
  
Abstract—The progress of Parkinson’s disease (PD) in patients 

is conventionally monitored through follow-up visits. These may 
be insufficient for clinicians to obtain a good understanding of 
the occurrence and severity of symptoms in order to adjust 
therapy to the patients’ needs. Portable platforms for PD 
diagnostics can provide in-depth information, thus reducing the 
frequency of face-to-face visits. This paper describes the first 
known on-site PD detection and monitoring processor. This is 
achieved by employing complementary detection which uses a 
combination of weak k-NN classifiers to produce a classifier with 
a higher consistency and confidence level than the individual 
classifiers. Various implementations of the classifier are 
investigated for trade-offs in terms of area, power and detection 
performance. Detection performances are validated on an FPGA 
platform. Achieved accuracy measures were: Matthews 
correlation coefficient of 0.6162, mean F1-score of 91.38%, and 
mean classification accuracy of 91.91%. By mapping the 
implemented designs on a 45 nm CMOS process, the optimal 
configuration achieved a dynamic power per channel of 2.26 µW 
and an area per channel of 0.24 mm2. 
 

Index Terms—Biomedical signal processor, classifier, deep 
brain stimulation (DBS), event detection, feature extraction, 
Parkinson’s disease (PD). 

I. INTRODUCTION 
ARKINSON’S disease (PD) has complex mechanisms [1], 
and to optimize therapy, a better understanding of its 

dynamics is required. Currently, the standard for diagnosing 
and monitoring parkinsonian progress in patients is 
observation of visual feedbacks from them [2]. These may be 
insufficient since it is only monitored during follow-up visits. 
Research in disease monitoring has ranged from using mobile 
devices that have short message service, web-based 
applications and Bluetooth capability to measure the 
frequency of symptom onset so that medical interventions 
could be delivered or better diagnosis can be made  [3]. These 
systems can be implemented on software applications running 
on the patient’s commercial smartphone and connected to the 
clinician's information systems [4], for example, the 
WebBioBank, a web-based system for collecting clinical and 
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neurophysiological data [5]. It is specifically created for deep 
brain stimulation (DBS) management, and can also be 
connected to the patient's mobile applications so that it can 
safely be used for web-based tele-monitoring and caregiver 
support [3]. Such disease monitoring can be used to provide a 
more refined therapy and for biomarker selection based on 
patient data collected.  

The power required to transmit data in neural signal 
processing systems dominates that for recording and data 
conversion [6] and  offline processing based on transmitting 
raw time series data as suggested in [3], [5], is an inefficient 
approach. Based on the power and bandwidth constraints 
involved in continuously sending neural signals, it will be 
more resource efficient to periodically send patient progress as 
state estimates after on-site and online analysis. Such an 
integrated platform for on-site and online analysis and 
monitoring of PD signals is still unavailable. For on-site and 
online analysis, there is a need to develop miniaturized real-
time platforms that could monitor disease progress. These 
specialized hardware platforms would facilitate mobile 
diagnostics for better disease management. Portable platforms 
for PD diagnostics could provide more in-depth information 
and reduce the number of face-to-face visits required to 
optimize therapy. In PD monitoring, the aim is to provide 
long-term monitoring of the patient's condition for clinicians 
to better understand the symptoms so that therapy could be 
more accurately tailored to patients’ needs. 

This work presents an interface processor that can process 
local field potentials (LFP) 1 at the point of recording so that 
Parkinsonian states are communicated and logged onto an 
external platform. The processing chain is shown in Fig. 1. 
The analog-front-end (AFE) consisting of the low noise 
amplifier (LNA) and band-pass filter (BPF) are interfaced to 
an analog-to-digital converter (ADC). Digitized neural signals 
are sent to the PD detection processor. After PD events are 
detected they are sent over a communications link to a PD 
event log for monitoring. The system consisting of the LNA, 
BPF, ADC and PD detection processor is intended to be fully 
online and on-chip. 

                                                        
1 LFP is the electric potential recorded in the extracellular space in brain 

tissue, typically recorded using microelectrodes. LFP have temporal structure 
mainly in the frequency range of 0-100 Hz. 
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Fig. 2. Physical implementation of the PD detection processor. (a) 
Architecture; (b) Nexys 4 DDR FPGA board. 
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The PD detection processor detects PD events and sends 
them over a communication interface (instead of sending raw 
LFP data) to a PD event log. This reduces the amount of data 
sent over the communication link, which in turn reduces 
communication energy as well as bandwidth requirements of 
the system. Detection performance is assessed by validating 
various k-nearest neighbors (k-NN) classifier configurations 
on a field programmable gate array (FPGA) platform. In 
addition, on-chip power and area estimates for each of the PD 
classifiers is obtained by mapping the implemented designs to 
a 45 nm CMOS process. The main motivation for using 45 nm 
CMOS process is that it provides an optimal balance in terms 
of fabrication cost and on-chip power. The long-term plan is to 
implement fully implantable systems that manage DBS 
therapy. 

The rest of paper is organized as follows. Section II 
describes the FPGA prototyping platform for the processor. 
Section III details the major functional units of the PD 
detection processor.  The measured results are described in 
Section IV. Discussion and concluding remarks are presented 
in Section V and Section VI respectively. 

II. HARDWARE IMPLEMENTATION 
The objective is to provide a hardware platform for real-

time processing of acquired neural data so that PD events can 
be distinguished from non-PD events. A fully online 
implementation performs on-site and real-time PD detection 
so that only PD events are transmitted to caregivers or 
stimulation devices to trigger actionable outputs. Currently, 
the mechanisms of PD are still under debate and the PD 
detection algorithms may need to be updated as a deeper 
understanding of the mechanisms of PD are gained. The most 
suitable candidate is an FPGA-based platform since it 
provides more flexibility for investigating various 
implementations of the PD detector compared with an 
application specific integrated circuit (ASIC) implementation. 
An FPGA based platform offers the best compromise between 
adaptability and portability. Moreover, register transfer level 
(RTL) implementations used on FPGAs are easy to translate to 
ASICs and microcontrollers. The PD detection processor was 
programmed on an Artix-7 FPGA as shown in Fig. 2 (a). The 
FPGA based PD detection tool was implemented in three 
major layers: the MATLAB layer, universal asynchronous 
receiver/transmitter (UART) layer and the FPGA layer. 
Synthesised LFP test data are transferred from MATLAB to 
the FPGA board through the serial communication link [USB-
JTAG cable in Fig. 2 (b)] to the Artix-7 FPGA for processing. 

Processed data is sent back to MATLAB for performance 
evaluation of the PD detector (using signal ground truth stored 
in MATLAB). 

A. Test Datasets 
The original test datasets used were LFP recordings from 

the subthalamic nucleus (STN) of subjects exhibiting a 
combination of bradykinesia and/or rigidity during the onset 
of PD, with less noticeable tremor. Recordings were made 
from nine patients with PD who had bilaterally implanted 
DBS electrodes in their STN and are referred to as dataset A–
I. The datasets contained separate ON and OFF levodopa (L-
dopa) data between 5 to 10 minutes long. The ON and OFF L-
dopa LFP data are used as representative non-PD and PD data 
respectively. The data was obtained from the Department of 
Clinical Neurology, University of Oxford. Recordings were 
made prior to the connection of a subcutaneous DBS 
pacemaker and stimulation was stopped during recording. 
Details on the daily drug dosage, on and off UPDRS score and 

 

Fig. 1. The functional block diagram of the PD monitoring platform. 
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dominant symptoms for eight of the nine patients are 
summarized in [7]. The permanent quadri-polar macro-
electrode used was model 3389 (Medtronic Neurologic 
Division, Minneapolis, MN) consisting of 4 platinum-iridium 
cylindrical contacts. Its contacts are numbered 0, 1, 2 and 3, 
with 0 being the most caudal and 3 being the most cranial for 
both right and left electrodes – making a total of eight 
monopolar channels for each patient. 

