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Abstract: The identification of an approximated model, once an opportune mathematical
structure is selected, requires both a precise estimation of its parameters and the determination
of the range of conditions in which the model provides accurate predictions, i.e., the domain
of model reliability. A variety of model-based design of experiments (MBDoE) techniques are
available in the literature for designing highly informative trials for the precise estimation of
model parameters. Available MBDoE methods assume that the model structure is exact in the
formulation of experimental design metrics. Hence, in the presence of an approximated model,
the employment of conventional MBDoE approaches may lead to the collection and fitting of
data at conditions where the model performance is very poor, thus leading to the degradation
of the fitting performance and a loss of model predictive power. In this work, an iterative
framework for the identification of approximated models is proposed in which the MBDoE step
is constrained to the domain of model reliability. The method is tested on a simulated case study
on the identification of an approximated kinetic model of catalytic ethanol dehydrogenation.
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1. INTRODUCTION

In many research domains related to chemical engineering,
the identification of comprehensive mechanistic models
is extremely challenging. A typical example is given by
the field of heterogeneous catalysis, where the chemist is
asked to unravel a reaction network using a setup in which
adsorption, desorption, catalyst deactivation, thermal and
mass transfer phenomena produce overlapping effects on
the observable reaction dynamics (Fogler, 2005). In gen-
eral, the process of model identification is hindered by
limitations imposed by the experimental apparatus and/or
by the limited amount of resources available for performing
the experiments. As a result of the limited capability of
enquiring and measuring the system, models frequently
embody a certain degree of approximation.

Once an opportune model structure is selected, the iden-
tification of an approximated model requires: 1 ) the de-
termination of the model descriptive limits; 2 ) the precise
estimation of its parameters. For addressing aspect 1, a
model-based data mining (MBDM) approach was pro-
posed to determine the range of conditions in which the ap-
proximated model provides accurate predictions, namely
the domain of model reliability (Quaglio et al., 2018).
For addressing aspect 2, a variety of model-based design
of experiments (MBDoE) methods were proposed with
the aim of designing trials carrying valuable information
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for the estimation of the model parameters (Pukelsheim,
2006). The information is expressed in terms of Fisher
information and optimal MBDoE criteria are formulated
as optimisation problems in which the objective may be:
i) maximising the collection of information, given the
available budget for the experimental activity (Galvanin
et al., 2009, 2016); ii) minimising the experimental effort
required to achieve a desired level of statistical quality for
the model (Larsson et al., 2011; Rojas et al., 2011).

MBDoE methods for parameter precision properly account
for the uncertainty present in the measurement system
(i.e. the measurement noise) and how this uncertainty
propagates to the parameter estimates. However, available
MBDoE tools do not account for the structural uncertainty
that may be present in the candidate model equations,
i.e. they assume that the model structure is exact. As
a consequence, the inconsiderate application of MBDoE
in the presence of an approximated model structure may
lead to the collection of data at conditions where the
model performance is poor. The fitting of these data
typically results in a significant worsening of the fitting
and a loss of model predictive capabilities. A framework
for the identification of approximated models is presented
in this manuscript where the design of experiments step
is constrained within the domain of model reliability
(Quaglio et al., 2018). The framework is applied on a
case study in-silico where the aim is the identification
of an approximated kinetic model of catalytic ethanol
dehydrogenation (Carotenuto et al., 2013).



2. METHODOLOGY

An approximated model structure is built for describing a
certain physical system of interest.

