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ABSTRACT 
 
We propose an algorithm to calculate the refraction path 
travelled by a signal from a source to a remote scatterer, 
through a horizontally parallel multilayer medium with 
vertical-varying refractive index. The exact solution in a 
simple two-layered medium requires solving a degree-4 
polynomial according to Snell’s law, meaning a time-
demanding solution. For narrow-beam sources a small-angle 
approximation is commonly used. In this new technique, we 
transformed the governing equations until the system can be 
solved by intersection of two curves. As these are 
monotonic with opposite slope, the crossing point can be 
estimated by iteration, with a minimum search algorithm. 
This method has been applied to focus synthetic aperture 
radar images of the Antarctic bedrock, improving the 
detected response in the wide-beam case, and reducing time 
regarding to compute the polynomial solution. 
 

Index Terms— Back-projection, radar, refraction, 
SAR, Snell’s law. 
 

1. INTRODUCTION 
 
A key parameter in signal processing of antenna arrays is 
the estimation of the path followed by the signals. The 
synthetic aperture radar (SAR) is a particular case, where 
the relative phase of the channels in the array depend on the 
radar trajectory and the target location, and will be used for 
calculating either the range-azimuth reference, the motion 
compensation or the cross-track beamforming functions. 
 The incidence angle of an electromagnetic (EM) wave 
through a multilayer medium is obtained through the 
equations defined by Snell's law and the ground distance 
between the source and the target. For the simplest case of 
radar and target each in a different uniform medium, the 
ground range distance from an airborne SAR to the 
refraction point on the air-ice interface corresponds with the 
roots of a degree-4 polynomial [1], and from this distance, 
the elevation angle results. However, solving these roots 
(together with discarding solutions) is computationally time-
demanding, and even more so when taking into account 3D-
distributed targets. For SAR image processing, a small-
angle approximation has been used [2-3], faster than the 

iterative method, but less accurate for large angles. For 
example, when a wide aperture is needed for high azimuth 
resolution, or a large angle of incidence is used for squinted 
processing, useful to detect the steep internal ice layers. 
Other approaches have been applied, such as using a look-
up table [4], from which the elevation angle or ground range 
distance can be measured after interpolation. However, if 
parameters different from those for producing the table are 
needed, the values must be recalculated, and thus inflexible. 
 In ice-sounding applications, the convenience of at least 
two ice layers was put forward in [5], adding complexity in 
airborne techniques. 
 

2. MODEL DESCRIPTION 
 
The speed of EM wave propagation varies inversely with 
refractive index and density of the medium. In ice, the wave 
propagation speed decreases with depth, because the air 
concentration reduces (more present in the precipitating 
snowflakes) and the ice becomes more compacted due to 
higher pressure. In the shallowest layer, known as firn and 
which might extend down to about 150m depth, the 
propagation speed is higher, decreasing until a solid ice 
region, known as glacier ice, is reached, with an expected 
constant refractive index of about 1.78 [6], compared to a 
minimum value of about 1.20 for ice on surface [5]. 
 For simplicity, the ice medium is usually treated as a 
single uniform layer, adding a correction of 10m for depth 
estimation, to account for the faster speed of propagation 
through firn [6]. Since refractive index increases with depth 
in the firm, a more realistic model should include different 
ice layers, as depicted in Fig. 1, where H is the radar height 
over the surface, RG and RGP are, respectively, the ground 
distances from radar to target and refraction point on 
surface, θ0 the elevation angle in the source medium (air, for 
airborne SAR) and di, ni, θi and RGi are, respectively, the 
thickness, the relative refractive index regarding the source 
medium, the incidence angle and the ground distance 
covered, of the i-th layer, out of L, in which ice is divided. 
 The refraction path and elevation angle is calculated 
from the distance RGP, as 
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3. PREVIOUS METHODS 
 
Snell’s law establishes that a wave propagating through 
different media follows the fastest path. The solution is 
found by equating to zero the derivative (regarding the 
desired parameter) of the one-trip delay, which will be the 
polynomial solution. An approximation of Snell’s law leads 
to small-angle calculations. 
 
