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Abstract

Background: Economic evaluation normally requires information to be collected on outcome improvement using
utility values. This is often not collected during the treatment of substance use disorders making cost-effectiveness
evaluations of therapy difficult. One potential solution is the use of mapping to generate utility values from clinical
measures. This study develops and evaluates mapping algorithms that could be used to predict the EuroQol-5D
(EQ-5D-5 L) and the ICEpop CAPability measure for Adults (ICECAP-A) from the three commonly used clinical
measures; the CORE-OM, the LDQ and the TOP measures.

Methods: Models were estimated using pilot trial data of heroin users in opiate substitution treatment. In the trial
the EQ-5D-5 L, ICECAP-A, CORE-OM, LDQ and TOP were administered at baseline, three and twelve month time
intervals. Mapping was conducted using estimation and validation datasets. The normal estimation dataset, which
comprised of baseline sample data, used ordinary least squares (OLS) and tobit regression methods. Data from the
baseline and three month time periods were combined to create a pooled estimation dataset. Cluster and mixed
regression methods were used to map from this dataset. Predictive accuracy of the models was assessed using the
root mean square error (RMSE) and the mean absolute error (MAE). Algorithms were validated using sample data
from the follow-up time periods.

Results: Mapping algorithms can be used to predict the ICECAP-A and the EQ-5D-5 L in the context of opiate
dependence. Although both measures can be predicted, the ICECAP-A was better predicted by the clinical
measures. There were no advantages of pooling the data. There were 6 chosen mapping algorithms, which had
MAE scores ranging from 0.100 to 0.138 and RMSE scores ranging from 0.134 to 0.178.

Conclusion: It is possible to predict the scores of the ICECAP-A and the EQ-5D-5 L with the use of mapping. In the
context of opiate dependence, these algorithms provide the possibility of generating utility values from clinical
measures and thus enabling economic evaluation of alternative therapy options.
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Background
In many healthcare systems around the world, resources
are scarce and the demand for healthcare outweighs sup-
ply. This scarcity warrants the need for economic evalu-
ation to aid decision makers with information about the
most efficient use of resources in order to maximise the
health gained for every unit of currency spent. Within
the UK, and in many other country jurisdictions, the
most common approach to economic evaluation is the
cost-utility analysis. The outcomes of a cost-utility ana-
lysis are expressed in quality-adjusted life years (QALYs)
[1]. QALYs take into account both quality and length of
life and offer a commensurate unit that allows compari-
sons of cost-effectiveness across different disease areas
and interventions [2]. To measure QALYs, generic
preference-based measures of health-related quality of
life (HRQOL) are required [3] to capture a broad con-
struct of health through key dimensions that are known
to affect quality of life [4]. Commonly, the EuroQol-5D
(EQ-5D-5 L) measure is used in economic evaluations to
estimate QALYs [5]. The EQ-5D-5 L describes HRQOL
through the dimensions of mobility, self-care, usual ac-
tivities, pain and discomfort, and anxiety and depression.
When considering substance use disorders, the

broader concept of wellbeing is considered more appro-
priate to reflect the clinical and policy objectives [6].
Drug dependence undermines an individual’s capability
[6], and this disempowerment is largely overlooked in
the health economics of addiction-related interventions
as a result of the narrow definition of HRQOL. Until re-
cently, it was hard to define and quantify wellbeing for
the purposes of an economic evaluation. Amartya Sen’s
work on capabilities allowed for a conceptualization of
wellbeing through human functionings (what an individ-
ual ‘does’) and capabilities (the ability of the individual
to exercise a functioning) [7]. The development of the
ICEpop CAPability measure for Adults (ICECAP-A)
based on Amartya Sen’s capability approach, means that
wellbeing can now be measured in a way that is compat-
ible for use in economic evaluations [8]. The ICECAP-A
measures capability wellbeing through the dimensions of
stability, enjoyment, achievement, attachment and au-
tonomy. Both EQ-5D-5 L and ICECAP-A were found to
have the appropriate construct validity within the addic-
tion context, but ICECAP-A appeared to be significantly
more responsive to changes of key clinical indicators [9].
In order to reduce the burden of assessment on patients

and to help acquire data for clinical means, particularly in
the context of substance use disorder, studies tend to rely
only on clinical context-specific measures. For substance
use disorders, measures that are commonly used to assess
the level and impact of dependence and assess the effect-
iveness of a treatment are the Clinical Outcomes in Rou-
tine Evaluation - Outcome Measure (CORE-OM), the

