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Abstract

In this paper, we introduce a new method for perfect simulation of multivariate densities.
We use One-Shot CFTP (Roberts and Rosenthal, 2002) together with a monotone coupler
for the Gibbs sampler, and implement the algorithm within the Read-Once CFTP protocol
(Wilson, 2000b). We illustrate our method by simulating efficiently from high-dimensional
truncated normal distributions using the Gibbs sampler.
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1 Introduction

Although Perfect Simulation (Propp and Wilson, 1996) is now well-known and has been used
in a variety of MCMC contexts, it has proved difficult to apply effectively in high-dimensional
situations without specific symmetry to guide the algorithm construction. Thus in particular
MCMC problems from Bayesian statistics are difficult for Perfect Simulation (see Murdoch and
Green, 1998, for a first attempt). Furthermore, continuous state space problems are intrinsically
difficult for any technique based on coupling, since intricate constructions are needed to ensure
coupling at all, let alone allow the construction of efficient coalescence rules for complex Markov
chains.

In this paper we shall bring together and extend a collection of generic techniques for explicit
coupling of continuous state space Markov chains. We will show how these methods can be
applied effectively for high-dimensional Gibbs samplers and related algorithms. We illustrate
our methods through an example which will be explored in detail through the paper and involves
a gaussian density restricted to an arbitrary rectangular region. However we hope to illustrate
that our methods have great potential in more general situations.

Our example will achieve exact sampling from multivariate gaussian densities restricted to
rectangular regions of the form:

π(x) ∝ exp

{

−1

2
(x − µ)⊤Q (x− µ)

}

· IS(x), x∈R
d (1)

for µ∈R
d, Q= (qij)∈R

d×d a positive definite, symmetric matrix and S=
{

x∈R
d : a�x�b

}

,
a,b ∈ R̄

d. (�) is the natural partial ordering on R
d, IS the indicator function of S, R̄ the
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extended real line R ∪{−∞,∞} and ⊤ denotes matrix transpose. We callQ the precision matrix.
Considering location-scale re-parameterisation we can assume that µ≡0 and qii≡1, 1≤ i≤ d.

The abbreviation TN will refer to an arbitrary member of the family of distributions with
densities of the type (1). When a random vector X is distributed according to π we write
X ∼ TNd(µ,Q

−1)|b
a
. Whenever some vector u ∈ R

d is mentioned ui denotes its i-th element
and u−i the complete vector without its i-th element, 1≤ i≤ d. We use bold fonts for vectors
preserving the right to drop this convention whenever needed.

Our methodology deals most easily with cases when the precision matrix is Stieltjes (Varga,
1962, ch.3):

Definition 1 A matrix V =(vij)∈R
d×d is a Stieltjes matrix if it is symmetric, positive definite

with vij ≤0 for all i 6=j.
A Stieltjes precision matrix induces a a stochastically monotone (w.r.t. (�)) Gibbs sampler on π
and this is precisely the property that makes possible the development of the Perfect Simulation
algorithms that follow.

Econometrics (Geweke, 1991; Hajivassiliou and McFadden, 1998) and signal processing (Djuric
and Kotecha, 1999; Rodriguez-Yam et al., 2002; Troughton and Godsill, 1999) literature provides
several cases when TNs arise and different methods for sampling from them. The univariate
case is easy to deal with using appropriate rejection sampling methods, see for example Geweke
(1991), Robert (1995). Rejection sampling algorithms in multivariate cases involve compari-
son functions like the corresponding untruncated density, the product of univariate exponential
(Hajivassiliou et al., 1996) or Gaussian densities restricted to the support of the target TN
and sequentially generated densities (Hajivassiliou and McFadden, 1998). All these techniques
perform poorly in high dimensions or for constraint regions away from the bulk of the under-
lying untruncated density. Many have recommended the use of the Gibbs sampler (Djuric and
Kotecha, 1999; Geweke, 1991; Hajivassiliou and McFadden, 1998; Robert, 1995; Rodriguez-Yam
et al., 2002) or some other MCMC technique (Troughton and Godsill, 1999). These methods
return correlated draws from a distribution that approximates (in a suitable sense) the actual
target distribution. Recently, a Perfect Simulation method for TNs restricted to [0,∞)d has
been presented (Philippe and Robert, 2003) which exploits a monotonicity property induced by
the MCMC technique of Slice Sampler. Its algebraic difficulties render it manageable only for
d≤ 3. It is also not exact in the sense that a vector with sufficiently big values is used instead
of {+∞}d.

Our methodology, as applied to a TN , lies close to the Gibbs sampler approach and could
be thought of as a way of turning the approximate results of the Gibbs method into exact ones.
The Gibbs sampler when applied to a TN exploits the fact that the univariate full conditional
distributions are still TNs. Indeed:

if X∼π then Xi |X−i =x−i ∼ TN1(µi(x−i), 1)|bi
ai
, for µi(x−i)=−

d
∑

j:j 6=i

qijxj (2)

The algorithms to be presented follow the Read-Once coupling from the past (Ro-CFTP) pro-
tocol (Wilson, 2000b), so we begin by presenting in Section 2 a version of the Ro-CFTP idea
called One-Shot CFTP and introduced in Roberts and Rosenthal (2002). In Section 3 we intro-
duce the coupling technique of the Monotone Independence Coupler (MIC) necessary for the
development of the Perfect Simulation algorithms that follow.

Two algorithms will be presented. The case-specific (Section 4) one is the first that comes in
mind under the certain structure of the precision matrix and relies on the cdf Φ of the N (0, 1)
distribution (N (µ, σ2) denotes the normal distribution with mean µ and variance σ2) and its
inverse Φ−1. Values of Φ(x) and Φ−1(u) for big |x| and u↓0, u↑1 must be treated with caution
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because of the finite accuracy of computing systems and this sometimes restricts the efficiency
of the algorithm.

The pure algorithm (Section 5) does not use at any point Φ or its quantiles. It is more com-
plicated than the case-specific one but more general. Although strictly speaking it is not needed
for the truncated gaussian example (apart from the numerical issues mentioned above which
nonetheless can sometimes be critical for the applicability of the algorithm, see the last example
in Subsection 7.2) we will describe it in detail and implement it with a view to demonstrating
the general applicability of our methodology. Both algorithms exploit the Stieltjes property of
the precision matrix; the case-specific algorithm by constructing a monotone Gibbs sampler and
the pure algorithm by devising convergent upper and lower dominating processes for the Gibbs
sampler Markov chain.

In Section 6 we show that the applicability of the above algorithms can be easily extended
to a class of truncated gaussian densities wider than the one with Stieltjes precision matrix and
that similar algorithms can be devised even for non-gaussian densities. In Section 7 we run the
algorithms and present several results concerning their correctness and efficiency. It turns out
that they draw efficiently from the target distribution even for high dimensions. We finish with
some conclusions in Section 8.

2 One-Shot CFTP

The One-Shot coupling has been introduced in Roberts and Rosenthal (2002) in the context
of obtaining computable bounds for the convergence of Markov chains. Our approach will be
to use the method as an ingredient in a Ro-CFTP algorithm. The construction proceeds as
follows. Suppose we have two Markov chains (Xn)∞0 , (Yn)∞0 , say on (Rd,B(Rd)), governed by
the same transition probability kernel but with different initial distributions which are coupled
in a way that |Xn−Yn|→0 as n→∞ (note that we drop the bold font representation of vectors
for this section). An attempt to unite the two paths is made when their distance is small and
this occasionally leads to stringent bounds on the total variation distance sup

A∈B(R
d) |P (Xn ∈

A) − P (Yn ∈A)|. We adjust the One-Shot coupling idea within the context of the Ro-CFTP
algorithm.

In the sequel, we adopt the Stochastic Recursive Sequence representation of a Markov chain
and use random update functions as means of describing the dynamics of the chain and, within
a simulation context, constructing sample paths of the chain for different starting points using
same random elements (what is called flows in the Perfect Simulation literature). Assume that
we need to sample from a (possibly unnormalised) density π on R

d w.r.t. some reference measure.
For convenience we denote by π both this density and the probability measure induced by it.
Let S be the support of π.

The CFTP protocol (Propp and Wilson, 1996) involves the development of an ergodic (usu-
ally discrete-time) Markov chain with stationary distribution π and the parallel realisation of
paths of the chain starting from everywhere in the support of π in a way that it is possible all
paths to merge into a single trajectory in finite time. The paths are run forward with starting
points taken increasingly back in time until a random moment T <0 is found when they all get
projected onto a single point at time 0. This single output is proved to be distributed according
to π. During this repeated excursion into the past random seeds used for the realisation of the
paths are stored and recalled any time paths coming from deeper into the past meet the time
instances where these seeds were first used.

Unlike the basic CFTP idea, the Ro-CFTP technique does not require the storage of random
seeds since it evolves forward in time. It relies on the development of a number, say k, of random
update functions φi, 1≤ i≤ k, and their synthesis to a compound random update function which
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in our case will have the structure:

Φ(x, Uk) := φk(· · · (φ2(φ1(x, U1), U2), . . . , Uk), x∈S

or in an abbreviated form:

Φ(x) = φk ◦ · · · ◦ φ2 ◦ φ1(x), x∈S (3)

We have denoted by Ui the random elements needed for the first time at the development of φi.
Also, U i := (U1, U2, . . . , Ui), 1≤ i≤ k. The update rule Φ must preserve π:

if P(x, dy) :=P (Φ(x)∈dy) , x∈S then

∫

S

π(dx)P(x, dy) = π(dy) (4)

or in a less troublesome notation πP = π. We call the synthesis (3) a block. In other words,
φ1, φ2, . . . , φk combined produce the update rule Φ that will generate a Markov chain with
invariant measure π. The mapping x 7→ Φ(x) evolves paths of this chain starting from anywhere
in the state space S to the end of the block.