ŷ = f(ẋ,x,u, t,θ) (1)

In (1) the approximated model in its standard reduced
form is given where ŷ is an Nm-dimensional array of
measurable model outputs ŷi with i = 1, ..., Nm; f is
an Nm-dimensional array of model equations; x is a
Nx-dimensional array of state variables; ẋ is an array
of state variables time derivatives; u ∈ U is a Nu-
dimensional array of input variables; t is time. The model
also includes a set of non-measurable parameters θ ∈ Θ.
The identification of a model in the form (1) requires
both the estimation of the parameters θ from the fitting
of noisy experimental data and the determination of the
range of experimental conditions in which the model
produces accurate predictions, i.e., the domain of model
reliability. A procedure for achieving the aforementioned
objectives was recently proposed by the authors (Quaglio
et al., 2018) and it is briefly recalled in this Section.
The framework is presented in Figure 1. The procedure
starts from a candidate model structure and a set of
experimental data. A dataset Ψ = {yij |i = 1, ..., Nm ∧
j = 1, ..., Nexp} is available from the execution of a number
Nexp of experiments performed at conditions uj with
j = 1, ..., Nexp. Measurements for the variables yi (with
i = 1..., Nm) are affected by uncorrelated Gaussian noise
with known standard deviations σi (with i = 1..., Nm).
The procedure involves the following steps:

(1) A Model-Based Data Mining step: the available
dataset is fitted adopting a model-based data mining
(MBDM) method for parameter estimation. MBDM
generates two outputs: i) it labels the observed ex-
perimental conditions uj (with j = 1, ..., Nexp) as
compatible or incompatible with the candidate model,
following a criterion based on a pre-set threshold of
acceptability for model fitting; ii) it computes an
instance for the model parameters fitting only the
model-compatible experiments;

(2) A Support Vector Machine training step: the classi-
fication of the observed experimental conditions uj
(with j = 1, ..., Nexp) computed by MBDM is gen-
eralised to unexplored conditions u ∈ U by training
a non-linear Support Vector Classifier (SVC); SVC
generates a reliability map I(u) that quantifies the
expected model accuracy across the input space U ;

(3) A Constrained MBDoE step: if the model param-
eters computed at the MBDM stage do not meet
the desired statistical requirements (typically checked
through a t-test with opportune level of significance,
e.g., 95%), then new data have to be collected and
included in the parameter estimation problem; the
following experiments are designed employing con-
ventional MBDoE techniques (Franceschini and Mac-
chietto, 2008), but bounding the experimental design
problem within the model reliability domain com-
puted by SVC (i.e. constraining the design to con-
ditions u ∈ U |I(u) ≥ 0, where the fitting quality is
expected to be satisfactory).

In (Quaglio et al., 2018), the main focus was on steps 1 and
2 of the procedure. The main contribution of the present

Fig. 1. Proposed framework for the identification of ap-
proximated models structures.

manuscript is on the third step of constrained model-based
experimental design, which is detailed in Section 2.3. The
underlying mathematics of the MBDM and the SVC steps
is recalled in Section 2.1 and Section 2.2 respectively.

2.1 Model-based data mining for parameter estimation

In the proposed procedure, the maximum likelihood esti-

mate θ̂ for the model parameters is computed employing
a heuristic model-based data mining (MBDM) method for
parameter estimation. MBDM requires the solution of an
optimisation problem in the form (2), where the function
ΦDM to maximise, given in (3), is derived as a modified
likelihood function for the candidate model.

θ̂ = arg max
θ∈Θ

ΦDM(θ|Ψ) (2)
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In (3), variables βj(θ) ∈ {−1,+1} represent binary switch-
ers that are required to include or exclude experiments
from the objective function subject to conditions (4) and
zα

2
is the two-tailed value computed from a standard

normal distribution with significance α. The hyperparam-
eter zα

2
defines the maximum threshold for an absolute

normalised residual to bring a positive contribution to the
objective function. If in the course of the estimation the
model fails to achieve small residuals for the generic j-th
experiment, then the variable βj switches to the value -1
excluding the experiment from the fitting. The value of zα

2

shall be set ≥ 2.0 to reduce the probability of excluding
experiments for which the discrepancy between measure-
ments and model predictions is statistically compatible
with measurement noise (Rousseeuw and Leroy, 1987).