The semi-synthetic LFP signals consist of PD and non-PD 
semi-synthetic templates created from the original LFP 
recordings. The LFP synthesis, involved fitting autoregressive 
moving average (ARMA) models to the real LFP recordings to 
produce semi-synthetic LFP templates. The semi-synthetic 
templates are concatenated to create PD and non-PD episodes 
of long duration. The duration of the PD and non-PD episodes 
are defined in a pseudorandom manner using a Poisson 
distribution. Fitting an ARMA model provides the flexibility 
to manipulate the signal characteristics so that all underlying 
conditions can be represented. The complete LFP data 
synthesis process and a detailed description of the LFP 
recordings are provided in [8]. 

B. FPGA Implementation 
FPGA is a hardware platform that is configured using 

hardware description language (HDL). Compared to 
microcontrollers and ASICs, FPGA provides the best trade-off 
between speed and flexibility. FPGAs have a mix of the fixed 
architecture in ASIC and the structured programme execution 
style synonymous with microcontrollers [9]; this makes them 
in between the two extremes regarding speed and flexibility 
and serves as a good compromise. It is for this reason that the 
hardware-efficient implementation of the PD detector is 
validated on an FPGA platform. Also, since it is structured to 
perform complex operations in parallel as in ASICs and the 
long-term goal is to implement fully online and real-time 
implantable ASICs that can be deployed for PD monitoring 
and DBS modulation, it serves as a design step towards ASIC 
implementation. A further important reason for the choice of 
an FPGA based PD detector, is the need to implement and 
validate on a platform that provides flexibility to investigate 
the performance of various functional units and update the PD 
detection algorithm. 

The hardware used is the Nexys4 DDR processing board 
from Xilinx with Artix-7 FPGA shown in Fig. 2(b). The 
Nexys4 DDR uses its own expansion system and has 60 I/O 
pins that can be interfaced to external devices. The board uses 
3.3V I/O. It has on board peripheral devices that are accessible 
to the Artix-7 chip as peripheral I/O devices. Its FPGA is the 
XC7A100T-1CSG324C [10]. In addition to the FPGA chip, 
the Nexys4 DDR board has a number of peripheral devices 
such as LEDs, switches, temperature sensor, accelerometer, a 
speaker amplifier, microelectromechanical systems (MEMS) 
digital microphone, and a number of input and output devices 
for a variety of interfaces [11]. The USB-JTAG port is used 
for FPGA programming and data streaming through UART. 
For communication with a host PC and programming the 
Artix-7 FPGA, it uses a USB mini-B connector. 

C. Input/Output Interface 
Semi-synthetic LFP signals (Section II.A) are fed to the 

FPGA from MATLAB. LFP samples are quantized to 8-bit 
fixed point representation. Serial communication is 
implemented using UART protocol. From Fig. 2(a), the input 
data from MATLAB is divided into packets of 8 bits that are 
sent in serial format to the FPGA platform. The UART 
receiver implemented on FPGA receives serial input data from 
MATLAB, buffers them until a complete word (8-bits) is 
obtained before it sends it as input to the PD detection 
processor. The UART data packets are sent with a channel 
identifier packet to determine the recording channel from 
which the LFP signal originates. The packet and channel 
identifier are used to demultiplex the input signal to the 
appropriate channel of the PD detection processor, where LFP 
epochs are classified as ‘1’ (PD) or ‘0’ (non-PD) binary events 
via the UART transmitter to MATLAB. 

III. SYSTEM OVERVIEW 
The PD detection processor performs feature extraction, 

feature selection and classification. Its top-level diagram is 
shown in Fig. 3. It consists of five major functional units: 
feature extraction for training, feature extraction for detection, 
PD detection processor finite state machine (FSM), memory 
banks and k-NN unit. The processor has two operating 
regimes: concurrent training and detection, and detection only. 
During concurrent detection and training, time multiplexing is 
used to acquire training data via the feature extraction for 
training unit from each of the recording channels. The training 
data is stored in the memory banks. It is used to train the 
feature selection (for feature and channel selection) as well as 
the k-NN classifier. To avoid interrupting PD detection, two 
feature extraction engines are used: the first is active only 
during training, and the second is active all the time and is 
used for detection. The PD processor FSM coordinates all 
these units. 

The PD detection processor has four input clocks. clk1 
operates at 128 Hz and controls real-time acquisition of input 
LFP data. clk2 operates at 1 Hz and controls feature extraction 
(and PD event log). Features are computed from 256 
samples/channel, with 50% overlap in samples. Five features 
are computed from the buffered 256 samples. Feature 
extraction is necessary because for direct use of time-series 
data as input to classifiers for detection, the dynamic power of 
the classifier may be impractical for real-time detection. There 
are preliminary processing stages before classification; feature 
extraction and feature selection. The maximum ratio method 
(MRM) is used for feature and channel selection [8]. It has 
two operating clocks: clk1 and clk3. MRM training is 
conducted sequentially per channel and is controlled by clk3, 
whose frequency varies for various configurations of the PD 
detection processor. It varies between 1/81 Hz to 1/756 Hz 
depending on the configuration (the various configurations are 
discussed in later sections). The final clock is clk4, which is 
only used by the ‘PD detection processor FSM’ to trigger a 
new training cycle; clk4 is 200 times slower than clk3. All 



clocks are controlled from a 1024 Hz master for a maximum 
clock frequency for clk1 of 128 Hz. 

Since fully implantable hardware is expected to operate 
under high-reliability requirements and strict power-density 
regimes, algorithmic and hardware optimizations that strike 
the optimal balance between efficacy and complexity need to 
be investigated. It is for this reason various configurations of 
the PD detection processor are investigated. The following 
sections describe the functional units in more detail. 

A. Feature Extraction 
A common algorithm that is widely used for time-frequency 

analysis of neural signals is the discrete wavelet transform 
(DWT). To extract useful information, DWT decomposes a 
signal into different levels based on frequency content. DWT 
is suitable for feature because the decomposition into different 
levels enhances the signal to noise ratio of the neural signals, 
which facilitates the identification of PD and non-PD events. 

The Haar wavelet has been commonly used due to its 
favourable balance between complexity of hardware 
implementation and detection performance. The Haar wavelet 
is ideal for capturing non-continuous frequencies [12]. Also, 
Haar-wavelets have been shown to be suitable in hardware-
aware implementations for time-frequency analysis [13]. 

An approach using four-level Harr wavelet decomposition 
was used here because it separated features into the desired 
brain wave bands as seen in Fig. 4: 

• Gamma band activity is greater than 30 Hz. Level 1 
detail coefficients produce LFP characteristics between 
32–49.5 Hz. The input LFP signal is band-pass filtered 
between 0.5–49.5 Hz, and then down-sampled to 
fs = 128 Hz and the maximum frequency is 64 Hz. 

• Beta band activity is between 13–30 Hz. Level 2 detail 
coefficients characterise LFP activity into frequencies 
between 16–32 Hz. 

• Alpha band activity is 8–12 Hz. Level 3 detail 

 

Fig. 3. The functional units of the PD detection processor. 
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coefficients are representative of LFP activity of 
frequencies between 8–16 Hz. 

• Theta band activity is between 3–8 Hz. Level 4 detail 
coefficients of the LFP activity are between 4–8 Hz. 

• Delta band is between 0.5–3 Hz. The level 4 
approximation coefficients obtained represent LFP 
activity between 0.5–4 Hz. 

Each level of decomposition is down-sampled by two at 
each successive level. More decomposition levels may not be 
useful because it results in reduced frequency bands which 
may contain little or no relevant information. 
 
