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Abstract
Rapid imaging techniques are increasingly used in functional MRI studies because they allow a

greater number of samples to be acquired per unit time, thereby increasing statistical power.

However, temporal correlations limit the increase in functional sensitivity and must be accu-

rately accounted for to control the false-positive rate. A common approach to accounting for

temporal correlations is to whiten the data prior to estimating fMRI model parameters. Models

of white noise plus a first-order autoregressive process have proven sufficient for conventional

imaging studies, but more elaborate models are required for rapidly sampled data. Here we

show that when the “FAST” model implemented in SPM is used with a well-controlled number

of parameters, it can successfully prewhiten 80% of grey matter voxels even with volume rep-

etition times as short as 0.35 s. We further show that the temporal signal-to-noise ratio

(tSNR), which has conventionally been used to assess the relative functional sensitivity of com-

peting imaging approaches, can be augmented to account for the temporal correlations in the

time series. This amounts to computing the t-score testing for the mean signal. We show in a

visual perception task that unlike the tSNR weighted by the number of samples, the t-score

measure is directly related to the t-score testing for activation when the temporal correlations

are correctly modeled. This score affords a more accurate means of evaluating the functional

sensitivity of different data acquisition options.
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1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) relies on the validity of

statistical tests to make reliable inference about neuronal activity

underlying the experimentally observed blood-oxygen-level-dependent

(BOLD) effect. Increasing the number of samples is an effective way of

increasing statistical power. The emergence of advanced MRI acquisi-

tion strategies such as parallel (Griswold et al., 2002; Pruessmann,

Weiger, Scheidegger, & Boesiger, 1999) and multiband (or simultane-

ous multi-slice) imaging (Breuer et al., 2005; Larkman et al., 2001; Set-

sompop et al., 2012) have enabled sampling rates to be greatly

increased by reducing the time taken to acquire a single volume.

Reducing the volume acquisition time not only allows the acquisition of

more samples within the same total duration but also reduces sensitiv-

ity to intravolume motion and improves the sampling of physiological

noise, which can then be more effectively removed by low-pass filter-

ing the time series (Narsude, Gallichan, van der Zwaag, Gruetter, &

Marques, 2016; Todd et al., 2017).

However, concurrent with these benefits are penalties that must

also be considered—to determine the overall impact of a given rapid

imaging protocol on functional sensitivity. Accelerated imaging techni-

ques that capitalize on coil information to acquire less data—and subse-

quently unfold the resulting aliased images—are susceptible to varying

degrees of noise amplification, depending on the geometry factor (g-

factor) of the coil and the k-space sampling scheme used. The need to

obtain calibration data characterizing the coil elements also increases
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sensitivity to intervolume motion; as such motion reduces spatial corre-

spondence between the calibration data and the aliased images to be

unfolded. With parallel imaging, a further signal-to-noise ratio (SNR)

penalty results from the omission of k-space samples, whereby an

acceleration factor R reduces the SNR by a factor of
ffiffiffi
R

p
. The shorter

repetition time (TR) of multiband imaging and the concomitant reduc-

tion in flip angle, also reduces the steady-state magnetization and

therefore the SNR.

The focus of this work is the increase in serial or temporal correlation

that results from increasing the sampling rate (Purdon & Weisskoff,

1998); for example, due to physiological effects, motion, or scanner drift.

These correlations mean that the effective degrees of freedom are

smaller than the number of acquired samples. Modeling temporal correla-

tions is essential to preclude overestimation of functional sensitivity and

to prevent an inflated false-positive rate. A well-established approach for

modeling and removing temporal correlations is to use a mixture of white

noise and a first-order autoregressive model (Friston et al., 2002). How-

ever, with the advent of rapid imaging techniques, it has been shown that

such a model may not sufficiently capture temporal correlations in time

series acquired with very short TR (Bollmann, Puckett, Cunnington, &

Barth, 2018; Eklund, Andersson, Josephson, Johannesson, & Knutsson,

2012; Olszowy, Williams, Rua, & Aston, 2017). To address this issue, a

more complex model, implemented under the name of “FAST” in SPM12

(R7203, Wellcome Centre for Human Neuroimaging, http://www.fil.ion.

ucl.ac.uk/spm) is investigated here. While the use of this method has pre-

viously been reported (Todd et al., 2016), to our knowledge, only one

recent study (Bollmann et al., 2018) investigated its performance in terms

of prewhitening. Here, we present a complementary analysis of the effec-

tiveness of the approach for removing temporal correlations from rapidly

sampled time series. The efficiency of the model is investigated with sam-

pling intervals (volume TRs) ranging from 0.35 to 2.8 s.

The range of penalties and benefits associated with rapid imaging

techniques make it difficult to predict which set of sequence parame-

ters will provide the optimal functional sensitivity. As the aim of fMRI

is to detect a BOLD-related signal change over and above random fluc-

tuations in the time series, a commonly used measure is the temporal

signal-to-noise ratio (tSNR). This measure quantifies the mean signal

relative to its standard deviation over time and therefore requires an

accurate estimate of the standard deviation of the time series. How-

ever, the standard deviation will be underestimated, and therefore, the

tSNR overestimated, if temporal autocorrelations are not taken into

account and modeled appropriately. Even if the standard deviation is

correctly estimated, the tSNR will still not account for the effective

degrees of freedom afforded by the time series. To incorporate this

important determinant of functional sensitivity (Murphy, Bodurka, &

Bandettini, 2007), the estimated tSNR value has previously been multi-

plied by the square root of the number of samples (Smith et al., 2013),

or (equivalently) divided by the square root of the TR (Poser, Koop-

mans, Witzel, Wald, & Barth, 2010). However, this approach assumes

independent samples and will likely overestimate the functional sensi-

tivity of a protocol, particularly when high temporal sampling rates are

used. Here, we use the general linear model (GLM) framework, as typi-

cally used to analyze fMRI time series (Worsley & Friston, 1995), to

make an inference about the mean signal contrast using a t-score.

