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In this paper, we show that the Shapley-Shubik market game model with production naturally generates

an equilibration mechanism that can accommodate price stickiness arising from strategic interactions of

firms. Unlike New Keynesian models that show similar price stickiness results, the market game model does

not require enforcing menu costs or other additional restraints on price adjustment mechanisms in order

to generate price stickiness. As such, we suggest that the market game model can provide a good micro-

foundation for macroeconomic analysis. We then explicitly show the relationship between a typical firm’s

markup of price over marginal cost and its market share.
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1. Introduction

Contemporary macroeconomic theory has been built on the three pillars of imperfect competition,

nominal price rigidity, and strategic complementarity. The stickiness of prices (and wages in par-

ticular) is a well-established empirical fact, with early observations about the phenomenon dating

back to Alfred Marshall. Because the friction of price stickiness cannot occur in perfectly compet-

itive markets, modern micro-founded (e.g., New Keynesian) models have been forced to abandon

the standard Arrow-Debreu paradigm of perfect competition in favor of models where agents may

influence market prices. Strategic complementarity enters the picture as a mechanism for explain-

ing the kinds of coordination failures that lead to sustained slumps like the Great Depression or

the aftermath of the 2007-2008 financial crisis. Early work by Cooper and John (1988) lay out the

importance of these three features for macroeconomics.

The need for imperfect competition becomes particularly transparent when one notes the impor-

tance of firms’ markups of prices over marginal costs in allowing for quantity adjustments indepen-

dently of price adjustments in response to market shocks. This is because prices equal marginal
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costs in competitive markets, and any variation in quantities must be accompanied by variations

in prices. For models with nominal rigidities to work, some degree of positive markups is necessary.

The role of markups in macroeconomic fluctuations has been examined closely by Rotemberg and

Woodford (1991, 1992, 1999). These papers have formed the basis for virtually all of the follow-on

work in the new classical synthesis, and its reliance on imperfectly competitive market structures

coupled with the dynamic structure of the neoclassical growth model. In most of this work, imper-

fect competition is introduced by imposing monopolistic competition via the Dixit and Stiglitz

(1977) (hereinafter DS) model.

The DS model provides a simple and tractable way to model price-setting behavior in an other-

wise competitive setting that strips away the sophistication of strategic behaviors that appear in

settings of tight oligopoly. At the time of its introduction, the tractability of this model offset con-

cerns over the empirical fact of oligopoly (in many industries including grocery retailing, banking,

transportation, energy, telecommunications, and media), though in fairness to Dixit and Stiglitz,

we note that their original model was one of preferences for diversity, rather than specialization in

production.

Interestingly, there was another model around at that time which showed how to take explicit

account of imperfect competition and large firms in a general equilibrium setting, the market game

model developed by Shapley and Shubik (1977) and extended to production economies by Dubey

and Shubik (1977). The Shapley-Shubik market game (hereinafter, market game) model received

quite a bit of attention in the general equilibrium literature of the 1980’s and 1990’s, but was not

considered as an alternative to models of monopolistic competition in macroeconomics. While the

DS model certainly had important early adoption advantages (particularly in its first appearance as

a model of production specialization in trade theory), the sophistication of the market game model

likely deterred its applications, despite its distinct claim to being the best general equilibrium

extension of well-known models in industrial organization, in the sense of following the original

Nash framework for showing equilibrium in non-cooperative games (see, for example, Dubey and

Geanakoplos 2003).

We believe the market game model can provide a significantly better micro-foundation for

macroeconomics than do either the conventional real business cycle (hereinafter RBC) models

based on the neoclassical growth model, or New Keynesian (hereinafter NK) models based on

the DS model. Our belief is premised on the following three facts. First, as noted above, it is a

simple empirical fact that modern industrial economies are populated by large firms that interact

strategically across different markets in which they operate. These strategic interactions have been

widely studied in partial equilibrium contexts in the theory of Industrial Organization (hereinafter

IO), but macroeconomics has routinely ignored this branch of economics in favor of simpler models
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involving either perfect competition (RBC models) or models of local monopoly (the DS model).

The market game model has similarly been overlooked, despite its potential of allowing for sig-

nificant extension of findings in the IO literature to the general equilibrium. From an empirical

perspective, since the adoption of the monopolistic competition framework in macroeconomics,

there has been a marked increase in industrial concentration. The President’s Council of Eco-

nomic Advisors Issue Brief (2016) documents concentration since the 1980’s not only in technology

industries (e.g., aerospace, microchip, operating system, software, and smart phone) but also in

the traditional manufacturing and extractive industries, and in finance. As the report notes, some

of this increase in concentration has been due to technological innovations and associated scale

phenomena, and some has been due to mergers and acquisitions. Regardless of the cause, the

new empiricism of market power suggests that economists should be paying more attention to the

strategic interactions of large firms in oligopolistic market structures.

Second, oligopoly models allow the introduction of an additional strategic dimension beyond

imperfectly competitive pricing markups, which makes possible equilibrating quantity adjustment

processes – as we will show here – that do not require variation in prices, in some versions of the

model. This is in marked contrast to the additional frictions required in DS-based models (menu

costs or Calvo contracts) for price stickiness to occur. There are other papers that employ strategic

models to incorporate or generate price stickiness. For example, Fershtman and Kamien (1987)

study duopolistic competition in a model with a homogeneous good, and incorporate sticky prices

by assuming that the desirability of the good is an exponentially weighted function of accumu-

lated past consumption. Cellini and Lambertini (2007) extend Fershtman and Kamien (1987) by

considering a dynamic oligopolistic game where goods are differentiated with sticky prices. Slade

(1999) investigates the strategic implications of price adjustments, and empirically shows that

strategic behavior aggravates price rigidity in a dynamic oligopoly. Both Carvalho (2006)’s model

on heterogeneity in price stickiness and Fehr and Tyran (2008)’s model on limited rationality show

that nominal rigidity prevails under strategic complementarity. Finally, Bhaskar (2002) provides

a model of imperfect competition that produces a continuum of stable staggered price equilibria

by introducing two levels of strategic interactions of firms within and across industries. Bhaskar

(2002)’s model is the closest to ours in the sense that it shows how strategic interactions can end

up generating price rigidities, albeit in terms of adjustment staggering rather than general nominal

rigidity generated in our model.

