training examples also reduces the
effects of outliers. These results clearly show that the
complementary k-NN configuration improves detection

TABLE IV
SUMMARIZING FPGA RESOURCES

Configuration LUT Registers Mux / Demux DSP
Slices (%) Slices (%) Slices (%) Slices (%)

3-NN 3 8377 13.2 6139 4.8 236 0.5 6 2.5
4 11071 17.5 7492 5.9 619 1.3 6 2.5
5 17135 27 10140 8.0 1078 2.3 6 2.5

5-NN 3 10284 16.2 6953 5.5 331 0.7 6 2.5
4 15351 24.2 9033 7.1 987 2.1 6 2.5
5 23855 37.6 13017 10.3 2512 5.3 6 2.5

7-NN 3 11514 18.2 7656 6.0 696 1.5 6 2.5
4 17675 27.9 10646 8.3 1674 3.5 6 2.5
5 29839 47.1 15997 12.6 3636 7.7 6 2.5

X-NN 3/4 14194 22.4 8284 6.5 885 1.9 6 2.5
4/5 20993 33.1 11560 9.1 1904 4 6 2.5

performance.
Fewer training examples may result in limited complexity;

however, this occurs at reduced accuracy. To obtain the
configuration with the best trade-off in terms of accuracy and
complexity, configurations using fewer training examples are
made to train more frequently. Thus, training frequency is
inversely proportional to number of training examples.
Configurations having a higher number of training examples
have a lower training frequency. The training frequency and
training examples are staggered so that the average number of
training examples used by each configuration per day is the
same. In pattern recognition, a high number of training
examples results in high variance which could cause data
overfitting. While a low number of training examples could
lead to poor generalizability [18]. Periodically updating the
training examples can be used to overcome issues such as poor
generalizability and data overfit.

B. On-chip Power and Area
For ASIC resource requirements, various implementations

of the architecture were synthesised and mapped into the
45 nm NanGate digital cell library [19]. The power is analysed
based on a core voltage of 1.1 V. The 7-NN (3) configuration
has the lowest dynamic power requirements, while the 3-NN
(3) has the lowest area requirements. The resulting estimates
of dynamic power and area per channel for different
configurations of the PD detection processor are summarized
in Table III. Generally dynamic power is expected to increase
with an increase in the number of training examples. However,
this is not the case for the 3-NN (4), which is an outlier.
Dynamic power is mainly due to clock signals, which makes it
dependent on the architecture of the controller. It can then be
deduced that the control architecture adopted for the 3-NN (4)
uses more control and gating signals than its counterparts. The
area consumption is commensurate with FPGA resource
utilisation. However, this is not the case for the dynamic
power consumption, where there is an increase in clock
activity for each implementation with an increase in the
number of kd-tree levels used.

To put the complexity measures in perspective, Fig. 7 (a)
shows the Matthews correlation coefficient (MCC) vs

dynamic power and Fig. 7 (b) shows the MCC vs area. The
various implementations of the PD processor are represented
by the serial numbers in Table III. The plots are divided into
four regions: Q1, Q2, Q3 and Q4. Q1 represents the
implementations that have an average MCC greater than 0.5
and also have dynamic power lower than the average dynamic
power for all implementations. In Fig. 7 (a), only X-NN (4/5)
implementation is in this category. This is the most desirable
outcome in terms of dynamic power, i.e. a classifier to
producing a model that accurately classifies test cases as well
as having a dynamic power lower than the class average. The
other quadrants in Fig. 7 are: Q2 which represents an average
MCC greater than 0.5 and a dynamic power greater than the
average which is 2.32 µW/channel. This represents a good
detector but has a higher power consumption than Q1. Q3
represents the unwanted condition, in which the detector
consumes more power than the class average and produces an
MCC that is less than 0.5, which signifies weak positive
correlation. In the fourth region, Q4 the implementation
results in a weak positive correlation (MCC < 0.5) and a
power consumption less than the average for all the
implementations. This may be more desirable than Q2
depending on what is more important between power
consumption and detector performance measure in MCC. The
X-NN (3/4) produces the best performance for the
implementations in Q4. For the area consumption in Fig. 7(b),
there is an almost linear increase in area with an increase in
MCC. Fig. 7(b), divides the quadrants in a similar way to Fig.
7 (a). However, the quadrants on the y-axis are divided based
on the average on-chip area of the configurations. None of the
configurations fall into Q1. In Q2, the 5-NN (5), 7-NN (5) and
X-NN (4/5) fall into Q2 where the X-NN (4/5) presents a
better on-chip area trade-off than the others since it utilizes
relatively less power. Q3 also represents the undesirable
quadrant, with large area consumption and an average MCC
below 0.5. In Q4, the best for MCC is the X-NN (3/4). These
results demonstrate that the complementary configuration
offers a good trade-off between complexity and accuracy.