3.1. Exact polynomial solutions 
 
Snell’s law relates each layer i to the first medium (air) by 
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On the other hand, for covering the ground distance RG, 
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 The case for the single-layer ice medium (L=1) was 
solved in [1] as a degree-4 polynomial, which, with the 
notation of Fig. 1, can be expressed in a compact form as 
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with P1 the degree-2 polynomial on RGP 
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 Because the layers are commutative when they are 
parallel, for each of the L layers exist analogous equations to 
(4-5). If in (3) the term RG1 within the summation is cleared, 
and RGi for every layer is expressed in terms of RGP with (4), 
it leads to the equation for the general case of L ice layers 
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 To obtain a polynomial of positive integer powers, (6) 
must be rearranged until the Pi terms appear in the 
numerator, yielding an equation of maximum positive 
integer degree 2·(L+1), although still with rational powers. 
As in (6) there are L-1 square roots, also L-1 squaring 
operations are required to transform the previous 
polynomial of 2·(L+1) degree, until being all powers 
positive integers. Because each square doubles the 
polynomial degree, the total factor is 2L-1. All together 
makes a polynomial of degree 
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 This technique gives an exact solution in the form of a 
polynomial, although it is computationally demanding, since 
generally it requires finding the eigenvalues of a matrix. L=0 
corresponds to the trivial solution RGP = RG, with degree 1. 
Considering firn and glacier layer (L=2), the degree is 12, 
which could be a problem not only in real time applications, 
but also in off-line processing when the signal paths must be 
calculated often, making interesting to approximate the 
exact calculations. The compact version for L=2 is 
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3.2. Small-angle approximation 
 
An approximation for small angles can be applied [2], in 
which the sine of the incidence angles in free space and ice 
is approximated by the tangent. Rewriting (3) as 
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and approximating (2) by means of the tangent 
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 Although this solution offers a fast analytical way, it 
has two main drawbacks. Firstly, it might be not valid for 
squinted processing, where the main Doppler beam 
illuminates an area far from nadir, pointing forwards or 
backwards. Secondly, the validity of this approximation is 
wavelength dependent, as the calculated range to the target 
will have a corresponding phase shift error. Besides, with 
relatively low flying aircrafts, the approximation is not valid 
for shallow targets. 
 

 

Fig. 1. Refraction path geometry in a multilayer ice medium. 



4. ITERATIVE ESTIMATION 
 
The new approach consists of finding the intersection point 
of unidimensional functions, with the same bounded 
definition domain. Since this point is unique, an optimized 
algorithm can be used. The advantage of this technique is 
that it works for all angles, with an accuracy according to 
the number of iterations performed. 
 
4.1. Derivation 
 
With new variables x, yi, ai and bi defined as 
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being x and yi within the interval [0, 1], readily checked with 
(9). The latter is transformed to 
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and the set of L equations in (2) to 
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Clearing y1 in (12) and with (13), it results 
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The solution to the system is the crossing point xc 
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to finally obtain the ground distance from radar to surface as 
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4.2. Solution search algorithms 
 
Inspection of f1(x) and f2(x) in (14) allows us to determinate 
a method to calculate xc: since f1(x) is strictly monotonically 
increasing and f2(x) decreasing, the solution g(x)=0 is 
unique. If the absolute value of g(x) is considered, the 