Third, contemporary dynamic-stochastic-general-equilibrium (DSGE) models typically examine

fluctuations in output, employment, and prices around a fixed steady state. This is done despite

the fact that the data on business cycle fluctuations measure deviations in observed quantities

from endogenously generated trend growth paths. Before macro models can be brought to data,
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then, the data itself must be detrended, usually based on ad hoc assumptions on the nature of

economic growth. In RBC models, this is justified for the simple reason that long run growth in

the neoclassical growth model must be assumed exogenously. In NK models, where (as Romer

1990 has shown) long-run growth is possible given the increasing returns to specialization inherent

in the DS technology, macro applications of the model generally just ignore increasing returns

and adopt the RBC practice of working with detrended data and stochastic steady states. The

other well-known model of endogenous growth - the Schumpeterian model by Aghion and Howitt

(1992) - has seen only minor applications at the intersection of IO and macroeconomics (see, for

example, Aghion and Howitt 2000). The market game model, on the other hand, has the potential

to allow for explicit consideration of growth in terms of its ability to accommodate increasing-

returns-to-scale technologies, as well as the fact that it nests both DS and Aghion and Howitt

(1992) models given the abstract specification of production activities in the model. While dealing

explicitly with increasing-returns-to-scale technologies is more difficult than dealing with convex

technologies, it is not intractable. In an earlier study, Korpeoglu and Spear (2016) extend the

market game model with production to allow for increasing-returns-to-scale technologies, and show

how imperfect competition in the market game remedies the standard problem that competitive

firms operating under increasing-returns-to-scale technologies face of either wishing to produce

infinite output, or, if restricted to marginal-cost pricing, needing to be subsidized to offset losses.

This analysis also provides some weak results on the existence of equilibrium, though it should be

no surprise that strong existence results are unattainable when technology dictates limits on the

number of firms that can be active in equilibrium. (This paper is available as an online appendix

to the current paper.)

In this paper, we show that the market game generates equilibria that have two important fea-

tures. First, we show that when firms have market power, their market-shares in both input and

output markets affect the first-order conditions of their best responses, in ways that resemble the

effects of price changes. From this observation, we are able to establish that firm quantity adjust-

ments (holding input prices fixed) can maintain the Nash equilibrium of the model in versions

of the model that exhibit indeterminacy of the Nash equilibrium. Hence, these versions of the

model naturally admit sticky prices, regardless of the mechanism(s) that might lead firms to want

to keep input prices unchanging. To the best of our knowledge, this is a new result. Second, we

show that there is a close relationship between any individual firm’s markup of price over marginal

cost and its market share. As we noted above, the case for positive markups in macroeconomic

models has been argued persuasively by Rotemberg and Woodford (1991, 1992, 1999). The rela-

tionship between markups and market shares, however, has not received attention, to the best of

our knowledge. Rotemberg and Woodford (1992), for example, consider a model of oligopoly, but
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focus on symmetric Nash equilibrium in which each firm’s market share is the same. This allows

them to make predictions about how markups change as a response to demand or productivity

shocks. What the market game brings to the discussion of markups that is new, is the fact that

markets populated by finite numbers of firms operating under possibly different technologies will

generate data on markup movements over different equilibria that can vary positively, negatively,

variably, or not at all over business-cycle-like expansions and contractions. This is interesting in

light of recent work by Nekarda and Ramey (2013) showing that “updated empirical methods and

data” indicate that markups are weakly procyclic or acyclic, in contrast to the results found in the

earlier work on markups and productivity co-movements.

The remainder of the paper is organized as follows. Section 2 lays out the basic market game

model; Section 3 provides the detailed analysis of price stickiness and markup variations; and

Section 4 concludes.

2. Model

We work initially with a standard market game model with production along the lines first consid-

ered by Dubey and Shubik (1977). In this section, we elaborate on the model ingredients. Most of

our formulation of the model and our notation will follow that of Peck and Shell (1990) and Peck

et al. (1992).

2.1. Agents

The economy consists of two types of agents: consumers (“she”) and firms (“it”). There are M <∞

consumers who are endowed with production inputs ēi ∈ RN+ and sell these inputs to firms that

produce outputs from which consumers derive utility. For simplicity, we assume that consumers

derive no direct utility from the consumption of their input endowments.

Preferences of consumers are defined over output goods vectors xi ∈ RJ+. Utility functions are

assumed to be at least twice continuously differentiable, strictly increasing, strictly concave, and

satisfy Inada conditions. There are Kj <∞ firms of finitely many types j ∈ {1,2, ..., J} that produce

output good j using a production technology specified by a production function qjkj = fkj (ϕkj ),

where ϕkj ∈R
N
+ is the vector of inputs for firm kj ∈ {1,2, ...,Kj} in production sector j ∈ {1,2, ..., J},

and each production function is twice continuously differentiable and strictly quasi-concave. We

will denote the total number of firms by J =
∑J

j=1Kj . We assume that consumers are exogenously

endowed with ownership shares of each firm. Specifically, we let θ
kj
i be consumer i’s ownership

share of firm kj in sector j.
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2.1.1. Firm actions. Firms purchase production inputs from consumers and use them to

produce outputs, which they then sell back to consumers based on their expectations of prices they

can receive for their outputs. Since firms are not endowed with production inputs, they must bid

for these inputs on input trading posts (which are endemic to the market game). We assume that

firms aim to maximize their profits.1 We let pj be the price of output good j, and rn be the price

of input good n, and r= (r1, r2, ..., rN) be the vector of input prices. The profit of firm kj is then

πkj = pjqjkj −
N∑

n=1

rnϕnkj = pjfkj (ϕkj )− r ·ϕkj . (1)

Input prices are determined on input trading posts. We let wnkj denote firm kj ’s bid on input

trading post n ∈ {1,2, ...,N}, and wkj = (w1
kj
,w2

kj
, ...,wNkj ) ∈R

N
+ denote firm kj ’s vector of bids for

inputs.2 The aggregate bid at trading post n is W n =
∑J

j=1

∑Kj
kj=1w

n
kj

. As is standard, we let W n
−kj

denote the aggregate bid at trading post n except for the bid of firm kj . Moreover, we let eni denote

consumer i’s offer at input trading post n, and En =
∑M

i=1 e
n
i denote the aggregate offer at input

trading post n. Then, the price of input good n is then defined as rn = Wn

En
. Firm kj ’s allocation of

input good n is given by its own bid for the input divided by the price of the input