C. FPGA Resources
The major building blocks for the FPGA implementation

are: LUT slices, register slices, multiplexers and DSP units.
The Artix-7 FPGA has 63400 LUT slices, 126800 register
slices, 240 DSP slices and 47550 multiplexer slices [11]. The
resource utilisation for the various implementations are
summarised in Table IV. Only six DSP slices were used.
These were used in the feature extraction unit. Other resources
increase with an increase in nearest neighbours as well as kd-
tree levels. The k-NN and memory bank dominate in terms of
resources as the kd-tree level grows. The feature extraction
units and the MRM stay approximately the same throughout.
DSP slices are only used in the feature extraction block for
multiplication to compute the power of the coefficients from
the four-level Haar wavelet.

D. Comparison with Other Neurological Event Detectors

TABLE V
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART NEUROLOGICAL EVENT DETECTION PROCESSORS

Reference This work [33] [28] [34] [35] [36] [37] [29] [38] [39]
Year 2017 2017 2017 2016 2015 2015 2014 2014 2013 2013

Application PD onset
detection

Epileptic
seizure

detection

Epileptic
seizure

detection

Epileptic
seizure

detection

Epileptic
seizure

detection

Epileptic
seizure

detection

Epileptic
seizure

detection

Epileptic
seizure

detection

Epileptic
seizure

detection

Epileptic
seizure

detection
CMOS tech. (nm) 45 350 130 180 180 180 130 180 180 180

No of channels 8 32 24 8 16 16 18 8 8 7
Neural signals LFP EEG EEG, ECoG EEG EEG iEEG EEG EEG EEG ECoG
Area/ch. (mm2) 0.2384 0.0491 12 a 3.125 3.125 0.0625 0.0833 13.47 a 25 a 0.7436

Core voltage (V) 1.1 1.25 1.2 1.8 1.8 0.8 1.2 1.8 1.8 1.0
Dynamic

power/ch. (µW)
2.26 0.95 1300 b FE = 7,

SVM = 12.56
2.45 0.85 5.94 2800 c 8.25 4.09

Efficacy (%) F1 = 91.38,
Class. acc.

 = 91.93,
MCC = 0.62 d

Sensitivity
= 87

Sensitivity
= 88 – 96

Sensitivity
= 95.1

Sensitivity
= 95.7,

Specificity
= 98

Sensitivity
= 100

Sensitivity
= 91 – 96

Sensitivity
= 92

Class. acc.
= 84.4

Class. acc.
= 93.1

a Gives the total area of the chip not area per channel.
b Total for 24 channels and other stages.
c Total for 8 channels and other stages.
d Not measured in %.

Table V summarises the characteristics of state of the art
neurological event detection processors implemented since
2013. The implementation with the best efficacy, area and
dynamic power trade-offs in this work, which uses the X-NN
(4/5) classifier is adopted and compared with other
neurological event detection processors. Published
neurological event detection processors have focused on
epileptic seizure detection. Comparison of PD detection with
other neurological event detectors presented in Table V is
confined to epilepsy detection.

This work performs on a comparable level in terms of area
and power to other neurological event processors. The
classifier used by this processor adopts k-NN classification,
which is a population dependent algorithm that extrapolates
properties more accurately when larger training sets are used.
Hence, memory banks were adopted for storing training
examples. This increased the effective area per channel of the
processor. The detection processor developed in this work is
the first processor for PD detection. So far, neurological event
detection processors have focussed on epileptic seizure
detection. For seizure detection, the major signals of interest
are electroencephalography (EEG) and electro-corticography
(ECoG), which mostly lie below 30 Hz, which are obtained
from the scalp and cortex respectively.