It is critical that we are able to locate the (random) image Φ(S) = {Φ(x);x ∈ S} and
construct the block in a way that it can project all paths onto a single point. To this end,
most of the φi are built in a way that yields a monotonicity (e.g. φi(x)�φi(y) when x� y) or
a coalescence property. The monotonicity property could provide upper and lower paths that
make possible the identification of a superset of Φ(S) after carrying out the updates φi only
for these sandwiching paths while the coalescence property makes possible the event of a block
being coalescent, i.e. Φ(S) is a singleton.

τ0 τ1

∼ π

blocks0

Figure 1: A realisation of successive independent Φ-blocks. The thick trajectory represents
the coalescence path initiated with the singleton outputted by the first successful block. The
instances of this path one block-step before every successful block are i.i.d. observations from π.

The Ro-CFTP protocol involves the repeated, forward realisation of a number of independent
Φ-blocks and the consideration of their image Φ(S). In most cases Φ(S) is difficult to determine
and, subsequently, it is impossible to decide whether the coalescence event {Φ(S) is a singleton}
has taken place or not after running a block. Instead, it can be easier to determine whether a
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sub-event, say D, of the actual coalescence event has occurred or not. For the Ro-CFTP method
to be possible it is then necessary that:

P(D) =: ρ > 0 (5)

Assume that Φ
i is the i-th iteration of a block. Let w be the observation achieved at the

first instance of a successful block, i.e. a block when D occurred, say at the τ0-th iteration
(w ≡ Φ

τ0(S)). We call the path initiated by the singleton w of the first successful block and
constructed by its updates thereafter the coalescence path. Define:

τi = min
{

j > τi−1 : Φ
j is successful

}

, i ≥ 1

Theorem 1 The Φ
τi−1 ◦ · · · ◦ Φ

τ0+1 ◦ Φ
τ0(S), i≥1, are independent draws from π.

Proof: In the Appendix.

In other words, the instances of the coalescence path one block-step before every successful
block are i.i.d. observations from π, see Fig.1. Thus, for each block we need to know just the
location of the coalescence path and the status of the block (successful or not).

An intuitive proof of the Ro-CFTP protocol is given in Wilson (2000b) and an algebraic
one in Breyer and Roberts (2001). Our presentation of the Ro-CFTP algorithm is a little more
general than in the first appearance of the algorithm (Wilson, 2000b) since we shall need to
be able to monitor some arbitrary sub-event of the actual coalescence event for determining
whether a block is successful or not. To demonstrate the validity of this compromise we have
included in the Appendix a sketch of the proof of Theorem 1 in line with the one given in Breyer
and Roberts (2001) except for some small changes to apply to our case.

A common situation when we resort to a sub-event of {Φ(S) is a singleton} is when we can
only locate a set Φ

′ ⊇ Φ(S). In this case D ≡ {Φ′

is a singleton}. Provided that marginally
the updates φi are Markovian (as it will be the case for the algorithms to be presented), if we
can determine that a block will be unsuccessful before running all the steps within that block
it is then not necessary to continue keeping track of all the paths started from S; it suffices to
update only the coalescence path with respect to the distributions Pi(x, dy) := P(φi(x) ∈ dy)
for the single current location x of the coalescence path from the time instance when failure was
inspected to the end of the block. This follows from the simple consideration that the coalescence
path marginally is updated according to the Pi’s anyway and that for an unsuccessful block the
Ro-CFTP algorithm needs only the update of the coalescence path.

In summary, to sample from π we run the blocks and keep track of the coalescence path.
The instances of this path one block before each successful one constitute i.i.d. draws from π.
The algorithm runs in finite time (in terms of the iterations of the blocks needed) since from (5)
it is clear that the number of blocks necessary to get n draws from π is distributed according to
a negative binomial distribution with mean (n+ 1)/ρ. The term One-Shot CFTP refers to the
specific structure we impose on the block; we attempt coalescence only once at the last step of
the block. In the case of TNs, an appropriate Independence sampler step at the beginning of the
block forces paths starting from anywhere in the state space into a bounded set while a number
of Gibbs sampler steps bring the paths into a small, identifiable hyper-rectangle ensuring that
the final coalescence step has big probability of being successful. The construction of a block of
the One-Shot algorithm on TNs will be presented in detail in the sections that follow. Fig.3 at
pg.10 shows the phases in the formation of such a block. The meaning of the symbols on the
graph is explained in the sequel.
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3 The Monotone Independence Coupler

The Monotone Independence Coupler (MIC) exploits the MCMC technique of Independence
Sampling to turn stochastic domination into almost surely domination and raise at the same
time a coalescence event of positive probability. It is presented in Theorem 2. Its relevance
to the Gibbs sampler and TNs is explained in Subsection 3.1. The Independence Coupler has
been proposed as a coupling method in Breyer and Roberts (2000); the additional adjective
emphasises the monotonicity property induced by a certain version of this coupling technique
that we devised.

We begin by presenting the Independence Coupler. Let P (x, dy) be a probability kernel on
X × E which for any x in some set X defines a probability measure on a sufficiently regular
measurable space (E, E). Assume that p(x, y) is the density of P (x, dy) w.r.t. some reference
measure on (E, E) and q some other density w.r.t. the same measure. Let x 7→ Fx, x∈X , be
a random function that uses random seeds defined on the probability triple (Ω,F ,P) such that
marginally P(Fx∈dy)=P (x, dy). Draw Y ∼q and U∼U[0,1] independently (U[α,β] is the uniform
distribution on [α, β]). Consider the modification:

C ◦ Fx =

{

Y if p(x, Fx) q(Y )U ≤ p(x, Y ) q(Fx)
Fx otherwise

, x∈X

Then for any x∈X it is true that P(C ◦Fx ∈dy)=P (x, dy). The proof is given in Breyer and
Roberts (2000). The intuition is that C ◦ Fx is derived after drawing Fx from p(x, · ) and then
performing an Independence sampler step with p(x, · ) as the stationary density.

The MIC is a special case of the Independence Coupler. It exploits a property sufficient to
induce stochastic ordering. We denote by B(R) the Borel σ-algebra on R.

Proposition 1 Let P (x, dy) be a probability kernel on X×B(R), X ⊆ R, and p(x, y) its density
w.r.t. some reference measure. Assume that p has the properties:
(i) all p(x, · ), x∈X, have common support S⊆R.
(ii) p(x2, y)/p(x1, y) is increasing in y∈S when x1≤x2.
Then P is monotone, that is if Dx is the distribution function that corresponds to P (x, dy),
x∈X, then for x1 ≤ x2, Dx1 ≥Dx2 .

Proof:
Let x1 ≤ x2 be elements of S. Consider the set A= {y ∈ R : p(x1, y)> p(x2, y)}. In case that
A=∅ and there exists t such that Dx1(t)<Dx2(t) then Dx1(∞)<Dx2(∞) which cannot be true.
In case that A 6= ∅ let δ=supA. If δ = ∞, then p(x1, y) > p(x2, y) for all y ∈ S, so Dx1 ≥Dx2.
Else if δ<∞ and there exists t≥δ such that Dx1(t)<Dx2(t) then Dx1(∞)<Dx2(∞).

�

We can now present the Monotone Independence Coupler. It operates on monotone probability
kernels to induce coalescence.

Theorem 2 Consider a probability kernel P (x, dy) on X × B(R), X ⊆R, with density p(x, y)
that satisfies properties (i) and (ii) of Proposition 1. Assume that Fx is a random map such
that marginally Fx ∼ P (x, dy) for all x∈X and Fx1 ≤ Fx2 for x1 ≤ x2. Get some x∗ ∈X and
draw Y ∼P (x∗, dy) and U∼U[0,1] independently. Define the modified random map:

C ◦ Fx =

{

Y if p(x, Fx) p(x∗, Y )U ≤ p(x, Y ) p(x∗, Fx)
Fx otherwise

(6)

Then:
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(i) Marginally, P(C ◦ Fx ∈ dy) = P (x, dy), x∈X.

(ii) if x1≤x2 then C ◦ Fx1 ≤C ◦ Fx2 .

Proof: In the Appendix.

Note that p(x, ·) need only be known up to a normalisation constant. It is straightforward
that if there exist xl, xu∈X such that xl≤x≤xu for any x∈X , then C ◦Fxl

≤ C ◦Fx ≤ C ◦Fxu
,

so after realising C ◦ Fx only for two x’s we can obtain bounds for the updates of all points in
X . Clearly, when X is bounded the map x 7→ C ◦ Fx has positive probability of being coales-
cent. Since C ◦ Fx remains increasing in x the MIC can be applied repeatedly using each time
independent proposed variates; for example C ◦ C ◦ Fx ∼ P (x, dy) will be increasing in x. The
effect of the MIC depends heavily on using a proposal p(x∗, · ) of the same type with p(x, · ).
In different case, result (ii) of Theorem 2 would not be generally true.