2.2 Determination of the model reliability domain

The solution of the MBDM problem (2), leads to the

construction of a function {uj |j = 1, ..., Nexp} → β̂j(θ̂) ∈
{1,−1}, which classifies the explored experimental condi-
tions uj (with j = 1, ..., Nexp) as compatible or incompat-
ible with the proposed model, given the desired tolerance
zα

2
. In the proposed approach, the classification of the

observed conditions is generalised to a generic point of
the design space U employing a non-linear Support Vector
Classifier (SVC) (Cortes and Vapnik, 1995) with Gaussian
kernel K. Non-linear SVC was chosen for its generality
of application and for its capability of computing deci-
sion functions characterised by potentially non-linear, non-
convex and non-connected geometry.

K(ui,uj) = e
−

(ui−uj)
T (ui−uj)

2γ2 (5)

In (5), the hyperparameter γ represents the decay length
of the radial basis function and quantifies the degree
of similarity between two different sets of experimental
conditions ui and uj . The classification accuracy of SVC
is sensitive to the choice of γ. The optimal value for
the decay length is case-specific and can be determined
through cross-validation (Bergstra and Bengio, 2012). The
application of a non-linear SVC results in the construction
of a decision function I(u) in the form (6) whose sign
is used to classify the model performance in unexplored
conditions of the input space U .

I(u) =

Nexp∑
j=1

αj β̂jK(u,uj) + b (6)

In (6), b represents the offset of the decision function and
αj with j = 1, ..., Nexp are the values for the Lagrange
multipliers obtained through the solution of the following
convex optimisation problem (Cortes and Vapnik, 1995):

max
α1,...,αNexp

Nexp∑
j=1

αj −
1

2

Nexp∑
i=1

Nexp∑
j=1

αiαjβiβjK(ui,uj)

s.t.

Nexp∑
j=1

αjβj = 0,

0 ≤ αj ≤ Cj ∀j = 1, ..., Nexp

(7)

The value for the parameter b in (6) is computed from
the Karush-Kuhn-Tucker complementarity condition as-
sociated to any margin support vector (characterised by
αj > 0) (Burges, 1998). In (7) Cj (with j = 1, ..., Nexp)
are regularisation parameters that determine the weight of
each experiment in the decision function. Parameters Cj
may be computed according to (King and Zeng, 2001) to
account for the possibly very different number of compat-
ible and incompatible experiments in the dataset.

2.3 Constrained model-based design of experiments

The characterisation of θ̂ from the solution of (2), requires
the evaluation of its associated confidence region through
the computation of the covariance matrix of the parameter
estimates Vθ (Bard, 1974). The quality of the estimates is
typically assessed from Vθ through a t-test. In case of un-
satisfactory parameter statistics, additional experimental
data need to be collected and fitted. A class of model-based

design of experiments (MBDoE) methods was proposed by
the scientific community to design highly informative trials
to maximise the collection of information for improving
parameter precision (Franceschini and Macchietto, 2008).
MBDoE is typically recast as an optimisation problem in
which the function to be minimised is a measure ψ of
the predicted covariance matrix V̂θ (Pukelsheim, 2006).

Popular MBDoE criteria are: D-optimal (ψ = Det(V̂θ));

A-optimal (ψ = Tr(V̂θ)); E-optimal (ψ = maxi=1,...,Nθλi
where λi are the eigenvalues of V̂θ). The formulation of

V̂θ is given in (8) assuming that Nd additional exper-
iments have to be designed. In (8), Hk is the expected
Fisher information matrix associated to the k-th exper-
iment to be designed. The term ∇ŷk is the Nθ × Nm-
dimensional sensitivity matrix (Saltelli et al., 2000) and Σ
is the covariance matrix of measurement noise.