ϕnkj =
wnkj
rn

=wnkj
En

W n
. (2)

This is just the standard market game rule that allocates each firm the same proportion of the

aggregate offer of the input good as its bid is to the aggregate bid. Firms earn unit of account

revenues from the sale of their outputs on trading posts for output goods. Given qjkj = fkj (ϕkj ) for

j ∈ {1, ..., J}, firm kj will offer all of its output on the output trading post j, so we can define the

aggregate offer at trading post j as Qj =
∑Kj

kj=1 q
j
kj

. As before, we let Qj
−kj

denote the aggregate

offer at trading post j except for the offer of firm kj . Given the price pj for the output good j,

firm kj can spend pjqjkj units of account on the purchase of input goods. Hence, firm kj faces the

following budget constraint for its bids on inputs
N∑

n=1

wnkj ≤ p
jqjkj . (3)

Note that substituting for wnkj from (2) into (3) yields
N∑

n=1

ϕnkjr
n ≤ pjqjkj ⇒ πkj = pjqjkj −

N∑

n=1

ϕnkjr
n ≥ 0,

which means that firm kj ’s profit cannot be negative. If the firm’s budget constraint (3) is not

satisfied, then its input allocation is zero and all of its offers are confiscated.

1 In the absence of perfect competition, it is well known that shareholders can disagree on the objective of the firm
they own. As it is beyond the scope of this paper to justify that profit maximization is the correct objective for the
firm operating under increasing-returns-to-scale technology, we just take this assumption as it is.

2 The fictional trading posts introduced by Shapley and Shubik (1977) are essentially a metaphor for flows of expen-
diture and product between traders. By collecting these flows for specific markets on “trading posts,” it simplifies
the actions of choosing demand and supply allocations and streamlines the exposition of the market game form. In
equilibrium, though, it is only the flows of expenditure and product that matter, not where they take place.
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2.1.2. Consumer actions. Consumers bid on trading posts for output goods. Because con-

sumers derive no utility from the consumption of their input endowments, but receive income from

selling these inputs, consumers will sell as much of their endowments as possible to firms. Consumer

i’s income from the sale of her input endowments, then, is given by r ·ei =
∑N

n=1 r
neni =

∑N

n=1
Wn

En
eni ,

where the aggregate bid W n on the input market n is determined by firms’ production decisions. In

addition to their income from the sale of input endowments, consumers also receive (exogenously

given) shares of profits from firms they own, so that consumer i’s total income is

yi =
N∑

n=1

W n

En
eni +

J∑

j=1

Kj∑

kj=1

θ
kj
i πkj . (4)

Note that if we had a small number of consumers, given the arbitrary distribution of ownership

shares across consumers, consumers might want firms they own to deviate from profit maximization

in order to increase the value of their sales of input endowments. This failure of shareholder

unanimity in models with imperfect competition is well known. As we do not provide any insight

into this issue here, we will simply assume that consumers take the value of their endowment offers

and the value of their profit shares as given. This can be justified more rigorously by assuming that

the number of consumers is much higher than the number of firms, so that the ratio eni
En

in (4) is

negligible, and that ownership of firms is diffusely distributed. We let bji denote consumer i’s bid

on output trading post j ∈ {1,2, ..., J}, and bi = (b1
i , b

2
i , ..., b

J
i ) ∈ RJ+ denote consumer i’s vector of

bids for outputs. The aggregate bid at trading post j is Bj =
∑M

i=1 b
j
i . As above, we let Bj

−i denote

the aggregate bid at trading post j except for the bid of consumer i. The price of output good j is

then defined as the ratio of the total bid for the output good j to the total offer of the output good

j, i.e., pj = Bj

Qj
. Consumer i’s allocation of output good j is given by her own bid for the output

divided by the price of the output

xji =
bji
pj

= bji
Qj

Bj
. (5)

This is just the standard market game rule that gives each consumer the same proportion of the

aggregate offer of the output good as her bid is to the aggregate bid. Consumer i faces the following

budget constraint for bids on outputs
J∑

j=1

bji ≤ yi =
N∑

n=1

W n

En
eni +

J∑

j=1

Kj∑

kj=1

θ
kj
i πkj . (6)

As with firms, if the consumer’s budget constraint is violated, her allocation is zero and all of her

offers are confiscated.

2.2. Market Game and Nash Equilibrium

With these definitions and characterization of agents in the model, we can now formally define the

market game Γ.
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Definition 1. Consumer i’s strategy set is

Si =
{

(bi, ei)∈R2J
+ |ei < ēi

}
for i∈ {1,2, ...,M}.

Firm kj ’s strategy set is

Skj =
{
wkj ∈R

N
+

}
.

The full strategy set that then defines the offer-constrained game Γ (ê) is

S =×Mi=1Si×
Kj ,J

kj=1,j=1 Skj .

Definition 2. A Nash equilibrium of the simultaneous-move market game consists of consumers’

bids for outputs, and firms’ bids for inputs given expectations of other agents’ actions such that

1. All agents’ bids are best responses given their expectations of other agents’ bids, of consumers’

input offers, and of firms’ output offers;

2. The best responses are consistent with all agents’ expectations of other agents’ actions.

While choosing its profit-maximizing bids, firm kj takes the aggregate offer En =
∑M

i=1 e
n
i as given,

but takes other firms’ (including those of other sectors) bids for inputs into account. Firm kj

maximizes its profit in (1) subject to the allocation rule in (2) and budget constraint in (3) given

the input price rn =W n/En and output price pj =Bj/Qj . Plugging constraints (2) and (3) into

the objective (1), we obtain the following unconstrained profit maximization problem:

max
wkj

Bj

Qj
fkj

([

w1
kj

E1

W 1
, ...,wNkj

EN

WN

])

−
N∑

n=1

wnkj , (7)