1) Hardware implementation 

The two operating phases of the PD processor FSM are 
concurrent detection and training and detection only. Two 
feature extraction units are used because during concurrent 
detection and training, a separate feature extraction stage is 
used to store training data from each of the channels. To 
extract the five features (sub-band LFP power) in hardware, 
three major blocks are required: 

• A four-level Haar DWT block that computes the wavelet 
coefficients at each decomposition level. 

• A power calculation block that computes the features at 
each level based on their corresponding coefficients. 

• A first-in, first-out (FIFO) memory block to synchronise 
the four-level Haar wavelet block with the power 
calculation block. 

Fig. 3 shows the structure of the two implementations of the 
feature extraction units. The four-level Haar wavelet block is 
synchronised to operate at the same sampling rate as the input 
data (clk1 = 128 Hz) because the system is designed to adopt 
real-time PD detection. However, features are updated every 
second and the power calculation block is synchronised to 
operate at clk2 = 1 Hz. The power features are obtained using 
a 2-second window (consisting of 256 samples) of LFP signals 
with 50% overlap between windows so that features are 
updated every second. The average power of the coefficients 
in each level is: 
 
  𝑃# = 		

1
𝑁#
	 ( |𝑥[𝑛]|.
/012

345

 
 

(1) 

where Ni is the number of samples x[n]. Ni is 128 for level 1 

detail coefficients, 64 for level 2 detail coefficients, 32 for 
level 3 detail coefficients and 16 for level 4 coefficients. The 
four-level Haar wavelet block is synchronised to the power 
calculation block using a FIFO memory. The FIFO block is a 
dual-port RAM consisting of a memory and controller block. 
It has separate read and write pointers that are used for 
controlling reading and writing operations in the feature 
extraction unit. Below is a brief description of the two 
implementations of the feature extraction units. 
 
a) Feature extraction for training: All coefficients from the 
four-level Haar wavelet are transferred to the power 
calculation block through a five-level FIFO corresponding to 
coefficients from each level. The FIFO for level 1 detail 
coefficients is made up of 128 memory locations, level 2 detail 
uses 64 memory locations and so on; with level 4 
approximation coefficients consisting of 16 memory locations. 
The ‘feature label accumulator and FIFO’ block collects 
ground truth information from training data. Each epoch of 
training data consists of a stream of labels for input samples 
which are used as ground truth information for training 
purposes as well as to validate performance. 
 
b) Feature extraction for detection: Since 50% of buffered 
coefficients are reused by the feature extractor, the PD 
processor FSM controls reading samples from the FIFO. 
However, the number of samples buffered varies depending on 
the decomposition level of the DWT. The feature extractor 
controls the reading and writing based on the feature selected. 
The channel with the most pronounced variation is adopted. 
The best two of the five features from the adopted channel are 
used for classification. 
 
2) Four-level Haar wavelet 

To obtain the detail and approximation coefficients at the   
𝑖-th level, approximation coefficients from the previous level 
𝑎#12 serve as input as in (2). These are convolved with a half-
band low-pass filter (LPF) ℎ5 generating the approximation 
coefficients 𝑎#, and with a half-band high-pass filter (HPF) 𝑔5 
to generate the detail coefficients 𝑑#. This can be represented 
mathematically as, 

 
  

𝑎#(𝑘) = 		(ℎ5(𝑛)	𝑎#12(2𝑘 − 𝑛)
3

 (2) 

 
  

𝑑#(𝑘) = 		(𝑔5(𝑛)	𝑎#12(2𝑘 − 𝑛)
3

 (3) 

where 𝑛 represents the index of the filter coefficients (low and 
high pass filters), 𝑘 is the index of the input signal 
(approximation coefficients, 𝑎#12 and detail coefficients, 
𝑑#12). In the first part of the equations for both approximation 
and detail coefficients there is a down-sampling by two at 
each level before filtering. Computationally efficient Haar 
wavelet adopts the polyphase implementation in [13]. The 
filters for the Haar wavelet are 2-tap FIR filters given by g0= 
1
√2A  [1, -1] and h0= 1

√2A  [1, 1]. 

 

Fig. 4. A frequency domain illustration of four-level wavelet decomposition. 
(f = fs/2, where fs = sampling frequency). 
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B. Memory Bank 
To facilitate concurrent training and detection, and efficient 

sharing of other computational resources, the PD detection 
processor has a memory bank for storing training data. The 
major functional units of the memory bank are shown in Fig. 
3, which include an eight-channel random access memory 
(RAM), a static RAM (SRAM) write control and an SRAM 
read control. Each channel RAM is used for storing training 
data from its corresponding channel. The memory locations of 
the channel RAMs are scalable depending on the number of 
training examples required. The number of training examples 
stored depends on the configuration of the PD detection 
processor (mainly determined by the k-NN configuration 
adopted). The training data for each channel consists of half 
PD examples and of non-PD examples. This is to ensure 
generalizability for both PD and non-PD events. Training data 
for feature and channel selection (five features/training 
example) as well as k-NN training data (two features/training 
example) after channel selection, are obtained from the 
memory bank. The memory bank uses power and clock gating 
to reduce power consumption. 

C. Feature Selection 
Feature selection chooses the most relevant features to 

reduce the memory and computational resources. It also 
reduces data over-fitting at the classification stage, since some 
features are noisy and can lead to degradation in classifier 
performance. Feature selection results in significant reductions 
in the area and power of the PD detection hardware. For 
multichannel application, the classification phase has to be 
trained channel by channel either in sequence or parallel, and 
the best performing channel is selected for use. This can be 
computationally intensive. Alternatively, the MRM estimates 
the most informative channel and uses the features from this 
channel (as against using all channels [8]). The complete 
procedure for feature selection using the MRM is described in 
[8]. Fig. 3 shows the function blocks of the MRM unit: 
accumulator bank, MRM division and feature sorting, channel 
sorting and selection, and the MRM FSM. The latter controls 
the MRM training for each channel and the ranking of 
channels based on the separability of their PD and non-PD 
classes. Feature and channel ranking are time-multiplexed to 
enable logic reuse. 

The MRM process starts by streaming the training data of 
each channel sequentially. For each channel, training 
examples for PD and non-PD events are accumulated and 
stored in the PD and non-PD coefficient stack in Fig. 3.  The 
MRM dividend and divisor are determined for each of the five 
features (of each channel) for PD and non-PD training 
examples. The ‘division and sorting FSM’ controls this. Both 
PD and non-PD events have five features. The separability of 
each feature is determined using the ratio of the mean for 
features of PD and non-PD examples. Subsequently, the ratio 

of all the features for each channel is obtained, and the 
channel weight is obtained using the ‘feature sorting and 
channel weighting’ unit. The channel weights and feature 
ranks are sent to the ‘channel sorting and selection’ unit, 
where the channel weights and feature ranks of each channel 
are stored. The process is repeated for all the other channels. 
This is used to assess the most separable channel and features 
for use in PD detection. The channel and features with the 
most pronounced variation are communicated to the PD 
processor FSM. 

D. PD Classifier 
Machine-learning algorithms offer the benefit of 

understanding disease progression in patients. However, their 
computations are not well supported by conventional DSP 
platforms; particularly when high order models are used. Pre-
processing stages like feature extraction and feature selection 
are necessary to reduce the computational demands of 
detection algorithms. In PD monitoring, the classifier is 
required to select PD events from non-PD events using 
acquired neural signals. The PD classifier produces a binary 
output; high is a PD event and low a non-PD event. The 
detection results are intended for use either by caregivers or 
are interfaced to stimulation devices. PD monitoring and event 
detection can be implemented either by using online or offline 
classification. This work has implemented fully online 
classification to facilitate real-time PD detection. 

