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Review Article

Lung cancer is one of the leading causes of death globally.1 To-
bacco smoking causes nearly 90% of lung cancers. The major histologic 
types of lung cancer include adenocarcinoma, squamous-cell carcinoma, 

small-cell carcinoma, large-cell neuroendocrine carcinoma, and pulmonary carci-
noid tumors.2 Although some molecular alterations are shared among various 
histologic subtypes, the majority of genomic alterations remain distinct. In this 
review, we discuss recent studies of large-scale genomic analyses of the three most 
common histologic types of lung cancer — adenocarcinoma, squamous-cell car-
cinoma, and small-cell carcinoma — and their implications for the management 
of this disease.

Genomic A lter ations

The Genomic Landscape

Lung cancer related to tobacco smoking is one of the few cancers with a high 
mutational burden.3 The characteristic cytosine–adenine (C→A) nucleotide trans-
versions (the substitution of a purine with a pyrimidine, or vice versa) that are 
associated with tobacco exposure are seen predominantly in lung adenocarcino-
mas from smokers (in whom the rate of transversion is high) rather than from 
persons who have never smoked (in whom the rate of transversion is low).4 Whole-
exome sequencing of specimens of malignant tissue from the lungs of tobacco 
smokers has revealed a mean somatic mutation rate of 8 to 10 mutations per 
megabase (1 million base pairs), regardless of the histologic subtype. The muta-
tional burden in specimens of adenocarcinomas from the lungs of persons who 
have never smoked is much lower (0.8 to 1 mutation per megabase).4-7 The com-
plexity of the lung-cancer genome is further illustrated by the large number of 
focal and broad areas of somatic chromosomal copy-number alterations and gene 
rearrangements.4,6,7 This high burden of mutation poses a special challenge for 
investigators who are trying to discover novel genetic alterations that are present 
at a lower frequency (<5%). Large numbers of samples (approximately 3000) are 
required to create a comprehensive catalogue of putative cancer genes that are 
mutated in 2% or more of the lung cancers found in smokers.8

Chromosomal Changes and Alterations in Gene Copy Number

Copy-number analyses of tumor samples from patients with lung cancer have 
identified some alterations that are common across different histologic subtypes 
and others that are enriched in tumors belonging to specific histologic subtypes.9 
For instance, the short arm of chromosome 3 (3p), which contains many tumor 
suppressors, is commonly deleted early in the development of lung cancer and has 
been reported in all subtypes of lung cancer. The other most common locus that 
is deleted in patients with lung cancer involves CDKN2A, encoding ARF and p16, 
which regulate p53 and the CDK4/6/pRB axis, respectively. The selective amplifica-
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tion of chromosomal regions containing lineage-
specific oncogenes — such as SOX2, located on the 
long arm of chromosome 3 (3q) in squamous-cell 
and small-cell carcinoma, and NKX2-1, located 
on the long arm of chromosome 14 (14q) in 
adenocarcinoma — tends to be histologically 
specific. A wide variety of somatic copy-number 
alterations involving amplifications of onco-
genes and deletions of tumor-suppressor genes 
has been reported in patients with lung cancer 
(Table 1).4,6,7

DNA Single-Nucleotide Alterations  
and Insertions and Deletions

The availability of modern, high-throughput 
sequencing technologies (i.e., next-generation 
sequencing) has enabled the identification of 
coding-sequence alterations down to single-base-
pair resolution with a fairly high level of preci-
sion and accuracy. Investigators from the Cancer 
Genome Atlas and others have reported genomic 
alterations in lung adenocarcinoma, squamous-
cell carcinoma, and small-cell carcinoma (Ta-
ble 1).4,6,7,12,13 The most commonly mutated onco-