Characterising a time series in this way ensures that the imaging proto-

col is evaluated within the same context as the detection of functional

activation—and allows varying degrees of temporal correlation present

in the data to be accounted for. We show that, with a well-controlled

number of parameters in the “FAST” model, this measure is directly

related to the t-score testing for functional activation in a visual per-

ception experiment, unlike the conventionally used metrics. Therefore,

with the proposed approach, the benefits of highly accelerated proto-

cols can be more accurately quantified and compared in terms of func-

tional sensitivity, even when the numbers of samples and temporal

correlations present in the time series are varied.

2 | THEORY: GLM/T ‐SCORE

2.1 | The GLM parameters estimation and t-score

computation

Detection of neuronal activity via the BOLD signal in fMRI is most

often based on describing the acquired data, Y, by a GLM (Worsley &

Friston, 1995):

Y5Xb1e e � N 0;r2V
� �

(1)

Each row of the design matrix, X, corresponds to a single observa-

tion (i.e., acquisition volume). Each column represents an explanatory

variable, for which b constitutes the regression coefficients. e is an

error term, assumed to follow a Gaussian distribution with zero mean,

and covariance r2V, where r is the standard deviation and V is an

autocorrelation matrix.

The most common approach for making inferences about neuronal

activation in response to a task is based on classical statistics. Classical

inference relies on calculating a t-score to evaluate the significance of

an effect of interest, cTb:

t5
cTb̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var cTb̂
� �q 5

cTb̂

r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cTX2VX2Tc

p (2)

Here, c is a contrast vector of weights and b̂5X2Y are maximum

likelihood estimates with “2” denoting the pseudoinverse.

However, if temporal autocorrelations are present in the time

series (i.e., in the case of nonsphericity), such that V is not equal to the

identity matrix, the denominator of Equation 2 will no longer be the

square-root of a v2 distribution. In this case, Equation 2 no longer fol-

lows a t-distribution, which prohibits inference based on comparing it

to a Student t null distribution (Kiebel & Holmes, 2003).

One solution is to adjust the degrees of freedom of the Student t

null distribution compared against, using the Satterthwaite approximation

based on moment matching (Worsley & Friston, 1995). A second solution,

which is used here, rests on whitening the data before fitting the GLM.

The whitening matrixW is defined byWTW5V21 . Equation 1 becomes

WY5WXb1We We � N 0;r2I
� �

(3)

where I is the identity matrix. Both solutions require an accurate model

of the temporal correlation within the time series to correctly estimate V.
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Once V is estimated and the data are whitened, the maximum likelihood

regression coefficients b̂ are estimated via WXð Þ2WY and the standard

deviation of the error term r̂ is estimated from the residuals of the GLM

fit. The t-score now follows a Student t-distribution and can then be cal-

culated as follows:

t5
cTb̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var cTb̂
� �q 5

cTb̂

r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT WXð Þ2 WXð Þ2Tc

q 5
cTb̂
r̂h

(4)

The parameter h is introduced to illustrate the impact of the pre-

whitening step.

In this framework, the variance is estimated as proposed by Wors-

ley and Friston (1995) according to Equation 5:

r̂25
ete

trace RVwð Þ (5)

where e5RWY are the residuals and R is the residual forming matrix

R5I2WX XTWTWX
� �21

XTWT . Vw is the autocorrelation matrix after

prewhitening the data and therefore taken to be the identity matrix in

this framework.

2.2 | Model of temporal correlations for rapidly
sampled data

Estimating the covariance matrix is a key element of the analysis since

it is used to derive the prewhitening matrix W. The autocorrelation

matrix V can be estimated, using Restricted Maximum Likelihood

(ReML), as a linear combination of a fixed set of covariance compo-

nents, V5
P

ikiC
i modeling a mixture of white noise and a first-order

autoregressive process AR(1) (Friston et al., 2002). However, recent

studies have shown that this simple model with two components may

not be enough to model temporal correlations of accelerated sequen-

ces with more rapid sampling rates (Bollmann et al., 2018; Eklund et al.,

2012; Olszowy et al., 2017). To address this issue, a model of serial cor-

relations comprised of an extended basis set of covariance matrices

has been developed. This algorithm, termed “FAST,” is implemented as

a processing option in SPM.

In this model, a dictionary of covariance components, of length 3p,

is composed of p different exponential time constants, a (indexed by q)

and their derivatives with respect to a up to second order (indexed by

n) by constructing a set of Toeplitz matrices Cna with elements defined

as follows:

Cna
ij 5

1 if j5i and n50

jj2ijne2ajj2ij otherwise
; n 2 0;2½ �

(

with a5
8
2q ; q 2 1; p½ � (6)

The covariance components included in this model are illustrated

in Figure 1 for the case of p59.

2.3 | Functional sensitivity measure accounting for
temporal correlations

Considering a contrast vector, c0, testing the mean signal, the resulting

t-score would be

t05
cT0b̂

r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT0 WXð Þ2 WXð Þ2Tc0

q 5
cT0b̂
r̂h0

(7)

This t-score testing for the mean signal can be used to evaluate

the functional sensitivity of the imaging approach with which the time

series was acquired. In the simple case of X being a unitary vector of

length N, and W being the identity matrix (i.e,. there being no temporal

correlation in the data), the t-score testing for the mean signal, t0,

reduces to the more commonly used tSNR weighted by the square

root of the number of samples, as h0 reduces to
ffiffiffi
1
N

q
. As such, h0 can

be viewed as the “inverse effective degrees of freedom” or the “effec-

tive precision.” In other words, this measure captures the uncertainty

we have about our estimate (r̂) of the standard deviation. Note that

this is distinct from the degrees of freedom of the student distribution

of the t-score. In the presence of temporal correlations that are cor-

rectly modeled, this uncertainty estimate will accurately increase lead-

ing to an overall decrease in the t-score testing for the mean signal.

Conversely, if these temporal correlations are not modeled accurately,

the effective precision of the variance estimate will be inflated (in other

words, our uncertainty estimate will be inaccurately low), falsely

increasing the t-scores and producing an increased false-positive rate.

In what follows, the t-score testing for the mean signal t0 and the

weighted tSNR, labelled tSNRw, are computed based on the GLM

parameters: t05
cT0 b̂
r̂h0

and tSNRw5
cT0 b̂
r̂

ffiffiffiffi
N

p
. Calculating the weighted

tSNR via the GLM framework allows the task-related variance to be

removed via the design matrix regressors in the same way as for the t-

score testing for the mean signal. It will be shown that under the pro-

viso of accurate modeling of temporal correlation, t0 is a more accurate

measure of functional sensitivity than tSNRw.