The PD classifier employs a k-NN classifier. Its overall 
architecture is shown in Fig. 3. The k-NN classifier consists of 
four functional units: training examples and label block, level 
median stack, k-NN controller and kd-tree block. Training 
data from the memory bank is stored in the ‘training examples 
and labels’ block. This data is used to obtain the various 
medians for different levels of the kd-tree search (nearest 
neighbors are obtained using kd-tree search). The medians in 
the level median stack are used for kd-tree implementation of 
the k-NN classifier. The k-NN classifier uses a kd-tree 
approach. The kd-tree was chosen because it uses a hardware 
efficient implementation of k-NN [14]. The kd-tree distance 
metric uses the minimum number of computations, but it has 
reduced accuracy. It is for this reason this work investigates its 
use in different k-NN configurations, which are investigated 
using different levels of the kd-tree search as well as nearest 
neighbors. The PD classifier in Fig. 3 uses kd-tree 
implementation in a complementary k-NN configuration 
where consensus is established using majority voting between 
different implementations to produce a classifier with a 
confidence level stronger than that of the three disparate and 
weak classifiers in the configuration. The following section 
provides more detail on kd-tree implementation. 

 
1) k-dimensional tree implementation 



PD classification using k-NN usually compares the input 
feature vector to the k-closest training examples. This distance 
is computed using different metrics, namely; Euclidean [15], 
LP distances [16], Mahalonobis distance [17], and approximate 
distance metrics like kd-tree implementations. Among these, 
the kd-tree implementation is the least computationally 
intensive [14]. It uses a binary decision tree to drill down n-
levels, with each level generating a splitting hyperplane that 
divides the space into two parts, known as half-spaces. The 
splitting hyperplane is chosen such that every node in the tree 
is related to one of the k-dimensions (in this case two-
dimensions, since there are two dimensional features) and its 
direction is perpendicular to the axis it splits as indicated in 
Fig. 5 which shows a four-level kd-tree search. The feature 
space is divided into 16 compartments by the kd-tree search. 
For an N level kd-tree, there are 2N nodes. 

In Fig. 5, for level 1, a splitting hyperplane is chosen at the 
median of the x-axis (feature 1) values, all points with a value 
below the median are categorized in the left sub-tree 
(consisting of compartments labelled I–P) and those greater 
than the median are categorised to the right tree (with 
compartments labelled A–H). In this situation, the hyperplane 
is determined by the x-axis. However, for level 2 splitting, two 
new hyperplanes are used to further split the left and right 
compartments of the feature space into four compartments. 
The process of binary splitting returns to the x-axis in level 3, 
which further splits each of the four compartments into eight 
compartments. Level 4 splitting then splits the eight 
compartments into 16 compartments. These 16 compartments 
are shown for the feature space of dataset C, with each 
compartment having four training examples making a total of 
64 training examples. Fig. 5 shows how the 3-NN can be used 
to classify a test case, as the three closest training examples 
from compartment ‘H’ are used. However, to use 5-NN or 7-
NN classification, only three level kd-tree is required. For 5-
NN or 7-NN classification, the nearest neighbours from 
compartments ‘G’ and ‘H’ in Fig. 5 are used in classifying the 
test data. This work uses a maximum of a five level kd-tree. 
Various implementations for the 3-NN, 5-NN, 7-NN and the 
complementary k-NN (which will be indicated by X-NN from 

now onwards) are discussed in the following section. 
 

2) k-NN configurations 
Different levels of kd-tree search, as well as nearest 

neighbors, are implemented and tested for accuracy and 
hardware resource trade-offs. For k-NN, the best value of k is 
very dependent on the dataset. For k-value selection, a larger 
k-value suppresses the effects of outliers. However, it creates 
less distinct decision boundaries [18]. It is for this reason 
various orders and configuration of nearest neighbors 
algorithms are investigated. 

The classifiers studied include k-NN with three, five and 
seven neighbors; and an ensemble of the classifiers which is 
the complementary configuration. The ‘k-NN controller’ block 
in Fig. 3 controls the sorting of features in the training 
examples and the storing of the hyperplane (median) points for 
each level of the kd-tree. In the complementary configuration, 
a multi-classifier vote is adopted based on the outputs from 
each of the three classifiers and a simple majority vote is used 
to generate a consensus. Below is a brief description of the 
various implementations. 

 
a) 3-NN kd-tree: These implementations are designed to 
terminate the search at nodes with three training examples 
such that each test case is classified according to the class 
dominated by the node it falls into, using simple majority vote. 
Configurations using three, four and five levels kd-tree having 
24, 48 and 96 training examples respectively, are investigated 
for accuracy and hardware resource trade-offs. 
 
b) 5-NN kd-tree: These implementations are designed to 
terminate the search at nodes with five training examples. 
Configurations using three, four and five levels kd-tree using 
40, 80 and 120 training examples respectively, are 
investigated for accuracy and hardware resource trade-offs. 
 
c) 7-NN kd-tree: These implementations are designed to 
terminate the search at nodes with seven training examples. 
Configurations using three, four and five levels kd-tree using 
56, 112 and 224 training examples respectively, are 
investigated for accuracy and hardware resource trade-offs. 
 
d) Complementary kd-tree: In this configuration, a multi-
classifier vote is adopted based on the outputs from each of the 
three classifiers (3-NN, 5-NN and 7-NN). A simple majority 
vote is used to generate a consensus between the three 
classifiers. The kd-tree configuration consists of nodes with 
four training examples such that 3-NN could be obtained from 
the final nodes. 5-NN and 7-NN are obtained from the second-
to-last level, since it is a node with eight training examples. A 
typical example of this implementation is shown in Fig. 5, 
which uses 3/4 kd-tree levels. 5-NN and 7-NN can be obtained 
at level 3, while 3-NN is obtained at level-4. Implementations 
using 3/4 kd-tree levels, which have 64 training examples and 
implementations using 4/5 kd-tree levels, which have 128 
training examples are investigated for accuracy and hardware 
resource trade-offs. Table I summarises the various kd-tree 

 

Fig. 5. Feature space depicting kd-tree compartmentalization. 
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TABLE I 
SUMMARIZING THE VARIOUS 𝑘𝑑-TREE IMPLEMENTATIONS INVESTIGATED 

k-NN 
Implementation 

kd-tree 
Levels 

Number of 
Training 
Examples 

Relative 
Training 

Frequency* 
3-NN 3 24 5.33 

4 48 2.67 
5 96 1.33 

5-NN 3 40 3.20 
4 80 1.60 
5 160 0.80 

7-NN 3 56 2.29 
4 112 1.14 
5 224 0.57 

X-NN 3/4 64 2 
4/5 128 1 

* Training frequency measured relative to X-NN (4/5), which is 
trained once a day. 

TABLE II 
OPERATING MODES OF THE PD DETECTION PROCESSOR 

Operating 
Mode 

Sub-Mode Duration 
(×1/clk3)† 

Active Functional 
Units (aside from 
processor FSM) 

Concurrent 
Detection 

and Training 

Training 
example 
storage 

8 Feature extraction for 
training, memory bank, 
feature extraction for 
detection and k-NN. 

MRM 
training 

2 Memory bank, MRM, 
feature extraction for 
detection and k-NN. 

k-NN 
training 

1 Memory bank, feature 
extraction for detection 
and k-NN. 

Detection 
only 

– 189 Feature extraction for 
detection and k-NN. 

†clk3 varies for each implementation. For X-NN (4/5) it is 1/432 Hz; this 
frequency has to be multiplied by the relative training frequency in Table I 
to obtain the equivalent value of clk4 for other implementations of the PD 
detection processor. 

 

Fig. 6. Detection performance for various implementations of the PD 
detection processor (number of training examples for each configuration 
summarized in Table I). 
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implementations and their training data requirements. 