genes in lung adenocarcinoma are KRAS (in 33% 
of tumors), EGFR (in 14%), BRAF (in 10%), PIK3CA 
(in 7%), and MET (in 7%). Mutations involving 
tumor suppressors include TP53 (in 46%), STK11 
(in 17%), KEAP (in 17%), NF1 (in 11%), RB1 (in 
4%), and CDKN2A (in 4%). Mutations involving 
chromatin-modifying genes (SETD2, ARID1A, and 
SMARCA4) and RNA-splicing genes (RBM10 and 
U2AF1) are found in approximately 10% of speci-
mens from lung adenocarcinomas. Data from 
the Cancer Genome Atlas have shown a higher 
prevalence of EGFR mutations than of other mu-
tations in specimens from groups with a low rate 
of transversion (enriched with those who never 
smoked), whereas mutations in TP53, KRAS, NF1, 
STK11, and RBM10 were more common in speci-
mens from groups with a high rate of transver-
sion (enriched with present or past smokers).4

Although certain mutations are common in 
both lung adenocarcinomas and squamous-cell 
carcinomas (e.g., TP53 and CDKN2A), squamous-
cell carcinomas are characterized by fewer muta-
tions in genes encoding receptor tyrosine kinase 
(RTK) and a greater frequency of loss of tumor-

Type of Alteration Adenocarcinoma Squamous-Cell Carcinoma Small-Cell Carcinoma

Cell-cycle mutations TP53 (46%), CDKN2A(4%) TP53 (91%), CDKN2A (17%), 
RB1 (7%)

TP53 (92%), RB1 (75%)

RTK/PI3K-MTOR signaling RTK/PI3K-MTOR signaling RTK/PI3K-MTOR signaling: PTEN (5%)

KRAS (33%), EGFR (14%), BRAF (10%), 
STK11 (17%), MET (8%), NF1 
(11%), PIK3CA (7%), RIT1 (2%)

PIK3CA (16%), PTEN (8%), 
HRAS (3%)

Other mutations Oxidative stress response: KEAP1 
(17%), MYC pathway; MGA (8%)

Oxidative stress response:  
CUL3 (6%), KEAP1 (12%), 
NFE2L2 (15%)

Epigenetic deregulation: EP300 (11%), 
CREBBP (10%)

Aberrant splicing: U2AF1 (3%),  
RBM10 (8%)

Squamous differentiation: 
NOTCH1 (8%), ASCL4 
(3%), NOTCH2 (5%)

Neuroendocrine differentiation: NOTCH1 
(15%), NOTCH2 (5%), and NOTCH3 
(9%)

Rearrangements ALK (3–8%), ROS1 (2%), RET (1%), 
NTRK1 (3%), NRG1 (2%), BRAF 
(3% in those who never smoked), 
ERBB4 (1%)

FGFRs (rare) RB1 (13%), TP73 (7%), CREBBP (4%), 
PTEN (4%), RBL1 (3%)

Amplifications TTF1 (14%), TERT (18%), EGFR (7%), 
MET (4%), KRAS (6%), ERBB2 
(3%), MDM2 (8%)

Chr3q: SOX2 (43%), TP63 
(29%), PIK3CA (38%),  
HES1 (26%)†

MYC family members (16%): MYC, MYCN, 
MYCL1, SOX2 (27%), FGFR1 (8%), 
IRS2 (2%)

Deletions CDKN2A (20%) CDKN2A (27%), PTEN (3%) TP53, RB1, CDKN2A, Chr3p (e.g., FHIT, 
ROBO1)†

Commonly altered  
pathways

MAPK and PI3K signaling, oxidative 
stress response, cell-cycle progres-
sion, RNA splicing and processing, 
nucleosome remodeling

Squamous-cell differentiation, 
oxidative stress response, 
MAPK and PI3K signaling

Cell-cycle regulation, PI3K signaling, regula-
tion of nucleosome transcriptional and 
remodeling, NOTCH signaling and neu-
roendocrine differentiation

*	�Percentages represent the prevalence of mutation and were obtained from the cBioPortal for Cancer Genomics (www.cbioportal.org).10,11

†	�Chromosomes 3q and 3p are cytogenetic bands.