3 | METHODS

3.1 | fMRI data acquisition

fMRI time series data were acquired from ten healthy volunteers (aged

between 25 and 45 years, 7 females), with approval granted by the

local ethics committee of the institution and the informed written

FIGURE 1 Covariance components of the FAST model with p59
[Color figure can be viewed at wileyonlinelibrary.com]
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consent of the participants. The task consisted of passive viewing of

images of scenes and objects and a baseline condition in which partici-

pants viewed a thin white circle on a gray background. Scenes or

objects were displayed for 2 s each during a block of 8 s, followed by a

baseline block of 8 s. Blocks were separated by an interval varying

between 2 and 4 s. In order to maintain attention, participants were

instructed to count the number of times that the white circle flashed

during the baseline condition and report whether the number of flashes

was odd or even via a button press at the end of each baseline block. A

total of 60 scene images and 60 object images were presented over

each 7 min run. The task was repeated 4 times for each participant

with a different multiband (MB) factor for each run. The order of the

different MB factors was counterbalanced across participants.

The data were acquired on a 3 T Tim Trio (Siemens, Erlangen,

Germany) using a 2D gradient echo EPI sequence with multiband

capability for simultaneous excitation of multiple slices (R012,

from the Center for Magnetic Resonance Research, University of

Minnesota). This sequence utilizes the blipped-CAIPI approach for

controlled aliasing of simultaneously excited slices (Setsompop

et al., 2012). Sequence parameters were chosen to be similar to

those typically used for moderate resolution whole-brain fMRI

studies at 3 T and are summarized in Table 1. Multiband (MB) fac-

tors of 1, 2, 4, and 8 were used. As the TR was reduced with

increasing MB factor, the flip angle was optimized to match the

Ernst angle based on a grey matter (GM) T1 value of 1,000 ms at

3 T (Weiskopf et al., 2013). All multiband RF excitations were per-

formed with MB RF Phase Scramble selected (Wong 2012) and the

data were reconstructed using the MB LeakBlock Kernel option

(Cauley et al., 2014), which has been shown to suppress residual

aliasing of BOLD signal across slices in fMRI (Risk, Kociuba, &

Rowe, 2018; Todd et al., 2016). The same echo-time was chosen

for all the protocols (TE530.2 ms). No in-plane acceleration was

used.

3.2 | fMRI processing

Each time series was realigned to the first volume and co-registered to

a T1-weighted image acquired in the same scanning session. The uni-

fied segmentation algorithm (Ashburner & Friston, 2005), as imple-

mented in SPM12, was used to generate participant-specific GM

masks and to normalize all data to Montreal Neurological Institute

(MNI) group space. Volumes were then smoothed with a 6 mm FWHM

isotropic Gaussian kernel. The design matrices of all GLMs included

regressors for motion, a high-pass filter (cutoff period 128 s), and the

stimulation blocks convolved by the canonical hemodynamic response

function. A set of 14 physiological regressors, generated using an in-

house developed Matlab toolbox (Hutton et al., 2011), were based on

cardiac and respiratory traces recorded on Spike2 (Cambridge Elec-

tronic Design Limited, Cambridge, UK) with a respiration belt and pulse

oximeter. Twelve regressors, based on a set of sine and cosine Fourier

series components extending to the third harmonic, were built to

model the cardiac and respiratory phase (Glover, Li, & Ress, 2000;

Josephs, Howseman, Friston, & Turner, 1997). Two additional regres-

sors were included to model the variation in respiratory volume (based

on Birn et al., 2006, 2008) and heart rate (based on Chang & Glover,

2009) .

A cohort-wise GM mask was defined as those voxels that had a

GM probability >0.6 in at least half of the cohort. This mask defined

the voxels included in the estimation of the GLM parameters. Activa-

tion based on viewing scenes or objects was expected in primary visual

cortex (V1) and so a further participant-specific mask of V1 was

defined as described in a previous study (Todd et al., 2017).

Temporal autocorrelations were modeled either with a mixture of

an AR(1) model1white noise or with the FAST model (SPM12 revision

7203) with varying numbers of components, p 2 1 9½ �: For reference,
the data were also analyzed without prewhitening.

3.3 | Evaluation of the “FAST” model

3.3.1 | Efficiency of prewhitening

A Ljung-Box Q test (Box & Pierce, 1970) was used to test if any auto-

correlations remained in the residuals of the first 100 data points after

estimating the parameters of the GLM. Every lag up to 20 volumes was

tested. The proportion of voxels rejecting the null hypothesis, of no

correlation at any lag, was calculated, with significance defined as

p< .05 after false discovery rate correction for multiple comparison.

Several GLMs were tested by including or excluding the 14 physiologi-

cal regressors in the design matrix but also by varying the size of the

dictionary of covariance components, 3p, with p ranging from 1 to 9.

3.3.2 | The stability of the estimator

The standard precision (inverse of the standard error) of the model

parameter estimates is expected to increase linearly with the square

root of the number of samples. This was assessed by truncating each

time series. To ensure sufficient data was available to estimate the

model parameters, the minimum number of samples was set to 100.

The number of samples was therefore varied from 100 to 153*MB

TABLE 1 Acquisition parameters

MB factor 1 2 4 8

CAIPI shift X FOV/2 FOV/3 FOV/3

Field of view [mm2] 192 3 192

Image matrix 64 3 64

Phase oversampling [%] 12

Number of slices 40

Slice orientation Transverse (PE direction : AP)

In-plane voxel size [mm2] 3 3 3

Slice thickness [mm] 2.5

Slice gap [%] 20

TE [ms] 30.2

Flip angle [8] 87 76 60 45

TR [ms] 2,800 1,400 700 350

N (number of samples) 153 306 612 1,224
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factor in 5 equal intervals. Given that the variation in the number of

samples was too small (from 100 to 153) for the longest TR, this data-

set was not analyzed.

For each of the three TRs, the temporal correlations were modeled

with the FAST model using either 18 (p56) or 27 (p59) components.