Note that (7) is firm kj ’s best response to other firms’ actions. Taking first-order conditions gives

Bj

Qj

∂fkj
∂ϕnkj

[
En

W n
−
wnkjE

n

(W n)2

]

−
Bjqjkj

(Qj)2

∂fkj
∂ϕnkj

[
En

W n
−
wnkjE

n

(W n)2

]

− 1 =
Bj

Qj

∂fkj
∂ϕnkj

EnW n
−kj

(W n)2

Qj
−kj

Qj
− 1 = 0. (8)

Plugging pj =Bj/Qj and rn =W n/En into (8) gives

pj

rn
∂fkj
∂ϕnkj

W n
−kj

W n

Qj
−kj

Qj
− 1 = 0. (9)

Note that if the market contains a very large number of firms, ratios W n
−kj

/W n and Qj
−kj

/Qj in

(9) will be almost one, and hence (9) boils down to pj
∂fkj
∂ϕn

kj

= rn, which states that the value of the

marginal product of input good n is equal to the price of input good n.

While choosing her utility-maximizing bids, consumer i takes the aggregate output Qj as given,

but takes other consumers’ bids for outputs into account. Consumer i maximizes her utility ui [xi]

subject to the allocation rule in (5) and budget constraint in (6). Plugging the constraint (5) into

the objective yields the following budget-constrained utility maximization problem:

max
bi

ui

[

b1
i

Q1

B1
, ..., bJi

QJ

BJ

]

(10)

s.t.
J∑

j=1

bji ≤
N∑

n=1

W n

En
eni +

J∑

j=1

Kj∑

kj=1

θ
kj
i

[
Bj

Qj
qjkj − r ·ϕkj

]

. (11)
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Note that (10)-(11) is consumer i’s best response to other consumers’ actions. Taking first-order

conditions gives

∂ui

∂xji

[
Qj

Bj
−
bjiQ

j

[Bj ]2

]

+λ





∑Kj
kj=1 θ

kj
i fkj

Qj
− 1



=
∂ui

∂xji

[
Qj

Bj

Bj
−i

Bj

]

+λ





∑Kj
kj=1 θ

kj
i fkj

Qj
− 1



= 0, (12)

where λ is the Lagrange multiplier of consumer i’s budget constraint in (11). Note that we do not

need to consider the effect of a change in consumer i’s bid on input prices because of the envelope

theorem as applied to firms’ profit maximization problems. Finally, note that if the market contains

a very large number of firms, the total offer Qj on output trading post j approaches infinity, and

if the market contains a very large number of consumers, the ratio Bj
−i/B

j approaches one. Then,

the consumer first-order condition (12) boils down to what we get in the competitive limit, the

ratio of marginal utility to the price is equal to the Lagrange multiplier, i.e.,
∂ui/∂x

j
i

pj
= λ, where

pj =Bj/Qj .

3. Analysis

In this section, we provide the analysis of price stickiness and markup variations. Korpeoglu and

Spear (2016) (see the online appendix) show conditions for the existence of a Nash equilibrium for a

production market game with arbitrary returns-to-scale-technologies. Unlike in the case of strictly

convex technologies, there are no strong existence results in the case of increasing-returns-to-scale

technologies, for the simple reason that the non-negativity constraint on profits can become binding

when there are many increasing-returns-to-scale firms in the market. For our purposes here, then,

we will simply assume that there can be increasing-returns-to-scale firms in each production sector

together with standard constant or decreasing-returns-to-scale firms, and that the Nash equilibrium

associated with the aggregate input endowment E exists.

The result we present here is essentially a comparative static result showing that if firms cannot

(or do not wish to) vary input prices, they can accommodate shocks to production or demand via

adjustments in output. This is conceptually no different from what occurs in competitive models.

What is new with the market game is the fact that some of this accommodation can be achieved

via adjustments in firm market shares on both input and output markets. In the presence of

coordination indeterminacies, this new adjustment mechanism can give rise to novel equilibrium

behavior in the model.

We will consider two variants of the model. The first is the standard, simultaneous-move Shapley

and Shubik (1977) model with production (as laid out above). It is well-known that in pure exchange

versions of this model, there are a continuum of Nash equilibria due to the fact that agents in

the model choose both bids and offers. This choice is indeterminate, however, since the first-order

conditions with respect to bids or offers are the same. In imperfectly competitive markets, one of
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the choices between bids and offers is redundant for individual agents, though it affects prices in the

model via variations in market thickness (see Peck and Shell 1991 or Peck et al. 1992 for details).

In the production model, no such indeterminacy is possible for the simple fact that consumers earn

income from the sale of their endowments. Hence, in this version of the model, the comparative

static result shows that any accommodation to shocks (with sticky prices) will necessarily involve

some degree of involuntary unemployment of input resources. We conjecture that same form of

neo-Keynesian coordination failure equilibria can be generated in the model, though not without

a significantly more sophisticated (likely search-theoretic) micro-foundation for the input markets,

which we do not pursue here.

In the second variant of the model, we introduce a real indeterminacy by allowing agents to

short sell their endowments by offering more than they own, subject to the constraint that in

equilibrium, they must buy back the short amount. This version of the model is based on the one

originally introduced by Peck and Shell (1990). Peck and Shell (1990) note that this version of the

market game must be modified by changing the bankruptcy rules so that if any consumer does

not satisfy her budget constraint, every consumer is forced to consume her endowment. This rule

change is necessary because for very large short sales, the game “referee” may not be able to find

an equilibrium using only the resources of non-bankrupt consumers. Since this variation on the

production market game does not require any consumer to offer less than her full endowment, it is

consistent with the non-cooperative incentive consumers in the production game have for earning

income.

For both versions of the game, the starting point for our analysis is the individual firm’s first-

order conditions for profit maximization. For firm kj , these can be written as

pj

(
Qj
−kj

Qj

)

Dϕfkj − ŴŴ−1
−kj

r= 0.