In seizure detection, most studies use phase synchronisation
between signals recorded from different channels as the
biomarker of interest. Seizures are detected when phase
synchronisation increases above a specific threshold. An
increase in EEG or ECoG synchronisation between channels
can be indicative of an epileptic episode. The main challenge
of the phase synchronisation approach is that the baseband
synchronisation varies across subjects and between channels.
Nevertheless, neurological signals for epilepsy (EEG and
ECoG) are more distinguishable than those of PD (LFP
signals). A closed-loop system for epileptic seizure
suppression has already gained FDA approval [20]. The
unpredictable nature of LFP signals for PD and their higher

frequency content compared to EEG and ECoG makes their
processing more computationally intensive. LFP signals are
used as biomarkers in PD detection and monitoring due to
their stability and rich spatiotemporal content [21], which is
necessary to overcome the unpredictable nature of PD. The
fact that they can be obtained from existing stimulation
electrodes means that they are minimally invasive. EEG
signals are usually obtained from electrodes attached to the
scalp. This makes them impractical for ambulatory disease
monitoring as they are not implanted, which means they could
limit patients’ quality of life. Another issue is that correlation
between PD and EEG signals are yet to be established or
reported.

Regarding efficacy, most studies in epileptic seizure
detection have focussed on sensitivity, which only measures
true-positive rate. This means a randomly guessing processor
that always returns a positive can achieve a 100% sensitivity
since it will get all the actual positives (with 0% specificity).
Therefore, more balanced measures may be required for more
comprehensive assessment of processor efficacy. This is
particularly necessary for situations where event detection
informs therapy. Administering therapy when it may not be
needed can result in side effects [22]. This is why more
balanced measures like the MCC and F1-score are adopted in
this work.

V. DISCUSSION

A. Personalized Health Monitoring in PD
In PD, proper health monitoring can lead to better PD

mitigation as well as reduce the number of face-to-face visits
by patients. Further understanding on how disease progresses
in patient population can be achieved through remote health
monitoring. This can involve the analysis of data from
multiple patients so that adaptive DBS strategies that
incorporate more universal features or biomarkers could be
incorporated in tackling varying PD disorders. This will make

therapy more proactive and less retroactive. As more data is
collected a better understanding of disease progression can be
obtained, which could be used to refine therapy. Moreover,
since diverse population of PD patients are afflicted with
various dominant symptoms, implementations of personalised
health monitoring systems can be tailored to cater for
individual patient needs. Early detection of patient
deterioration could help caregivers to immediately take action
in modifying stimulation parameters or therapeutic paradigms
[23]. This can be achieved by remote and continuous
monitoring of the disease states. The information obtained
from health monitoring systems is intended to be logged to
monitor disease progression or relayed to caregivers in the
event of an emergency. This can make therapeutic
interventions more sustainable by early recognition of
unresponsive symptoms so that alternative therapeutic regimes
are provided [24].

Conventional DBS leads usually consists of 4 platinum-
iridium cylindrical contacts. They are implanted either
unilaterally or bilaterally. This means they consist of 4 or 8
electrodes. Recordings can be obtained from the same
electrodes that are used for stimulation, making them
minimally invasive [25]. An eight-channel design was adopted
so that it is compatible with conventional DBS leads. DBS
leads produced by all major manufacturers have a similar
operating principle, with slight differences in technical
features.

B. Supporting Technology
Advances in bio-sensing, signal processing, data

communication and nanotechnology offer the possibility of
fully implantable systems for disease monitoring. The major
requirement is to devise systems that detect patient-specific
physiological states in real-time using minimally invasive and
low power devices. The development in machine-learning
algorithms that are capable of exploiting statistical properties
in the data to model specific correlations will facilitate more
accurate decision making by healthcare experts or devices
[26]. For disease monitoring using machine learning models,
prior pre-processing is as important, or even more important
than the use of the machine learning models themselves [27].
This is because the models are only as good as the input
signals that are fed to them. The use of advanced LNA and
ADC is essential to achieve high-performance detection. The
state of the art systems in [28] and [29] consisting of sensing
(LNA, BPF and ADC) and detection stages, utilize 1.3 mW
and 2.8 mW respectively. Thus, total power consumption is
below 3 mW.