V̂θ =
[
V−1

θ +

Nd∑
k=1

Hk

]−1

=
[
V−1

θ +

Nd∑
k=1

∇ŷkΣ
−1∇ŷTk

]−1

(8)
Conventional MBDoE methods do not consider the pres-
ence of structural model uncertainty in the formulation
of design metrics based on Fisher information. Hence, in
the presence of an approximated model structure, MBDoE
methods may lead to the design of experiments in condi-
tions u ∈ U where the model is particularly inaccurate.
Data collected outside the domain of model reliability
may carry valuable Fisher information, but their fitting
would result in a possibly unacceptable worsening of the
model fitting quality and a loss of model predictive ac-
curacy. In this work, a conservative approach to MBDoE
is proposed where the experimental design is constrained
within the domain of model reliability, i.e., at conditions
u ∈ U |I(u) ≥ 0 in which the model is expected to provide
a good fitting. In the framework, optimal experimental
design is the result of a constrained optimisation problem
in which the constraint is refined iteratively by the appli-
cation of step 1 and 2 in the procedure (see Figure 1).

u∗1, ...,u
∗
Nd

= arg minu1,...,uNd
ψ(θ̂; u1, ...,uNd)

s.t. uk ∈ U |I(uk) ≥ 0 ∀k = 1, ..., Nd

(9)

The constrained MBDoE problem is formulated in (9),
where u∗1, ...,u

∗
Nd

represent the optimised input conditions
for the designed experiments.

3. CASE STUDY

The proposed approach is tested on a simulated case study
where the aim is the identification of an approximated
kinetic model of ethanol dehydrogenation on a copper-
based catalyst. The presented case study is inspired by
the work of Carotenuto et al. (Carotenuto et al., 2013).

3.1 True kinetic model

The catalytic dehydrogenation of ethanol is assumed to
occur in a packed-bed tubular reactor. It is assumed that
the reaction occurs at isothermal conditions in the absence
of pressure drops and mass transfer limitations. The space
evolution of the gaseous mixture is described by the set
of differential equations (10). Five species are considered,
i.e.: ethanol CH3CH2OH (EtOH); acetaldehyde CH3CHO



(AcH); ethyl acetate CH3COOCH2CH3 (EA); hydrogen
H2; and nitrogen N2 (used as inert carrier).

dṅi(z)

dz
= w

NR∑
j=1

νijrj ∀ i = EtOH,AcH,EA,H2,N2 (10)

In (10), z is the axial space coordinate of the tubular
reactor normalised on the catalyst bed length; ṅi [molh−1]
is the molar flowrate of the i-th species; w [g] is the
catalyst weight; NR is the number of reactions; νij is the
stoichiometric coefficient of the i-th species in the j-th
reaction; rj [mol h−1g−1] is the reaction rate of the j-th
reaction referred to the catalyst weight.

In this study, the Langmuir-Hinshelwood-Hougen-Watson
(LHHW) kinetics proposed by Carotenuto et al. is adopted
as the true model for the generation of in-silico data
(Carotenuto et al., 2013). The kinetic model involvesNR =
3 reactions whose stoichiometry is reported in (11).

1: Ethanol� Acetaldehyde + H2

2: Ethanol + Acetaldehyde� Ethyl Acetate + H2

3: Acetaldehyde→ other products

(11)

In (11), Reaction 1 describes the step of ethanol dehydro-
genation into acetaldehyde, Reaction 2 accounts for the
formation of ethyl acetate from ethanol and acetaldehyde
and Reaction 3 is an undesired parallel reaction that con-
sumes acetaldehyde. Reaction rates are given in (12).

r1 =
k1bEtOHPEtOH

(
1−
(

1/Keq1

)(
PAcHPH2
PEtOH

))(
1+bEtOHPEtOH+bAcHPAcH+bEAPEA+bH2

PH2

)2
r2 =

k2bEtOHbAcHPEtOHPAcH

(
1−
(

1/Keq2

)(
PEAPH2

PEtOHPAcH

))(
1+bEtOHPEtOH+bAcHPAcH+bEAPEA+bH2

PH2

)2
r3 = k3P

2
AcH

(12)