Table 1. Recurrent Molecular Alterations in Lung Adenocarcinoma, Squamous-Cell Carcinoma, and Small-Cell Carcinoma.*
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suppressor functions that affect genes such as 
PTEN, NOTCH1, and RB1.6,14 CDKN2A is most com-
monly lost by means of homozygous deletion 
(29%), followed by methylation (21%), inactivat-
ing mutations (18%), and splicing alterations 
with the skipping of exon 1β (4%).

Small-cell lung cancer is characterized by recur-
rent inactivating mutations in RB1, RBL1, RBL2, 
TP53, and PTEN; RNA regulatory genes (XRN1); 
genes encoding G-protein–coupled receptor-sig-
naling molecules (RGS7 and FPR1); and genes with 
functional roles in centrosome regulation (ASPM, 
ALMS1, and PDE4DIP).7,15 In a large study of somatic 
genome alterations in small-cell lung cancer, 
whole-genome sequencing performed on 110 tu-
mor specimens revealed mutations and rearrange-
ments in TP73 leading to oncogenic activation in 
13% of the cases.7 A quarter of the tumors har-
bored NOTCH-family inactivating mutations.

Epigenetic Alterations

Apart from alterations in DNA sequence, gene 
transcription may be affected by epigenetic 
changes that involve histone modifications and 
DNA methylation. Several tumor suppressors in-
volved in lung cancer are epigenetically silenced. 
Mutations in chromatin-modifying genes (e.g., 
SMARCA4, ARID1A, and SETD2) have been reported 
in lung adenocarcinoma.16 A subset of lung adeno-
carcinoma identified as CpG island methylator 
phenotype–high is enriched for SETD2 mutations 
and CDKN2A methylation. Mutations in CREBBP and 
EP300 that affect the activity of histone acetyltrans-
ferase have been observed in small-cell lung cancer, 
as have mutations in MLL, a methyltransferase 
gene.13 Integrative analyses of methylation assays 
that include data on the exome and the transcrip-
tome are necessary to fully understand the impli-
cations of epigenetic alterations in lung cancer.

Transcriptome Alterations

Transcriptome analyses of tumor specimens have 
led to several important observations regarding 
the effects of DNA-sequence alterations on RNA 
transcripts, splice-site mutations, and gene fu-
sions.4-6 U2AF1 is an important gene in the regu-
lation of 3′ splice-site selection. Not surprisingly, 
a U2AF1 mutation (S34F), which is present in 3% 
of lung adenocarcinomas, is associated with 
inappropriate splice-site selection in a number of 
genes, including the site selected for the splicing 

of the beta-catenin proto-oncogene CTNNB1. 
Splice-site mutations that result in the skipping 
of a critical region (exon 14) in the MET onco-
gene lead to a stabilized protein with persistent 
activation in lung adenocarcinoma. Fusion events 
and gene rearrangements involving ALK, ROS, 
NTRK1, NRG1, FGFR4, ERBB4, BRAF, and RET in 
lung adenocarcinoma provide opportunities for 
therapeutic intervention.4,17-19 Gene rearrange-
ments involving FGFR-family genes that have 
been reported in squamous-cell cancer in the 
lung may also be targets for intervention.20 How-
ever, most rearrangements reported in small-cell 
lung cancer involve transcription factors (e.g., 
MYCL1), histone modifiers (e.g., CREBBP), or tu-
mor suppressors (e.g., PTEN, RB1, and TP73) that 
are not readily amenable to targeted therapy at 
the present time.7

Pathway Alterations

Integrated analyses involving the use of whole-
exome and transcriptome sequencing have re-
vealed that various components of the RTK–
RAS–RAF pathway are almost always affected in 
lung adenocarcinoma (in 76% of the cases).4 
Phosphoproteomic studies have suggested that 
in some KRAS wild-type tumors there is substan-
tial activation of the MAPK pathway that may 
result from alterations in as-yet undiscovered 
members of the RTK–RAS–RAF pathway. Other 
pathways affected in lung adenocarcinoma in-
volve cell-cycle regulation (64%), p53 (63%), 
chromatin and RNA-splicing factors (49%), and 
the oxidative stress response (22%) (Fig. 1).