A firm prerequisite for Theorem 2 is that it is possible to obtain a-priori a random map Fx

that realises the stochastic ordering of the kernel P (x, dy). Given that, the MIC is easy to
apply. Although in theory this is always possible using the inverse cdf method (see for example
ch.1 of Thorisson, 2000) in practise difficulties related with the availability of certain inverse cdfs
are often encountered.

There are also other coupling methods that induce coalescence. The splitting technique (see
for instance ch.1 of Thorisson, 2000) obtains the largest possible probability for the coalescence
event and so does the layered multi-shift coupler (Wilson, 2000a). However, both methods have
limitations in their use.

The layered multi-shift coupler requires that for any x ∈ X , and Fx ∼ P (x, dy), the distri-
bution of Fx −x to be independent of x, a strong random-walk assumption. In the case of TNs,
the layer multi-shift coupler cannot be applied.

For the splitting technique, one needs to find r(y) := infx∈C p(x, y), y ∈ R, and its integral
∫

R
r(y)dy for a suitably chosen small set C ⊆ X and simulate from the densities proportional

to r(·) and p(x, ·) − r(·); the calculations and simulations required create difficulties at the ap-
plication of the method. MIC is computationally more efficient that the splitting construction
(at least in the case of TNs) and benefits from an automatic implementation which does not
require application-specific tuning. In fact it can be thought of as a kind of random splitting con-
struction where the smoothness of the transition kernel P (x, ·) as a function of x automatically
constructs (in a random fashion) an appropriate small set for coupling purposes.

Example: To illustrate the use of the MIC assume that {N (µ, σ2);µ∈M⊂R} is a family of
univariate Gaussian distributions with mean µ and constant variance σ2. It can be equivalently
represented by the (unnormalised) kernel p(µ, y) = exp{−(y − µ)2/2σ2}, y ∈R, which satisfies
both conditions of Proposition 1. A trivial way to realise the stochastic ordering of the specified
family w.r.t. µ is by setting Fµ = µ+ σZ for a common Z∼N (0, 1). Theorem 2 now ascertains
that if some µ∗ is picked up and a variate Y ∼N (µ∗, σ2) is proposed the modified map C◦Fµ

will remain increasing in µ. The same procedure can be applied repeatedly with independent
Y ’s (Fig.2).

3.1 The MIC in the context of TNs

In the Perfect Simulation algorithms to be presented the MIC is applied to the univariate
updates of a Gibbs sampler step at the end of the block of the One-Shot algorithm. According
to the One-Shot rule, this final step is the only one within the block that attempts to merge the
paths started from everywhere in the state space at the beginning of the block. The analysis
that follows is thus focused on coalescence.
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C5◦Fµ
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Figure 2: The dashed line depicts the map Fµ =µ+Z∼N (µ, 1), µ∈ [0, 10] whereas the solid line
the modified map C5◦Fµ after a 5-fold implementation of the MIC. C5◦Fµ∼N (µ, 1) remains
increasing in µ.

To update the i-th element of some x according to the Gibbs scheme on TNd(0, Q
−1)|b

a
we

need to sample from the univariate TN1(µi(x−i), 1)|bi
ai

for µi(x−i) = −∑j:j 6=i qijxj . Certainly,
we will have to update a set of points so we need to devise a random map F (µ;α, β)∼TN1(µ, 1)|β

α

for all µ in some appropriate interval M=[µl, µu]. We will give the main idea for the generation
of F (µ;α, β) and the way that we check if µ 7→ F (µ;α, β) is coalescent for the case of both
algorithms (the case-specific and the pure algorithm). Details on the incorporation of this
univariate update rule in the general frame of the algorithms are given in the following sections.
Note that the family {TN1(µ, 1)|β

α
, µ∈M} can be represented by the kernel:

p(µ, y) = exp

{

− (y − µ)2

2

}

I[α,β](y), y∈R, for µ∈M (7)

which satisfies both conditions of Proposition 1.
In the case-specific algorithm the use of the cdf of the N (0, 1) and its inverse can yield

a random map F (µ;α, β) ∼ p(µ, · ) increasing in µ ∈M . Theorem 2 now ascertains that we
can produce a modification C ◦ F (µ;α, β) ∼ p(µ, · ) that remains increasing in µ and has the
additional property of inducing coalescence. Clearly, if C ◦ F (µl;α, β) = C ◦ F (µu;α, β) then
coalescence has happened.

In the pure algorithm, we will be in position to produce a random map F (µ;α, β)∼p(µ, · )
piece-wise increasing in µ. Considering each piece separately we can use the MIC and obtain
a modification C ◦F (µ;α, β)∼ p(µ, · ) that remains piece-wise increasing in µ. Recall that the
modified map is generated after proposing a Y ∼p(µ∗, · ) for some µ∗ ∈ R instead of F (µ;α, β).
It is important that we use the same Y for all the increasing pieces since this makes it possible
for C ◦F (µ;α, β) to be coalescent. Clearly, we need to determine C ◦F (µ;α, β) explicitly only for
the µ’s at the thresholds of the increasing pieces of F (µ;α, β) to decide if coalescence occurred.
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4 The Case-Specific Algorithm

This is the case when the cdf Φ of the N (0, 1) and its inverse Φ−1 are used. Thus, it involves
an algorithm that does not readily extend beyond the gaussian family. The One-Shot algorithm
block involves three phases. For each phase we are going to give the update rule and describe the
way we locate in practise the position of the sample paths having started from everywhere in the
support of the target density π given at (1) after carrying out the certain update. Notice that
we always have to monitor the updates of the coalescence path and therefore apply explicitly
the provided update rules for the current location of this single trajectory.

In what follows in this section and Section 5 it is necessary that we are provided with a fast
generator of draws from the univariate distributions TN1(µ, 1)|β

α
and the one with density:

q(x) ∝ exp(−|x|
ǫ

), x∈ [α, β] (8)

for ǫ > 0 and α, β ∈ R̄, α < β. We denote this distribution by Exp(ǫ)|β
α
. An efficient and nu-

merically stable algorithm for sampling from the TN1(µ, 1)|β
α

for any values of the parameters is
presented in the Appendix. For the case of the Exp(ǫ)|β

α
a simple algorithm involves well-known

methods for simulating truncated univariate exponential densities, so we avoid the details. From
now on it is assumed that we can call on the subroutines tr normal(α, β, µ) and tr exp(α, β, ǫ)
to draw from these two univariate distributions.

Phase 1: Forcing Paths into a Compact Set

Consider the density:

q(x) ∝ exp

(

−
d
∑

i=1

|xi|
ǫ

)

· IS(x), x ∈ R
d

where S = {x∈R
d : a� x� b} is identical to the support of π and ǫ > 0. Sampling from q is

straightforward after calling d times on the tr exp(ai, bi, ǫ) method. Assume that B ∼ q and
U∼U[0,1] independently. Consider the random update function:

φI(x) =

{

B if π(x) q(B)U ≤ π(B) q(x)
x otherwise

, x ∈ S (9)

This is just an Independence sampler step known to preserve π. It is easy to prove that if the
support of π allows the consideration of the limit |x| → ∞ then:

lim
|x|→∞

π(x)

q(x)
= 0 (10)

i.e. q is heavier tailed than π. From (9), (10), it is now clear that points sufficiently distanced
from the bulk of the target distribution π accept B rendering the image φI(S) a bounded set.
More analytically, assume that RB is the set of points not accepting B. Then:

RB =

{

x∈S : U >
π(B)q(x)

π(x)q(B)

}

=

{

x∈S : ǫx⊤Qx− 2
d
∑

i=1

|xi| < c

}

for c = 2ǫ logU − 2
∑ |Bi| + ǫB⊤QB. The following proposition helps in locating a superset of

RB.
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Proposition 2 Let V ∈R
d×d be a symmetric, positive definite matrix. Then, for any x∈R

d,
x⊤V x ≥ λV x⊤x, where λV > 0 is the minimum eigenvalue of V .

Proof: In the Appendix.

This Proposition yields that RB ⊆ {x ∈ S : λQǫx
⊤x − 2

∑ |xi| < c}, where λQ is the mini-
mum eigenvalue of Q, and after setting ǫ = 1/λQ and adjusting c for this value of ǫ:

RB ⊆ {x∈S : x⊤x − 2
∑

|xi| < c} = {x∈S :
∑

(|xi| − 1)2 < c+ d} ⊆
⊆ {x∈S : |xi| ≤

√
c+ d+ 1, 1 ≤ i ≤ d}

If c+ d < 0 then RB = ∅ and all the state space is projected onto B. Consider the sets
Ri = {x ∈ [ai, bi] : |x| ≤

√
c+ d + 1}, 1 ≤ i ≤ d. Clearly, the image φI(S) is a subset of the

hyper-rectangle, call it H , determined by the extreme points xl and xu with individual elements
xl,i = min {ψl,i, Bi} and xu,i = max {ψu,i, Bi} for ψl,i = inf Ri and ψu,i = supRi, 1≤ i≤d. As

RB

S

00 1 m+1 m+2

B

steps

H
′

H

xl

xu

Phase 1 Phase 2 Phase 3

x
′

u

x
′

l

Figure 3: A Block of the One-Shot Algorithm on TNs. An Independence sampler step (Phase
1) brings paths into the bounded set H , m Gibbs steps (Phase 2) force paths into the smaller
set H

′

and the attempt for coalescence takes place at an additional Gibbs step (Phase 3).

shown at Phase 1 of Fig.3 paths from everywhere in S are located into the identifiable bounded
set H after a single Independence sampler step.

