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Glioblastoma (GBM) are aggressive and therapy-resistant brain

tumours driven by glioma stem-like cells (GSCs). GSC

behaviour is controlled by the microenvironment, or niche, in

which the cells reside. It is well-established that the vasculature

is a key component of the GSC niche, which drives

maintenance in the tumour bulk and invasion at the margin.

Emerging evidence now indicates that the specific properties of

the vasculature within these two regions impose different

functional states on resident GSCs, generating distinct

subpopulations. Here, we review these recent findings,

focusing on the mechanisms that underlie GSC/vascular

communication. We further discuss how plasticity enables

GSCs to respond to vascular changes by interconverting

bidirectionally between states, and address the therapeutic

implications of this dynamic response.
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Introduction
GBM is the most common and aggressive type of primary

brain tumour. Despite available therapies, which include

maximal surgical resection, radiation and chemotherapy,

median survival of GBM patients remains at less than

15 months [1]. This extremely poor prognosis is due to the

marked therapeutic resistance of these tumours, which

rapidly leads to fatal recurrence following treatment [2].

Significant causes of the therapeutic resistance are the

highly infiltrative and heterogenous nature of GBM [3–5].

Invasion into the brain parenchyma constitutes a major

clinical problem because it precludes complete surgical

resection and hinders radiotherapy [3,4]. Furthermore,
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extensive molecular and cellular heterogeneity lead to

variability in responses to both standard and targeted

therapies [5].

At the molecular level, GBMs display intertumoural and

intra-tumoural heterogeneity, harbouring a range of muta-

tions, transcriptional signatures and signalling alterations

across and within tumours [6–10]. At the cellular level,

GBMs comprise subpopulations of cancer cells with dis-

tinct therapy-resistance, proliferation, differentiation and

tumourigenic potential [11,12]. GSCs, a subset of

tumourigenic cancer stem cells, are thought to underpin

this cellular heterogeneity. GSCs are able to self-renew,

give rise to tumour-bulk cells of more restricted tumori-

genic potential and reconstitute a phenocopy of the

original tumour upon transplantation [13]. It is therefore

believed that GSCs are the main drivers of GBM malig-

nancy and progression. Importantly, GSCs are also intrin-

sically resistant to chemo and radiotherapy and more

invasive than non-stem tumour cells [14,15]. This sug-

gests that GSCs, which are spared by current therapies,

may also drive recurrence and that targeting this cellular

compartment should improve treatment outcome.

GSCs reside within specialised tumour microenviron-

ments, or niches, which maintain their stemness and

malignant properties [16]. In line with the heterogenous

nature of GBM, the GSC microenvironment is also highly

heterogenous and comprises at least three main structur-

ally, spatially and functionally distinct niches: the peri-

vascular, hypoxic and invasive niches [17]. The perivas-

cular and hypoxic niches are found within the tumour

bulk and consist of the angiogenic tumour vasculature and

the necrotic regions of the tumour, respectively [16,17].

Both these niches maintain GSCs and support their

stemness. The invasive niche comprises the tumour/brain

interface at the tumour margin. Within the invasive niche,

GSCs associate preferentially to normal pre-existing

blood vessels, which they co-opt to migrate and invade

into the healthy brain [3].

Increasing evidence indicates that, although both in

intimate contact with blood vessels, GSCs in the peri-

vascular maintenance and vascular-invasive niches may

be in phenotypically and functionally distinct states.

These states appear to be enforced by the specific struc-

ture, functional status and signalling properties of the

vasculature in each niche and to retain the ability to

interconvert bidirectionally as the vasculature evolves

during tumour progression and in response to therapy

(Figure 1).
www.sciencedirect.com

mailto:simona.parrinello@imperial.ac.uk
http://www.sciencedirect.com/science/journal/09594388/47
http://dx.doi.org/10.1016/j.conb.2017.11.008
http://dx.doi.org/10.1016/j.conb.2017.06.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conb.2017.06.008&domain=pdf
http://www.sciencedirect.com/science/journal/09594388