The significance of writing the first-order conditions this way stems from the fact that variations

in the terms ŴŴ−1
−kj

r and pj
Q
j
−kj

Qj
affect the firm’s optimal choice, in the same way that variations

in the input output prices do for perfectly competitive firms. Note also that
Q
j
−kj

Qj
= 1−

q
j
kj

Qj
, where

q
j
kj

Qj
is firm kj ’s market share on the output market j, and

Wn
−kj
Wn = 1−

wnkj
Wn , where

wnkj
Wn is firm kj ’s

market share on the input market n. Since market shares can be varied independently of aggregate

bids on output or expenditures on inputs, this suggests the possibility of altering firms equilibrium

output quantities via adjustments in market shares without changing prices.

To analyze the possibility of price preserving perturbations in the market game, we first note

that since we only have (J−1)N independent expenditure shares, we would need another N

variables in order to make a full-rank perturbation of the system of equations consisting of firm first-

order conditions. We can pick up these variables by allowing for variations in the firms’ aggregate
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expenditures on inputs (which we can think of as flexible inside money or credit in the market

game setting, or as a monetary policy action in a macro interpretation of the model). To get a

price rigidity result, we need to append the condition

r− ŴE = 0

(where E is the vector of aggregate input offers) to the firm first-order conditions, giving us a

system of JN +N equations in JN variables. To get a full-rank perturbation of this system, then,

we need an additional N variables. We cannot use the output market shares as these variables as

they are not independent of firm output quantities. In a partial equilibrium setting, we might think

of using the output prices themselves as variables (assuming there are at least as many output

goods as there are input goods). But, in a general equilibrium setting, we need the output prices

(or, equivalently, the aggregate bids of consumers for output goods) to ensure equilibrium in the

output markets. This logic, then, gives us our first result.

Proposition 1. For the simultaneous-move market game, equilibrium responses to demand or

technology shocks will generically (in production functions) require variations in prices.

The genericity argument here simply requires noting that if some shock left (say) input prices

constant, then the firm would be moving up or down an expansion path homothetically. An arbi-

trarily small perturbation in the firm’s production function will then destroy this homotheticity.

We can get a full rank perturbation that keeps input prices constant if we have an indeterminacy

in consumers’ aggregate offers, since this gives us the additional N variables we need. So, we now

consider the Peck and Shell (1990) short-sale variant of the model that gives rise to indeterminacy.

As we noted above, in the short-sale model, consumers are allowed to offer more than their total

endowment on the input market, as long as they buy back the excess offer. This gives consumers

the opportunity to affect market shares, which will matter if the input markets are strategic, i.e.,

if firms are not negligible.

As Peck and Shell (1990) note, the key to analyzing the short-sale version of the market game is

the so-called offer-constrained game, in which consumers’ offers are fixed exogenously, and viewed

as parameters the underlying game. The utility of the offer-constrained game stems from the fact

that, with bid-offer indeterminacy, any equilibrium in the offer-constrained game will also be an

equilibrium in the unconstrained game.

We define the offer-constrained game formally as follows. Consumer i’s (offer-constrained) strat-

egy set is

Si (êi) =
{

(bi, ei)∈RJ+N
+ |ei = êi

}
for i∈ {1, ...,M}.

Firm k′js strategy set is

Skj =
{
wkj ∈R

N
+

}
.
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The full strategy set that then defines the offer-constrained game Γ (ê) is

S (ê) =×Mi=1Si (êi)×
Kj ,J

kj=1,j=1 Skj .

A Nash equilibrium of the simultaneous-move offer-constrained market game consists of consumers’

bids for outputs, and firms’ bids for inputs given expectations of other agents’ actions such that

1. All agents’ bids are best responses given their expectations of other agents’ bids, of consumers’

input offers, and of firms’ output offers;

2. The best responses are consistent with all agents’ expectations of other agents’ actions.

For the short-sale game, we need to modify the punishment (as in Peck and Shell 1990) to

state that if any consumer violates her budget constraint, all agents’ allocations revert to their

endowments. In the short-sale game, we would also formally modify the definition of the consumer’s

strategy set to require that êi ≥ ēi, where, as before, ēi is consumer i’s endowment vector.

With these preliminaries, we can now show our main result.

Theorem 1. Generically, there exist solutions to the production side equilibrium equations in vari-

ables consisting of firm input wage bill shares, aggregate input quantities, and aggregate input bids,

in a neighborhood of any given offer-constrained Nash equilibrium for the economy.

Proof : See Appendix A.

Given that output prices variables are not used to equilibrate the production side of the economy,

they will continue to serve their usual purpose in equilibrating the demand side of the model.

One can apply conventional general equilibrium techniques to show a similar generic transversality

result for this equilibration process, though since this is not germane to our results, we do not

pursue it here. Since the proof of this result makes use of the implicit function theorem, we can also

include perturbations in actual endowments as well as offers to the list of equilibration parameters,

although this result is tangential to our basic results. We also conjecture that a similar result could

be obtained if firms were also allowed to offer, as well as bid for input goods, but do not pursue

that here.

3.1. Discussion

The most striking thing about the continuum of equilibria generated in the short-sale model is

the fact that the economy is always at full employment of input resources. The theorem implies

that variations in short-sale amounts will lead to adjustments in firm market shares (on both input

and output markets), which can lead to non-trivial variations in total output. One could extend

this result to a stochastic market game in which the short-sale offers varied according to some

extrinsic random variable (i.e., a sunspot), as in Peck and Shell (1991). This would result in a

stochastic general equilibrium for the model in which individual firm market shares are constantly
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changing. As we will show in the next section, this variation in market shares leads, in turn, to

variations in the observed mark-ups that imperfectly competitive firms charge. In a heterogenous

returns-to-scale environment, then, one of the key relationships in New Keynesian macro models -

the variation of mark-ups over the business cycle - will be disrupted.

3.2. Markup Variations

As we noted in Introduction, it is a stylized fact in NK macro models that markups vary counter-

cyclically. In a recent study, as Nekarda and Ramey (2013) note, however, the estimation of marginal

costs from available data is quite tricky, and early attempts to study markup variations over

the business cycle ended up relying on theoretical relationships (based typically on DS-based NK

models) for the specification of marginal costs. Nekarda and Ramey (2013) revisit the question

of cyclical movements in markups using updated adjustments of inputs to production functions

typically used in such studies, and using a combination of aggregate and manufacturing-specific

data. Contrary to the conventional stylized fact, they establish that markups are unconditionally

procyclic. Specifically, they find that monetary, government spending, and technology shocks lead to

procyclical markups, and consumer demand shocks lead to slightly procyclical or acyclical markups.