A number of genes involved in the pathways 
related to the oxidative stress response and 
squamous-cell differentiation are affected in 
squamous-cell carcinoma as a result of muta-
tions or alterations in copy number.6 Mutations 
in NFE2L2 or KEAP1 are found in nearly a third 
of squamous-cell-carcinoma tumor samples. 
These two genes play an important role in the 
cellular response to oxidative damage that is 
perhaps caused by the continued onslaught of 
smoking-related cellular injury. Overexpression 
and amplification of SOX2 and TP63, loss-of-
function mutations in NOTCH1, NOTCH2, and 
ASCL4, and focal deletions in FOXP1, all of which 
are involved in squamous-cell differentiation, are 
seen in 44% of tumor samples reported in the 
Cancer Genome Atlas.
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Figure 1. Recurrent Molecular Themes in Lung Cancer.

The figure shows a few common recurrently altered pathways in lung cancer. Approximately 76% of lung adenocarcinoma samples show 
driver alterations in the receptor tyrosine kinase (RTK)–RAS–RAF signaling pathway (Panel A). Genes that play a crucial role in alternative 
splicing, such as U2AF1, RBM10, and SF3B1, are altered in lung adenocarcinoma and result in aberrant splicing of oncogenes (Panel B). 
Notch signaling plays an important role in neuroendocrine differentiation, and alterations in this pathway are frequently seen in small-
cell lung cancers (Panel C). Activation of the oxidative stress pathway (Panel D) has been implicated in xenobiotic metabolism and treat-
ment resistance and is seen in non–small-cell lung cancers. Alterations in PI3K signaling, cell-cycle regulation (Panel E), and nucleosome 
modification (Panel F) are seen in all subtypes of lung cancer.
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Small-cell lung cancer is characterized predomi-
nantly by alterations in cell-cycle regulation, Notch 
signaling, and neuroendocrine differentiation. 
Genes involved in receptor kinase–PI3K signaling 
and transcriptional regulation are affected in a 
minority of samples of tumors with small-cell lung 
cancer.7 Low-grade neuroendocrine tumors of the 
lung, particularly well-differentiated carcinoids, 
seldom show the alterations in TP53 and RB1 that 
are characteristic of small-cell lung cancer.21

 Cell of Origin

The airway epithelium is fairly heterogeneous, 
being composed of multiple cell types. Both the 
cell type and the proportion of each cell type 
vary in accordance with a proximal–distal axis. 
Whereas in proximal airways, basal, club, ciliat-
ed, neuroendocrine, and goblet cells predomi-
nate, alveoli are made up of type I and type II 
pneumocytes.22 The final histologic content of 
lung cancer seems to depend on specific molecu-
lar characteristics of the cell of origin, altera-
tions that deregulate differentiation pathways in 
these cells, and the cellular context in which this 
process occurs (Fig. 2).23 Data from studies in 
mice suggest that the loss of TP53 and RB1 in 
airway neuroendocrine cells is sufficient to give 
rise to small-cell lung cancer.24 Type II pneumo-
cytes, junction cells, and club cells of the bron-
choalveolar duct have been shown to serve as the 

cells of origin for adenocarcinoma of the lung in 
mice. Type II pneumocytes play a role in the re-
newal of both type I and type II pneumocytes 
— a process that can be induced by dying type I 
cells and that depends on signaling by epider-
mal growth factor receptor (EGFR), RAS, and 
transforming growth factor β (TGF-β).25,26 Al-
though conclusive functional evidence is still 
lacking, basal cells in the proximal airway are 
hypothesized to serve as the cell of origin for 
squamous-cell lung cancer. Studies in mice allow 
lineage tracing that cannot be performed in hu-
mans. A comprehensive molecular analysis of 
tumor-initiating cells at various points during 
tumor evolution in animals would substantially 
improve our understanding of the molecular 
processes involved in cancer initiation and pro-
gression.