solution will be the minimum of |g(x)|, also unique. This 
makes possible to apply an optimized algorithm to find the 
solution by means of g(x), with zero-crossing, or |g(x)| with 
the minimum. In Fig. 2 are plotted these functions, for the 
case of L=2, with a firn layer of d1 = 150m and n1 = 1.5, when 
pointing a target 2km below the firn, with a radar at a 
ground distance of 300m and height of 500m. Those points 
where y1 is not between the interval [0, 1] are not valid (it 
would mean the EM wave refracts in the opposite direction, 
only possible in case the layers are not parallel), so the 
interval where to find xc can be reduced.  
 The case for L = 1 makes f1(x) = 1 - x, a linear function 
independent of the ice layer. Besides, for b1≫1, also f2(x) 
can be regarded as linear, and then xc ≈ 1/(1 + a1/b1). 
 The ‘Bisection’ method [7], based on the divide-and-
conquer technique, was used to calculate (15), comparing 
different probe points of the function to iteratively approach 
the zero-crossing or minimum point, reducing the search 
interval at each step. 
 Within an interval, the probability density of finding the 
minimum is assumed to be uniform. This, together with the 
nature of g(x) (strictly monotonically decreasing) and |g(x)| 
(increasing derivative), allows the rejection of a region after 
evaluating a probe point, located in the interval middle-
point. With the ‘Bisection’ method, the ratio between the 
lengths of the current search interval and the next one is 
optimized with a value of 2 (uniform probability). The 
difference when using (15a) and (15b) is that the former 
means a single evaluation of g(x), while the latter needs the 
derivative of |g(x)|, which might be a difficult expression if 
a single point is wanted with the analytical form, or require 
to differentiate two points of |g(x)|. It is also important to 
consider the complexity of the evaluation of g(x) and |g(x)|, 
which efficiency depends on the software used. Other option 
is to work with equivalent expressions: g(x) is the difference 
of f1(x) and f2(x), but the latter contains a root square, and 
then it might be more efficient to square f1(x) and f2(x). 
 The number of iterations determines the resolution in 
the abscise interval [0, 1]: as the ratio of the interval length 
after consecutive iterations is 2, after K steps the ratio is 2K+1 
(with uniform probability density, for K=0 the point 0.5 
would be the solution), and thus an error of 2-(K+1) occurs. 

 
5. RESULTS AND COMPARISONS 

 
The order of complexity of the polynomial solutions with 
degree N, is O(N2), and expressing N in terms of the number 
of layers L, according to (7) results in O(L222L). The small-
angle approximation has an order O(L), since each layer 
adds a summand in (10). In the intersection approach, a new 
layer also adds a summand to f1(x) in (14), and with K 
iterations, the complexity is O(K·L). 
 Fig. 3 compares the estimated incidence angle of the air-
ice interface θ0, for the small-angle and intersection 
techniques, subtracting to their value the polynomial 
solution, the latter expected to be exact. The model 



parameters are the same as for Fig. 2, except for the ground 
distance RG, now from 0 to 500m. The small-angle method 
has an error increasing with the ground distance, while the 
intersection approach, plotted with 10 and 15 iterations, 
presents an oscillating deviation. 
 Fig. 4 shows the range-Doppler SAR response of a 
region with approximately flat bedrock, at 3.4km depth, in 
data taken over Recovery Glacier, using the British 
Antarctic Survey PASIN (Polarimetric Airborne Scientific 
Instrument) radar at 150MHz, with height above surface 
340m, speed 55.2m/s, pulse repetition frequency after 
presuming 78.125Hz and sampling frequency 24MHz. 
Overlaid on the image are the range-Doppler expected 
responses after estimating the path with the small-angle 
approximation (dashed) and intersection method (dot and 
dashed) assuming a uniform ice-thickness with 1.78 the 
refractive index, while the solid line represents the case with 
a firn of d1 = 100m and n1 = 1.3. 
 

6. CONCLUSION 
 
The proposed approach allows a fast estimation of signal 
paths when travelling through a stratified medium made up 
of parallel layers, applying any of the well-known minimum 
search algorithms. Besides, its efficiency can be improved 
within each iteration, processing each layer with parallel 
computing. Although this work is framed in ice-sounding, it 
can be applied also to other fields, such as soil-sounding for 
mine and water detection or atmospheric radars. The next 
step will be the development of a similar algorithm to take 
into account non-parallel layers.  
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Fig. 3. Deviation of the estimated refraction angle on air-ice 
interface, for small-angle approximation (dashed) and 
intersection method (solid) with 10 and 15 steps, with the same 
parameters as in Fig. 2, but with RG from 0 to 500m. 

Fig. 4. Range-doppler SAR response [dB] of bedrock, matching 
with path estimation: 1 layer, with small-angle approximation 
(dash) and intersection method (dot-dash); and 2 layers (solid), 
with an intermediate firn layer of 100m and refractive index 1.3. 

Fig. 2. Intersection point and curves for H = 500m, RG = 300m, 
n1 = 1.5, n2 = 1.78, d1 = 150m and d2 = 2km. 