C. Challenges
Healthcare monitoring systems are required to be

operational for long periods of time. Monitoring systems like
the LiveNet system [30], which uses an accelerometer,
electrocardiography, electromyography and skin conductance
to obtain information on PD and epileptic seizure by
transmitting raw samples of data to external devices. Adopting
this approach imposes high power and throughput

requirements. This motivated the adoption of an
implementation that can be deployed for on-site real-time
processing. Due to the need for detection algorithms to be
made implantable, there will be a demand for increased
storage and computing capability to handle large and
dynamically changing training data. Large training data may
be required as classification accuracy improves as more
knowledge on the disorder is incorporated into the processor.
Other challenges confronted by personalised health
monitoring systems are security and privacy issues [31].
Security and privacy is mainly dependent on the
communication method used for transmitting PD events. A
serious effort is already invested in research on encryption to
protect from data interception and tampering [32].

VI. CONCLUSION
In this paper, complementary PD detection was presented as

a hardware-efficient method for on-site PD detection. The PD
detection processor is the first known implementation for on-
site and real-time monitoring. The design leveraged on the
flexibility of FPGA to test the performance of various
configurations of the PD detection processor. Estimates for
power and area were obtained for 45 nm CMOS technology.
The PD detection processor presented a comparable level of
performance to state-of-the-art neurological event detectors.
Since spectral features are useful as biomarkers in other
neurological applications, the proposed approach may find a
range of different applications and implementations. For on-
site PD monitoring, the challenge is the realization of an
efficient processor that can handle the complexity of
physiological signals and still meet the requirement for
implantation in chronic applications.

REFERENCES
[1] S. J. Schiff, “Towards model-based control of Parkinson’s disease.,”

Philos. Trans. A. Math. Phys. Eng. Sci., vol. 368, no. 1918, pp. 2269–
308, May 2010.

[2] J. Volkmann, J. Herzog, F. Kopper, and G. Deuschl, “Introduction to
the programming of deep brain stimulators.,” Mov. Disord., vol. 17
Suppl 3, pp. S181-7, Jan. 2002.

[3] S. Marceglia, E. Rossi, M. Rosa, F. Cogiamanian, L. Rossi, L.
Bertolasi, A. Vogrig, F. Pinciroli, S. Barbieri, and A. Priori, “Web-
based telemonitoring and delivery of caregiver support for patients with
Parkinson disease after deep brain stimulation: protocol.,” JMIR Res.
Protoc., vol. 4, no. 1, p. e30, Mar. 2015.

[4] M. H. Myers, M. Threatt, K. M. Solies, B. M. McFerrin, L. B. Hopf, J.
D. Birdwell, and K. A. Sillay, “Ambulatory Seizure Monitoring: From
Concept to Prototype Device.,” Ann. Neurosci., vol. 23, no. 2, pp. 100–
11, Jul. 2016.

[5] E. Rossi, M. Rosa, L. Rossi, A. Priori, and S. Marceglia,
“WebBioBank: A new platform for integrating clinical forms and
shared neurosignal analyses to support multi-centre studies in
Parkinson’s Disease,” J. Biomed. Inform., vol. 52, pp. 92–104, 2014.

[6] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. P.
Chandrakasan, “A Micro-Power EEG Acquisition SoC With Integrated
Feature Extraction Processor for a Chronic Seizure Detection System,”
IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 804–816, Apr. 2010.

[7] S. Little, A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo, M. Hariz, T.
Foltynie, P. Limousin, K. Ashkan, J. Fitzgerald, A. L. Green, T. Z.
Aziz, and P. Brown, “Adaptive deep brain stimulation in advanced
Parkinson disease,” Ann. Neurol., vol. 4, no. 3, pp. 449–457, Sep. 2013.

[8] A. Mohammed, M. Zamani, R. Bayford, and A. Demosthenous,
“Toward on-demand deep brain stimulation using Online Parkinson’s

disease prediction driven by dynamic detection,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 25, no. 12, pp. 2441–2452, Dec. 2017.