 Cl ona l E volu tion a nd 
In tr at umor He tero genei t y

Genomic analyses of solid tumors are increas-
ingly revealing evidence of branched evolution, 
wherein tumors consist of multiple distinct sub-
clones that share a common ancestor but differ 
in terms of subtle or profound genomic altera-
tions that occur later in the evolution of the tu-
mor. Such subclones may be intermixed within 
one tumor sample or regionally separated within 

Figure 2. Cells of Origin and Characteristic Alterations According to Histologic Subtype.

The likely cells of origin for the three common histologic subtypes of lung cancer — adenocarcinoma, squamous-cell carcinoma, and 
small-cell carcinoma — are depicted.
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a primary tumor, between primary and meta-
static sites, or between metastatic sites — pro-
viding a substrate for tumor adaptation, selec-
tion, and evolutionary fitness (Fig. 3)27,28

Zhang and colleagues applied multiregion, 
whole-exome sequencing to specimens from 11 
patients with early-stage lung adenocarcinomas 
(8 of whom had stage I disease).29 Clear evidence 
of intratumor heterogeneity and branched evolu-
tion was found in every case. Among the 21 muta-
tions known to be related to the disease, 20 were 
present in every region, suggesting that single 
sampling approaches in early-stage non–small-
cell lung cancer are sufficient to depict the 
driver of the mutational landscape in this dis-
ease. The authors studied the associations of the 
number of subclones in a tumor with relapse 
and found a larger fraction of subclonal muta-
tions in patients who had a relapse within 21 
months after surgery than in those who did not 
have recurrence of disease. Larger prospective 
studies are needed to confirm these observa-
tions. De Bruin and colleagues investigated 
7 non–small-cell lung cancers, including 5 tumors 
in stages II through IIIB, by means of whole-
exome multiregional sequencing.30 There was 
evidence of both somatic mutational and copy-
number heterogeneity and of genome-doubling 
events that in many cases occurred early in the 
evolution of the tumor and were present in each 
subclone analyzed within each tumor region — 
events that represent the trunk of the tumor’s 
evolutionary tree (Fig.  3). The median propor-
tion of heterogeneous mutations found in one 
region but not another, termed branched events, 
was 30%. There was a 42% probability that a 
category 1 “high-confidence” driver mutation 
(defined as a disrupting mutation in tumor-
suppressor genes or an activating amino acid 
substitution in oncogenes) would be missed in 
this higher-stage cohort when a single biopsy 
specimen was profiled. These data suggest that 
the risk of missing a high-confidence–driver 
event from a single biopsy specimen may increase 
with tumor stage. However, larger studies, such 
as the Tracking Cancer Evolution through Ther-
apy (Rx) (TRACERx) program (ClinicalTrials.gov 
number, NCT01888601) in the United Kingdom, 
will be required to formally examine this hy-
pothesis.

The Zhang and de Bruin studies also shed 
light on the mechanistic basis of branched evo-
lution in these tumors. In lung adenocarcinomas 