Leeds Dependence Questionnaire (LDQ), and the Treat-
ment Outcomes Profile (TOP). The CORE-OM and the
TOP are instruments that are used to assess the treatment
outcome, whilst the LDQ is used to assess the level of de-
pendence at the time of assessment [10, 11]. These mea-
sures, however, are unsuitable for use within health
economic evaluations [12]. To enable information from
these measures to be used in economic evaluations, a
process called ‘mapping’ can be applied [13]. Mapping,
quantifies the relationship between different measures
using appropriate statistical techniques [14, 15], and al-
lows for the estimation of HRQOL and wellbeing for use
in economic evaluations using data collected from routine
clinical measures.
This study aims to map three clinical instruments that

are often used in the routine care of addiction and opi-
ate dependence (CORE-OM, LDQ, and TOP) onto the
EQ-5D-5 L and ICECAP-A measures, generating algo-
rithms that can be used in future studies to aid reim-
bursement decisions in the absence of information
related to EQ-5D-5 L and ICECAP-A. With these map-
ping algorithms, data from the three clinical measures
can be translated into health and capability scores for
use in an economic evaluation. The mapping algorithms
were developed using data from a pilot randomised con-
trol trial (RCT) that sought to explore the effectiveness
of two psychosocial interventions for heroin users re-
ceiving opiate substitution treatment (OST) in England
[10]. This is the first study to develop mapping algo-
rithms from routine clinical outcome measures used in
addiction therapy onto the EQ-5D-5 L and ICECAP-A.

Methods
The study uses data collected as part of a pilot random-
ized controlled trial designed to investigate the clinical
and cost-effectiveness of two psychological interventions
delivered in addition to the usual care of individuals who
had been receiving opiate substitution treatment for
more than one year [10]. All trial participants met the
ICD-10 criteria for opioid dependence and were re-
cruited if they were in opiate substitution treatment with
methadone or buprenorphine for more than a year but
still reported heroin use during the last month. The only
exclusion criteria were having a physical or mental
health condition that prevented engagement in the psy-
chosocial intervention, or an imminent period of impris-
onment. A number of client outcomes, including mental
health (CORE-OM), substance dependence (LDQ), phys-
ical and psychological health (TOP), health-related qual-
ity of life (EQ-5D-5 L), and capability wellbeing
(ICECAP-A) were assessed at baseline, 3 months and
12 months post-randomisation. These outcome mea-
sures are described in detail below. The trial was con-
ducted by three community drug teams in England. All
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trial participants provided written informed consent, and
ethical approval was obtained from the Black Country NHS
Research Ethics Committee (reference: 12/WM/0046).

Outcome measures
Clinical outcomes in routine evaluation - outcome measure
(CORE-OM)
The CORE-OM is widely used to assess the mental
health effects of psychological interventions [16]. It com-
prises 34 items across four main areas of focus: subject-
ive wellbeing, symptoms, functioning and risk. A five
point rating scale has been adopted, with 0 representing
not at all, whilst 4 represents all the time [17]. A mean
item score is commonly generated to allow an under-
standing of the level of psychological distress of an indi-
vidual. The CORE-OM is a widely used measure that
generates clinically meaningful information [17], and it
has been regarded as acceptable, reliable, valid [16].

Leeds dependence questionnaire (LDQ)
The LDQ is used to identify an individual’s level of de-
pendence on a variety of substances [18]. It features 10
items that are rated on a scale from 0 to 3; 0 represent-
ing never, whilst 3 represents nearly always. The ques-
tions are centered around substance use and frequency;
asking about desires, how substances fit into daily rou-
tines and any future plans of taking substances [19]. The
scores of all items are aggregated to indicate the overall
level of dependence. This can vary between 0 and 30
with the cut-offs of 10 and 22 used to classify individ-
ual’s level of dependence into low, moderate, and severe.
Raistrick et al. [18] describe a variety of features of LDQ
that suggest it may be able to complement economic
evaluation. The authors conclude that LDQ is under-
standable and sensitive to change in the level of depend-
ency over time and across all substance dependencies.