Vascular regulation of glioma stem-like cells Brooks and Parrinello 9

Figure 1

Unphosphorylated Olig 2
CD44 intermediat e

Laminin

Perivascular Invasive Niche

SHH

SDF-1
BK

NO
Invasion

Ephrin-B2Eph activation 

α-6

TNC

CD44 

CD44 

Notch1

CD44 hig h
Phosphorylated Olig2

Perivascular Maintenance Niche

C

Anti-angiogenic treatment

Tumour progression
GSC-EC differentiation 

Angiocrine factors

Astrocyte

GSC-derived  
endothelial cell

Endothelial cell

Invasive glioma

Non-stem 
tumour cell

Glioma 
stem-like cell (GSC

stem-like cell

)

Key:

B2R
CXCR4

OPN

Extracellular matrix

Current Opinion in Neurobiology

VEGF

FGF-2 TGF-β

The perivascular maintenance and invasive niches. The perivascular maintenance niche provides cues to neighbouring GSCs that promote self-

renewal and maintain stemness. These comprise cell-ECM, diffusible and cell–cell signals. ECM molecules implicated to date include laminin

alpha-2, which acts via integrin a6 on GSC, Osteopontin, which acts via CD44 expressed on GSC and Tenascin-C. Endothelial-derived diffusible

signals include FGF-2, TGF-b, SHH and nitric oxide (NO). The Notch pathway is the best characterized mediator of direct cell–cell signalling in the

perivascular niche. To sustain and expand the vascular maintenance niche, GSC can promote angiogenesis either directly via VEGF secretion and

differentiation into endothelial cells, or indirectly by inducing endothelial cells to secrete angiocrine factors. In the perivascular invasive niche

glioma cells use pre-existing blood vessels as invasion paths. Blood vessels attract tumour cells to the perivascular space via the

chemoattractants SDF-1 and bradykinin (BK), which act through CXCR4 and BR2 receptors, respectively. The basal lamina serves as a migration-

promoting substrate. GSC override inhibitory vascular ephrin-B2 signalling through ephrin-B2 overexpression and displace astrocyte endfeet to

gain access to the perivascular space, resulting in BBB disruption. As cells invade perivascularly, this process ultimately leads to blood vessel

regression and neo-angiogenesis, thus converting the invasive niche into a maintenance niche. Direct differentiation of GSC into endothelial cells

also generates new maintenance niches at the invasive tumour margin, by recruiting normal endothelial cells and stimulating angiogenesis.

Conversely, anti-angiogenic treatment can normalise vessels and promote invasion, thus transitioning the perivascular maintenance niche to an

invasive niche.
In this review we will summarise current understanding

of the molecular pathways that underlie GSC/vascular

interactions in the perivascular maintenance and invasive

niches, with a focus on the role of endothelial cells.

Furthermore, we will discuss how the interplay of extrin-

sic factors and intrinsic plasticity modulates the balance

between GSC invasion and self-renewal and how altera-

tions in this balance may affect malignancy.

The perivascular maintenance niche
GBMs are characterized by abnormal angiogenesis that

produces leaky and dysfunctional blood vessels and
www.sciencedirect.com 
microvascular proliferating structures, a histological hall-

mark of these tumours [18]. Within the tumour bulk,

GSCs often reside adjacent to these aberrant vascular

structures, an area known as the perivascular niche

[16,17]. This preferential localisation was first described

in the seminal work of Calabrese et al. [19��]. The authors

demonstrated that vascular endothelial cells maintain the

GSC pool by secreting soluble factors that promote self-

renewal and stemness character. Whilst the identity of

these factors is still incompletely understood, Sonic

Hedgehog, TGFb and FGF2 have all been implicated

[20–22].
Current Opinion in Neurobiology 2017, 47:8–15
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Figure 2
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Glioma cells invade along blood vessels. Glioma cells, particularly