We will show in this section that the market game model also makes specific predictions about

markup variation in response to (comparative static) expansions or contractions, but, because firms

can exhibit heterogeneity in the returns-to-scale properties of their technologies, the aggregate

observed markup variation can be quite different from that of any particular firm.

We start by writing the firm’s cost-minimization problem:

min
w

ι ·w s.t. f
(
Ŵ−1Êw

)
≥ q,

where the vector ι= (1,1, ...,1) is a sum vector. The first-order conditions of this problem are

ιT −λDfT Ŵ−2Ŵ−kÊ = 0,

which reduces to

rT ŴŴ−1
−k −λDf

T = 0.

Since the Lagrange multiplier in the cost-minimization problem is just the marginal cost, if we

assume that the production function is homogeneous of degree δ, then by direct calculation we

have that

MC(q) = λ=
1
δq
rT ŴŴ−1

−kϕ (q) .

To calculate the markup, we note from the first-order conditions for profit maximization that

ŴŴ−1
−k r= p

Q−k
Q

Df .

Combining profit maximization and cost minimization results, we have

λ=
1
δq
p
Q−k
Q

Df ·ϕ (q) = p
Q−k
Q

.
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Hence, we obtain
p

λ
=

Q

Q−k
=

1
[
1− qk

Q

] .

This result shows that if firm k’s market share increases, its markup also increases. Because the

firm’s equilibrium market share depends on its own and other firms’ technologies, we have no

a priori reason to believe that measures of average market shares (and hence observed average

markups) move in any systematic way during expansions or contractions. In the next section, we

show in two examples that individual firm market shares can increase or decrease as we move from

low-input-use equilibrium to high-input-use equilibrium.

3.3. Example 1

In this section, we provide a simple example with two firms that use a single input to produce

a single output good, and carry through the equilibration calculations for firm-side input pertur-

bations, without taking explicit account of the equilibration required on the demand side of the

model. We let L(=L1 +L2) denote the exogenously given aggregate offer of the input (hereinafter,

labor). Production functions of firm 1 and 2 are

q1 = f1(L1) =L2
1 and q2 = f2(L2) = [L2− K̄]α, (13)

respectively, where 0<α< 1 and K̄ is a fixed real cost of production for firm 2. We let Q(= q1 +q2)

denote the aggregate output. We also let wi denote firm i’s bid on labor and W (=w1 +w2) denote

the aggregate bid on labor. As in the model, the price of input is r =W/L, and the price output

is p=B/Q. The input allocations of firm 1 and 2 are

L1 =
w1

r
=
w1

W
L and L2 =

w2

r
=
w2

W
L, (14)

respectively. Firms take the aggregate offer of labor L as given, but take the other firm’s bid on

labor into account. Firm i’s best response to the other firm’s action is a solution to the following

profit maximization problem:

max
wi

B

Q
qi−wi s.t. wi ≤

B

Q
qi, Li =wi

L

W
, qi = fi(Li).

The first constraint requires nonnegative profits. The first-order condition of firm 1 is
B

Q
f ′1(L1)

[
L

W
−w1

L

W 2

]

+Bf1(L1)
[

−
1
Q2

][

f ′1(L1)
(
L

W
−w1

L

W 2

)]

− 1 = 0. (15)

Reorganizing (15), we get
B

Q2

w2L

W 2
[f2(L2)f ′1(L1)]− 1 = 0.

Substituting (13) and (14) yields

2
BL2

[(
w2
W

)
L− K̄

]α

Q2

w2

W

w1

W 2
= 1.

We let si =wi/W as wi/W is firm i’s share of the input. Plugging r=W/L and p=B/Q gives

2
p

r

L
[
s2L− K̄

]α

Q
s2s1 = 1. (16)
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By symmetry, the first-order condition of firm 2 is
B

Q2

w1L

W 2
[f1(L1)f ′2(L2)]− 1 = 0.

Substituting (13), (14), and r=W/L and p=B/Q, we get

α
p

r

s1

Q
[s1L]2

[
s2L− K̄

]α−1
− 1 = 0. (17)

Solving (16) and (17) together, we obtain

2s2

[
s2L− K̄

]
= αs2

1L.

If we let α̂= α
2
, s2 = s and s1 = 1− s, this condition reduces to the following simple quadratic form

(1− α̂)Ls2 +
[
2α̂L− K̄

]
s− α̂L = 0. Furthermore, if K̄ = 0, it reduces to s =

√
α̂√
α̂+1

. Substituting

back into (16) or (17) will then determine what output price must be, given any equilibrium input

levels including input price. Thus, if K̄ = 0 and α= 0.5, both firms make positive profits. Deviations

away from K̄ = 0 or α = 0.5 can lead to firm equilibrium in which firms make negative profits.

Obviously, in a dynamic context, this would necessitate that such firms make a decision on whether

to remain in the market.

3.4. Example 2

In this section, we provide an example with three firms that use a single input (i.e., labor) to produce

a single output. Interestingly, this example explicitly shows the existence of multiple equilibria

even in the one-input, one-output model (for similar examples, see Benhabib and Farmer 1994 and

references therein). Production functions of firm 1, 2, and 3 are as follows:

Firm1 : q1 = f1(L1) =A ·L2
1,

Firm2 : q2 = f2(L2) =B ·Lα2 , 0<α< 1

Firm3 : q3 = f3(L3) =C ·L3.

We next consider profit maximization problems of these firms. Firm i’s best response to other

firms’ actions is a solution to the following profit maximization problem:

max
wi

B

Q
qi−wi

s.t. wi ≤
B

Q
qi, Li =wi

L

W
, qi = fi(Li).