Treatment outcomes profile (TOP)
The TOP is used to assess the change and progress in
key areas of life for individuals who are being treated for
drug or alcohol addiction [20]. It features 20 questions,
reflecting the four domains of substance use- injecting
risk behaviour, crime and health and social care func-
tioning [21]. For this study, the health and social care
functioning aspect, which included psychological health,
physical health and the overall quality of life dimensions
were of importance. These three dimensions are rated
on a scale of 0 (which represents poor) to 20 (which rep-
resents good) [20].

EuroQol – 5 dimensions – 5 levels (EQ-5D-5 L)
The EQ-5D-5 L is an instrument that is used to measure
health-related quality of life. It is a self-reported ques-
tionnaire that covers five dimensions of health; mobility,

self-care, usual activities, pain and discomfort, and anx-
iety and depression. Participants select their functioning
level from five options ranging from 1 to 5, with 1 repre-
senting that an individual has no functioning problems
in a given dimension, whereas 5 represents severe prob-
lems with functioning [22]. An index of health-related
quality of life is generated to illustrate an individual’s
overall health status using a population tariff. This study
used the English population tariff which was developed
based on the time trade-off and discrete choice experi-
ment methods [23]. The health index score ranges from
− 0.281 to 1, with negative values representing health
states worse than death, 0 representing the “dead” state,
and 1 the “full health” state. The reliability and validity
of the EQ-5D-5 L for use with the population of study
in this investigation has already been published [9].

ICEpop CAPability measure for adults (ICECAP-A)
The ICECAP-A is a measure of capability wellbeing. It fo-
cuses on ability to function across five key dimensions of
wellbeing. These are stability, enjoyment, achievement, at-
tachment and autonomy. Participants select their capabil-
ity level from four options ranging from 1 to 4, with 1
representing that an individual has limited capability in a
given dimension, whereas 4 represents high levels of cap-
ability [8]. An index of capability wellbeing is generated
that illustrates an individual’s overall capability levels from
0 to 1 using a UK population tariff developed based on
the best-worst scaling method [24]. A score of 0 suggests
that an individual has no capability, whilst 1 represents full
capability [8]. The reliability and validity of the ICECAP-A
for use with the population of study in this investigation
has also been published [9].

Estimation and validation datasets
A common approach across mapping studies is to split
the dataset into an estimation dataset, where the mapping
algorithm between the source outcome measures (CORE-
OM, LDQ and TOP) and the target measures (EQ-5D-5 L
and ICECAP-A) is first derived, and a validation dataset,
where the predictive properties of the algorithm are tested
[25]. Two approaches were used to determine the estima-
tion and validation dataset. In the first approach, the esti-
mation sample was developed from the baseline data and
the validation sample from the 3 month follow-up data. In
the second approach, the data from the baseline assess-
ment and 3 month follow up were pooled in order to cre-
ate a larger estimation sample, and the 12 month follow
up data were then used for validation purposes, similar to
other studies in the literature [26–28].

Statistical analysis
Longworth and Rowen [25] highlight a variety of regres-
sion methods that are often used in mapping studies.
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The type of method employed depends on whether the
prediction goal is for the overall index score or the di-
mension scores of a preference-based measure. Given
that mapping onto an overall index score rather than di-
mension scores has been found to offer better predictive
ability [29], this approach was adopted for the purposes
of this study.
In the first mapping approach, ordinary least squares

(OLS) and tobit regressions were used. The OLS regres-
sion approach is commonly used in mapping studies
[25] and has been regarded as robust at predicting the
mean index score of a preference-based measure [30].
The tobit regression is a censored regression method
providing opportunity to limit predictions within the ap-
propriate range of scores for EQ-5D-5 L (− 0.281 to 1)
and ICECAP-A (0 to 1). Given that the OLS regression
is likely to provide predictions beyond these ranges,
these predictions were subsequently forced to the appro-
priate threshold value. This is.
a common approach in mapping studies [31–34]. In the

second mapping approach, a cluster regression and a multi-
level mixed effects regression at an individual level were
used to account for within-subject dependence [35, 36].
A number of potential explanatory variables were avail-

able and these were explored incrementally and in line
with the recommended methods guidance provided by
Longworth and Rowen [25]. These included overall scores,
dimension scores, quadratic terms for potentially nonlin-
ear relationships, interaction terms, and patient character-
istics (i.e. age and gender). All model specifications used
to map from CORE-OM, LDQ and TOP onto the EQ-.
5D-5 L and ICECAP-A are shown in Table 1.
To test whether the algorithms were fit for purpose, the