Phase 2: Bridging the Gap

This part of the block makes use of a number of Gibbs sampler steps. The objective is to
force paths from H into some smaller hyper-rectangle H

′

. The critical point is that when the
precision matrix Q is Stieltjes the Gibbs sampler on π exhibits a monotonicity property that
makes necessary (for finding H

′

) the monitoring of only two paths, an upper and a lower starting
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from xu and xl respectively. Recall that if X∼ π then Xi |X−i = x−i ∼TN1(µi(x−i), 1)|bi
ai

for
µi(x−i) = −∑j:j 6=i qijxj . To sample from this conditional density we resort to the inverse cdf
method. The inverse cdf of the TN1(µ, 1)|β

α
is:

D−1(u;µ, α, β) := Φ−1 {uΦ(β − µ) + (1 − u)Φ(α− µ)} + µ, u∈ [0, 1] (11)

and is increasing in µ, i.e. D−1( · ;µ1, α, β)≤D−1( · ;µ2, α, β) for µ1≤µ2.
The update of the i-th element of x under the Gibbs scheme can be given by the random

map:
φi

g(x) := (x1, . . . , xi−1, D
−1(ξ ;µi(x−i), ai, bi), xi+1 . . . , xd)

for ξ∼U[0,1]. When x�y it is true that µi(x−i)≤µi(y−i), so φi
g(x)�φi

g(y). A full sweep of the
Gibbs sampler will be:

φg(x) := φd
g ◦ φd−1

g ◦ · · · ◦ φ2
g ◦ φ1

g(x)

and clearly φg(x)�φg(y) for x� y. In general, many iterations, say m, of the Gibbs sampler
will be carried out. The overall random map for this part of the block will be:

φG(x) := φg ◦ φg ◦ · · · ◦ φg(x) = φ(m)
g (x), x∈H (12)

Since φG(xl)� φG(x)� φG(xu) for all x∈H , when the Gibbs steps are finished all paths have
been forced into the tractable hyper-rectangle H

′

determined by x
′

l =φG(xl) and x
′

u =φG(xu).

That means that φG ◦ φI(S) ⊆ H
′ ≡ φG(H), see Fig.3 - Phase 2.

Phase 3 : One-Shot Coalescence

We proceed with one more Gibbs step adjoined with an effort to achieve coalescence of the
paths. As pointed out in Subsection 3.1, the idea is to use the Monotone Independence Cou-
pler (MIC) at each of the d univariate updates of a full Gibbs sweep. Coalescence is declared
when all d attempts are successful. An alternative choice would be the splitting technique, its
implementation however would have been much more demanding.

To perform a univariate update of the Gibbs sampler for all points in some certain set we
need to draw from TN1(µ, 1)|β

α
, or equivalently from the kernel p(µ, · ) given in (7), for any

µ in some set M = [µl, µu] determined by the extreme points of the set and appropriate α,
β. For instance, at the first univariate update we need to construct a map for all x ∈H ′

, so
µl = µ1(x

′

l,−1) and µu = µ1(x
′

u,−1), for µi(x−i) defined in (2).
The MIC involves two phases. First we construct a random map F (µ;α, β)∼p(µ, · ) exactly

as in the previous phase of the algorithm; we set F (µ;α, β) = D−1(ξ;µ, α, β) for ξ∼U[0,1] and
D−1 defined in (11). Recall that F (µ;α, β) is increasing in µ. Then we pick up some µ∗∈R and
draw Y ∼ p(µ∗, · ) and U ∼U[0,1] independently. Consider the modified map (for simplicity we
write Fµ instead of F (µ;α, β)):

C◦Fµ =

{

Y if p (µ, Fµ) p (µ∗, Y )U ≤ p (µ, Y ) p (µ∗, Fµ)
Fµ otherwise

We have already pointed out that the kernel p satisfies both conditions of Proposition 1, so
Theorem 2 guarantees that C◦Fµ∼p(µ, · ) and is increasing in µ. At the actual implementation
of the algorithm we choose µ∗ =(µl + µu)/2 so that the probability of coalescence is relatively
high and evaluate C ◦Fµ only for µ = µl and µ = µu. These two values are the updates of a
certain co-ordinate of the sandwiching paths and will be used at the next univariate update to
find the new boundaries µl, µu.
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For the general algorithm, we perform the i-th univariate update of the final Gibbs step via
the random map:

φi
c(x) := (x1, . . . , xi−1, C◦F (µi(x−i); ai, bi), xi+1, . . . , xd)

For x�y it is clear that µi(x−i)≤ µi(y−i), so φi
c(x)�φi

c(y). The complete update rule is:

φC(x) := φd
c ◦ φd−1

c ◦ · · · ◦ φ2
c ◦ φ1

c(x), x∈H ′

(13)

and is increasing in x. Someone needs to consider its effect only on the two extreme paths to
determine if coalescence is achieved. If at some intermediate univariate update the correspond-
ing elements of the extreme paths do not couple we declare the block unsuccessful and update
only the coalescence path according to the transition kernel determined by the Gibbs sampler
(see the discussion in Section 2).

Synthesis

The compound update rule for a block will be Φ = φC ◦φG ◦φI . It preserves π since all its
individual update functions defined in (9), (12) and (13) do. Because of the Independence
sampler step and the fact that we can only locate a superset H of φI(S) it is obvious that
Φ(S) is intractable. As already shown, we can easily obtain some Φ

′ ⊇ Φ(S) determined as
Φ

′

= φC(φG(H)). Φ
′

can be a singleton with positive probability increasing in the number of
Gibbs steps within each block.

It is important that the finite accuracy of the computing systems restricts the availability of
the cdf Φ of the standard normal distribution and its inverse Φ−1. The double-precision GSL
library for the C-language returns values for Φ(x) only when |x| < 38. For instance, when the
inverse cdf formula (11) is used for the TN1(0, 1)|5040 it returns +∞. If it happens that a value
Φ(x) for x outside of the range [−38, 38] is needed we instantly declare the block unsuccessful (we
cannot realise the monotonicity property anymore) and update only the coalescence path until
the end of the block. The validity of this compromise is justified after declaring a block successful
if the eventD={Φ′

is a singleton}∩{at no point of the block is a value Φ(x) for |x|>38 requested}
occurs and use it as the sub-event of the actual coalescence event {Φ(S) is a singleton} at the
demonstration of the Ro-CFTP protocol in Section 2.

5 The Pure Algorithm

Recall that the target distribution is π given in (1) for µ=0, support S and Stieltjes precision
matrix Q=(qij) with qii =1, 1≤ i≤ d. This time the use of Φ or Φ−1 is not considered yielding
the prospect of implementing the resulted algorithm in a context more general than that of TNs.
The phases in the construction of a block are the same as for the case-specific algorithm. Again,
for each phase we give the official update rule and describe the way we identify in practise the
position of the paths after that update has taken place. Note that the information we need
at the end of a block is the location of the coalescence path (so it is always presumed that we
explicitly apply the update rules for it) and whether it is successful or not.

Phase 1: Forcing the Paths into a Compact Set

It is identical to Phase 1 of the case-specific algorithm. It yields the random map φI (9)
that projects all elements of S onto a hyper-rectangle H determined by two identifiable points
xl and xu, see Fig.3 - Phase 1.
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Phase 2: Bridging the Gap

Assume that a path is located at some x∈S and the update of the i-th element of x is about to
take place via Gibbs sampler. The full conditional distribution of the i-th element of a random
vector distributed according to π is given in (2). The case-specific algorithm exploited the fact
that the inverse cdf of this univariate distribution is increasing in x and implemented the Gibbs
steps only for the sandwiching paths found at xl, xu before the effect of the Gibbs sampler.
Without Φ, Φ−1 realising the stochastic ordering of the family {TN1(µ, 1)|β

α
, µ∈M ⊆R} is im-

possible. Instead we opt for an adaptive rejection sampling scheme. It yields two bounding paths
that set off from xl and xu, squeeze all paths between them but are technically constructed,
i.e. they do not represent actual realisations of the underlying Markov chain but a selection of
instances among several paths.

Let φi
g denote the update rule under the i-th univariate Gibbs step. To construct φi

g two
methods are considered. The first (Fig.4) provides a random map R1(µ;α, β)∼TN1(µ, 1)|β

α
for

all µ∈ [µl, µu]⊆ [α, β]. It involves rejection sampling that uses as envelopes the corresponding
untruncated densities. If (Z + µ)∼N (µ, 1) lies in [α, β] then Z + µ is accepted as a draw for
TN1(µ, 1)|β

α
. It uses the same Z for all µ’s and is adaptive since the µ’s that accept Z + µ

are located and a subset of [µl, µu] is considered for the rest of the algorithm. The algorithm
terminates when R1(µ;α, β) is constructed for all µ∈ [µl, µu].

set µmin = µl, µmax = µu

while (µmin 6= µmax) repeat

sample increment Z∼N (0, 1)
if (Z + µmin ≤ β and Z + µmax ≥ α)

if (Z + µmin ≥ α and Z + µmax ≤ β)
store (µmin, Z + µmin), (µmax, Z + µmax), set µmax = µmin

else if (Z + µmin ≥ α)
store (µmin, Z + µmin), (β − Z, β), set µmin = β − Z

else if (Z + µmax ≤ β)
store (α− Z,α), (µmax, µmax + Z), set µmax = α− Z

return stored points

Figure 4: The algorithm that yields a piece-wise increasing random map µ 7→ R1(µ;α, β) with
the marginal property that R1(µ;α, β)∼TN1(µ, 1)|β

α
for all µ in [µl, µu]⊆ [α, β].