In addition, the optimal model as determined by the Ljung-Box Q test

was also examined. This analysis was performed with physiological

regressors included in the design matrix. The model that was deemed

optimal was the one that used the fewest model components while still

resulting in the minimum temporal correlations in the residuals. This

was FAST with 9 components for TR51.4 s, FAST with 12 compo-

nents for TR50.7 s, and FAST with 15 components for TR50.35 s.

3.3.3 | Bayesian model comparison

The hyperparameters of the GLM model are estimated via restricted

maximum likelihood (ReML) as implemented in SPM. In this context,

the objective function is the (log) marginal likelihood as approximated

by variational free energy. This accounts for the accuracy but also the

complexity of the model of temporal correlations (Friston et al., 2007).

The free energy provides a lower bound on the model evidence ena-

bling Bayesian model comparison. For a given covariance component

dictionary size, the ReML algorithm returns the hyperparameter values

(i.e., covariance parameters: ki) that maximize the free energy. In this

study, the resulting free energy (i.e., log marginal likelihood or model

evidence) was compared across 10 dictionaries: the FAST model with p

2 1;9½ � and the AR(1)1white noise model. As implemented in SPM

(spm_reml.m), the algorithm used for the AR(1)1white noise model or

the FAST model was exactly the same, with the exception that the

number of hyperparameters was increased for the latter. The algorithm

performs a Fisher scoring ascent on variational free energy (i.e., a lower

bound on Bayesian model evidence) to identify maximum a posteriori

covariance component (hyper) parameter estimates, as described in

(Friston et al., 2002; Penny et al., 2007; Starke & Ostwald, 2017). The

same priors as for the conventional AR(1)1white noise model were

used for each hyperparameter, ki. Technically, this inversion scheme is

referred to as variational Laplace because it assumes a Gaussian poste-

rior over covariance component (hyper) parameters, that are equipped

with an uninformative (hyper) prior, with a variance of exp(8).

A detailed description of the strategy used to evaluate the FAST

model is provided as Supporting Information.

3.4 | Evaluation of functional sensitivity measures

3.4.1 | Simulation: t-score testing for the mean versus

weighted tSNR

A simple simulation was carried out to illustrate the potential theoreti-

cal benefit of using the t-score of the mean rather than the more typi-

cal weighted tSNR. Numerical 2D time series Si of 100 voxels and

1,024 temporal samples, indexed by i, were simulated with a mean sig-

nal of 100 and a BOLD-related signal with an effect size of 1%. The

BOLD-related signal was composed of 16 blocks of 32 s, each sepa-

rated by an interval of 32 s, and convolved by the HRF. Temporal cor-

relations were simulated with an autoregressive model of order 1 and

parameter 0.4 with a standard deviation of 1 and added to the time-

series of each voxel. To simulate the case of having a fixed total scan

time but variable sampling interval, six time series Sdi ; d 2 1;6½ � were

derived from this original series by selecting one sample every d sam-

ples. For example, S2i has a sampling interval twice that of S1i but has

only half the number of samples. The parameters of the GLM of each

time series were estimated via SPM with an AR(1)1white noise model

of temporal correlation. The average of the t-score testing for the

mean signal and the t-score testing for the simulated task signal were

computed and compared.

3.4.2 | In vivo: t-score testing for the mean versus

weighted tSNR

The estimated model parameters and hyperparameters were used to

compute the tSNR weighted by the number of samples
cT0 b̂
r̂

ffiffiffiffi
N

p� �
, the

t-score testing for the mean signal
cT0 b̂
r̂h0

� �
and the t-score testing for the

contrast scenes versus objects. The first two metrics, based on the

mean signal over time, were averaged within V1 for each participant

whereas for the task-based contrast, the 10% highest t-scores for each

participant were averaged within V1. To summarize the results across

the cohort, the median and interquartile range of each metric were

subsequently calculated across participants. This analysis was carried

out with the conventional AR(1)1white noise model, the FAST model

with 18 components and the optimal model as selected by the Ljung-

Box Q test. The FAST model with 18 components has been specifically

tested here because this is the model with the highest number of com-

ponents showing the maximum free energy for at least one participant.

A model with a greater number of components was never selected.

4 | RESULTS

4.1 | Evaluation of the FAST model

4.1.1 | Efficiency of prewhitening

The efficiency of the prewhitening step and thereby the accuracy of

the auto-correlation matrix V was characterized via the results of the

Ljung-Box Q test. The null hypothesis is that there are no temporal cor-

relations, up to 20 volumes of lag, in the first 100 data points of the

residual time-series. Figure 2 shows the proportion of voxels from

within the gray matter mask rejecting the null hypothesis with a maxi-

mum false discovery rate of 0.05. The test is performed on the resid-

uals of the GLM with a design matrix including (Figure 2a) or not

(Figure 2b) the physiological regressors.

� With the longest TR of 2.8 s, the proportion of voxels for which the

null hypothesis was rejected was 50.7%, when no physiological

regressors or prewhitening step was included. This proportion

reduced to 38.6% if the physiological regressors were included in

the design matrix. Prewhitening the time-series with an AR(1)1

white noise model reduced this proportion to 16.5% and 11.5%,

without and with physiological regressors, respectively. The FAST

model with 3 components is not as efficient as the AR(1)1white

noise model given that the proportion of voxels with remaining

CORBIN ET AL. | 5



temporal correlations was 24.1% and 16.5% without and with physi-

ological regressors, respectively. However, using the FAST model

with at least 6 components reduced the level of residual correlations

below that achieved with the AR(1)1white noise model, to <14.7%

and <10.9% without and with physiological regressors, respectively.

� With a TR of 1.4 s, the proportion of voxels for which the null

hypothesis was rejected, without physiological regressors or pre-

whitening, reached 78.9%. This proportion was reduced to 71.6% by

including physiological regressors in the design matrix. Additionally,

prewhitening with the AR(1)1white noise model further reduced

the proportion of voxels rejecting the null hypothesis to 36.3%.

Although, the FAST model with 3 components did not reduce the

proportion of voxels to the level achieved with the AR(1)1white

noise model, 6 components improved the prewhitening performance

(40.4% and 27.7% without and with physiological regressors, respec-

tively). However, a minimum of 9 components was necessary in

both cases (i.e., with or without physiological regressors) to reach a

plateau level of 28.9% and 20.0% of voxels with remaining temporal

correlations, respectively.