R2, the adjusted R2, the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC) were assessed.
For the final model choice, Brazier et al. [14] argue that

predictive ability and not fit should be considered, and
therefore an internal and external validation of the models’
predictive ability was undertaken. Internal validation
involved the prediction of the EQ-5D-5 L and ICECAP-A
index scores from each model’s outputs and evaluated how
close the predicted results were to the observed ones in the
estimation dataset using the root-mean-squared-error
(RMSE) and the mean absolute error (MAE) [25]. For ex-
ternal validation, models’ coefficients were applied to the
scores of CORE-OM, LDQ, and TOP in the validation
dataset and the results were plotted on a graph in order to
see how close the predicted EQ-5D-5 L and ICECAP-A
index scores were to the actual index scores using the
RMSE and MAE. All analyses were undertaken in Stata ver-
sion 13MP.

Results
Descriptive statistics
Table 2 presents the demographic details for the 83 trial
participants. The mean age was 37 years and the sample
comprised mostly men (87%). The majority were of white
ethnicity (84%) and unemployed (79%). Nearly 82% of the
sample received some form of state benefits. At
baseline, mean capability (ICECAP-A) index score was
0.662 (SD = 0.189) and mean health (EQ-5D-5 L) index
score was 0.806 (SD = 0.204). The summary statistics
for the two preference-based outcome measures and
for both the estimation and validation samples across
the different follow-up periods are shown in Additional
file 1: Table S1.

Mapping CORE-OM onto EQ-5D-5 L and ICECAP-A
The performance of the different models in the internal
(estimation) and external validation samples is provided
in Additional file 2: Table S2 and Additional file 3: Table
S3, respectively. The results showed that most models

Table 1 Summary of the model specifications used when mapping from CORE-OM, LDQ, and TOP onto EQ-5D-5 L and ICECAP-A

Model CORE-OM LDQ TOP

1 Mean score Aggregate score Overall quality of life score

2 Mean score;
Mean score2

Aggregate score;
Aggregate score2

Overall quality of life score;
Physical and Psychological
health status

3 Wellbeing; Symptoms;
Functioning; Risk

Best model from
above plus Age and Age2

Model 2 plus quadratic terms

4 Model 3 plus
quadratic terms

Model 3 plus Gender Model 3 plus interaction terms

5 Model 4 plus
interaction terms

Best model from above
plus Age and Age2

6 Best model from
above plus Age and Age2

Model 5 plus Gender

7 Model 6 plus Gender

CORE-OM Clinical Outcomes in Routine Evaluation - Outcome Measure, LDQ Leeds Dependence Questionnaire, TOP Treatment Outcomes Profile, EQ-5D-5 L
EuroQol – 5 Dimensions – 5 Levels, ICECAP-A ICEpop CAPability measure for Adults
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predicted the EQ-5D-5 L and ICECAP-A index scores
well in both samples and for both estimation ap-
proaches. For the EQ-5D-5 L most models provided
predictions within a 0.03 range from the observed
health index score, and therefore not different in
terms of clinical importance [37]. Exceptions were
mainly from the tobit regressions. For the ICECAP-A,
most models provided predictions within a 0.01 range
from the observed capability index scores. In the in-
ternal validation sample, model specification 5, which
included the CORE-OM dimension scores plus quad-
ratic and interaction terms, consistently produced the
lowest RMSE and MAE scores across the different
types of regression and the largest variability around
the predicted mean EQ-5D-5 L and ICECAP-A index
scores. Because of this variability, Model 5 resulted in
large RMSE and MAE in the external validation sam-
ple. In this sample, model specification 3, which in-
cluded the four CORE-OM dimensions as covariates,
produced consistently the lowest RMSE and MAE re-
sults for the EQ-5D-5 L at the mean value as well as
at repeated measurements (i.e. 25th, 50th, and 75th
percentiles), whilst model specification 2, which in-
cluded the mean CORE-OM score and its squared
term, showed the best performance across the differ-
ent models and estimation approaches (Additional file
4 Table S4). In terms of health index score, the OLS
model 3 had the lowest RMSE (0.134) and MAE (0.1)
and predicted the mean EQ-5D-5 L index score with
a < 0.007 deviation from the observed score (0.83). In
terms of the capability index score, tobit model 2 was
found to have the best predictive properties with
RMSE and MAE scores of 0.138 and 0.106 respect-
ively. The coefficients for each model covariate and
the model’s fit for the two mapping algorithms are
shown in Table 3. Figures 1 and 2 show graphs dis-
playing the predicted scores in comparison to the ob-
served scores for the chosen algorithms, when
mapping from the CORE-OM. The ICECAP-A is bet-
ter predicted.

