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The X-linked bleeding disorder hemophilia causes frequent
and exaggerated bleeding that can be life-threatening if un-
treated. Conventional therapy requires frequent intravenous
infusions of the missing coagulation protein (factor VIII
[FVIII] for hemophilia A and factor IX [FIX] for hemo-
philia B). However, a lasting cure through gene therapy has
long been sought. After a series of successes in small and large
animal models, this goal has finally been achieved in humans
by in vivo gene transfer to the liver using adeno-associated
viral (AAV) vectors. In fact, multiple recent clinical trials
have shown therapeutic, and in some cases curative, expres-
sion. At the same time, cellular immune responses against
the virus have emerged as an obstacle in humans, potentially
resulting in loss of expression. Transient immune suppression
protocols have been developed to blunt these responses. Here,
we provide an overview of the clinical development of AAV
gene transfer for hemophilia, as well as an outlook on future
directions.
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Hemophilia is an X-linked bleeding disorder that occurs approxi-
mately in 1 of 5,000 male births worldwide. It is caused by mutations
in blood clothing factor VIII (FVIII, hemophilia A) or factor IX
(FIX, hemophilia B).1,2 Both proteins are normally produced in
the liver (FIX [factor IX] by hepatocytes and FVIII by endothelial
cells) and secreted into the blood circulation. FIX is a vitamin
K-dependent serine protease that plays a vital role in the coagulation
cascade. Its cofactor, FVIII, is critical for FIX enzymatic activity.
Therefore, mutations in either protein may lead to lack of coagula-
tion activity, resulting in frequent spontaneous bleeds in patients
with activities of <1% of normal. If left untreated, bleeding
may become fatal.3 Both hemophilia A and B can be treated with
recombinant factor replacement with significant improvement in
morbidity and mortality.3 However, such treatment is extremely
costly and is often still marred by clinical complications, including
bleeding, particularly bleeding into the joints despite factor replace-
ment. The need for frequent administration of recombinant factor
concentrates infused two to three times per week in order to main-
tain minimal therapeutic levels is demanding and highly invasive.
Some improvement in outcome has been achieved in highly devel-
oped countries, but the majority of subjects throughout the world
lack resources for optimal treatment.1–4 These considerations
prompted efforts to develop novel approaches for treatment of
hemophilia using gene therapy, which has the potential for lasting
treatment and even curing of the disease.
Our early gene therapy studies focused on the treatment of hemophil-
ia B as work had progressed most rapidly for the disorder. Ongoing
efforts have also accelerated with respect to the development of
vectors suitable for the treatment of hemophilia A, as will be discussed
in detail in this work. The work in my laboratory dedicated to the
development of gene therapy for hemophilia, based on gene transfer
with recombinant adeno-associated virus (rAAV), began after
Dr. Amit C. Nathwani arrived from the University College London
to work as a post-doctoral fellow in my lab (July 1997). Dr. Andrew
Davidoff, a fully trained pediatric surgeon, was recruited to the project
because of the belief that a portal-vein injection in mice was needed to
ensure liver transduction. This turned out not to be true, as we have
subsequently found equivalent transduction following portal versus
peripheral vein infusion. They directed all of the preclinical studies
and our clinical trial.

rAAV vectors have been derived from the many serotypes of AAV
that exist in nature.5,6 Serotype rAAV2 was used most extensively
in early studies because had been the first serotype which was charac-
terized. AAV viruses are thought to be nonpathogenic. The AAV
genome is single stranded DNA and 7 kb in length. It includes in-
verted terminal repeats (ITRs) of approximately 145 base pairs. The
ITRs are the only elements that must be retained in the vector genome
to allow its packaging. AAV viruses depend on a helper virus for
replication, usually adenovirus. Production of viral vector occurs in
packaging cells that have been transfected with a multi-plasmid sys-
tem in which a number of adeno-viral proteins are expressed as
well as the AAV rep and capsid proteins.7,8 Alternatively, the vector
is produced using herpes virus helper or by infection of insect cells
with baculovirus.7,9

Initial studies attempting to exploit rAAV vectors for treatment of he-
mophilia B relied on the use of these single-stranded rAAV2 vectors.
Two clinical trials have been completed, with limited results. The
initial trial focused on intramuscular injection of rAAV encoding
FIX in a classic dose-escalation study.10–12 Minimal expression was
observed in only one of eight participants in this trial and FIX expres-
sion was at a very low level. The next trial focused on liver-targeted
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delivery.13 As liver is the natural site for FIX synthesis, this seemed
like an appropriate target. Seven patients with severe hemophilia B
received an rAAV2 vector via hepatic artery injection. Initial expres-
sion was observed in those trial participants who received the highest
dose, but expression was lost as cytotoxic T lymphocytes appeared in
the blood. They were judged to have destroyed the FIX-expressing
hepatocytes.13–15

Many studies had resulted in the identification of multiple AAV sero-
types.16,17 Serotype AAV8 was particularly intriguing, in that it does
not cross-react with antibodies directed against other AAV serotypes.
Because AAV8 rarely infects humans, the incidence of neutralizing
antibodies is relatively low, with only approximately 20% of indi-
viduals having neutralizing antibodies. Recent studies, however,
suggest a significantly higher incidence of anti-AAV8 antibodies in
humans.18 Furthermore, relatively low titers of the antibodies abro-
gate liver transduction. Two studies have shown that transient immu-
nosuppression may facilitate transduction of the liver in vivo in
animal models.19,20