The first constraint implies that profits cannot be negative. The first-order condition of firm 1 is
B

Q
f
′

1(L1)
(
L

W
−w1

L

W 2

)

+Bf1(L1)
(

−
1
Q2

)

f
′

1(L1)
(
L

W
−w1

L

W 2

)

− 1 = 0,

⇒
p

r

1
QW

(
f2(L2) + f3(L3)

)
f ′1(L1)(w2 +w3) = 1. (18)

Similarly, the first-order conditions of firm 2 and 3 are
p

r

1
QW

(
f1(L1) + f3(L3)

)
f ′2(L2)(w3 +w1) = 1, (19)

p

r

1
QW

(
f1(L1) + f2(L2)

)
f ′3(L3)(w2 +w1) = 1, (20)
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respectively. We denote the share of input by si =wi/W , where i∈ {1,2,3}. The aggregate output

is given by Q=A · (s1L)2 +B · (s2L)α +C · s3L. Substituting si and Q into (18), (19), and (20), we

obtain the following conditions for firms 1, 2, and 3, respectively:
p

r

(B(s2L)α +Cs3L) · 2ALs1(s2 + s3)
A(s1L)2 +B(s2L)α +Cs3L

= 1,

p

r

(A(s1L)2 +Cs3L) ·Bα(s2L)α−1(s1 + s3)
A(s1L)2 +B(s2L)α +Cs3L

= 1,

p

r

(A(s1L)2 +B(s2L)α) ·C(s1 + s2)
A(s1L)2 +B(s2L)α +Cs3L

= 1.

We can solve for the equilibrium shares from the following three equations in three variables:

(2ABs1(s2 + s3)sα2 −αABs
2
1(s1 + s3)sα−1

2

)
·Lα+1 + 2ACs1s3(s2 + s3) ·L2−αBCs3s

α−1
2 (s1 + s3) ·Lα = 0,

2ABs1(s2 + s3)sα2 ·L
α+1 +

(
2ACs1s3(s2 + s3)−AC(s1 + s2)s2

1

)
·L2−BCsα2 (s1 + s2) ·Lα = 0,

s1 + s2 + s3 = 1.

Figure 1 demonstrates equilibrium shares for three equilibria that occur under A = B = C = 1,

and α= 0.5 as the aggregate input L varies. Interestingly, in each equilibria, the share of at least

one firm approaches zero as the aggregate input L gets large. This, in turn, leaves three possible

equilibrium industrial organization modes: i) monopoly with the decreasing-returns-to-scale firm

in equilibrium 2 of Figure 1, ii) stable duopoly with increasing- and constant-returns-to-scale firms

in equilibrium 1 of Figure 1, and iii) stable duopoly with decreasing- and constant-returns-to-scale

firms in equilibrium 3 of Figure 1. In equilibrium 2 of Figure 1, increasing- and constant-returns-

to-scale firms both make positive profits regardless of the market thickness. However, when the

market is thin (i.e., L is small), the decreasing-returns-to-scale firm makes positive profit; and

when the market is thick (i.e., L is large), the decreasing-returns-to-scale firm makes negative

profit. However, in equilibrium 2 of Figure 1, when the market is thick, the decreasing-returns-to-

scale firm dominates the market while incurring negative profit. Thus, for all three firms to make

positive profits in equilibrium 2, the market must be sufficiently thin (i.e., L is sufficiently small).

In equilibrium 1 of Figure 1, all three firms make positive profits regardless of the thickness of the

market. In equilibrium 3 of Figure 1, the increasing-returns-to-scale firm always makes negative

profits with very small and diminishing market share, so it is likely that it will eventually exit the

market, and the other two firms will share the market and earn positive profits. In this example,

we can still obtain the multiplicity result if all three firms make positive profits (equilibrium 1 and

3 when market is sufficiently thin).

Figure 2 illustrates equilibrium shares for two equilibria that occur under A= 1, B = 2, C = 3,

and α= 2/3, and in both equilibria the decreasing- and constant-returns-to scale firms make posi-

tive profits. In equilibrium 1 of Figure 2, when the market is thin (i.e., L is small) the increasing-

returns-to-scale firm has negative profits, and when the market is thick (i.e., L is large) the
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Figure 1 Input share allocations across increasing- (IRTS), decreasing- (DRTS), and constant- (CRTS) returns-

to-scale firms as the aggregate input L varies in logarithmic scale. Setting: A=B =C = 1, α= 0.5.

increasing-returns-to-scale firm makes positive profit. The equilibrium 2 of Figure 2 is similar to

the equilibrium 3 of Figure 1 in the sense that the increasing-returns-to-scale firm always makes

negative profit, and has diminishing market shares and it is likely to exit the market eventually,

while the other two firms share the market and earn positive profits.

The two examples above show that thin market equilibria may generate negative profits while

thick market does not, and thick market equilibria may also generate negative profits while thin

market does not (in which case the dominant firm will eventually exit the market). We also observe

that if the increasing-returns-to-scale firm has very small market share, it makes negative profit

and is likely to exit the market, while the other two firms make non-negative profits, and are

likely to share the market. If the decreasing-returns-to-scale firm dominates the market, it makes

negative profit; if it does not dominate the market, which is when the market is sufficiently thin,

all three firms make nonnegative profits. The possibility of profits being negative in these examples

reflect the fact that these examples do not calculate the full Nash equilibria for the model, but

rather only the firms’ responses to variations in the input to production, holding the input prices

constant. In a full Nash-equilibrium calculation, firms facing negative profit would need to make

an exit decision, with the final equilibria then being based on a smaller number of active firms in

the market.

4. Discussion and Conclusion

We have shown that variants of the Shapley-Shubik market game model with production can

generate an equilibration mechanism that can lead to multiple equilibria when the number of active

firms is small. The equilibration process can accommodate nominal price rigidities, without any

need for enforcing menu costs or other additional restraints on price adjustment. We also explicitly

show the relationship between a typical firm’s markup of price over marginal cost and its market
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Figure 2 Input share allocations across increasing- (IRTS), decreasing- (DRTS), and constant- (CRTS) returns-

to-scale firms as the aggregate input L varies in logarithmic scale. Setting: A= 1, B = 2, C = 3, α= 2/3.

share. The model itself is silent on what might cause price rigidities, and how different mechanisms

(e.g., menu costs, search frictions, and learning) might interact with the basic model. We believe

there are some interesting arguments in favor of learning and evolutionary dynamics that arise

from the general equilibrium considerations in our analysis.