GSC, use blood vessels as paths for invasion into the healthy brain

parenchyma. Immunofluorescence image of perivascularly invading

glioma cells in a GSC-derived mouse orthotopic glioma model. The

majority of GSC that migrate out of the tumour bulk co-opt pre-

existing blood vessels, either forming multicellular cuffs around the

vessels (filled arrowheads) or aligning as singles cells along them

(open arrowheads). Glioma cells are labelled with GFP (green) and

blood vessels with antibodies against the endothelial marker CD31

(red).
Subsequent work also highlighted the importance of cell–

cell contact-dependent and cell-extracellular matrix

(ECM) signalling. One of the best-described mediators

of perivascular GSC maintenance through direct cell–cell

interactions is the Notch pathway. In xenograft models,

activation of Notch signalling by endothelial cells pro-

moted GSC self-renewal, as demonstrated by the lower

GSC content and smaller size of tumours formed upon co-

injection of DLL4-depleted or Jag1-depleted ECs com-

pared to wildtype ECs [23,24]. Furthermore, nitric oxide

produced by the tumour endothelium promoted stem-

like characteristics in glioma cells through activation of

Notch signalling [25]. The extracellular matrix (ECM) is

a major component of the perivascular niche and GSCs

express a variety of ECM receptors, including several

integrins [26,27]. Activation of integrin-dependent sig-

nalling by the perivascular ECM has been shown to

maintain GSCs. Lathia et al. reported that laminin a2
is enriched around tumour blood vessels and promotes

GSC self-renewal [28]. This likely occurs through activa-

tion of integrin a6 on GSCs, as this receptor was shown to

specifically mark GSCs and drive their proliferation [29].

In addition, the matricellular protein Osteopontin also

plays an important role. Pietras et al. recently demon-

strated that Osteopontin and its CD44 receptor are selec-

tively expressed in the perivascular ECM and in GSCs,

respectively, and that CD44 maintains GSC stemness

through activation of HIF2a signalling [30].

Interestingly, the relationship between GSCs and the

vasculature is not unidirectional. Rather, as endothelial

cells influence GSC phenotype, GSCs also promote

angiogenesis in an intricate bidirectional crosstalk. This

is partly mediated by secretion of angiogenic factors such

as VEGF, which GSCs produce at much higher concen-

trations than non-stem tumour cells [31]. In addition,

GSCs can induce angiogenesis indirectly, by promoting

endothelial production of angiogenic factors [33]. Inter-

estingly, the pro-angiogenic effects of GSCs appear to be

context-dependent. A recent study demonstrated that

Tenascin-C, which accumulates in tumour vessels, mod-

ulates the GSC secretome to increase expression of a

range of angiogenic factors, including ephrin-B2 [32].

Finally, GSCs can also help form the perivascular niche

directly by differentiating into endothelial cells and peri-

cytes, though the extent to which this process occurs in

human GBM remains controversial [33–36]. Thus, a self-

sustaining positive feedback mechanism exists whereby

endothelial cells maintain GSCs that, in turn, stimulate

further angiogenesis to expand the perivascular mainte-

nance niche.

The perivascular invasive niche
In addition to providing a niche for GSC maintenance

within the tumour bulk, the vasculature serves as sub-

strate for invasion at the tumour margin [3,17,37,38]

(Figure 2). Indeed, perivascular invasion is one of the
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main routes of GBM infiltration originally described by

Hans Joachim Scherer in 1938 as ‘secondary structures,’

due to their close interaction with pre-existing brain

structures [39]. More recent studies also revealed that

among the tumour cell populations, GSCs have a partic-

ularly strong propensity to home to and migrate along pre-

existing blood vessels [3,40��,41��,42]. Though many

chemoattractants likely cooperate to drive GSC vascular

homing, two main pathways have been implicated to

date. The first involves chemokine stromal-derived fac-

tor-1 (SDF-1 or CXCL12) and its receptor CXCR4, a

pathway that also regulates stem/progenitor cell traffick-

ing to the vasculature in the normal neurogenic niche

[36,43,44]. SDF-1 and CXCR4 expression are elevated in

blood vessels and tumour cells, respectively, with GSCs

displaying highest CXCR4 expression [44,45]. Further-

more, CXCR4 knockdown impaired GSC vascular hom-

ing in xenograft models [36]. The second homing factor is

Bradykinin, a chemotactic peptide produced by vascular

endothelial cells that activates the G-protein coupled

receptor Bradykinin receptor 2 (B2R) on tumour cells

[46]. B2R exhibits increased immunoreactivity in GBM,

most notably in perivascular regions, and its pharmaco-

logical inhibition prevented the association of GSCs to
www.sciencedirect.com
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the vasculature, resulting in blunted invasion and reduced

tumour growth.