E. Operating Modes 
The PD detector has two modes of operation: concurrent 

detection and training, and detection only. During both modes, 
real-time PD detection continues and both operating modes 
use fully on-site computation. During concurrent detection and 
training, the PD detector concurrently detects PD events and 
trains to determine the appropriate input channel and features 
for PD monitoring as well as the kd-tree hyperplanes for each 
level. This mode requires the most computing and memory 
requirement. Nevertheless, it only lasts for 5.5% of the time. It 
involves three sub-modes: training example storage, MRM 
training and k-NN training. These sub-modes take 4%, 1% and 
0.5% of the time respectively. Table II summarizes the active 
functional units during each of the sub-modes of concurrent 
detection and training.  The second mode is PD detection only, 
which happens most of the time. During this mode, the PD 
detector transmits PD events at one-second intervals. Only 
three functional units are active for majority (94.5%) of the 
time as highlighted in Table II. 

IV. PERFORMANCE EVALUATION 
To evaluate the performance of the proposed PD detection 

system, semi-synthetic neural signals constructed from real 
LFP recordings were used (Section II.A). A major bottleneck 
in validating implantable electronics is access to patients due 
to the necessary detailed clinical regulatory oversight. Semi-
synthetic neural signals were preferred to experimentally-
recorded neural signals because all underlying conditions in 
the original LFP signal can be modeled alongside the ground 
truth information. In addition, semi-synthetic signals offer the 
opportunity to synthesise longer LFP recordings from real 
LFP recordings with short duration. Detection performance 



TABLE III 
SUMMARIZING COMPLEXITY AND MEAN ACCURACY FOR VARIOUS 

IMPLEMENTATIONS  
S/No Implementation Complexity 

Measures 
(per channel) 

Accuracy Measures 

(µW) (mm2) Mean 
MCC 

Mean F1 
(%) 

Mean 
class. acc. 

(%) 
1 3-NN 3 2.28 0.0433 0.0012 51.29 49.74 
2 4 2.37 0.1175 0.2479 56.69 55.70 
3 5 2.31 0.1915 0.3513 68.20 64.76 
4 5-NN 3 2.23 0.0465 0.1608 56.12 60.00 
5 4 2.34 0.1651 0.3275 68.43 69.48 
6 5 2.53 0.2873 0.5081 68.11 77.96 
7 7-NN 3 1.80 0.0496 0.1315 50.20 51.18 
8 4 2.49 0.2126 0.4820 78.37 79.79 
9 5 2.73 0.3815 0.6422 92.68 89.66 
10 X-NN 3/4 2.22 0.1414 0.3542 86.18 82.14 
11 4/5 2.26 0.2385 0.6162 91.38 91.93 

 

 

Fig. 7. On-chip power and area. (a) MCC vs dynamic power; (b) MCC vs 
area. 
 

and hardware resource utilisation were observed. Detection 
performance results were obtained from the FPGA and 
estimate of hardware resources were obtained both from post-
synthesis power and area estimates when mapped onto a 
45 nm CMOS process. Design of ASICs for PD detection and 
monitoring has not been considered largely due to insufficient 
empirical evidence on the behavior of the DBS mechanism. It 
may not be cost-effective to fabricate the processor on a 
silicon chip. At this stage of development an adaptable 
platform such as a FPGA is required. 

A. Detection Performance 
For the hardware test, performance measures were obtained 

over a complete training and test period clk4. It has a 
frequency of 1 86400⁄ 	Hz for the X-NN (4/5) 
implementation. For other implementations the frequencies are 
multiples of X-NN (4/5) clk4 as summarised in the relative 
training frequency in Table I. Before performance evaluation, 
training is conducted which lasts 5.5% of the time. Then for 
the other 94.5% of the time, test cases are detected. The box 
plots in Fig. 6 (a) are the F1-score for the various 
configurations. It can be seen that the F1-score increases with 
an increase in the number of training examples, except in the 
case of 5-NN (5), 7-NN (3), X-NN (3/4) and X-NN (4/5). In 
the case of 5-NN (5), this could be attributed to outliers in the 
training examples due to an increased number of training 
examples. Outliers tend to bias the classifier model. In the 
case of 7-NN (3), the use of seven nearest neighbours in a 
training set consisting of 56 training examples can increase 
susceptibility to outliers i.e. if outliers are a large part of the 
training examples.  

With a median F1-score of 95.02%, the X-NN (3/4) has a 
better performance than the 5-NN (5) and 7-NN (4) which 
have 67.75% and 92.54% respectively. However, they use 
more training examples than the X-NN (3/4). The improved 
performance in X-NN (3/4) can be attributed to the 
complementary detection it uses. For the X-NN (4/5), its 
median F1-score trails that of the best, which is the 7-NN (5) 

by less than 1% even though the 7-NN (5) uses 224 training 
examples compared to 128 training examples used by the X-
NN(4/5). The top three implementations in terms of F1-score 
are: 7-NN (5) with a median of 96.29%, X-NN (4/5) with a 
median of 95.34% and X-NN (3/4) with a median of 95.02%.  

The classification accuracy measures in Fig. 6 (b) follow 
almost the same pattern as the F1-score in Fig. 6 (a). However, 
the major difference is that the X-NN (4/5) has a better 
classification accuracy performance than the 7-NN (5). The 
top three in terms of classification accuracy are: X-NN (4/5) 
with a median of 91.93%, 7-NN (5) with a median of 89.66% 
and X-NN (3/4) with a median of 82.14%. The effect of 
outliers was reduced using complementary detection to 
establish consensus between weak and disparate classifiers. 
Periodical updating the training examples also reduces the 
effects of outliers. These results clearly show that the 
complementary k-NN configuration improves detection 



TABLE IV 
SUMMARIZING FPGA RESOURCES 

Configuration LUT Registers Mux / Demux DSP 
Slices (%) Slices (%) Slices (%) Slices (%) 

3-NN 3 8377 13.2 6139 4.8 236 0.5 6 2.5 
4 11071 17.5 7492 5.9 619 1.3 6 2.5 
5 17135 27 10140 8.0 1078 2.3 6 2.5 

5-NN 3 10284 16.2 6953 5.5 331 0.7 6 2.5 
4 15351 24.2 9033 7.1 987 2.1 6 2.5 
5 23855 37.6 13017 10.3 2512 5.3 6 2.5 

7-NN 3 11514 18.2 7656 6.0 696 1.5 6 2.5 
4 17675 27.9 10646 8.3 1674 3.5 6 2.5 
5 29839 47.1 15997 12.6 3636 7.7 6 2.5 

X-NN 3/4 14194 22.4 8284 6.5 885 1.9 6 2.5 
4/5 20993 33.1 11560 9.1 1904 4 6 2.5 

 
 

performance. 
Fewer training examples may result in limited complexity; 

however, this occurs at reduced accuracy. To obtain the 
configuration with the best trade-off in terms of accuracy and 
complexity, configurations using fewer training examples are 
made to train more frequently. Thus, training frequency is 
inversely proportional to number of training examples. 
Configurations having a higher number of training examples 
have a lower training frequency. The training frequency and 
training examples are staggered so that the average number of 
training examples used by each configuration per day is the 
same. In pattern recognition, a high number of training 
examples results in high variance which could cause data 
overfitting. While a low number of training examples could 
lead to poor generalizability [18]. Periodically updating the 
training examples can be used to overcome issues such as poor 
generalizability and data overfit. 

B. On-chip Power and Area 
For ASIC resource requirements, various implementations 

of the architecture were synthesised and mapped into the 
45 nm NanGate digital cell library [19]. The power is analysed 
based on a core voltage of 1.1 V. The 7-NN (3) configuration 
has the lowest dynamic power requirements, while the 3-NN 
(3) has the lowest area requirements. The resulting estimates 
of dynamic power and area per channel for different 
configurations of the PD detection processor are summarized 
in Table III. Generally dynamic power is expected to increase 
with an increase in the number of training examples. However, 
this is not the case for the 3-NN (4), which is an outlier. 
Dynamic power is mainly due to clock signals, which makes it 
dependent on the architecture of the controller. It can then be 
deduced that the control architecture adopted for the 3-NN (4) 
uses more control and gating signals than its counterparts. The 
area consumption is commensurate with FPGA resource 
utilisation. However, this is not the case for the dynamic 
power consumption, where there is an increase in clock 
activity for each implementation with an increase in the 
number of kd-tree levels used. 