The second method generates a map R2(µ;α, β) ∼ TN1(µ, 1)|β
α

for any µ in some interval
[µl, µu] when µu ≤α or µl ≥ β. It is a case of Rejection Coupler (Murdoch and Green, 1998).
The unnormalised density of the TN1(µ, 1)|β

α
distribution p(µ, y) = exp{−(y − µ)2/2} I[α,β](y)

has the property:

if µ1 ≤ µ2 ≤ α or β ≤ µ2 ≤ µ1 then p(µ1, ·) ≤ p(µ2, ·) (14)

The algorithm that constructsR2 (for the case when µu≤α) involves adaptive rejection sampling;
use p(µu, · ) as an envelope for all the others p(µ, · ), µ ∈ [µl, µu), locate the minimum µ that
accepts a proposal from p(µu, · ) and set that as the new µu. It terminates when a draw
from p(µl, · ) is obtained. For the case when µl ≥ β we follow the same procedure with the
apparent symmetrical considerations. The pseudo-algorithm in Fig.5 is for µu≤α. Fig.6 shows
a realisation of the random functions R1(µ;α, β), R2(µ;α, β) for the case when α=−1, β = 1
and µ∈ [−2, 2].
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set µmin = µl, µmax = µu

while (µmin 6= µmax) repeat

sample Y ∼p(µmax, · ), U ∼ U[0,1]

set µmax = min {µ : µmin ≤ µ ≤ µmax and U ≤ p(µ, Y )/p(µmax, Y )}
store (µmax, Y )

return stored points

Figure 5: The algorithm that generates the piece-wise constant random map µ 7→ R2(µ;α, β)
with the marginal property that R2(µ;α, β)∼TN1(µ, 1)|β

α
for all µ in [µl, µu]⊆(−∞, α].

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

R1(µ)R2(µ) R2(µ)

µ

Figure 6: A realisation of the random update maps R1(µ;−1, 1)∼ TN1(µ, 1)|1
−1 for µ∈ [−1, 1]

and R2(µ;−1, 1)∼TN1(µ, 1)|1
−1

for µ∈ [−2,−1]∪[1, 2].

The overall update rule for the i-th univariate update of a Gibbs step is defined as:

φi
g(x) =

{

(x1, . . . , xi−1, R1(µi(x−i); ai, bi), xi+1, . . . , xd), ai≤µi(x−i)≤bi
(x1, . . . , xi−1, R2(µi(x−i); ai, bi), xi+1, . . . , xd), µi(x−i)>bi or µi(x−i)<ai

where we have assumed that φi
g applies to a set points within a bounding rectangle so that it

is possible to identify the appropriate bounds µl, µu for the construction of R1 and R2. For
instance at the first univariate update of the first Gibbs step this rectangle is H . As the following
update rules take place this bounding area is determined by a pair of bounding paths whose
construction is detailed in the next paragraph.

A full Gibbs step is given as:

φg(x) := φd
g ◦ φd−1

g ◦ · · · ◦ φ1
g(x)

Carrying out m Gibbs steps according to φg corresponds to using the random map:

φG(x) := φg ◦ φg ◦ · · · ◦ φg(x) = φ(m)
g (x), x∈H (15)

Clearly, φG(x) is not monotone in x (see Fig.6) so locating the position of the paths after applying
it is not straightforward. To overcome this inconvenience we develop a pair of bounding paths.
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We denote by R the complete update map produced after combining R1 and R2. Let y
(i,j)
u ,

y
(i,j)
l be the position of the upper and lower bounding paths after the j-th univariate update

of the i-th Gibbs step has taken place, 1 ≤ i ≤ m, 0 ≤ j ≤ d. These paths begin from the

edges of the hyper-rectangle H determined by the Independence sampler step, i.e. y
(1,0)
u ≡ xu,

y
(1,0)
l ≡ xl, and are developed in a way that y

(i,j)
u (y

(i,j)
l ) is identical to y

(i,j−1)
u (y

(i,j−1)
l )

except for its j-th element which is given as the supAi,j (inf Ai,j) for the set Ai,j defined as

Ai,j ={R(µj(y−j); aj , bj);y
(i,j−1)
l �y�y

(i,j−1)
u }, under the convention that (i, d)≡(i+ 1, 0).

Essentially, at each univariate update of the Gibbs sampler we locate the minimum and the
maximum value of the univariate map R that updates the certain co-ordinate for all the points
between the current location of the bounding paths and use these values to update the bounding
paths. The definition of R renders the identification of these values an easy task. This proce-

dure yields a tractable hyper-rectangle H
′

determined by the extreme points x
′

l := y
(m,d)
l and

x
′

u := y
(m,d)
u that includes the position of all paths started from H after the effect of these m

Gibbs steps.

Phase 3: One-Shot Coalescence

As with the case-specific algorithm we try to couple the univariate updates of an additional
Gibbs step. Then we were able to construct a random map F (µ;α, β) ∼ TN1(µ, 1)|β

α
(equiva-

lently F (µ;α, β)∼p(µ, · ) for the kernel p defined in (7)) increasing in µ rendering the effect of
the MIC straightforward. Now we follow a different procedure.

As in the previous phase of this algorithm we combine, if necessary, R1, R2 to get the random
map R(µ;α, β)∼p(µ, · ). The generation of R1, R2 ensures that R is piece-wise increasing in µ,
see Fig.6. We choose µ∗∈R and draw Y ∼ p(µ∗, · ) and U ∼U[0,1] independently. Consider the
modified map:

C ◦R(µ;α, β) =







Y if µ∈ [α, β] and p(µ,Rµ) p(µ∗, Y )U ≤ p(µ, Y ) p(µ∗, Rµ)
Rµ if µ∈ [α, β] and p(µ,Rµ) p(µ∗, Y )U > p(µ, Y ) p(µ∗, Rµ)
Rµ otherwise

(16)

where we wrote Rµ instead of R(µ;α, β). The new update rule implements the MIC on R only
for µ ∈ [α, β]. For µ < α or µ > β the definition of R itself provides a chance for coalescence
without the need for modification. From Theorem 2(i) it is clear that C◦R(µ;α, β)∼p(µ, · ) for
any µ considered. Theorem 2(ii) ascertains that C◦R(µ;α, β) remains piece-wise increasing in
µ.

Assume that a pair of bounding paths (the construction of which we explain in the next
paragraph) determine that we need to use (16) for all µ ∈ [µl, µu]. A careful consideration
of (16) indicates that if µu ≤ α or µl ≥ β then we use the Rejection Coupler as the means for
coalescence. If [µl, µu]⊆ [α, β] then we apply the MIC for µ∗=(µl+µu)/2 and we can determine
if the modified update C◦R(µ;α, β) is coalescent after realising it only for the extreme points of
the increasing pieces of R(µ;α, β). In any other case coalescence cannot happen, so we declare
the block unsuccessful and update just the coalescence path to the end of the block according
to the marginal kernel of the Gibbs sampler.

We do not need to resort to a sophisticated construction of bounding paths in the way
described in the previous part of the algorithm. Recall that this is an One-Shot algorithm, so
if a univariate Gibbs update fails to merge the element it updates for all points in an area of
interest then we declare the block unsuccessful and update only the coalescence path. Clearly,
given that after the i-th Gibbs update all univariate updates have been coalescent the area we
mention above is the hyper-rectangle determined by a pair of points equal to x

′

l, x
′

u except for
their first i-elements which have been updated and are identical.
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In the general context of the algorithm, the i-th update of a Gibbs step is given by the
random map:

φi
c(x) := (x1, . . . , xi−1, C◦R(µi(x−i); ai, bi), xi+1, . . . , xd) (17)

The complete update rule is:

φC(x) := φd
c ◦ φd−1

c ◦ · · · ◦ φ2
c ◦ φ1

c(x), x∈H ′

(18)

Synthesis

The random update map for a block of the pure algorithm is the synthesis Φ = φC ◦φG ◦φI ,
where the constituent update maps are defined in (9), (15) and (18). It has to be mentioned
that, in theory, the hyper-rectangle H determined after the Independence sampler step could
be extremely large for some blocks and this could create some problems related with the time
required to carry out the Rejection Coupler scheme of the subsequent Gibbs steps. For example,
it could happen that at a univariate update of the Gibbs step it is required that we construct the
map R2(µ; 0, 10) ∼ TN1(µ, 1)|10

0
for all µ ∈ [10, 2000] which would require considerable time. To

avoid such problems we could instantly declare a block unsuccessful when the map R2(µ;α, β)
should be determined for µ ∈ [µl, µu] when max{(µu−β), (α−µl)} is bigger than some threshold
of our choice. For the cases considered in Section 7 when we run the algorithms for various target
distributions, such problems with the Independence sampler step did not occur so we avoid any
further reference to this subtle point.

In total, for the pure algorithm a block is declared successful when the sub-event D= {the
bounding processes coalesce} of the actual coalescence event {Φ(S) is a singleton} takes place.

6 Extensions

The truncated gaussian distribution (1) is used throughout this paper mostly for reasons of
demonstrating the applicability of the MIC monotone coupling technique introduced in Section
3 and the various continuous state space coupling constructions of Sections 4 and 5 in a realistic
setting. In Subsection 6.2 we give a hint about how similar constructions can be applied to other
families of distributions. Before that we make a simple observation about the gaussian case.