from former and current smokers, the propor-
tion of C→A transversions within the clonal muta-
tions was reduced in the branches (depicting 
subclonal mutations, which are present in some 
cells but not others), suggesting that alternative 
mutational processes might dominate the carci-
nogenic effect of smoking exposure later in tu-
mor evolution. In findings consistent with this 
observation, subclonal mutations were enriched 
with C→T and C→G mutations at TpC sites, typi-
fied by a mutational process attributed to the 
APOBEC (apolipoprotein B mRNA editing en-
zyme, catalytic polypeptide-like) cytidine deami-
nase family of proteins (these enzymes convert 
cytosine to uracil during RNA editing) (Fig. 3). 
The APOBEC family of antiviral enzymes pro-
vides an important innate immune defense and 
serves to engender mutations in viral DNA or 
RNA, rendering them replication-incompetent. 
APOBEC3B is emerging as a major mutagenic 
source in cancer. Subclonal mutations in driver 
genes have occurred within an APOBEC context, 
fostering tumor diversification and branched 
evolution31 — a finding that is consistent with 
the importance of the APOBEC mutational pro-
cess. Evidence also suggests that cytotoxic agents 
such as platinum drugs that are used to treat 
non–small-cell lung cancer may also leave a sub-
clonal mutagenic footprint (Fig.  3). Statistical 
power to detect novel environmental and endog-
enous mutational processes across the genome 
will increase as the number of sequenced ge-
nomes that are available increases, revealing 
mutagenic processes that drive the acquisition of 
mutations and branched evolution. In vitro geno-
toxic screening and cancer genome analysis, as 
exemplified by efforts such as those of the 
COMSIG (Causes of Mutational Signatures) con-
sortium, are likely to enable a broader under-
standing of the potential effects of exogenous 
mutagens on the genome and inform efforts to 
limit harmful exposures.

Studies in mice are also shedding light on the 
complexities of the metastatic spread of small-
cell lung cancer driven by intratumoral hetero-
geneity, with evidence of polyclonal seeding of 
metastases from a primary tumor, linear sequen-
tial spread of one metastasis to another,32 and 
subclonal dependencies for metastatic coloniza-
tion (Fig. 3).33 In rare instances, lung adenocar-
cinoma driven by mutations in EGFR undergoes 
transformation to small-cell cancer, with loss of 
the RB1 tumor suppressor.34
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Figure 3. Evolutionary Trajectory of an Adenocarcinoma.

The early founder (clonal or trunk) somatic mutational events that drive tumorigenesis occur as clonal mutations. 
Genome-doubling events often occur early in tumor evolution in the trunk of the evolutionary tree. Subclonal driver 
events may occur after genome doubling in the branches of the evolutionary tree of the tumor. Tobacco-related C→A 
mutations constitute a dominant process that occurs early in tumor evolution in current and former smokers. Later in 
tumor evolution, a mutational signature associated with the APOBEC protein family is enriched relative to tobacco-
associated C→A mutations in the branches, even in current smokers. APOBEC-related subclonal mutations in driver 
genes have been described, which suggests that APOBEC contributes to branched evolution in lung adenocarcinoma. 
Cytotoxic therapies such as platinum-based chemotherapy may drive de novo mutagenesis later in tumor evolution. 
Genome instability combined with background mutagenesis (age-related signature), genetic drift, and selection results 
in intratumor heterogeneity, which is manifested in multiple subclones that coexist within different regions of one tu-
mor (R1 and R2) and may cooperate with or antagonize each other. As a result of intratumor heterogeneity, distinct 
subclones may reside at different sites (M1, M2, or M3) or polyclonal drug resistance may develop. Therapies targeting 
the epidermal growth factor receptor (EGFR) select for low-frequency–resistant subclones that may be detectable 
before drug exposure, harboring somatic mutations typified by T790M. CpG sites are regions of DNA where a cyto-
sine is followed by a guanine nucleotide.
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Ther a peu tic Implic ations