Using CORE-OM as an example, the EQ-5D-5 L utility
score can be calculated from the following coefficients:

EQ−5D−5L utility score ¼ 1:048þ Wellbeingð Þ
� 0:0005ð Þ− Symptomsð Þ
� 0:109ð Þ− Functioningð Þ
� 0:010ð Þ− Riskð Þ 0:033ð Þ

Mapping LDQ onto EQ-5D-5 L and ICECAP-A
Detailed information about the performance of the dif-
ferent models used to predict health and capability index
scores in the internal and external validation samples is
provided in the Additional file 5: Table S5 and
Additional file 6: Table S6. Similar to the CORE-OM
measure, the results indicated that most models pre-
dicted the EQ-5D-5 L and ICECAP-A index scores
closely in both samples and for both estimation ap-
proaches. The only exception was from the tobit models,
which gave predictions beyond the potentially acceptable 0.
03 threshold difference from the observed EQ-5D-5 L
index scores. For both internal and external samples, model
specification 4, which included the total LDQ score, age,
age squared and sex, was found to offer the best predictive
ability, with RMSE and MAE ranging between 0.172–0.216
and 0.122–0.146 across the different analyses for the health
index score and between 0.163–0.194 and 0.133–0.154 for
the capability index score. OLS model 4 when mapping
to the EQ-5D-5 L had the better predictive ability. The
model produced a MAE score of 0.128 and RMSE score
of 0.178. OLS model 4 also had better predictive ability
when mapping to the ICECAP-A. This model produced
a MAE score of 0.138 and a RMSE score of 0.171

Table 2 Patient Demographic Information
Number in Study 83

Age, mean (SD) 37.1 (6.40)

Men, n (%) 72 (86.80)

White, n (%) 70 (84.30)

Employed, n (%) 17 (20.50)

Married, n (%) 2 (2.40)

Family Accommodation, n (%) 75 (90.40)

Secondary Education or less, n (%) 56 (67.50)

State Benefit Recipients, n (%) 68 (81.90)

n number of patients, SD standard deviation

Table 3 Mapping Models from the CORE-OM to the EQ-5D-5 L
and the ICECAP-A

EQ-5D-5 L ICECAP-A

Model OLS (3) Tobit (2)

Intercept 1.048c 0.999c

CORE-OM score −0.296a

CORE-OM score2 0.041

Wellbeing 0.0005

Symptoms −0.109c

Functioning −0.010

Risk −0.033

AIC −56.362 −69.824

BIC −44.451 −60.296

Adjusted R2/ Pseudo R2 0.355 −1.197

RMSE (external sample) 0.134 0.138

MAE (external sample) 0.100 0.106
aStatistically significant at the 1% level. AIC Akaike information criterion, BIC
Bayesian information criterion, MAE mean absolute error, OLS ordinary least
squares, RMSE root mean squared error
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(Additional file 7 Table S7). The coefficients for each
model covariate based on the external validation sam-
ple and the model’s fit are detailed in Table 4. Figures 3
and 4 show the difference between the EQ-5D-5 L and
the ICECAP-A predictions.
The EQ-5D-5 L scores were more dispersed and

spread than the ICECAP-A scores.