6.1 Extensions within the Gaussian family

Although the preceding algorithms appear to be applicable to a certain class of TNs, those with
a Stieltjes precision matrix, a superset of this class can be treated in a similar way. Consider
the following two structures of a d× d, real, symmetric, positive definite matrix:



















1 − + · · · − −
− 1 + · · · − −
+ + 1 · · · + +
− − + · · · − −
...

...
...

...
...

...
− − + · · · − 1





































1 − − · · · − −
− 1 − · · · − −
− − 1 · · · − −
− − − · · · − −
...

...
...

...
...

...
− − − · · · − 1



















If X∼TNd(0, Q
−1)|b

a
with Q having the left side structure then X

′

= (X1, X2,−X3, X4 . . . , Xd)

is distributed according to TNd(0, Q
−1
o )|b′

a
′ with a

′

,b
′

identical to a, b respectively except for

a
′

3 = −b3 and b
′

3 = −a3 and Qo a matrix with the right side structure, i.e. a Stieltjes matrix (it

16



can be shown that Qo remains positive definite). This observation ascertains that our method-
ology could be implemented on a class of TNs wider than the one so far considered. In the
following definition ri : R

d×d 7→ R
d×d represents a map which when applied to a d×d matrix

changes the sign of the non-diagonal elements of the i-th row and column, 1≤ i≤ d, and r0 the
identity mapping that maps a matrix to itself.

Definition 2 The Positive Association Equivalence Class (PAEC) of truncated Gaussian dis-
tributions includes distributions identified as TNd(µ,Q

−1)|b
a

for some d∈ {1, 2, . . .}, a,b ∈ R̄
d,

µ∈R
d and Q∈R

d×d a symmetric and positive definite matrix for which there exists a sequence
of operators (rij

)k
j=1 such that:

ri1 ◦ ri2 ◦ · · · ◦ rik
(Q)

is a Stieltjes matrix, {i1, i2, . . . , ik} ⊆ {0, 1, 2, . . . , d}.
This sign transformation is called Parity Switching in Roberts and Tweedie (2005). Clearly,
the pure and the case-specific algorithms can be applied to any member of this class of TNs.
Actually, even when TNd(µ,Q

−1)|b
a
/∈PAEC it is still possible to call on the same algorithms

provided that:
∑

j:j 6=i

|qij | < 1 for all 1 ≤ i ≤ d (19)

While nothing changes for the Independence sampler step a modification of the Gibbs steps
is necessary. If the i-th updating of a Gibbs step is taking place with the paths found in the
hyper-rectangle determined by some extreme points xl, xu then a map Fµ∼TN1(µ, 1)|bi

ai
for all

µ such that:

−
∑

j:j 6=i

qij {xl,jI(qij ≤0) + xu,jI(qij>0)} ≤ µ ≤ −
∑

j:j 6=i

qij {xu,jI(qij ≤0) + xl,jI(qij>0)}

is constructed in the way described in Phase 2 of the case-specific and pure algorithms. The
i-th elements of xl, xu are updated with the minimum and the maximum value of the map Fµ

respectively. Condition (19) guarantees the convergence of the bounding paths constructed by
the update rule Fµ.

6.2 Further Directions for Extensions

The Perfect Simulation algorithms of Sections 4 and 5 can apply in a similar way to any multi-
variate distribution of arbitrary dimension d for which:

P1) for any 1 ≤ i ≤ d, the density of the distribution of Xi |X−i = x−i can be written as
pi(ǫi(x−i), · ) where ǫi : R

d−1 7→ R, is locally bounded, and

P2) the density pi(ǫ, ·) in P1 is stochastically monotone in ǫ, 1 ≤ i ≤ d.

The stochastic ordering in P2 can be increasing in the parameter, i.e. pi(ǫ2, y)/pi(ǫ1, y) being
increasing in y for ǫ1 ≤ ǫ2, as in the case of a TN , or decreasing, i.e. pi(ǫ2, y)/pi(ǫ1, y) decreasing
in y for ǫ1 ≤ ǫ2, as it will be the case for the examples that follow.

These are not the most general conditions possible, but generality comes at the expense of
applicability in this problem, so we concentrate on the family of distributions with properties P1

and P2 for which we can demonstrate that the algorithms described so far in the paper can be
readily generalised. We remark here that P1 and P2 are implied by the stronger though possibly
easy to check condition that for a density f :

∂2

∂xi∂xj
log f(x)
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is either non-negative for all pairs pair 1 ≤ i < j ≤ d and all x or non-positive. That this
condition implies P1 and P2 is easily verified using the FKG inequality (see for example Karlin,
1968). Note that this condition is trivially satisfied for a TN .

Based on the case of a TN , we will provide the guidelines for the development of an One-Shot
algorithm on an arbitrary multivariate density, say f , satisfying P1 and P2. For the Independence
sampler step we need to find a proposal density with heavier tails than f ; the corresponding
update function will then force all paths into a compact set, see Phase 1 of Section 4. This step
might even not be necessary, see the examples that follow.

Assume now that before a Gibbs step that will update the i-th co-ordinate of the paths, all
paths are located in a compact set, say G. The Gibbs sampler step will require the construction
of a random map ǫ 7→ Fǫ for all ǫ in E = [ infx∈G ǫi(x−i), sup

x∈G ǫi(x−i) ], with the marginal
property that Fǫ ∼ pi(ǫ, ·) such that it is possible to identify the infǫ∈E Fǫ, supǫ∈E Fǫ; these
extremes will be the updates of the i-th co-ordinate of some lower and upper bounding paths.
If the inverse cdf of pi(ǫ, ·) is available we easily obtain an Fǫ monotone in ǫ, see Phase 2 of
Section 4. Otherwise, it could be possible to construct Fǫ using some of the advanced coupling
techniques of Phase 2 of Section 5 (adaptive rejection sampling, Rejection Coupler).

The final phase of the block involves the attempt for coalescence after appropriately modifying
an additional Gibbs step. We follow exactly the same rules as for the case of a TN . If the random
maps for the univariate updates of the Gibbs step are monotone we use MIC (Phase 3, Section
4); else if they are constructed using adaptive rejection sampling or Rejection Coupler we modify
them using MIC to induce coalescence or do not modify then and hope for the Rejection Coupler
to provide coalescence respectively (Phase 3, Section 5).

For this construction to apply, the upper and lower bounding paths developed within the
block must converge. This will depend on the specific density under consideration and could
be checked theoretically, see Møller (1999) for the case of the multivariate gamma conditional
distribution defined in the sequel, or even experimentally, i.e. from preliminary runnings of the
Gibbs steps.

The family of distributions with the properties P1 and P2 includes many probability models
used in the literature; we will now give two examples.

6.2.1 Multivariate Gamma Conditionals Distribution

The so-called autogamma distribution has already been subject of the Perfect Simulation litera-
ture, see Møller (1999). It includes as a specific case a bayesian hierarchical model on a dataset
on pump reliability originally presented in Gelfand and Smith (1990) and used among others by
Rosenthal (1995); Murdoch and Green (1998); Breyer and Roberts (2001). The density of the
autogamma distribution writes as:

f(x) ∝ exp







−
d
∑

i=1

ǫixi −
d
∑

i<j

ǫijxixj







d
∏

i=1

xδi−1
i , x∈R

d,x�0 (20)

for ǫi>0, δi>0 and ǫij = ǫji≥0. If X∼f then :

Xi |X−i =x−i ∼ Γ(δi, ǫi(x−i)), ǫi(x−i) := ǫi +

d
∑

j:j 6=i

ǫijxj (21)

Γ(δ, ǫ) denotes the gamma distribution with mean δ/ǫ. Property P1 is satisfied for pi(ǫi(x−i), · )
the density of Γ(δi, ǫi(x−i)). Also, pi(ǫ, · ) is stochastically decreasing in ǫ so P2 holds.

The Independence sampler step is not necessary. For the Gibbs steps we construct the
random map Fǫ ∼ pi(ǫ, ·) by setting Fǫ = G/ǫ for G∼Γ(δi, 1). After one Gibbs sweep the upper
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bounding path initiated at {+∞}d will have finite values and all paths will have been forced into
a compact set; just notice that ǫi(x−i) ≥ ǫi > 0, thus the possible values of ǫ are lower bounded
and Fǫ will be upper bounded. As shown in Møller (1999) the bounding paths updated via the
supremum and infimum of Fǫ converge.

Were we given a truncated version of (20), we could still build a Perfect Simulation algorithm
using the adaptive rejection sampling techniques of Section 5.

6.2.2 Multivariate Exponential Conditionals Distribution

For details on this family of distributions see for instance ch.8 of Arnold et al. (1999) and Arnold
and Strauss (1988). The density is a follows:

f(x) = exp







−
∑

v∈ξd

λv(

d
∏

i=1

xvi

i )







, x∈R
d, x � 0 (22)

where ξd := {v∈R
d : vi =0 or 1 for all 1≤ i≤d}, λv for v 6= 0 non-negative parameters and λ0

a normalizing constant. If X∼f then:

Xi |X−i = x−i∼Exp(1/ǫi(x−i)), ǫi(x−i) :=
∑

v∈ξd,vi=1

λv(
d
∏

j:j 6=i

x
vj

j )

with Exp(1/ǫ), ǫ > 0, the exponential distribution with mean 1/ǫ. Property P1 holds for
pi(ǫi(x−i), · ) the density of Exp(1/ǫi(x−i)); property P2 also holds since pi(ǫ, ·) is stochastically
decreasing in ǫ.