To put the complexity measures in perspective, Fig. 7 (a) 
shows the Matthews correlation coefficient (MCC) vs 

dynamic power and Fig. 7 (b) shows the MCC vs area. The 
various implementations of the PD processor are represented 
by the serial numbers in Table III. The plots are divided into 
four regions: Q1, Q2, Q3 and Q4. Q1 represents the 
implementations that have an average MCC greater than 0.5 
and also have dynamic power lower than the average dynamic 
power for all implementations. In Fig. 7 (a), only X-NN (4/5) 
implementation is in this category. This is the most desirable 
outcome in terms of dynamic power, i.e. a classifier to 
producing a model that accurately classifies test cases as well 
as having a dynamic power lower than the class average. The 
other quadrants in Fig. 7 are: Q2 which represents an average 
MCC greater than 0.5 and a dynamic power greater than the 
average which is 2.32 µW/channel. This represents a good 
detector but has a higher power consumption than Q1. Q3 
represents the unwanted condition, in which the detector 
consumes more power than the class average and produces an 
MCC that is less than 0.5, which signifies weak positive 
correlation. In the fourth region, Q4 the implementation 
results in a weak positive correlation (MCC < 0.5) and a 
power consumption less than the average for all the 
implementations. This may be more desirable than Q2 
depending on what is more important between power 
consumption and detector performance measure in MCC. The 
X-NN (3/4) produces the best performance for the 
implementations in Q4. For the area consumption in Fig. 7(b), 
there is an almost linear increase in area with an increase in 
MCC. Fig. 7(b), divides the quadrants in a similar way to Fig. 
7 (a). However, the quadrants on the y-axis are divided based 
on the average on-chip area of the configurations. None of the 
configurations fall into Q1. In Q2, the 5-NN (5), 7-NN (5) and 
X-NN (4/5) fall into Q2 where the X-NN (4/5) presents a 
better on-chip area trade-off than the others since it utilizes 
relatively less power. Q3 also represents the undesirable 
quadrant, with large area consumption and an average MCC 
below 0.5. In Q4, the best for MCC is the X-NN (3/4). These 
results demonstrate that the complementary configuration 
offers a good trade-off between complexity and accuracy. 

C. FPGA Resources 
The major building blocks for the FPGA implementation 

are: LUT slices, register slices, multiplexers and DSP units. 
The Artix-7 FPGA has 63400 LUT slices, 126800 register 
slices, 240 DSP slices and 47550 multiplexer slices [11]. The 
resource utilisation for the various implementations are 
summarised in Table IV. Only six DSP slices were used. 
These were used in the feature extraction unit. Other resources 
increase with an increase in nearest neighbours as well as kd-
tree levels. The k-NN and memory bank dominate in terms of 
resources as the kd-tree level grows. The feature extraction 
units and the MRM stay approximately the same throughout. 
DSP slices are only used in the feature extraction block for 
multiplication to compute the power of the coefficients from 
the four-level Haar wavelet. 

D. Comparison with Other Neurological Event Detectors 



TABLE V 
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART NEUROLOGICAL EVENT DETECTION PROCESSORS 

Reference This work [33] [28] [34] [35] [36] [37] [29] [38] [39] 
Year 2017 2017 2017 2016 2015 2015 2014 2014 2013 2013 

Application PD onset 
detection 

Epileptic 
seizure 

detection 

Epileptic 
seizure 

detection 

Epileptic 
seizure 

detection 

Epileptic 
seizure 

detection 

Epileptic 
seizure 

detection 

Epileptic 
seizure 

detection 

Epileptic 
seizure 

detection 

Epileptic 
seizure 

detection 

Epileptic 
seizure 

detection 
CMOS tech. (nm) 45 350 130 180 180 180 130 180 180 180 

No of channels 8 32 24 8 16 16 18 8 8 7 
Neural signals LFP EEG EEG, ECoG EEG EEG iEEG EEG EEG EEG ECoG 
Area/ch. (mm2) 0.2384 0.0491 12 a 3.125 3.125 0.0625 0.0833 13.47 a 25 a 0.7436 

Core voltage (V) 1.1 1.25 1.2 1.8 1.8 0.8 1.2 1.8 1.8 1.0 
Dynamic 

power/ch. (µW) 
2.26 0.95 1300 b FE = 7, 

SVM = 12.56 
2.45 0.85 5.94 2800 c 8.25 4.09 

Efficacy (%) F1 = 91.38, 
Class. acc. 

 = 91.93, 
MCC = 0.62 d 

Sensitivity 
= 87 

Sensitivity 
= 88 – 96 

Sensitivity  
= 95.1 

Sensitivity 
= 95.7, 

Specificity 
= 98 

Sensitivity 
= 100 

Sensitivity 
= 91 – 96 

Sensitivity 
= 92 

Class. acc. 
= 84.4 

Class. acc. 
= 93.1 

a Gives the total area of the chip not area per channel. 
b Total for 24 channels and other stages. 
c Total for 8 channels and other stages. 
d Not measured in %. 

Table V summarises the characteristics of state of the art 
neurological event detection processors implemented since 
2013. The implementation with the best efficacy, area and 
dynamic power trade-offs in this work, which uses the X-NN 
(4/5) classifier is adopted and compared with other 
neurological event detection processors. Published 
neurological event detection processors have focused on 
epileptic seizure detection. Comparison of PD detection with 
other neurological event detectors presented in Table V is 
confined to epilepsy detection. 

This work performs on a comparable level in terms of area 
and power to other neurological event processors. The 
classifier used by this processor adopts k-NN classification, 
which is a population dependent algorithm that extrapolates 
properties more accurately when larger training sets are used. 
Hence, memory banks were adopted for storing training 
examples. This increased the effective area per channel of the 
processor. The detection processor developed in this work is 
the first processor for PD detection. So far, neurological event 
detection processors have focussed on epileptic seizure 
detection. For seizure detection, the major signals of interest 
are electroencephalography (EEG) and electro-corticography 
(ECoG), which mostly lie below 30 Hz, which are obtained 
from the scalp and cortex respectively. 

In seizure detection, most studies use phase synchronisation 
between signals recorded from different channels as the 
biomarker of interest. Seizures are detected when phase 
synchronisation increases above a specific threshold. An 
increase in EEG or ECoG synchronisation between channels 
can be indicative of an epileptic episode. The main challenge 
of the phase synchronisation approach is that the baseband 
synchronisation varies across subjects and between channels. 
Nevertheless, neurological signals for epilepsy (EEG and 
ECoG) are more distinguishable than those of PD (LFP 
signals). A closed-loop system for epileptic seizure 
suppression has already gained FDA approval [20]. The 
unpredictable nature of LFP signals for PD and their higher 

frequency content compared to EEG and ECoG makes their 
processing more computationally intensive. LFP signals are 
used as biomarkers in PD detection and monitoring due to 
their stability and rich spatiotemporal content [21], which is 
necessary to overcome the unpredictable nature of PD. The 
fact that they can be obtained from existing stimulation 
electrodes means that they are minimally invasive. EEG 
signals are usually obtained from electrodes attached to the 
scalp. This makes them impractical for ambulatory disease 
monitoring as they are not implanted, which means they could 
limit patients’ quality of life. Another issue is that correlation 
between PD and EEG signals are yet to be established or 
reported. 