Identification of Molecular Targets  
for Therapy

Substantial progress has been made in the treat-
ment of specific molecular subsets of lung adeno-
carcinoma.35 Patients with metastatic disease who 
have activating mutations in the EGFR tyrosine 
kinase domain have been shown to have sig-
nificantly higher rates of response and of pro-
gression-free survival with the administration 
of specific EGFR kinase inhibitors than with 
cytotoxic platinum-based chemotherapy. Similar 
results have been observed with the use of ALK 
inhibitors in patients with metastatic non–small-
cell lung cancer whose tumor cells have ALK re-
arrangements. The use of specific kinase in-
hibitors are also being studied for additional 
molecular targets involving ROS1, RET, and BRAF. 
The Lung Cancer Mutation Consortium has re-
ported better outcomes in patients with clearly 
defined molecular alterations who are treated 
with specific, molecularly targeted therapies than 
in patients without such targets in the tumor tis-
sues, which highlights the need to identify and 
target pathogenic alterations in tumor cells.36 
Targeted, next-generation sequencing of a limited 
number of cancer genes in a single platform is 
being increasingly used in the clinic.37 It is im-
portant to obtain an adequate amount of tissue 
by means of core biopsies or, even better, exci-
sional biopsies when feasible. Fine-needle aspira-
tion is not a suitable method for making a molecu-
lar diagnosis. In Lung-MAP (ClinicalTrials.gov 
number, NCT02154490), a large, ongoing study 
funded by the National Cancer Institute, research-
ers are exploring the usefulness of molecularly 
targeted therapy in patients with squamous-cell 
carcinoma of the lung by using one such multi-
gene assay that involves next-generation sequenc-
ing technologies. The National Lung Matrix Trial 
(ClinicalTrials.gov number, NCT02664935), which 
is being conducted in the United Kingdom, in-
volves the use of targeted therapy in patients 
with non–small-cell lung cancer. The trial has 
21 groups that are categorized according to in-
dividual or combinations of genetic biomarkers.

Implications for Clonal Evolution in Lung 
Cancer

Evidence from studies of lung adenocarcinoma 
and other solid tumors implicates Darwinian 
selection of either de novo or preexisting sub-

clones during therapy that harbor somatic events 
that make cells more fit in the presence of drug-
selection pressure. Neutral evolution may also oc-
cur in non–small-cell lung cancer that may further 
increase the substrate of diversity on which se-
lection can act. Most large-scale genomic studies 
of lung cancer have been performed with the use 
of samples procured at the time of surgery from 
patients who had not received any systemic 
therapy. It will be important to obtain tissue 
specimens at the time of disease progression to 
fully understand clonal evolution after systemic 
therapy. As sequencing and tumor sampling meth-
ods improve, investigators are documenting mul-
tiple mechanisms of resistance to targeted ther-
apies in lung adenocarcinoma.38,39 These data 
suggest that clonal evolution and the intratumoral 
heterogeneity of somatic events should be con-
sidered in future drug-development strategies.

Predictors of Response to Immunotherapy

Efforts are ongoing to identify biomarkers of 
response to drugs that target the programmed 
death 1 (PD-1) receptor in advanced non–small-
cell lung cancer. Rizvi and colleagues showed 
that the response to anti-PD-1 therapy correlated 
with a smoking signature and the nonsynony-
mous (coding) mutation burden in the tumor.40 
Moreover, tumor regression was correlated with 
a neoantigen-specific response by CD8+ T cells, 
which points to the potential for selecting and 
customizing immunotherapy on the basis of the 
genomic characteristics of a tumor.

Potential Uses of Circulating Tumor 
Biomarkers

Sensitive sequencing techniques can now be used 
in early- and late-stage cancer to detect somatic 
mutations in tumors and copy-number aberrations 
in cell-free circulating tumor DNA obtained 
with the use of a “liquid biopsy” (i.e., a blood 
test).41-44 Higher plasma levels of cell-free DNA 
were found in patients with resectable non–
small-cell carcinoma than in healthy persons or 
persons with chronic respiratory inflammation.45 
This technology has the potential to be used in 
tracking the genomic evolution of tumors over 
time and may have therapeutic implications in 
terms of its ability to detect actionable events or 
resistant subclonal populations while avoiding the 
need to conduct repeated biopsies. The analysis 
and propagation of circulating tumor cells in 
studies in mice have shown promise in helping to 
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support the development of new drug combina-
tions, particularly in small-cell lung cancer, in 
which access to tumor material is often limited.46