Upon homing to the vasculature, GSCs gain exposure to a

particularly favourable environment for invasion because

the basal lamina that surrounds blood vessels is enriched

in ECM components, such as laminin and fibronectin,

that stimulate cell migration [3,26,47]. In addition, the

perivascular space is fluid-filled, and therefore opposes

lower physical resistance to invading cells than other

brain regions [3,48]. By invading along blood vessels,

GSCs also obtain ready access to the high levels of oxygen

and nutrients they require to meet the metabolic

demands of cell migration [3,42].

However, following initial vascular contact, in order to

invade perivascularly GSCs must first overcome several

hurdles, highlighting the advantageous nature of this

infiltrative mode. First, the perivascular space is filled

with astrocyte endfeet that wrap around endothelial cells

and their surrounding basal lamina to form the blood–

brain-barrier (BBB) [3,49]. To circumvent these physical

obstacles, invading glioma cells lift up astrocyte endfeet

and pericytes, remodel the basal lamina and migrate along

the abluminal surface of endothelial cells [40��,41��].
Second, the extracellular space surrounding blood vessels

is extremely narrow [50]. To squeeze through this tight

environment, invading cells actively decrease their size
Figure 3
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by up to 35%, by shedding cytosplamic water [40��]. This

remarkable hydrodynamic process is mediated by ion

channels and Cl� cotransporters that become constitu-

tively expressed in glioma cells [51]. Third, endothelial

cells express repulsive signals that inhibit the migration of

normal cells along blood vessels. This process is mediated

by endothelial ephrin-B2 ligands, which activate Eph

receptors on vascular-associated cells [41��]. Therefore,

to enter the perivascular space for invasion, glioma cells

must also override vascular repulsion. In GSCs of mesen-

chymal subtype, this is achieved through up-regulation of

ephrin-B2 in the tumour cells themselves. Increased

ephrin-B2 saturates Eph forward signalling in neighbour-

ing GSCs through homotypic cell–cell interactions,

thereby desensitising the cells to heterotypic repulsion

by vascular ephrin-B2. An additional effect of Eph acti-

vation is increased repulsion among tumour cells, thus

promoting dispersion of single cells away from the tumour

bulk (Figure 3) [41��].

Striking the right balance
Increasing evidence suggests that perivascular GSCs of

the tumour bulk and the invasive margin may represent

phenotypically and functionally distinct subpopulations.

Piccirillo et al. showed that GSCs isolated from the inva-

sive margin are less proliferative and clonogenic than bulk

GSCs, are prone to adherent growth in vitro and fail to

form tumours when orthotopically transplanted [52].
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These findings are echoed by other studies that reported

decreased proliferation and increased expression of mes-

enchymal markers at the tumour periphery relative to the

core in both primary tumours and xenograft models [53–

56].

These distinct GSC phenotypes are likely imposed by

their distinct microenvironments. Though at first glance

counterintuitive for two populations that share a perivas-

cular microenvironment, it is important to keep in mind

that the molecular composition and functional states of

the vasculature in the two regions are markedly different.

Vessels in the tumour bulk are dysfunctional leading to

regions of hypoxia, express high levels of angiogenic

factors (e.g. Notch ligands) and are surrounded by atypi-

cal inflammatory ECM components (e.g. Osteopontin)

[17]. As described above, all these signals enforce stem-

ness and promote proliferation. In contrast, vessels of the

tumour margin are functional and thus normoxic, rela-

tively normal in structure and provide an environment

that promotes invasion, an effect that may also actively

suppress proliferation [17]. A recent elegant study in C.
elegans has indeed provided a first mechanistic explana-

tion for the long-standing observation in many cancers,

including GBM, that invasion and proliferation are mutu-

ally exclusive [57��]. The authors identified the transcrip-

tion factor Nhr67 as a critical mediator of cell invasion and

showed that it functions by enforcing a G1 cell-cycle

arrest, which in turn is required for acquisition of invasive

characteristics. Although the relevance of these findings

to mammalian systems is still to be confirmed, it is

tempting to speculate that a similar mechanism takes

place at the invasive perivascular niche. Consistent with

this idea, live imaging of glioma cells invading along

blood vessels were found to be largely quiescent and

to stop migrating in order to divide [38].