It is not simple to give a general rule for the Independence sampler step for any values of the
parameters λv. In fact, for a sub-family of (22) defined in the sequel this step is not necessary.
Assuming that the paths can be projected onto a hyper-rectangle with lower point xl of positive
co-ordinates and upper point xu of co-ordinates xu,j < ∞, 1 ≤ j ≤ d, the Gibbs steps are then
straightforward; we construct the random map Fǫ ∼ pi(ǫ, ·) for any required ǫ in a bounded
interval E using the inverse cdf method:

Fǫ = − log(1 − ξ)/ǫ, ξ ∼ U[0,1] (23)

Fǫ is decreasing in ǫ, so we can easily find infǫ∈E Fǫ and supǫ∈E Fǫ which are used for the
update of the i-th co-ordinate of the lower and upper bounding paths initiated from xl and xu

respectively. The coalescence step will be a simple application of MIC.
We return to the Independence sampler step. Consider the densities (see ch.8 of Arnold

et al., 1999):

f(x) ∝ exp

{

−
d
∑

i=1

xi − δ

d
∏

i=1

xi

}

, x∈R
d,x � 0 (24)

generated by (22) under the specifications λv =δ>0 for v= (1, 1, . . . , 1), λv =1 for v ∈ ξd such
that

∑

vi =1, and λv =0 for all other v 6= 0. In this case

ǫi(x−i) = 1 + δ
∏

j:j 6=i

xj ≥1. (25)

Consider a Gibbs sampler step under the rule (23) for all points in the domain of (24); from (25),
Fǫ will need to apply to all ǫ in E = [1,∞), Yet, infǫ∈E Fǫ = limǫ→∞ Fǫ = 0 and supǫ∈E Fǫ = F1

so after one full Gibbs sweep the upper bounding path initiated at {+∞}d will have finite co-
ordinates; the rest of the Gibbs steps will be carried out in the regular way. It can be shown
that the bounding paths updated by the supremum and infimum of the maps Fǫ corverge.
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7 Simulation Results

For this section we use the abbreviations RS:=Rejection Sampling, PA:=Pure Algorithm and
CSA:=Case-Specific Algorithm.

7.1 Running the Algorithms

To try to eliminate the possibility of coding error, we first applied PA and CSA to a distribution
which can be routinely simulated using RS. Thus we consider the tri-variate distribution:

TN3(0, Q
−1)|b

a
, for a={−∞}3,b={+∞}3 and Q=(qij) with qii =1, qij =−0.4 if i 6= j (26)

and get two samples each of size 50, 000. We used 9 Gibbs steps within each block for PA
and 5 Gibbs steps for CSA before the attempt for coalescence. The marginal distribution for
each co-ordinate of the target distribution is just N (0, 2.1426). The left qq-plot in Fig.7 and
the Kolmogorov-Smirnov (KS) tests (Table 1) on all univariate samples are reassuring as to the
correctness of our algorithms.

Table 1: p-values for the KS test on two samples each of size 50,000 from (26) after applying
PA and CSA. The test was performed separately for each of the three co-ordinates. The null
hypothesis in all cases is that the draws are from N (0, 2.1426).

Co-ordinate 1st 2nd 3rd

PA 0.11 0.40 0.95

CSA 0.35 0.65 0.31

To make sure that the algorithms are correct even when the state space is truncated we
sample 50,000 draws from the distribution:

TN3(0, Q
−1)|b

a
, for a=(0, 0, 0),b=(10, 10, 10), Q=(qij) with qii =1, qij =−0.4 if i 6= j (27)

(5 and 3 Gibbs steps for PA and CSA respectively) and carry out similar error-checking tests,
see the right qq-plot of Fig.7 and Table 2. This time the marginal distributions for each co-
ordinate do not have a simple form so the results are compared with draws obtained from
an RS that uses the corresponding untruncated density as envelope function. Sampling from
unconstrained multivariate Gaussian densities is carried out via the Cholesky decomposition of
the variance-covariance matrix, see for instance ch.XI of Devroye (1986).

We repeated the same testing procedure for different dimensions and truncation regions
(chosen in a way that the benchmark rejection sampling is not too inefficient) and did not
inspect any flaws.

7.2 Efficiency evaluation

We compare PA and CSA with RS that proposes from the corresponding untruncated density.
We consider a best case scenario for RS with a = {0}d and b = {10}d; a big proportion of the
probability mass for the envelope density of RS is in the truncation region so the probability that
a draw from this envelope density gets accepted is big compared to other cases. It is interesting
to incorporate in this comparison different positive correlation levels. An easy way to achieve
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Table 2: p-values for the KS test on three samples each of size 50,000 from (27) after applying
PA, CSA and RS. The test was performed separately for each of the three co-ordinates and
for all possible pairs of algorithms. The null hypothesis in all cases is that the observations are
from the same distribution.

co-ordinate PA-RS PA-CSA CSA-RS

1st 0.58 0.67 0.67

2nd 0.80 0.97 0.44

3rd 0.75 0.55 0.27

graphs/qqplot1.eps graphs/qqplot2.eps

Figure 7: On the left, a qq-plot for the first co-ordinate of a sample of size 50,000 after imple-
menting PA on (26). The observations have been divided with

√
2.1426 so that the estimated

quantiles are comparable with those of the N (0, 1). On the right, a qq-plot comparing the
quantiles for the distribution of the first co-ordinate of a random vector distributed according
to (27) as estimated from two samples of size 50, 000 from PA and CSA.

that is by considering Stieltjes precision matrices Q=(qij) with qii = 1 and qij = −c/(d− 1) for
some 0<c< 1 when i 6= j. This construction leads to appropriate symmetric, positive definite
matrices. As c increases higher positive correlation levels are explored.

Table 3 shows the number of draws/sec after running the algorithms for different dimensions
and different levels of positive correlation. The column of the positive correlations shows the
value of c considered when constructing the precision matrix with the method described above.
The table also gives in parentheses the number of Gibbs steps within a block (excluding the final
coalescence Gibbs step) for each case of the PA and CSA. The number of Gibbs steps chosen
for each algorithm is the one that maximised its efficiency in terms of the computational time
to obtain a given number of samples. All the algorithms are written in C-language and were
executed on an Athlon personal computer, running at 1500MHz in a Linux environment.

The cases considered in Table 3 are convenient not only for RS but also for CSA. PA can
outperform CSA when truncations at more heterogeneous regions are considered. For example,
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Table 3: Draws/sec for RS that proposes from the corresponding unconstrained density, PA
and CSA when used on TNd(0, Q

−1)|a
b

for a= {0}d and b={10}d for different d’s and levels of
positive correlation. In parentheses the number of Gibbs steps within a block for PA and CSA.

c
o
r
r
e
la

ti
o
n

le
v
e
l

dimensionality

RS

PA

CSA

10 25 75 100

0.2
362 0 0 0

7,712 (1) 2,421 (2) 435 (3) 264 (3)

6,671 (1) 2,139 (1) 508 (2) 492 (2)

0.5
1,173 0.22 0 0

4,519 (3) 1,221 (5) 224 (7) 128 (8)

4,563 (2) 1,453 (3) 337 (3) 208 (4)

0.8
5,882 27 0 0

1,266 (11) 154 (17) 4 (50) 1 (200)

2,325 (6) 667 (7) 167 (8) 120 (8)

we applied PA and CSA to the 50-dimensional TN50(0, Q
−1)|a

b
for a= {−40}25 × {40}25 and

b = {−20}25 × {60}25 and Q = (qij) with qii = 1 and qij = −0.8/49 for i 6= j. CSA is then
inefficient because at the first Gibbs steps values Φ(x) from the cdf of the N (0, 1) distribution
for |x| > 38 are usually requested (see the discussion at the end of Section 4). PA returns
approximately 50 draws/sec and it needs only 7 Gibbs steps to deliver blocks with probability
of being successful close to 0.8. The small number of Gibbs steps needed is due to the fact
that for truncations distanced from the origin a huge proportion of the probability mass of the
target Gaussian density is found near the boundary closest to the origin, so the Gibbs sampler
is rapidly convergent.

8 Conclusions

We have introduced a flexible CFTP methodology for MCMC algorithms. We also devised a
powerful coupling technique (the Monotone Independence Coupler) which can be applied in
various settings. The algorithms we presented use the Ro-CFTP protocol and rely on the
construction of blocks consisting of three different stages (forcing compactness, bridging the
gap, and attempting for one-shot coalescence). The construction of our coupling block allows
many options for extension and variation which might be appropriate in different examples.
We have presented our methods in a fairly general way, and though applied only to the TN
family of target densities, we hope we have managed to illustrate the general applicability of the
techniques introduced.

We have found that implementation on Gibbs samplers with dimension up to 100 is well
within the feasibility of the method, though we have not as yet carried out more extensive
simulation studies on distributions obtained (for instance) as posterior distributions in Bayesian
analysis.