� The proportion of voxels for the TR of 0.7 s was the largest when

no pre-whitening step was used (83.1% without, and 77.7% of vox-

els with physiological regressors). The AR(1)1white noise model

only reduced this proportion of voxels to 61.1% and 53.3%, respec-

tively, whereas a plateau of 17.0% (28.1% without physiological

regressors) was reached when the FAST model was used with 12 or

more components.

� With the shortest TR of 0.35 s, the proportion of voxels rejecting

the null hypothesis was 69.3% without prewhitening and

decreased to 62.1% with physiological regressors. The AR(1)1

white noise model further reduced this proportion to 46.5%.

However, the FAST model with a minimum of 15 components

was necessary to reach a plateau level of 13.1% with physiologi-

cal regressors (27.0% without).

In summary, as the TR decreased, a greater number of model compo-

nents was required to accurately prewhiten the time series.

The frequency content of the residuals was also calculated to fur-

ther assess the relative performance of the AR(1)1white noise model

and the FAST model with 18 components (Figure 3).

� The power spectra obtained without including physiological regres-

sors in the design matrix showed frequency peaks consistent with

physiological effects, regardless of which model for temporal correla-

tions was used (Figure 3, upper row). These peaks were removed

when physiological regressors were included in the design matrix.

� The power spectra showed low frequency contents at every TR

when no prewhitening was applied. The residuals obtained with the

AR(1)1white noise model with the longest TR (2.8 s) show a flat

spectrum, whereas this is not the case for TR� 1.4 s.

� While the power spectra of the residuals obtained with the AR(1)1

white noise model showed slow variation in power at low frequen-

cies for TR�1.4 s, this was no longer present when using the FAST

model.

4.1.2 | Stability of the model

� Figure 4 shows the relationship between the standard precision of

the parameter estimate for the constant term of the GLM (i.e., the

mean signal) and the square root of the number of samples calcu-

lated for time-series acquired with TR of 1.4, 0.7, and 0.35 s with dif-

ferent dictionary sizes for the covariance components in the FAST

model. As expected, a linear correlation (R2�0.96) was observed for

the dictionary sizes deemed optimal by the Ljung-Box Q test, that is,

the minimum number of components that achieves minimum

FIGURE 2 Proportion of voxels showing temporal correlations in the residuals of the GLM (without (a) and with (b) physiological
regressors included in the design matrix). Each data point is the average across all the participants. The Ljung-Box Q test is performed with
11 different models for temporal correlations including the conventional AR(1)1 white noise model (AR), no temporal correlations (No), and
the FAST model with p varying from 1 to 9. The significance level is defined as p< .05 after false discovery rate correction [Color figure
can be viewed at wileyonlinelibrary.com]
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residual temporal correlation: 9 for TR 5 1.4 s, 12 for TR 5 0.7 s,

and 15 for TR5 0.35 s.

� The same relationship was observed using a FAST model with 18

components for every TR (R2�0.95).

� However, a large deviation from the linear correlation was observed

for all TRs when the dictionary size was 27. The deviation was larger

for longer TR (R2 5 0.27, 0.58, and 0.86 for TR 5 1.4, 0.7, and

0.35 s, respectively). This effect is due to poorly conditioned covari-

ance components and subsequent numerical instabilities.

4.1.3 | Complexity and accuracy of the model

The free energy was calculated for each participant and each prewhit-

ening model of temporal correlations (Figure 5).

� With the longest TR of 2.8 s, the maximum free energy was

obtained for the FAST model with 3 components for every partici-

pant. However, for every participant, the difference in free energy

between the AR(1)1white noise model and the FAST model with 3

components did not exceed 3, a minimum threshold commonly

used in Bayesian analyses to define a significant difference in

evidence for one model over another (i.e., a log odds ratio of

e3 � 20 : 1) (Jeffreys, 1961).

� For a TR of 1.4 s, the number of dictionary components that

maximized the free energy varied across participants: free energy

was maximized with AR(1)1white noise model for 2 participants,

FAST with 3 components for 2 participants, FAST with 6 compo-

nents for 5 participants, and FAST with 9 components for 1 par-

ticipant. However, none of these models showed a difference in

free energy relative to the AR(1)1white noise model that

exceeded 3.

� The dictionary sizes that maximized the free energy increased as

the TR was reduced to 0.7 s: FAST with 9 components for 7 par-

ticipants, FAST with 12 components for 2 participants, and FAST

with 15 components for 1 participant. In this case, all these

FAST models showed a difference in free energy relative to the

AR(1)1white noise model that was greater than 3, indicating a

significant difference in model evidence in favor of the FAST

model.

� With the shortest TR of 0.35 s, the maximum free energy was pro-

duced by the FAST model with 12 components for 4 participants,

FAST with 15 components for 4 participants, and FAST with 18

components for 2 participants. Again, all these FAST models showed

a difference in free energy, relative to the AR(1)1white noise

model, greater than 3.

FIGURE 3 Power spectra of the residuals after fitting the GLM on the four time-series (TR52.8, 1.4, 0.7, and 0.35 s) acquired on one
exemplar participant. The design matrix did (bottom line) or did not (top line) include the physiological regressors. Two different models for
temporal correlations were tested: AR(1)1white noise (blue curve) and FAST with 18 components (red curve) and compared to the resid-
uals obtained without prewhitening (“No Model,” yellow curve) [Color figure can be viewed at wileyonlinelibrary.com]
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4.2 | Evaluation of functional sensitivity measures

4.2.1 | Simulation: t-score testing for the mean versus

weighted tSNR

Simulations show that when temporal correlations are accurately mod-

eled, the t-score testing for the task is directly proportional to the t-

score testing for the mean signal (Figure 6a, red) for all sampling inter-

vals examined. Conversely, as the sampling interval, Dt, decreases and

the total number of samples, N, concomitantly increases, the tSNR

weighted by the square root of N increases more rapidly than the t-

score testing for the task (Figure 6a, blue). While the t-score testing for

the mean signal is proportional to the weighted tSNR measure for low

N and longer Dt, it increases less rapidly than the tSNR weighted by

the square root of the number of samples as Dt decreases and N con-

comitantly increases (Figure 6b).