Mapping from the TOP onto EQ-5D-5 L and ICECAP-A
The performance of the different mapping algorithms
from the TOP measure onto EQ-5D-5 L and ICECAP-A
measures in both internal and external validation samples
is shown in the Additional file 8: Table S8 and Additional
file 9 Table S9. Most models predicted the EQ-5D-5 L and

ICECAP-A index scores well in both samples and for both
approaches. Tobit models gave again predictions of health
index scores that were more than 0.03 points different to
the observed EQ-5D-5 L scores but performed well in
terms of predicting capability scores. Model specifications
4; which included TOP dimension scores, quadratic terms
and interaction terms and model 6, which included the
covariates in model 4 with the addition of age, age2 and
gender; appeared to have a better performance in the
internal sample resulting in RMSE and MAE that ranged
between 0.155–0.199 and 0.122–0.126 respectively but
again with larger variability around the predicted mean
index scores. The model specification with the best
external predictive ability across the different models and

Fig. 1 The observed vs predicted scores of the EQ-5D-5 L mapped from the CORE-OM based on Model 3

Fig. 2 The observed vs predicted scores of the ICECAP-A mapped from the CORE-OM based on Model 2
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for both EQ-5D-5 L and ICECAP-A was model specifica-
tion 2, which included the three TOP dimensions only
(Overall quality of life score, Physical health status, and
Psychological health status). Overall, the OLS model 2
predicted the observed EQ-5D-5 L (0.83) and ICECAP-A
(0.69) index score with a − 0.01 point difference. For EQ-
5D-5 L and ICECAP-A, the RMSE scores were 0.167 and
0.151 respectively, while the MAE scores were 0.123 for
both mapping algorithms (Additional file 10: Table S10).
The coefficients for each model covariate based on the ex-
ternal validation sample and the models’ fit are detailed in
Table 5. Figures 5 and 6 display the graphs detailing the
predicted and observed scores when mapping from the
TOP. The EQ-5D-5 L results had a greater dispersion,
and were plotted further away from the fitted value line.

Discussion
Policy decision makers are becoming more focused on
treatment outcomes that go beyond consideration of ab-
stinence alone and capture wider treatment impact upon
patients HRQOL [38]. These measures should include
economic measures that allow consideration of value for
money. This study developed mapping algorithms from
three key clinical measures in the context of opiate de-
pendence (CORE-OM, LDQ, and TOP) onto the EQ-
5D-5 L and ICECAP-A, which are recommended by the
National Institute for Health and Care Excellence
(NICE) in the economic evaluation of health and social
care interventions [5]. These algorithms introduce the
possibility of estimating HRQOL and capability well-
being from the information contained within each clin-
ical measure and therefore the ability to make treatment
recommendations based on wider quality of life and
wellbeing outcomes. As these instruments are focused
exclusively upon health-related quality of life, and well-
being effects, these algorithms provide the vehicle to tar-
get resources towards treatment that will benefit
population quality of life. The ICECAP-A was better pre-
dicted than the EQ-5D-5 L. This suggests that when map-
ping from the clinical measures to the ICECAP-A, there
will be a greater alignment between the wellbeing aspects
than when mapping to the EQ-5D-5 L. This presents an
interesting development for reimbursement decisions
within the context of opiate dependence and OST.
This is the first study to generate mapping algorithms

for these clinical measures. This was a particularly diffi-
cult hard to reach population under study with many
participants receiving OST at a therapeutic dose for at
least 5 years, and still reporting heroin use [11]. The
study benefited from good completion rates across the

Table 4 Mapping Models from the LDQ to the EQ-5D-5 L and
the ICECAP-A

EQ-5D-5 L ICECAP-A

Model OLS (4) OLS (4)

Intercept 0.415 0.958a

LDQ score −0.014b −0.0122b

Age 0.033 −0.004

Age2 −0.0005 −0.000002

Sex (if Female) −0.016 −0.052

AIC −44.943 −53.753

BIC −32.971 −41.781

Adjusted R2 0.250 0.214

RMSE (external sample) 0.178 0.171

MAE (external sample) 0.128 0.138
aStatistically significant at the 5% level; bStatistically significant at the 1% level.
AIC Akaike information criterion, BIC Bayesian information criterion, MAE mean
absolute error, OLS ordinary least squares, RMSE root mean squared error