In (12), kj = Aj exp (−Eaj/RT ) with j = 1, 2, 3 represent
Arrhenius-type reaction rate coefficients, where Aj and
Eaj are respectively the pre-exponential factor and the
activation energy of the j-th reaction; R is the ideal gas
constant and T is temperature [K]. Parameter bi is the ad-
sorption coefficient related to the i-th mixture component.
Pi [bar] is the partial pressures of the i-th chemical species.
Keq1 and Keq2 are the equilibrium constants of Reaction 1
and 2, derived from the Van’t Hoff equation (Carotenuto
et al., 2013). The parameters estimated by Carotenuto et
al. are assumed as the true parameter values of the exact
kinetic model (12) (Carotenuto et al., 2013).

3.2 Approximated kinetic model

Kinetic models of the LHHW type are notoriously affected
by identifiability issues derived by the high correlation
among its parameters. Whenever the amount of resources
available for performing the experiments is insufficient for
identifying a comprehensive model, a compromise between
model complexity and model accuracy shall be preferred.
In the present case study, the approximated kinetic model
is assumed to involve only Reaction 1 and Reaction 2
of the total mechanism (11). Furthermore, the rates for
Reaction 1 and 2 are modelled as power laws and are given
in (13). The approximated kinetic model involves four non-
measurable parameters θ = [A1, Ea1, A2, Ea2].

r1 = k1PEtOH

(
1−

(
1/Keq1

)(PAcHPH2

PEtOH

))
r2 = k2PEtOHPAcH

(
1−

(
1/Keq2

)( PEAPH2

PEtOHPAcH

))
r3 = 0

(13)

3.3 Methods and script implementation

The identification of the approximated kinetic model (13)
requires the precise estimation of the kinetic parameters
θ = [A1, Ea1, A2, Ea2] and the determination of the model
reliability domain. A positive t-test with 95% of signifi-
cance is set as statistical requirement for the parameter es-
timates. The sum of normalised squared residuals χ2

sample

is employed as index to assess the model fitting quality.
A three dimensional model input space is assumed where
the manipulable inputs are: ethanol molar inlet flowrate
ṅEtOH|z=0 (range 0.1 − 2.5 mol h−1); the total pressure
PTOT (range 10− 30 bar); temperature T (range 453-533
K). The inlet molar flowrate of the other species is fixed at
[ṅAcH, ṅEA, ṅH2 , ṅN2 ]|z=0 = [0.0, 0.0, 0.057, 0.057] mol h−1.
Catalyst weight is fixed at w = 2.0 g. It is assumed that
the molar flowrates of ethanol, acetaldehyde, ethyl acetate
and hydrogen at the outlet are the measurable output vari-
ables in the system. Measurements are generated from the
true kinetic model (see Section 3.1) adding uncorrelated
Gaussian noise with σi = 1.5 ·10−2molh−1 ∀ i = 1, ..., Nm.

A script to apply the proposed approach was implemented
in Python 2.7. The structure of the script is given in
Algorithm 1. The following settings were adopted:

(1) MBDM settings. The tolerance threshold is imposed
at zα

2
= 2.0. This is equivalent to treating any

residual exceeding the ±2σi error range as an outlier.
(2) SVC settings. The experimental conditions are nor-

malised to the unit cube before the training of SVC.
The SVC model implemented in the Python package
scikit-learn (Pedregosa et al., 2011) is employed. The
hyperparameters of SVC are set a priori : γ = 1.0
(i.e. default value for binary classification); Cj are
computed from the balanced class weight module of
scikit-learn (King and Zeng, 2001).