The Read-Once CFTP idea circumvents the need for storing random seeds, and thus pro-
gramming is generally easier and less prone to errors. The One-Shot idea spares time from
attempting for coalescence when its probability is small. Note that the coalescence step, need
not be monotone; assume that at the final step of a block of a Ro-CFTP algorithm it is possible
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that we use the splitting technique, i.e. the kernel P (x, dy) under consideration can split as
ρ ν(dy) + (1 − ρ)Q(x, dy) for any x between some appropriately constructed bounding paths.
With probability ρ all paths are projected onto a draw from ν and the block is successful whereas
with probability 1− ρ we just declare the block unsuccessful and simply update the coalescence
path according to the residual kernel Q(x, dy).

There is nothing in the general methodology which restricts us to the use of Gibbs samplers.
Independence Couplers can be constructed in a natural way for general Metropolis-Hastings
kernels (see Breyer and Roberts, 2001). We did however exploit, for the example with the TNs,
a monotonicity property of the Gibbs sampler and this was critical for the efficiency of the
bounding techniques. Ongoing work will investigate the scope of the method for more general
cases.
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APPENDIX

Proof or Theorem 1:

Recall that P(x, dy) = P (Φ(x)∈dy). Let ν(dy) := P (Φ(x)∈dy |D) independent of x. The
kernel P can split as following:

P(x, dy) = ρ ν(dy) + (1 − ρ)Q(x, dy) (28)

for ρ = P(D) and Q(x, dy)≡P (Φ(x)∈dy |Dc) the residual kernel.
We will need some transition (probability) kernel operations; the product of two transi-

tion kernels P1, P2 is the transition kernel P1P2(x, dy) =
∫

z
P1(x, dz)P2(z, dy), the power

of a transition kernel is defined inductively as Pn = Pn−1P with P 0(x, dy) ≡ I{x∈dy} and
the product of a probability measure λ with a transition kernel P is the probability measure
λP (dx) =

∫

z
λ(dz)P (z, dx).

Let W i = Φ
τi−1 ◦ · · · ◦ Φ

τ0+1 ◦ Φ
τ0(S), i ≥ 1, be the random variable that refers to the

position of the coalescence path one block-step before the (i+ 1)-th successful block and ∆ti be
the number of (unsuccessful) blocks between this successful block and the immediately previously
successful one. It is then true that:

P
(

W i∈dw
)

=
∞
∑

j=0

P (∆ti = j) P
(

W i∈dw |∆ti = j
)

=
∞
∑

j=0

(1 − ρ)jρ νQj(dw) ≡ π(dw) (29)

The last and critical part of (29) is obtained algebraically after using (28) and that πP = π,
see Breyer and Roberts (2001) for details. The independence among the draws follows from the
regeneration of the coalescence path after successful blocks, i.e. tours of the coalescence path at
the time instances between a successful block and one block before the next successful one are
i.i.d..

Proof or Theorem 2:
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(i) It is just a case of the Independence Coupler.

(ii) Get Fx∼P (x, dy). Let R1 := {x∈X : x≤x∗ and Fx<Y }, R2 := {x∈X : x∗≤x and Fx>Y }
and A := X ∩ (R1∪R2)

c = {x∈X : x≤x∗ and Fx ≥Y } ∪ {x∈X : x∗≤x and Fx ≤Y }. Define
also

G(x, Y ) :=
p(x, Y ) p(x∗, Fx)

p(x, Fx) p(x∗, Y )
, x∈X

Choose any x1, x2∈X with x1 ≤x2. To simplify the notation we write F1, F2 instead of Fx1 , Fx2

respectively. We examine the following cases:

Case 1: x1, x2∈A.

If x∈A then G(x, Y )= p(x∗,Fx)
p(x,Fx) /

p(x∗,Y )
p(x,Y ) ≥ 1 from property (ii) of p(x, y) given in Proposition 1,

so C◦F1 = C◦F2 = Y .

Case 2: x1, x2∈R1.
We again exploit the monotonicity property of p(x, y). Recall that F1≤F2 < Y .

G(x2, Y )

G(x1, Y )
=

p(x2,Y ) p(x∗,F2)
p(x2,F2)

p(x1,Y ) p(x∗,F1)
p(x1,F1)

≥
p(x2,F2) p(x∗,F2)

p(x2,F2)

p(x1,F2) p(x∗,F1)
p(x1,F1)

=
p(x∗, F2) p(x1, F1)

p(x1, F2) p(x∗, F1)
≥ p(x∗, F1) p(x1, F1)

p(x1, F1) p(x∗, F1)
= 1

Since G(x2, Y )≥G(x1, Y ) it is clear from (6) that if x1 is mapped to Y (U≤G(x1, Y )) so is x2.
This excludes, from the definition of R1, the only possibility of getting C◦F1>C◦F2.

Case 3: x1, x2∈R2.
Exactly as in the previous case:

G(x2, Y )

G(x1, Y )
=

p(x2,Y ) p(x∗,F2)
p(x2,F2)

p(x1,Y ) p(x∗,F1)
p(x1,F1)

≤
p(x2,F1) p(x∗,F2)

p(x2,F2)

p(x1,F1) p(x∗,F1)
p(x1,F1)

=
p(x2, F1) p(x

∗, F2)

p(x∗, F1) p(x2, F2)
≤ p(x2, F2) p(x

∗, F2)

p(x∗, F2) p(x2, F2)
= 1

Once again, after considering the definition of R2 and that if x2 accepts Y so does x1 we get
that C◦F1≤C◦F2.

From the definition of the sets A,R1, R2 and the result for the case when x∈A it is straight-
forward that the only case that x1≤x2 can lead to C◦F1>C◦F2 is when x1, x2∈R1 or x1, x2∈R2.
For instance, if x1 ∈R1 and x2 ∈R2 then clearly C◦F1≤Y ≤C◦F2, if x1∈R1 and x2 ∈A then
C◦F1≤Y =C◦F2, and so on. The preceding results demonstrate that even when x1, x2∈R1 or
x1, x2∈R2 monotonicity, i.e. C◦F1≤C◦F2 for x1≤x2, is preserved.

The algorithm that draws from TN1(µ, 1)|β
α
:

The method tr normal(α, β, µ)which samples from the TN1(µ, 1)|β
α

is given as pseudo-algorithm
in Fig.8. To avoid unnecessary details in the figure REJ(f(x), g(x)) implies a draw from f af-
ter performing rejection sampling with g as the comparison density (f ≤ g). We use f(x)|δ

γ
to

represent f(x) I[γ,δ](x) for a functional f and reals γ<δ.
The algorithm incorporates four separate rejection sampling algorithms. The acceptance

probability rα,β for each case and its minimum value are given in the following table (to simplify

the demonstration we have set µ=0 so the target density is proportional to e−x2/2
I[α,β](x)):
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tr normal(α, β, µ)
{

set b := β − µ and a := α− µ
if (a ≥ 1/2) y = REJ( exp(−x2/2) |b

a
, exp(−ax+ a2/2) |b

a
)

else if (b ≤ −1/2) y = REJ( exp(−x2/2) |b
a
, exp(−bx+ b2/2) |b

a
)

else if (b− a ≤ 3/2) y = REJ( exp(−x2/2) |b
a
, 1 |b

a
)

else y = REJ( exp(−x2/2) |b
a
, exp(−x2/2) )

return y + µ
}

Figure 8: The method for sampling from TN1(µ, 1)|β
α
. It incorporates four different rejection

sampling algorithms. In all cases drawing from the envelope densities is straightforward.

envelope called on rα,β inf (attained at)

e−αx+a2/2
I[α,β](x) if α≥1/2

α
√

2π(Φ(β)−Φ(α))
exp(−α2/2)−exp(a2/2−αβ)

0.44a

(α, β)=(1/2,∞)

e−βx+β2/2
I[α,β](x) else if β≤−1/2

(−β)
√

2π(Φ(β)−Φ(α))
exp(−β2/2)−exp(−αβ+β2/2)

0.44b

(α,β)=(−∞,−1/2)

I[α,β](x) else if (β − α)≤3/2
√

2π Φ(β)−Φ(α)
β−α

0.47c

(α, β)=(1/2,2)

e−x2/2 else Φ(β) − Φ(α) 0.29d

(α, β)=(1/2,2)

ar is ↓β (decreasing in β) for constant α and ↑α (increasing in α) for constant β − α.
br is ↑α for constant β and ↓β for constant β − α.
cFor constant β − α ≡ c, r is ↑ β ∈ (−1/2, c/2] and ↓ β ∈ [c/2, 1/2 + c], so rα,β ≥ r1/2,1/2+c which is ↓ c, so

rα,β ≥r1/2,2.
drα,β ≥rα,α+3/2 which is ↓α.

The methodology is close to the one proposed in Geweke (1991) except for avoiding using
the cdf of the N (0, 1) distribution when choosing among available comparison functions. That
guarantees the unrestricted applicability of the resulted algorithm. In Robert (1995) a slightly
different methodology is proposed which yields better acceptance probabilities for the proposed
variates but as already noted in Geweke (1991) the increased algebraic structure of this algo-
rithm renders it equivalent to ours in terms of computational time.

Proof of Proposition 2:

Certainly, λV >0 since V is positive definite. Also, there exists an orthogonal matrix T ∈R
d×d

(T⊤T = I) such that T⊤ΛT = V where Λ = (λij) is a diagonal matrix with diagonal elements
the eigenvalues of V . Then, for y = Tx:

x⊤V x = (Tx)⊤Λ(Tx) =
d
∑

i=1

λiiy
2
i ≥ λV

∑

y2
i = λV y⊤y = λV x⊤x
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