4.2.2 | In vivo: t-score testing for the mean versus

weighted tSNR

The t-score testing for the visual task, the weighted tSNR, and the t-

score testing for the mean signal were computed across V1 using the

optimal model as determined via the Ljung-Box Q test: AR(1)1white

noise model for the longest TR of 2.8 s, the FAST model with 9 compo-

nents for TR51.4 s, the FAST model with 12 components for

TR50.7 s, and the FAST model with 15 components for TR50.35 s.

In agreement with the simulation results, a linear correlation between

the average 10% highest t-scores testing for the task and the average

t-score of the mean in V1 was observed, with a coefficient of determi-

nation of 0.99 (Figure 7a). This behavior was not observed for the

weighted tSNR (Figure 7b), which instead tended to overestimate the

benefit of increasing the number of samples by decreasing the volume

acquisition time (TR). The relationship between the t-score testing for

the mean signal and the weighted tSNR observed in vivo (Figure 7c)

was similar to that observed with the simulated data. The increase in

weighted tSNR observed when the sampling interval was decreased

from 2.8 to 0.35 s, thereby increasing the number of samples from 153

to 1,224 was 50% larger than the increase in the t-score testing for the

mean signal.

Modeling the temporal correlations, either with the AR(1)1white

noise model or the FAST model with the appropriate number of com-

ponents, made a great difference to the resulting t-score (Figure 8) for

the same statistical threshold.

� As shown in Figure 8, the t-score testing for the task for TR 5 1.4 s

and N 5 306 was 19.5% higher when calculated with the AR(1)1

white noise model as opposed to the optimal FAST model. As the TR

was reduced, thereby increasing the number of samples, this differ-

ence increased. At a TR of 0.35 s, producing 1,224 samples in the

same scan duration, the t-score was 76% higher when the AR(1)1

white noise model was used as opposed to the more accurate FAST

model.

FIGURE 4 Relationship between the standard precision (inverse standard error) of the parameter of the constant term and the number of
samples. Temporal correlations were modeled with 9, 18, and 27 components for TR51.4 s; with 12, 18, and 27 components for
TR50.7 s; and with 15, 18, and 27 components for TR50.35 s. The coefficient of determination R2 of the linear regression averaged
across participants is indicated for each TR and model. Each color represents one participant [Color figure can be viewed at
wileyonlinelibrary.com]
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� The weighted tSNR was also lower when using the optimal

FAST model instead of the AR(1)1white noise model; however,

this difference never exceeded 5% (relative to the optimal

model).

� As opposed to the weighted tSNR, the t-score testing for the mean

was highly dependent on the model used to remove temporal corre-

lations. Using the AR(1)1white noise model artificially increased the

t-score testing for the mean by as much as 43.7% relative to the

optimal FAST model.

The results obtained with the optimal FAST model were also com-

pared to those obtained with the FAST model with 18 compo-

nents, which was the highest number of model components

selected by Bayesian model comparison in the cases investigated

in this study (selected for 2 participants when using a TR of

0.35 s). Percentage of difference was calculated with respect to

the optimal model.

� The optimal FAST model and FAST with 18 components produced

largely equivalent t-scores when testing for the task. The maximum

difference (7.1%) was observed for the shortest TR.

� The difference in weighted tSNR, between the analyses with the opti-

mal FAST model and FAST with 18 components, was always less

than 7%.

� The difference between the t-score testing for the mean signal cal-

culated with the FAST model using 18 components or the optimal

FAST model was always below 2%.

5 | DISCUSSION

Functional MRI analyses typically rely on a statistical test to infer BOLD-

related activation based on calculated t scores, using the Student t test. It

can be seen from Equation 4 that the t score is the ratio of the GLM

parameter estimates and their standard error. Therefore, in addition to

the model estimates, the standard deviation of the time series and the

correlation matrix of the observation error must also be calculated accu-

rately. As such, the t score is dependent on several estimators, none of

which should be neglected. The t score increases with the number of

samples—via a decrease in the standard error of the parameter estimates,

r̂h. However, increasing the number of samples without increasing the

FIGURE 5 The resulting free energy for each model (abscissae), each participant (colors), and each TR: (a) 2.8 s; (b) 1.4 s; (c) 0.7 s; (d) 0.35s
[Color figure can be viewed at wileyonlinelibrary.com]
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total acquisition time is only possible if the volume acquisition time (TR)

is reduced. As illustrated by the Ljung-Box Q test analyses (Figure 2a),

temporal correlations in the error term occur more frequently when the

TR is shorter (50% of voxels showed temporal correlations in the error

term when TR52.8 s, whereas at least 69% of voxels showed this prop-

erty when TR�1.4 s). This effect will clearly have an impact on the

standard error of the parameter estimates and consequently on the t-

score testing for the contrast of interest. If the degree of temporal corre-

lations is not correctly modeled, the standard error will be erroneous and

preclude reliable inferences about any neuronal activation driving

observed signal changes.

A simple way to remove long-range temporal correlations is to

apply a high-pass filter to the data. All the results here were processed

with a standard processing pipeline, including a high-pass filter with a

cutoff at 128 s, which has previously been shown to be an essential

processing step (Worsley & Friston, 1995).

A second solution to account for temporal correlations is to

regress out the physiological components of the signal that may drive

serial correlations. Here, we have shown that this reduces the level of

temporal correlations in the residuals regardless of the sampling inter-

val (Figure 2b). The efficiency of the regression may depend highly on

the way the regressors are generated, which in this study were derived

FIGURE 7 Relationship between the 10% highest t-scores testing for the task (scenes vs object) in V1 and both the t-score testing for the
mean signal, t0 (a) and the weighted tSNR, tSNRw (b) averaged across V1. Each data point is the median across participants. The vertical and
horizontal bars illustrate the first and third interquartiles across participants. (c) The relationship between the t-score testing for the mean
signal and the weighted tSNR. The optimal model determined by the Ljung-Box Q test is used for the prewhitening to remove temporal cor-
relations in the time series [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 (a) Simulated relationship between the t-score testing for the task and the weighted tSNR (tSNRw, blue cross) or the t-score testing
for the mean signal (t0, red circle). By increasing the number of samples while decreasing the sampling interval, the weighted tSNR overestimates
the increase in functional sensitivity, whereas the t-score testing for the mean is directly proportional to the functional sensitivity. Indeed the t-
score testing for the mean signal and the weighted tSNR are not proportional (b), instead the t-score testing for the mean tends to increase less
rapidly than the weighted tSNR as the sampling interval decreases [Color figure can be viewed at wileyonlinelibrary.com]
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from breathing and heart rate data recorded via respiratory belt and a