(3) Constrained-MBDoE settings. At this stage, a con-
strained D-optimal MBDoE is employed. The number
of experiments Nd to design is chosen iteratively in
the range Nd = 1, ..., NMAX

d (NMAX
d = 3) to eval-

uate the minimum number of experiments required
to meet the desired parameter statistics. Once Nd
experiments are designed, the algorithm selects and
performs the k-th most informative designed experi-
ment according to k = arg maxk Tr(Hk).

A preliminary full factorial design with Nexp = 8 experi-

ments is performed. Estimates θ̂ and reliability map I(u)
are computed and updated after every experiment. The
procedure stops once all parameters pass the 95% t-test
or when the maximum number of experiments allowed
NMAX
exp is reached. A comparison of the proposed method

with a conventional Maximum Likelihood (ML) approach
(Bard, 1974) and an MBDM approach with unconstrained
MBDoE is also proposed. The solver SLSQP of the scipy
package (Jones et al., 2001) is employed for both the
parameter estimation and the experimental design steps.



(a) (b) (c)

Fig. 2. Considered experimental design space defined by pressure, temperature and ethanol inlet flowrate at different
iterations of the model identification procedure implementing a constrained MBDoE: (a) after the execution of the
preliminary experiments; (b) after the execution of 4 designed experiments; (c) after the conduction of 8 designed
experiments. Green dots and red dots represent observed compatible (i.e. βj = +1) and incompatible (i.e. βj = −1)
experimental conditions respectively, according to the labelling computed by MBDM. The grey surface at I(u) = 0
represents the optimal boundary for the domain of model reliability computed by the Support Vector Classifier.

input : Nexp for preliminary design; MBDM tolerance zα
2

;
hyperparameters of SVC; t-test significance
for parameter validation; NMAX

exp ; NMAX
d ;

output: dataset with Nexp experiments

MBDM(dataset,zα
2
)→ θ̂, switchers βj

SVC(dataset,switchers βj)→ reliability map I(u)

while t-test(θ̂)= false and Nexp ≤NMAX
exp do

set Nd = 1
while predicted t-test(θ̂)= false
and Nd ≤ NMAX

d do
generate random initial guess for the design
constrained-MBDoE (Nd; u ∈ U |I(u) ≥ 0)
→designed experiments:u∗1, ...,u

∗
Nd

Set Nd = Nd + 1
end
perform most informative k-th experiment in
designed experiments (k = arg maxk Tr(Hk))
→ update dataset

set Nexp = Nexp + 1

MBDM(dataset,zα
2
)→ θ̂, switchers βj

SVC(dataset,switchers βj)→ update reliability I(u)
end

output: residuals, θ̂, Vθ, I(u)

Algorithm 1: Structure of the Python script for the au-
tomated identification of approximated model structures.

4. RESULTS

The preliminary dataset with Nexp = 8 is initially fitted
adopting a conventional ML approach. The information
content of the preliminary dataset is sufficient for obtain-
ing a model instance that satisfies the pre-set statistical
requirements on the model parameters, i.e., all the esti-
mates pass the 95% t-test. The χ2

sample associated to the
identified model instance in the ML case is 88.41.

The preliminary dataset is then fitted employing MBDM
and a conventional unconstrained MBDoE for designing
additional trials. The required parameter statistics in
the unconstrained case are met after the execution of 5
additional experiments (i.e. a total of 13 experiments). As

Table 1. Fitting quality of the approximated
model identified with different parameter esti-
mation and experimental design approaches.

Parameter
estimation

MBDoE Nexp
Fitted
exp.

χ2
sample

ML N/A 8 8 88.41
MBDM unconstrained 13 11 74.24
MBDM constrained 16 11 45.57

one can see from Table 1, the χ2
sample associated to the

identified model instance is 74.24, i.e., the fitting quality
in the unconstrained case improves with respect to the ML
case. The better fitting is a consequence of the relatively
strict setting for the discrepancy tolerance zα

2
= 2.0.