[9] M. Ciletti, Advanced Digital Design with Verilog HDL, Second. New
Jersey: Pearson Higher Education, 2010.

[10] Xilinx, “7 Series FPGA Data Sheet: Overview,” Product Specification,
2017. [Online]. Available:
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Se
ries_Overview.pdf. [Accessed: 20-Oct-2017].

[11] Digilent, “Nexys4 DDR FPGA Board Refrence Manual,” 2016.
[Online]. Available:
https://reference.digilentinc.com/_media/reference/programmable-
logic/nexys-4-ddr/nexys4ddr_rm.pdf. [Accessed: 20-Oct-2017].

[12] D. Sundararajan, Discrete Wavelet Transform: A Signal Processing
Approach. New York, United States: John Wiley and Sons Ltd, 2015.

[13] D. Marković and R. Brodersen, DSP Architecture Design Essentials.
New York, NY: Springer, 2012.

[14] K. Zhou, H. Qiming, and B. Guo, “Real-time kd-tree construction on
graphics hardware,” ACM Trans. Graph., vol. 27, no. 5, 2008.

[15] A. Page, C. Sagedy, E. Smith, N. Attaran, T. Oates, and T. Mohsenin,
“A Flexible Multichannel EEG Feature Extractor and Classifier for
Seizure Detection,” IEEE Trans. Circuits Syst. II Express Briefs, vol.
62, no. 2, pp. 109–113, Feb. 2015.

[16] M. Hasanlou and F. Samadzadegan, “Comparative Study of Intrinsic
Dimensionality Estimation and Dimension Reduction Techniques on
Hyperspectral Images Using K-NN Classifier,” IEEE Geosci. Remote
Sens. Lett., vol. 9, no. 6, pp. 1046–1050, Nov. 2012.

[17] K. Q. Weinberger and L. K. Saul, “Distance Metric Learning for Large
Margin Nearest Neighbor Classification,” J. Mach. Learn. Res., vol. 10,
pp. 207–244, 2009.

[18] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
John Wiley & Sons, Inc., 2001.

[19] Nangate Inc, “NanGate FreePDK45 Open Cell Library,” 2017.
[Online]. Available: http://www.nangate.com/?page_id=2325.
[Accessed: 25-Oct-2017].

[20] R. E. Elliott, A. Morsi, O. Tanweer, B. Grobelny, E. Geller, C. Carlson,
O. Devinsky, and W. K. Doyle, “Efficacy of vagus nerve stimulation
over time: Review of 65 consecutive patients with treatment-resistant
epilepsy treated with VNS greater than 10years,” Epilepsy Behav., vol.
20, no. 3, pp. 478–483, Mar. 2011.

[21] S. Little and P. Brown, “What brain signals are suitable for feedback
control of deep brain stimulation in Parkinson’s disease?,” Ann. N. Y.
Acad. Sci., vol. 1265, no. 1, pp. 9–24, 2012.

[22] J. F. Baizabal-Carvallo and J. Jankovic, “Movement disorders induced
by deep brain stimulation.,” Parkinsonism Relat. Disord., Jan. 2016.

[23] M. Parastarfeizabadi, A. Z. Kouzani, M. Moffitt, K. Otto, D. Kipke,
and C. McIntyre, “Advances in closed-loop deep brain stimulation
devices,” J. Neuroeng. Rehabil., vol. 14, no. 1, p. 79, Dec. 2017.

[24] A. Priori, “Technology for deep brain stimulation at a gallop,” Mov.
Disord., vol. 30, no. 9, pp. 1206–1212, Aug. 2015.

[25] S. Stanslaski, P. Afshar, P. Cong, J. Giftakis, P. Stypulkowski, D.
Carlson, D. Linde, D. Ullestad, A.-T. Avestruz, and T. Denison,
“Design and validation of a fully implantable, chronic, closed-loop
neuromodulation device with concurrent sensing and stimulation.,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 4, pp. 410–21, Jul.

2012.
[26] G. Meyfroidt, F. Güiza, J. Ramon, and M. Bruynooghe, “Machine

learning techniques to examine large patient databases.,” Best Pract.
Res. Clin. Anaesthesiol., vol. 23, no. 1, pp. 127–43, Mar. 2009.