Emerging studies lend further mechanistic support to the

dichotomous relationship between GSC of the two peri-

vascular niches. For example, Klank and colleagues,

recently reported that CD44 expression and GSC motility

are correlated in a biphasic manner, where only interme-

diate CD44 expression supports migration [58�]. As CD44

expression is highest in the perivascular maintenance

niche, it is conceivable that these high CD44 levels would

suppress GSC invasion whilst strongly activating mainte-

nance pathways. Thus, high CD44 would shift the bal-

ance towards self-renewal in the tumour bulk, whereas

intermediate CD44 at the invasive front would favour

infiltration. In a similar vein, the phosphorylation status of

the transcription factor Olig2 has been proposed as a

molecular switch controlling the balance between

GBM invasion and proliferation, with unphosphorylated

Olig2 driving invasion at the tumour margin [59�]. This

suggests that phosphorylation/dephosphorylation of

Olig2 downstream of niche signals may also fine-tune

the balance in GSC states.
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Despite their distinct roles, the perivascular maintenance

and invasive niches are not comparmentalised entities,

but rather continuous environments that interconvert

during tumour evolution and following therapy (Figure 1).

As invading GSCs intercalate between astrocyte endfeet

and endothelial cells, they disrupt the BBB, leading to

vascular remodelling and allowing blood-borne cytokines

and immune cells to enter the brain. As the tumour grows,

this process, together with the increase in tumour mass,

eventually leads to regression of coopted vessels and

induction of angiogenesis [60]. Thus, as a result of tumour

progression, the perivascular invasive niche evolves into a

maintenance niche. Recent findings suggest that a similar

niche conversion can also occur through direct differenti-

ation of GSC into endothelial cells. GSC-derived endo-

thelial cells were shown to support seeding of satellite

tumours by recruiting normal endothelial cells to the

peritumoural region and creating new perivascular main-

tenance niches [61]. The reverse conversion also occurs

following anti-angiogenic therapies and has been best

characterized following Bevacizumab treatment, a VEGF

blocking antibody in clinical use. Several studies demon-

strated that by normalising the tumour vasculature, Bev-

acizumab treatment stimulates perivascular invasion, thus

transitioning the perivascular maintenance niche into an

invasive niche [62,63]. Mechanistically, this effect is at

least partially mediated by Met activity in glioma cells,

which, in the absence of VEGF, complexes with

VEGFR2 to drive a mesenchymal-like transition and

trigger invasion [64].

Together, this evidence suggests that the perivascular

invasive niche may induce GSC to undergo mesenchy-

mal-like differentiation, at the expense of self-renewal

and tumorigenicity. This raises the important question of

how, then, can invasive GSC regenerate the tumour

following surgical resection. The answer likely lies in

the remarkable plasticity of GBM. Indeed, recent studies

indicate that non-stem tumour cells retain the ability to

de-differentiate to GSC in response to a plethora of niche

signals. An intriguing report demonstrated that GSC only

undergo partial differentiation towards the astroglial line-

age and remain vulnerable to de-differentiation by mito-

genic stimuli [65��]. Similarly, lineage tracing of non-stem

tumour cells indicated reversal to a GSC state following

exposure to chemotherapeutics [66]. Consistent with this

rampant plasticity, single-cell RNA-sequencing revealed

a continuum of stemness across tumour cells, rather than

the existence of a well-defined, rare stem cell population

[8]. It appears therefore that perivascular GSC pheno-

types are not fixed, but rather plastic and niche-

dependent.

Conclusions
Perivascular GSCs exist in a dynamic balance between

self-renewing and invasive states, imposed, at least par-

tially, by the vasculature. As GSC plasticity enables these
www.sciencedirect.com
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states to interconvert bidirectionally, unilateral therapeu-

tic targeting of either perivascular niche will likely prove

insufficient for tumour eradication and may lead to resis-

tance by favouring the alternate state. Rather, the devel-

opment of improved anti-GBM therapies is bound to

require concomitant targeting of both perivascular sub-

populations. Increased understanding of the molecular

mechanisms that underlie GSC/vascular interactions in

both niches will be essential to achieve this goal.
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