Fig. 3 The observed vs predicted scores of the EQ-5D-5 L mapped from the LDQ based on Model 4
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different measures, and although the primary trial fo-
cused on a hard to reach population undergoing opiate
substitution treatment but still reporting heroin use, the
distribution of health and capability scores provides
some confidence that these algorithms are likely to be
generalizable to other contexts involving substance use
disorders. The algorithms developed had good predictive
ability and the errors identified fall within an acceptable
range in comparison to other mapping studies [14].
Demographic information, other than age and sex, was
not used during the mapping process. This was a delib-
erate choice appreciating that future use of the mapping
algorithms will be maximized by the algorithms only re-
quiring demographic information on age and sex [4].
The study had limitations. Given that the study relies

on data collected within a pilot trial, a modest sample

size was used. To overcome the sample size issue, obser-
vations were pooled from two time-periods but could
have led to assumptions of independence being violated
between the observations and lead to ungeneralizable re-
sults. However, appropriate techniques were applied to
account for within-subject dependence.
Although the sample size was effectively doubled and

the dependence accounted for, the pooled dataset did not
produce better results relative to the algorithms created
from the normal estimation dataset. Studies, however,
have been conducted with smaller samples [39, 40]. The
errors reported in this study are also not significantly dif-
ferent to ones reported within other studies [14]. At first
glance, the sample may not appear representative of the
general population but was generally representative of a
UK OST population with a high number of men, un-
employed and people with mainly white ethnicity. The
EQ-5D-5 L and ICECAP-A had maximum scores of 1.
Initial regression analysis identified results that led to
scores greater than one. This meant that the upper bound-
ary had to be censored to 1. The main drawback with this
approach is that the mean, RMSE and MAE scores are
underestimated however there was no alternative solution
as mean values above 1 are not possible.
Although, there are no published studies that map to

the measures presented, there are many with other clin-
ical measures that have mapped to the EQ-5D, which
can offer a point of comparison. This study showed that
applying an alternative regression specification such as
the tobit regression did not improve the results, the OLS
models were demonstrators of goodness of fit. This con-
cords with other studies [41–44]. The predicted EQ-5D-
5 L scores generated during the mapping process were
across a much smaller spread than the observed EQ-5D-

Fig. 4 The observed vs predicted scores of the ICECAP-A mapped from the LDQ based on Model 4

Table 5 Mapping Models from the TOP to the EQ-5D-5 L and
the ICECAP-A

EQ-5D-5 L ICECAP-A

Model OLS (2) OLS (2)

Intercept 0.463b 0.348b

Overall Quality of Life −0.005 0.014a

Physical Health Status 0.010 −0.002

Psychological Health Status 0.024b 0.015a

AIC −52.030 − 70.213

BIC −42.402 −60.586

Adjusted R2 0.298 0.335

RMSE (external sample) 0.167 0.151

MAE (external sample) 0.123 0.123
aStatistically significant at the 5% level; bStatistically significant at the 1% level.
AIC Akaike information criterion, BIC Bayesian information criterion, MAE mean
absolute error, OLS ordinary least squares, RMSE root mean squared error
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5 L scores. This has also been seen to be the case in
various other studies [41, 42].
As the results were generated from a fairly small sam-

ple size, it would be useful to validate the algorithms
using a larger sample. It would also be important to con-
duct research into how the chosen algorithms would in-
fluence QALYs and cost-effectiveness decisions in the
realm of mental health.

Conclusion
The application of the ICECAP-A could have the ability to
capture mental health related quality of life outside the util-
ity framework. In relation to mental health, recovery entails

a variety of things, drug control, physical and mental health
[45]. Mapping from a condition-specific measure to a trad-
itional generic preference-based measure could miss out
these key drivers within the recovery process. It is import-
ant to capture these impacts on an individual beyond the
bounds of health and utilize tools such as the ICECAP-A
wellbeing measure. The use of the TOP clinical measure is
common practice particularly within the context of UK spe-
cialist drug treatment. Having these algorithms available
provides the potential to estimate incremental QALYs and
wellbeing outcomes using routinely collected data, and thus
provides a framework for estimating the cost-effectiveness
of alternative therapy options.

Fig. 5 The observed vs predicted scores of the EQ-5D-5 L mapped from the TOP based on Model 2

Fig. 6 The observed vs predicted scores of the ICECAP-A mapped from the TOP based on Model 2
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