The proposed MBDM approach with constrained MBDoE
is subsequently employed. In the constrained MBDoE case,
the desired parameter statistics are achieved after the
execution of 8 additional experiments, for a total of 16
performed experiments. In the course of the constrained
experimental campaign the reliability function is updated
based on all the observed experimental conditions and the
labelling computed by MBDM. The dynamic behaviour
of the reliability function can be appreciated in the plots
of Figure 2, where the reliability boundary, defined by
I(u) = 0, is plotted after the preliminary 8 experiments
(Figure 2a); after 12 performed experiments (Figure 2b)
and after 16 performed experiments (Figure 2c). The dots
in the plots of Figure 2 represent performed experiments
and the colour indicates the labelling computed by MBDM
at the given iteration: green dots represent compatible
experiments; red dots indicate incompatible experiments.
From Table 1, it can be appreciated that the employment
of a constrained MBDoE eventually leads to the identifica-
tion of a model instance characterised by a better fitting
with χ2

sample = 45.57, which is significantly lower with
respect to the ML case and the unconstrained MBDoE
case. The estimation of parameters in the presence of
an approximated model structure is a problem of multi-
objective nature. In fact, in the presence of an approxi-
mated model, the statistical quality of the parameters and
the accuracy of model predictions are aspects that need to



be considered and addressed simultaneously rather than
independently. In the present case study, the proposed
MBDM with constrained MBDoE approach outperforms
other model identification methods available in the litera-
ture in solving this multi-objective task.

As one can see from Table 1, 16 performed experiments
(i.e. 8 iterations) are required to identify the approximated
model in the constrained case, while 13 experiments are
required in the unconstrained case. This is due to two fun-
damental reasons: 1 ) the constrained MBDoE prevents the
design of experiments outside the computed domain of re-
liability, where higher Fisher information may be present;
2 ) an inaccurate approximation of the reliability domain
leads to the design of trials in incompatible conditions,
which are rejected by MBDM. With regards to Reason
1, the MBDM tolerance zα

2
was set equal to 2.0. Thus,

the computed reliability domain tends to approximate the
range of conditions in which the expected discrepancy
between the true model and the approximated model is
within the ±2σi interval. A smaller value for zα

2
would lead

to a further shrinking of the model reliability domain and
a concomitant narrowing of the explorable design space.
In extreme cases, if the accuracy tolerance is too strict,
the information available in the reduced design space may
not be sufficient for estimating the model parameters, i.e.,
the candidate model may not be identifiable within its
reliability domain. In such situation one may choose to
relax the accuracy tolerance zα

2
, otherwise, if accuracy

is a fundamental model requirement, one may prefer to
test the performance of alternative model structures. With
regards to Reason 2, the domain of reliability computed
by SVC is purely data driven and depends on the size of
the training set as well as on the appropriate choice of
the hyperparameters γ and Cj ∀ j. However, the accuracy
of the SVC classification improves in the course of the
experimental design campaign and does not prevent the
ultimate identification of an approximated model that is
accurate within its reliability domain.

5. CONCLUSION

In this manuscript, a framework for the estimation of
parameters in approximated model structures was pro-
posed where the step of experimental design is constrained
within the model reliability domain, i.e., within the range
of experimental conditions in which the model provides ac-
curate predictions. In the proposed approach, the domain
of reliability is approximated through a black-box model
derived from support vector theory, i.e. a non-linear Sup-
port Vector Classifier (SVC). The framework was applied
to the identification of an approximated kinetic model of
ethanol dehydrogenation on a copper-based catalyst. The
application of the proposed method led to the identifica-
tion of a model characterised by satisfactory parameter
statistics and improved fitting quality with respect to
other approaches for parameter estimation available in the
literature. Future work will focus on two main aspects: i)
improving the accuracy of the SVC in representing the
model reliability domain implementing a cross-validation
step for optimising the hyperparameters of the learning
machine (Bergstra and Bengio, 2012); ii) assessing the
sensitivity of the method to the choice of different local
and global optimisers in the experimental design step.
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