pulse oximeter, respectively. The basis sine and cosine Fourier series

modeling the fluctuations are sampled at the middle of the volume

acquisition time, meaning that longer TRs will compromise their explan-

atory power, potentially reducing accuracy. However, the fact that fre-

quency peaks consistent with physiological effects of cardiac pulsation

and breathing were no longer visible in the spectra of the residuals (Fig-

ure 3) after including physiological regressors in the design matrix sug-

gests that these effects have been modeled accurately. Nonetheless,

the power spectra of the residuals continued to show structure at low

frequencies that would be consistent with the hypothesis that unmod-

eled neural activity can also lead to serial correlations in the residuals

(Bianciardi et al., 2009; Bollmann et al., 2018; Tong & Frederick, 2014).

As high-pass filtering and the inclusion of physiological regressors do

not fully remove temporal correlations, particularly at short TR (see Figure

2b, “No” condition and Figure 3, bottom line, “Nomodel,” yellow curve), an

additional—commonly used—step is to prewhiten the data before estimat-

ing the parameters of the GLM. This whitening procedure relies on having

an appropriate model of the temporal correlations present in the data to

accurately estimate the noise covariance matrix. The typical approach for

fMRI studies is to use amixture ofwhite noise and a first-order autoregres-

sive process. By adding this third step, the proportion of voxels showing

temporal correlations in the residuals further reduced to 11.5% with the

longest TR. However, if the model fails to faithfully capture the temporal

correlations, as appears to be the case here for TR�1.4 s (Figures 2 and 3),

serial correlationswill remain in the residuals and the t score used for infer-

ence will be overestimated, thereby increasing the false-positive rate. The

failure of the AR(1)1white noise model is also qualitatively observed in

the power spectra of the residuals after prewhitening, which showed vari-

ation in power across frequencies for TR�1.4 s.

5.1 | Investigation of the FAST model

The FAST model aims to more accurately model the temporal correla-

tions in rapidly sampled data by incorporating a more complete model

of temporal correlation with a larger number of components. This

FIGURE 8 Variation of the 10% highest t-scores testing for the task in V1, the averaged weighted tSNR (tSNRwÞ across V1, and the averaged t-
score testing for the mean signal (t0Þ across V1 with respect to the sampling interval (i.e., volume TR), the number of samples, and the model used to
account for temporal correlations. Box plots represent the median and the interquartile range of the metrics across participants. Below the graphs,
the median (interquartile range) of the percent difference between models are indicated: AR(1)1white noise with respect to the optimal model (pink
line) and the FAST model with 18 components with respect to the optimal model (green line) [Color figure can be viewed at wileyonlinelibrary.com]
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model offers the possibility of capturing temporal correlations at longer

temporal lags. Combined with physiological regressors, this model

reduced the proportion of voxels with temporal correlations in the

residuals to below 20% regardless of the sampling interval (Figure 2), as

long as the number of components was sufficiently high. The minimum

number of components for a TR of 1.4 s was 9, whereas 12 compo-

nents were required for TR of 0.7 s and 15 for TR of 0.35 s.

It must be noted that at short TR the proportion of voxels with

remaining temporal correlations did not fall to the level achieved with a

TR of 2.8 s, even when a large number of components was included in

the FAST model, indicating that the shape of the covariance compo-

nents within the dictionary may be insufficient to capture these

remaining temporal correlations or that the use of a single global covar-

iance matrix was not suitable for all voxels. For TR�1.4 s, the plateau-

level percentage of voxels in which temporal correlations remained

decreased as the TR was shortened. This may reflect the fact that the

SNR also fell such that thermal noise was increasingly prevalent.

The proportion of voxels with residual temporal correlations pla-

teaued after a certain number of components were included in the

model. The minimum number of components required to reach this pla-

teau level increased as the TR decreased. As a Bayesian model reduc-

tion is already implemented in the ReML procedure (to remove

unnecessary components), a naïve solution would be to use a very high

number of components regardless of the sampling interval. However it

appears that a very high number of components may not be suitable

(Figure 4). A model including 27 components has been tested for

TR�1.4 s. Although the remaining temporal correlation was very low

according to the Ljung-Box Q test results, the standard precision did

not increase linearly with the square root of the number of samples

when the time-series was truncated. This behavior may reflect an over-

parameterization of the model resulting in an ill-conditioned inversion

problem; that is, severe conditional dependencies between the covari-

ance component (hyper) parameters that render the posterior covari-

ance rank-deficient. The resulting overparameterization can be finessed

by limiting the number of components used in the FAST model to

ensure stable convergence. In principle, overparameterization can be

compounded by inefficient sampling of serial correlations. This might

occur, because SPM pools samples of serial correlations over voxels

that survive an omnibus F-test on task-related regressors. This means

inefficient task designs could lead indirectly to inefficient estimates of

serial correlations—by limiting the number of voxels contributing to the

estimators.

The free energy approximation to log model evidence (provided by

the ReML algorithm) penalizes the complexity of the model. The opti-

mal model would therefore provide the maximum free energy. This

maximum was reached for different models depending on the TR.

Based on this free energy model comparison, the optimal model for

long TR (2.8 s) was the FAST model with 3 components. However,

given that the difference in free energy was less than 3, we can con-

clude that there is no strong evidence for the use of FAST with 3 com-

ponents over the AR(1)1white noise model in this case. However, for

shorter TR, the minimum number of model components providing the

maximum free energy increased with decreasing TR, consistent with

the need to have more complex models of serial correlations in more

rapid imaging scenarios. When using FAST the optimal number of

terms was participant-specific ranging from 3 to 9 for TR51.4 s, from

9 to 15 for TR50.7 s, and from 12 to 18 for TR50.35 s. These results

are consistent with those of the Ljung-Box Q Test.