[27] A. E. W. Johnson, M. M. Ghassemi, S. Nemati, K. E. Niehaus, D.
Clifton, and G. D. Clifford, “Machine learning and decision support in
critical care,” Proc. IEEE, vol. 104, no. 2, pp. 444–466, Feb. 2016.

[28] H. Kassiri, S. Tonekaboni, M. T. Salam, N. Soltani, K. Abdelhalim, J.
L. P. Velazquez, and R. Genov, “Closed-loop neurostimulators: A
survey and a seizure-predicting design example for intractable epilepsy
treatment,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 5, pp. 1–
15, Oct. 2017.

[29] W.-M. Chen, H. Chiueh, T.-J. Chen, C.-L. Ho, C. Jeng, M.-D. Ker, C.-
Y. Lin, Y.-C. Huang, C.-W. Chou, T.-Y. Fan, M.-S. Cheng, Y.-L. Hsin,
S.-F. Liang, Y.-L. Wang, F.-Z. Shaw, Y.-H. Huang, C.-H. Yang, and
C.-Y. Wu, “A fully integrated 8-channel closed-loop neural-prosthetic
CMOS SoC for real-time epileptic seizure control,” IEEE J. Solid-State
Circuits, vol. 49, no. 1, pp. 232–247, Jan. 2014.

[30] M. Sung, C. Marci, and A. Pentland, “Wearable feedback systems for
rehabilitation,” J. Neuroeng. Rehabil., vol. 2, no. 1, p. 17, Jun. 2005.

[31] P. J. Soh, G. A. E. Vandenbosch, M. Mercuri, and D. M. M.-P.
Schreurs, “Wearable wireless health monitoring: Current developments,
challenges, and future trends,” IEEE Microw. Mag., vol. 16, no. 4, pp.
55–70, May 2015.

[32] A. Zhang, L. Wang, X. Ye, and X. Lin, “Light-weight and robust
security-aware D2D-assist data transmission protocol for mobile-health
systems,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 3, pp. 662–
675, Mar. 2017.

[33] S. Iranmanesh and E. Rodriguez-Villegas, “A 950 nW analog-based
data reduction chip for wearable EEG systems in Epilepsy,” IEEE J.
Solid-State Circuits, vol. 52, no. 9, pp. 2362–2373, Sep. 2017.

[34] M. A. Bin Altaf and J. Yoo, “A 1.83 J/classification, 8-channel, patient-
specific epileptic seizure classification SoC using a non-linear support
vector machine,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 1, pp.
49–60, Feb. 2016.

[35] M. A. Bin Altaf, C. Zhang, and J. Yoo, “A 16-channel patient-specific
seizure onset and termination detection SoC with impedance-adaptive
transcranial electrical stimulator,” IEEE J. Solid-State Circuits, vol. 50,
no. 11, pp. 2728–2740, Nov. 2015.

[36] M. Shoaran, C. Pollo, K. Schindler, and A. Schmid, “A fully integrated
IC with 0.85-uW/channel consumption for epileptic iEEG detection,”
IEEE Trans. Circuits Syst. II Express Briefs, vol. 62, no. 2, pp. 114–
118, Feb. 2015.

[37] M. Shoaib, K. H. Lee, N. K. Jha, and N. Verma, “A 0.6–107 µW
energy-scalable processor for directly analyzing compressively-sensed
EEG,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 61, no. 4, pp.
1105–1118, Apr. 2014.

[38] J. Yoo, L. Yan, D. El-Damak, M. A. Bin Altaf, A. H. Shoeb, and A. P.
Chandrakasan, “An 8-channel scalable EEG acquisition SoC with
patient-specific seizure classification and recording processor,” IEEE J.
Solid-State Circuits, vol. 48, no. 1, pp. 214–228, Jan. 2013.

[39] T.-J. Chen, S.-C. Lee, C.-H. Yang, C.-F. Chiu, and H. Chiueh, “A 28.6
µW mixed-signal processor for epileptic seizure detection,” in Proc.
Symp. VLSI Circuits (VLSIC), 2013, Kyoto, Japan, pp. C52–C53.