The problems with finding effective mechanisms for implementing equilibrium prices in compet-

itive economies are well known. Scarf (1960)’s example shows that the presence of strong income

effects can make simple price adjustment dynamics like the Walrasian tatonnement process inef-

fective. While the market game does provide an explicit price formation mechanism via the ratio

of expenditure flows to quantity flows, Kumar and Shubik (2004) show that the market game is

not immune to Scarf (1960)-like problems for simple adjustment dynamics akin to tatonnement.

On the other hand, there are a series of strong results in the literature on evolutionary game

theory showing that when the Nash equilibrium to a game is strict (i.e., when the equilibrium is in

pure strategies), then fitness-based (replicator) dynamics in which better responses to other agents’

play are imitated lead to convergence to the Nash equilibrium. These results have not received

much attention in the conventional general equilibrium analysis or related work in macroeconomics

because of the time-scales on which these dynamics operate, and the often non-market-based nature

of the interactions generating the convergence.

What the evolutionary game theory results do suggest (particularly in light of the fundamen-

tal problems introduced by income effects) is that equilibrium (either Nash or competitive) is

something that must be learned rather than mechanically implemented. To the extent that Nash

equilibria of the market game are evolutionarily stable, i.e., immune to deviations from Nash

equilibrium strategies, the learning costs will be quite high since pricing experiments themselves

become costly. Hence, the relatively more complex nature of evolutionary learning, as opposed to

simple mechanical price adjustment processes, makes attaining an equilibrium costly, and provides

an incentive for maintaining equilibrium prices once they are learned.
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From a less heterodox perspective, the literature on search and matching, based on the seminal

work of Burdett and Judd (1983), is capable of generating both price stickiness and staggered

price adjustment in otherwise conventional economic models. This framework, particularly at the

interface between wholesale and retail intermediaries could easily be adapted to the model we have

presented here.

One thing that is clear from this discussion is that further work embedding the market game

with production in a dynamic quantitative setting is worth undertaking.
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Appendix

Appendix A: Proof of Theorem 1.

We provide the proof of the generic applicability of the implicit function theorem here. It remains,

then, to show that the implicit function theorem (or, more generally, a transversality result) will

apply in the neighborhood of the Nash equilibrium for an economy under slack. The Jacobian

matrix for the mapping defined by equilibrium conditions has JN +N rows (corresponding to

the equilibrium first-order conditions and input price equations, respectively), and (J − 1)N +

2N columns (corresponding to the input market shares, aggregate input offers, and aggregate

expenditures on inputs, respectively). For specificity, we note that we are making a change of

variables in the first-order conditions by defining firm kj ’s share of aggregate input expenditure on

good n as

snkj =
wnkj
W n

.

Given this change of variables, variations in the aggregate level of expenditures on inputs holding

input expenditure shares constant then means that each firms’ expenditures scale as the aggregate

does. In the input pricing equation

r− Ê−1W = 0

we take r as a vector of parameters indicating the input price level firms at which would like prices

to remain constant. With these definitions, the Jacobian matrix is



G Φ 0
H ΦJ 0
0 −Ŵ Ê−2 Ê−1



 .

The derivatives here are evaluated at the sell-all equilibrium values. The adjustments needed to

show the rank result for the short-sale and low employment cases are straight-forward, so we

concentrate here on the sell-all game. The derivatives of the first-order conditions with respect

to aggregate input expenditures are zero because these always appear in the expenditure share

terms, and not alone. The matrix G is given by

G =






G1 · · · 0
...

. . .
...

0 · · · GJ−1




 ,

where each matrix Gkj for kj ∈ {1,2, ..,J − 1} on the main diagonal is an N ×N matrix given by

Gkj =

[

−pj
Qj
−kj

Qj

[

D2fkj −
1
Qj
DfkjDf

T
kj

]

Ê+
[
ŴŴ−1

−kj

]2

r̂

]

,
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i.e., the matrix of derivatives of firm first-order conditions with Ê = diag E and r̂ = diag r. The

(J − 1)N ×N matrix Φ is given by

Φ =






Φ1

...
ΦJ−1






and consists of the derivatives with respect to aggregate input offers of the firm first-order condi-

tions, with each submatrix Φkj given by

Φkj = pj
Qj
kj

Qj

[

D2fkj −
1
Qj
DfkjDf

T
kj

][
I − Ŵ−kjŴ

−1
]

+ ŴŴ−1
−kj

Ŵ Ê−2.

The matrix ΦJ is N ×N . The matrix H is

H =
[
−GJ · · · −GJ

]
,

which reflects the adding up constraint on the input shares.

We note that if production functions are all concave, then each Gj is positive definite. If some

production function f is strictly quasi-concave, then (assuming f is homogeneous of degree δ > 1),

the associated derivative matrix G will be positive definite as long as

DfT
[

D2f −
1
Q
DfDfT

]

Df =DfTD2fDf −
‖Df‖2

Q
DfTDf =

[

(δ− 1)−
‖Df‖2

Q

]

‖Df‖2 < 0,

since the strict quasi-concavity assumption implies that the matrix is negative definite in directions

orthogonal to Df. This condition, in turn, requires that δ < 1 + ‖Df‖2

Q
. In general, though, we can

not guarantee definiteness of the Gj matrices. We can, however, guarantee that these matrices have

full rank generically, and since we will need to make such genericity arguments below, we simply

assume this for now.

Now, with each of the Gj matrices having full rank, we can reduce the Jacobian matrix to the

following matrix 


G 0 0
0 Ψ 0
0 0 Ê−1



 ,

where N ×N matrix Ψ = ΦJ −HG−1Φ.

If it turns out that the matrix Ψ is singular, then we can perturb the production functions by

adding a quadratic quasi-concave perturbation of the form εkj
(
ϕkj − ϕ̄kj

)T
Akj

(
ϕkj − ϕ̄kj

)
to each

firm’s production function, where εkj is strictly positive and small, ϕ̄kj is the firm’s Nash equilibrium

input allocation, and Akj is an arbitrary bordered negative definite matrix, with bordering vectors

colinear with Dfkj . This then allows us to perturb the matrices in HG−1Φ (without perturbing

the gradients of firm production functions, and hence of Ψ) and guarantee that Ψ has full rank

generically.
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