Regarding efficacy, most studies in epileptic seizure 
detection have focussed on sensitivity, which only measures 
true-positive rate. This means a randomly guessing processor 
that always returns a positive can achieve a 100% sensitivity 
since it will get all the actual positives (with 0% specificity). 
Therefore, more balanced measures may be required for more 
comprehensive assessment of processor efficacy. This is 
particularly necessary for situations where event detection 
informs therapy. Administering therapy when it may not be 
needed can result in side effects [22]. This is why more 
balanced measures like the MCC and F1-score are adopted in 
this work. 

V. DISCUSSION 

A. Personalized Health Monitoring in PD 
In PD, proper health monitoring can lead to better PD 

mitigation as well as reduce the number of face-to-face visits 
by patients. Further understanding on how disease progresses 
in patient population can be achieved through remote health 
monitoring. This can involve the analysis of data from 
multiple patients so that adaptive DBS strategies that 
incorporate more universal features or biomarkers could be 
incorporated in tackling varying PD disorders. This will make 



therapy more proactive and less retroactive. As more data is 
collected a better understanding of disease progression can be 
obtained, which could be used to refine therapy. Moreover, 
since diverse population of PD patients are afflicted with 
various dominant symptoms, implementations of personalised 
health monitoring systems can be tailored to cater for 
individual patient needs. Early detection of patient 
deterioration could help caregivers to immediately take action 
in modifying stimulation parameters or therapeutic paradigms 
[23]. This can be achieved by remote and continuous 
monitoring of the disease states. The information obtained 
from health monitoring systems is intended to be logged to 
monitor disease progression or relayed to caregivers in the 
event of an emergency. This can make therapeutic 
interventions more sustainable by early recognition of 
unresponsive symptoms so that alternative therapeutic regimes 
are provided [24]. 

Conventional DBS leads usually consists of 4 platinum-
iridium cylindrical contacts. They are implanted either 
unilaterally or bilaterally. This means they consist of 4 or 8 
electrodes. Recordings can be obtained from the same 
electrodes that are used for stimulation, making them 
minimally invasive [25]. An eight-channel design was adopted 
so that it is compatible with conventional DBS leads. DBS 
leads produced by all major manufacturers have a similar 
operating principle, with slight differences in technical 
features. 

B. Supporting Technology 
Advances in bio-sensing, signal processing, data 

communication and nanotechnology offer the possibility of 
fully implantable systems for disease monitoring. The major 
requirement is to devise systems that detect patient-specific 
physiological states in real-time using minimally invasive and 
low power devices. The development in machine-learning 
algorithms that are capable of exploiting statistical properties 
in the data to model specific correlations will facilitate more 
accurate decision making by healthcare experts or devices 
[26]. For disease monitoring using machine learning models, 
prior pre-processing is as important, or even more important 
than the use of the machine learning models themselves [27]. 
This is because the models are only as good as the input 
signals that are fed to them. The use of advanced LNA and 
ADC is essential to achieve high-performance detection. The 
state of the art systems in [28] and [29] consisting of sensing 
(LNA, BPF and ADC) and detection stages, utilize 1.3 mW 
and 2.8 mW respectively. Thus, total power consumption is 
below 3 mW. 

C. Challenges 
Healthcare monitoring systems are required to be 

operational for long periods of time. Monitoring systems like 
the LiveNet system [30], which uses an accelerometer, 
electrocardiography, electromyography and skin conductance 
to obtain information on PD and epileptic seizure by 
transmitting raw samples of data to external devices. Adopting 
this approach imposes high power and throughput 

requirements. This motivated the adoption of an 
implementation that can be deployed for on-site real-time 
processing. Due to the need for detection algorithms to be 
made implantable, there will be a demand for increased 
storage and computing capability to handle large and 
dynamically changing training data. Large training data may 
be required as classification accuracy improves as more 
knowledge on the disorder is incorporated into the processor. 
Other challenges confronted by personalised health 
monitoring systems are security and privacy issues [31]. 
Security and privacy is mainly dependent on the 
communication method used for transmitting PD events. A 
serious effort is already invested in research on encryption to 
protect from data interception and tampering [32]. 

VI. CONCLUSION 
In this paper, complementary PD detection was presented as 

a hardware-efficient method for on-site PD detection. The PD 
detection processor is the first known implementation for on-
site and real-time monitoring. The design leveraged on the 
flexibility of FPGA to test the performance of various 
configurations of the PD detection processor. Estimates for 
power and area were obtained for 45 nm CMOS technology. 
The PD detection processor presented a comparable level of 
performance to state-of-the-art neurological event detectors. 
Since spectral features are useful as biomarkers in other 
neurological applications, the proposed approach may find a 
range of different applications and implementations. For on-
site PD monitoring, the challenge is the realization of an 
efficient processor that can handle the complexity of 
physiological signals and still meet the requirement for 
implantation in chronic applications. 

REFERENCES 
[1] S. J. Schiff, “Towards model-based control of Parkinson’s disease.,” 

Philos. Trans. A. Math. Phys. Eng. Sci., vol. 368, no. 1918, pp. 2269–
308, May 2010. 

[2] J. Volkmann, J. Herzog, F. Kopper, and G. Deuschl, “Introduction to 
the programming of deep brain stimulators.,” Mov. Disord., vol. 17 
Suppl 3, pp. S181-7, Jan. 2002. 

[3] S. Marceglia, E. Rossi, M. Rosa, F. Cogiamanian, L. Rossi, L. 
Bertolasi, A. Vogrig, F. Pinciroli, S. Barbieri, and A. Priori, “Web-
based telemonitoring and delivery of caregiver support for patients with 
Parkinson disease after deep brain stimulation: protocol.,” JMIR Res. 
Protoc., vol. 4, no. 1, p. e30, Mar. 2015. 

[4] M. H. Myers, M. Threatt, K. M. Solies, B. M. McFerrin, L. B. Hopf, J. 
D. Birdwell, and K. A. Sillay, “Ambulatory Seizure Monitoring: From 
Concept to Prototype Device.,” Ann. Neurosci., vol. 23, no. 2, pp. 100–
11, Jul. 2016. 

[5] E. Rossi, M. Rosa, L. Rossi, A. Priori, and S. Marceglia, 
“WebBioBank: A new platform for integrating clinical forms and 
shared neurosignal analyses to support multi-centre studies in 
Parkinson’s Disease,” J. Biomed. Inform., vol. 52, pp. 92–104, 2014. 

[6] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. P. 
Chandrakasan, “A Micro-Power EEG Acquisition SoC With Integrated 
Feature Extraction Processor for a Chronic Seizure Detection System,” 
IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 804–816, Apr. 2010. 

[7] S. Little, A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo, M. Hariz, T. 
Foltynie, P. Limousin, K. Ashkan, J. Fitzgerald, A. L. Green, T. Z. 
Aziz, and P. Brown, “Adaptive deep brain stimulation in advanced 
Parkinson disease,” Ann. Neurol., vol. 4, no. 3, pp. 449–457, Sep. 2013. 

[8] A. Mohammed, M. Zamani, R. Bayford, and A. Demosthenous, 
“Toward on-demand deep brain stimulation using Online Parkinson’s 



disease prediction driven by dynamic detection,” IEEE Trans. Neural 
Syst. Rehabil. Eng., vol. 25, no. 12, pp. 2441–2452, Dec. 2017. 

[9] M. Ciletti, Advanced Digital Design with Verilog HDL, Second. New 
Jersey: Pearson Higher Education, 2010. 

[10] Xilinx, “7 Series FPGA Data Sheet: Overview,” Product Specification, 
2017. [Online]. Available: 
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Se
ries_Overview.pdf. [Accessed: 20-Oct-2017]. 

[11] Digilent, “Nexys4 DDR FPGA Board Refrence Manual,” 2016. 
[Online]. Available: 
https://reference.digilentinc.com/_media/reference/programmable-
logic/nexys-4-ddr/nexys4ddr_rm.pdf. [Accessed: 20-Oct-2017]. 