Although computationally expensive, this framework (including the

Ljung-Box Q-test, the analysis of the behavior of the standard precision

as the number of samples is varied, and the free energy model compari-

son) would ideally be applied to every pilot study to choose the optimal

model for removing temporal correlations with a given imaging setup

(e.g., acquisition scheme and volume TR). Temporal correlations may

vary depending on the pulse sequence used or the task involved. How-

ever, our analyses have additionally shown that the FAST model with

18 components (as implemented by default in SPM12, R7203) can be

reliably used, at least for the conditions tested (i.e., TR�0.35s, block

design). Indeed, based on the Ljung-Box Q test, this dictionary size pro-

vides the minimum remaining temporal correlations regardless of the

sampling interval while guaranteeing a linear correlation between the

standard precision and the square root of the number of samples. Qual-

itatively, the residuals obtained using FAST with 18 components did

not show any structure in the frequency spectra regardless of the TR

considered. Furthermore, the difference in the t-score testing for the

visual task between the optimal FAST model and FAST with 18 compo-

nents (Figure 8) never exceeded 7.1%.

As highlighted by previous studies (Bollmann et al., 2018; Eklund

et al., 2012; Olszowy et al., 2017), the traditional AR(1)1white noise

model may fail to prewhiten the data for short TR. Here, we have

shown that a more comprehensive model can improve the efficiency of

prewhitening for TR�1.4s. However, like the AR(1)1white noise

model, the FAST approach still uses a global correlation matrix V. There

may be additional benefit to be gained from using spatially varying

model coefficients (Eklund et al., 2012; Penny, Kiebel, & Friston, 2003;

Sahib et al., 2016). However, regionally specific estimates of serial cor-

relations are necessarily less efficient and might introduce unwanted

variability in the estimates of nonsphericity.

5.2 | t-score testing for the task, the mean signal, and

the weighted tSNR

Note that the impact of temporal correlation modeling has only been

investigated here for single-subject analyses. When making inferences

at the group level (using the standard summary statistic approach to

random effects analysis), only (contrasts of) parameter estimates are

taken to the second level, and not the standard error. As the model

parameters are unbiased maximum likelihood estimators (and only the

estimate of the standard error depends on serial correlations), serial

correlations cannot bias inference at the group level when used in this

context. The impact of serial correlations modeling for alternative anal-

ysis approaches that do propagate error estimates to the second-level

would require further investigation.

In first-level analyses, the t-score testing for the task is highly sensi-

tive to the approach used to model temporal correlations. In this partic-

ular study, at a TR of 0.35 s, the t-score testing for the visual task was
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increased by 75% compared to the optimal FAST model, reducing the

proportion of voxels with residual temporal correlations to below 14%.

Our numerical simulations illustrate that, when temporal correla-

tions are accurately modeled, the t-score testing for the mean signal

will provide a more accurate predictor of task-related functional sensi-

tivity than the tSNR, even when the latter is adjusted to account for

the number of acquired samples (Figure 6). This was also confirmed by

the in vivo analyses. Once the temporal correlations were properly

modeled and taken into account, the t-score of the mean was a better

predictor of the functional sensitivity. The weighted tSNR does not

account for temporal correlations and therefore tends to overestimate

the functional sensitivity when the number of samples is increased (Fig-

ure 7). For example, the benefit of a high multiband factor of 8 over a

lower factor of 4 was overestimated by the weighted tSNR. The t-score

testing for the mean signal indicates that the concomitant effects of

increasing the g-factor, reducing the flip angle and reducing the TR,

lead to a tSNR decrease and more temporal correlations in the data,

which counterbalanced the benefit of higher statistical power afforded

by having more samples in the MB factor 8 case.

Although the weighted tSNR does not account for temporal corre-

lations, Figure 8 shows a small variation in weighted tSNR across the

different models of serial correlations. This is because it is estimated

within SPM’s GLM framework meaning that the estimate of the var-

iance in the time series will in part depend on the model of temporal

correlations. An unbiased estimate of the standard deviation requires

accurate estimation of the correlation matrix V (Equation 5). If this is

incorrectly taken to be the identity matrix, the estimator of the stand-

ard deviation is biased and underestimated (Zieba, 2010), the higher

the degree of temporal correlation, the greater the underestimation.

This also demonstrates that the chosen model affects not only the h

parameter but also the standard deviation r estimation, two key

parameters of the statistical tests used in fMRI.

The computation of the t-score testing for the mean signal is recom-

mended as an alternative measure to be used when selecting a protocol.

The input data may come from the pilot of the study or a simple task-

free acquisition. In the latter case, all voxels within the specified mask

are used for estimating the covariance matrix, whereas only voxels corre-

lating with the experimental conditions are used if such conditions are

specified in the design matrix. Given that this measure includes the esti-

mates of both r and h, it should be more representative of the true

functional sensitivity, as evidenced by the results presented here.

A key insight from this analysis is that improving the sensitivity

of fMRI is not simply a matter of reducing the amplitude of random

fluctuations, which in any event may be irreducible if they are physi-

ologically mediated. Rather it is important to characterize how effi-

ciently both the amplitude of the signal and any random fluctuations

can be estimated. In other words, one has to accurately quantify the

uncertainty about the parameter estimates. Given that the func-

tional sensitivity is also dependent on the covariance of the design

matrix, which will further increase h, that is, increase the standard

error of the parameter estimate, the t-score testing for the mean

may concurrently help in selecting both the optimal sequence and

the optimal task design.

6 | CONCLUSION

Temporal correlations are a crucial feature of the time-series acquired in

fMRI experiments and must be accurately modeled to avoid overestima-

tion of the t-score and unreliable statistical inferences leading to

increased false-positive rates. The traditional AR(1)1white noise model

for temporal correlations is susceptible to failure at short TR. A more

complete model, implemented as the “FAST” option in SPM, has been

designed to capture temporal correlations with longer temporal lag and

has proven to be more powerful for TR�1.4 s. Comparing the functional

sensitivity of sequences with different numbers of samples, sampling

intervals, and SNR is not trivial, especially because currently used metrics

do not account for temporal correlations. To address this issue, the t-

score testing for the mean is proposed as an alternative to the weighted

temporal SNR. This metric shows higher correlation with functional sensi-

tivity as long as an accurate model for temporal correlations is used.
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