Dir ec tions of Fu t ur e R ese a rch

Progress over the past 5 years has shed light on 
the early somatic events of tumorigenesis in lung 
cancer. As sequencing methods become increas-
ingly sensitive, it is likely that the capacity to de-
tect early-stage lung adenocarcinoma and squa-
mous-cell carcinoma by means of cell-free DNA 
analysis will improve and that this technique will 
be used as a complement to radiologic-based 
screening approaches. Although we have made 
substantial progress in identifying biomarkers 
in order to select patients for molecularly targeted 
therapies, less progress has been made in our 
ability to identify patients who are likely to have 
relapse after surgical resection. Moreover, rela-
tively little is known about the metastatic pro-
cess and biologic characteristics of late-stage 
disease, a situation that should mandate the 
expedited performance of autopsy studies to 
investigate these processes further. Evidence sug-
gesting the mutual dependencies of cancer sub-
clones for tumor growth and metastatic coloni-
zation may lead to new therapeutic approaches.

As is the case with ecologic evolution, the evo-
lution of cancer is a constrained process whose 
progress is probably limited by the host genome, 
antecedent steps in tumor evolution, and the mi-
croenvironment of the tumor. A deeper under-
standing of the spatial and temporal dynamics 
of the evolution of lung cancer may lead to new 
therapeutic approaches that will forestall the next 
evolutionary move of cancer and exploit evolu-
tionary dead ends. An understanding of the evo-
lution of lung cancer through space and time 
after surgery and during the onslaught of environ-
mental, therapeutic, and immune-based selection 
pressures will be required to address these chal-
lenges. Efforts toward understanding these issues 
are being made in studies such as TRACERx, for 
which researchers are harnessing assiduous ap-
proaches to spatial and temporal tumor sampling 
linked to autopsy programs and developing their 
understanding of circulating biomarkers.

As deep-sequencing approaches become more 
common in clinical care, developments in infor-
matics and the analysis of genomic data for 
clinical use will be essential. Such developments 
must provide real-time feedback that prioritizes 

actionable genomic information that is based on 
up-to-date knowledge from resources available 
at an affordable cost to clinicians and patients. 
The consent forms used in genomic studies 
should inform patients about the risks associ-
ated with genomic testing, including loss of pri-
vacy, and about the implications of tests that 
may detect deleterious alterations in the germ-
line that are associated with the future develop-
ment of certain diseases. Patient preferences 
with regard to being informed of the incidental 
findings should be incorporated into the con-
sent forms related to genomic studies.

Therapeutically, there is still much progress 
to be made. For example, the development of 
strategies to target KRAS mutations, the most 
common driver oncogene in lung adenocarcino-
ma, should be a top priority in research.47 There 
is much interest in developing strategies to ad-
dress synthetic lethality, an occurrence in which 
the disruption of two or more gene products 
leads to cell death, but the inhibition of either 
one alone does not. The concept of synthetic 
lethality is particularly relevant to relatively in-
tractable therapeutic targets, such as KRAS.47 As 
our knowledge of genetic dependencies in lung 
cancer improves, the vulnerabilities of the disease 
may reveal new therapeutic avenues.

The mutational burden of non–small-cell lung 
cancer (both squamous-cell carcinoma and ade-
nocarcinoma) may be the Achilles’ heel of immu-
notherapy. The iatrogenic effect of mutagenic 
therapy may need to be considered when determin-
ing the order of therapeutic regimens, since some 
cytotoxic chemotherapies and radiation may in-
crease the acquisition of new subclonal muta-
tions that might affect the response to immuno-
therapy. Furthermore, current approaches to the 
prediction of the development of tumor neoanti-
gens are relatively rudimentary and are restricted 
to class I rather than class II major-histocompati-
bility-complex (MHC) antigens. Efforts to better 
delineate the development of both MHC class I– 
and class II–restricted neoantigens may improve 
our understanding of immune surveillance dur-
ing tumor evolution. Finally, understanding the 
ways in which the immune microenvironment edits 
the cancer genome during the disease course and 
the ways in which the host immune system might 
be leveraged to target tumor neoantigens within 
the context of a heterogeneous genomic land-
scape may provide promising avenues to improve 
survival outcomes in patients with lung cancer.
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