[12] D. Sundararajan, Discrete Wavelet Transform: A Signal Processing 
Approach. New York, United States: John Wiley and Sons Ltd, 2015. 

[13] D. Marković and R. Brodersen, DSP Architecture Design Essentials. 
New York, NY: Springer, 2012. 

[14] K. Zhou, H. Qiming, and B. Guo, “Real-time kd-tree construction on 
graphics hardware,” ACM Trans. Graph., vol. 27, no. 5, 2008. 

[15] A. Page, C. Sagedy, E. Smith, N. Attaran, T. Oates, and T. Mohsenin, 
“A Flexible Multichannel EEG Feature Extractor and Classifier for 
Seizure Detection,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 
62, no. 2, pp. 109–113, Feb. 2015. 

[16] M. Hasanlou and F. Samadzadegan, “Comparative Study of Intrinsic 
Dimensionality Estimation and Dimension Reduction Techniques on 
Hyperspectral Images Using K-NN Classifier,” IEEE Geosci. Remote 
Sens. Lett., vol. 9, no. 6, pp. 1046–1050, Nov. 2012. 

[17] K. Q. Weinberger and L. K. Saul, “Distance Metric Learning for Large 
Margin Nearest Neighbor Classification,” J. Mach. Learn. Res., vol. 10, 
pp. 207–244, 2009. 

[18] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. 
John Wiley & Sons, Inc., 2001. 

[19] Nangate Inc, “NanGate FreePDK45 Open Cell Library,” 2017. 
[Online]. Available: http://www.nangate.com/?page_id=2325. 
[Accessed: 25-Oct-2017]. 

[20] R. E. Elliott, A. Morsi, O. Tanweer, B. Grobelny, E. Geller, C. Carlson, 
O. Devinsky, and W. K. Doyle, “Efficacy of vagus nerve stimulation 
over time: Review of 65 consecutive patients with treatment-resistant 
epilepsy treated with VNS greater than 10years,” Epilepsy Behav., vol. 
20, no. 3, pp. 478–483, Mar. 2011. 

[21] S. Little and P. Brown, “What brain signals are suitable for feedback 
control of deep brain stimulation in Parkinson’s disease?,” Ann. N. Y. 
Acad. Sci., vol. 1265, no. 1, pp. 9–24, 2012. 

[22] J. F. Baizabal-Carvallo and J. Jankovic, “Movement disorders induced 
by deep brain stimulation.,” Parkinsonism Relat. Disord., Jan. 2016. 

[23] M. Parastarfeizabadi, A. Z. Kouzani, M. Moffitt, K. Otto, D. Kipke, 
and C. McIntyre, “Advances in closed-loop deep brain stimulation 
devices,” J. Neuroeng. Rehabil., vol. 14, no. 1, p. 79, Dec. 2017. 

[24] A. Priori, “Technology for deep brain stimulation at a gallop,” Mov. 
Disord., vol. 30, no. 9, pp. 1206–1212, Aug. 2015. 

[25] S. Stanslaski, P. Afshar, P. Cong, J. Giftakis, P. Stypulkowski, D. 
Carlson, D. Linde, D. Ullestad, A.-T. Avestruz, and T. Denison, 
“Design and validation of a fully implantable, chronic, closed-loop 
neuromodulation device with concurrent sensing and stimulation.,” 
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 4, pp. 410–21, Jul. 

2012. 
[26] G. Meyfroidt, F. Güiza, J. Ramon, and M. Bruynooghe, “Machine 

learning techniques to examine large patient databases.,” Best Pract. 
Res. Clin. Anaesthesiol., vol. 23, no. 1, pp. 127–43, Mar. 2009. 

[27] A. E. W. Johnson, M. M. Ghassemi, S. Nemati, K. E. Niehaus, D. 
Clifton, and G. D. Clifford, “Machine learning and decision support in 
critical care,” Proc. IEEE, vol. 104, no. 2, pp. 444–466, Feb. 2016. 

[28] H. Kassiri, S. Tonekaboni, M. T. Salam, N. Soltani, K. Abdelhalim, J. 
L. P. Velazquez, and R. Genov, “Closed-loop neurostimulators: A 
survey and a seizure-predicting design example for intractable epilepsy 
treatment,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 5, pp. 1–
15, Oct. 2017. 

[29] W.-M. Chen, H. Chiueh, T.-J. Chen, C.-L. Ho, C. Jeng, M.-D. Ker, C.-
Y. Lin, Y.-C. Huang, C.-W. Chou, T.-Y. Fan, M.-S. Cheng, Y.-L. Hsin, 
S.-F. Liang, Y.-L. Wang, F.-Z. Shaw, Y.-H. Huang, C.-H. Yang, and 
C.-Y. Wu, “A fully integrated 8-channel closed-loop neural-prosthetic 
CMOS SoC for real-time epileptic seizure control,” IEEE J. Solid-State 
Circuits, vol. 49, no. 1, pp. 232–247, Jan. 2014. 

[30] M. Sung, C. Marci, and A. Pentland, “Wearable feedback systems for 
rehabilitation,” J. Neuroeng. Rehabil., vol. 2, no. 1, p. 17, Jun. 2005. 

[31] P. J. Soh, G. A. E. Vandenbosch, M. Mercuri, and D. M. M.-P. 
Schreurs, “Wearable wireless health monitoring: Current developments, 
challenges, and future trends,” IEEE Microw. Mag., vol. 16, no. 4, pp. 
55–70, May 2015. 

[32] A. Zhang, L. Wang, X. Ye, and X. Lin, “Light-weight and robust 
security-aware D2D-assist data transmission protocol for mobile-health 
systems,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 3, pp. 662–
675, Mar. 2017. 

[33] S. Iranmanesh and E. Rodriguez-Villegas, “A 950 nW analog-based 
data reduction chip for wearable EEG systems in Epilepsy,” IEEE J. 
Solid-State Circuits, vol. 52, no. 9, pp. 2362–2373, Sep. 2017. 

[34] M. A. Bin Altaf and J. Yoo, “A 1.83 J/classification, 8-channel, patient-
specific epileptic seizure classification SoC using a non-linear support 
vector machine,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 1, pp. 
49–60, Feb. 2016. 

[35] M. A. Bin Altaf, C. Zhang, and J. Yoo, “A 16-channel patient-specific 
seizure onset and termination detection SoC with impedance-adaptive 
transcranial electrical stimulator,” IEEE J. Solid-State Circuits, vol. 50, 
no. 11, pp. 2728–2740, Nov. 2015. 

[36] M. Shoaran, C. Pollo, K. Schindler, and A. Schmid, “A fully integrated 
IC with 0.85-uW/channel consumption for epileptic iEEG detection,” 
IEEE Trans. Circuits Syst. II Express Briefs, vol. 62, no. 2, pp. 114–
118, Feb. 2015. 

[37] M. Shoaib, K. H. Lee, N. K. Jha, and N. Verma, “A 0.6–107 µW 
energy-scalable processor for directly analyzing compressively-sensed 
EEG,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 61, no. 4, pp. 
1105–1118, Apr. 2014. 

[38] J. Yoo, L. Yan, D. El-Damak, M. A. Bin Altaf, A. H. Shoeb, and A. P. 
Chandrakasan, “An 8-channel scalable EEG acquisition SoC with 
patient-specific seizure classification and recording processor,” IEEE J. 
Solid-State Circuits, vol. 48, no. 1, pp. 214–228, Jan. 2013. 

[39] T.-J. Chen, S.-C. Lee, C.-H. Yang, C.-F. Chiu, and H. Chiueh, “A 28.6 
µW mixed-signal processor for epileptic seizure detection,” in Proc. 
Symp. VLSI Circuits (VLSIC), 2013, Kyoto, Japan, pp. C52–C53. 

 
 