We choose serotype 8 for our studies because of its efficacy in trans-
ducing hepatocytes from peripheral vein.5 Another favorable factor
for the AAV8 serotype is that the genome is rapidly uncoated, allow-
ing for prompt expression.21 A technical advance that we incorpo-
rated into our vector design was the use of a self-complementary
vector.22,23 Self-complementary AAV vectors (scAAV) have each
strand of the FIX-coding genome in an inverted orientation, between
which there is an ITR which has been mutated to prevent its diges-
tion. Self-complementary genomes quickly self-anneal when cells
are transduced, enhancing the rate of gene expression as well as the
level of gene expression achieved.22 We designed our vector to have
a FIX expression cassette that was small enough to accommodate
the self-complementary genome by modifying transcriptional control
elements (enhancer, promoter, and polyadenylation site) to minimize
size and therefore to allow efficient packaging of the self-complemen-
tary genome.24 The FIX coding sequences were codon optimized by
synthesis with the most frequently used codons in natural cellular
transcripts. We observed a 20-fold improvement in FIX expression
in mice compared to ssAAV vectors. Expression of FIX was very
high despite the use of much lower vector doses than had been applied
in earlier studies with ssAAV vectors.

Extensive preclinical studies were performed, initially in mice.25

Vector was given by tail vein administration, as early studies had
indicated equivalent liver uptake by peripheral injection compared
to portal vein injection.26 scAAV2/8 vector particles were found to
be much more efficient at transducing hepatocytes than ssrAAV2/8.
A dose-dependent increase in FIX was observed in mice, with animals
receiving the highest dose achieving 100% of the FIX levels that are
found in normal human plasma. Preclinical studies were extended
to evaluate transduction of non-human primate hepatocytes.25 This
was achieved very successfully with a peripheral vein infusion. The
vector genome was found predominantly in the liver, with lesser
amounts in the spleen. Expression of the vector-encoded transcript
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was found exclusively in the liver as predicted based on the construc-
tion of the liver-specific enhancer promoter combination that was
used. Noteworthy is the fact that no toxicity was observed in any of
the animals that received vector as part of the preclinical studies.
Despite the superiority of AAV8 in mice, the two serotypes seemed
more equivalent in non-human primates and in the clinical trials
to date.

The initial clinical trial was designed as a phase I/II dose-escalation
study with the classic design.27,28 The initial dose was 2� 1011 vector
genomes (vg)/kg, with an intermediate dose of 6 � 1011 vg/kg and a
higher dose of 2� 1012 vg/kg. Overall, 12 subjects have participated in
this trial. This report provides detailed results on the first 10, each of
which have been followed 3 years or more after the single vector infu-
sion. All 10 participants have had measurable levels of FIX. The two
patients treated most recently also have stable production of hFIX.
Among the initial six patients who received the highest dose, the
average FIX level was 5.1% ± 1.7%, with each having significant pro-
duction of R 2%. FIX expression resulted in a dramatic reduction in
requirements for FIX infusions. Several of the patients had a mild
elevation in transaminase levels. After observing this phenomenon
in the first high-dose patient, we resolved to begin prednisolone as
soon as there was a 50% or greater increment in transaminases above
the baseline values even if the values remained within the normal
range. With this treatment approach, the transaminase elevations
resolved over a period of a week or two and steroids could be with-
drawn after 4 weeks with no recurrence of the transaminitis. Fortu-
nately, the prompt treatment permitted maintenance of the FIX levels
in the individual participants.

Several other pharmaceutical companies have recently used the AAV
vector pseudotyped with a variety of capsid proteins to deliver either
wild-type F9 cDNA or one containing the gain-of-function mutation
known as Padua (R338L).29–32 UniQure and Dimension have ongoing
studies with the wild-type factor sequence, whereas Baxalta and Spark
have studies entail the use F9 cDNA that incorporates the Padua mu-
tation, which leads to an 8-fold enhancement of expression of FIX. The
results of these trials, which involve over 30 patients, remain largely un-
published, but they support our initial observations.33 The majority of
these studies confirm the efficiency and durability of AAV-mediated
gene transfer following systemic administration of the vector. There
have been no reports of serious adverse events in any of the trials.
An asymptomatic rise in liver enzymes is often associated with a
decline in FIX levels has been observed in most of these studies usually
between 4 and 10 weeks after gene transfer.34 Treatment with cortico-
steroid appears to be effective at limiting the hepatocellular toxicity as
well as preserving expression of transgenic FIX, especially when
commenced early in some of the affected patients. The best emerging
data so far is from a study sponsored by Spark Therapeutic using a
novel engineered AAV capsid and a codon-optimized, and a gain-of-
function Padua variant. Data presented thus far show that the low
dose (5� 1011 vg/kg) of their vector resulted in sustained FIX activity
levels between 12% and 63% of normal following a single administra-
tion of SPK-9001 at the initial dose level studied in the trial.29,31
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Hemophilia A is a far more common disorder than hemophilia B.
Accordingly, we had great interest in developing an effective rAAV
vector suitable for treating hemophilia A. Development of such a vec-
tor presented several challenges.35 The human factor VIII (FVIII)
coding sequence is 7 kb in length, which is too large to be packaged
into an AAV capsid with its limiting packaging capacity. FVIII has
three functional domains. The B domain can be deleted, and in the
construction of our vector, a 226-amino-acid spacer was included
in place of the B domain in the construction of our vector. Amino
acid triplets which function as glycosylation sites that are normally
part of the B domain were included within this spacer. The resulting
5.2-kb vector was efficiently packaged after its coding sequences were
codon optimized. Super physiological levels of FVIII were achieved
in mice and non-human primates.35 An immune response mediated
by antibodies targeted to FVIII was eliminated with transient
immunosuppression.

Encouraging results from our clinical trials have stimulated a great
deal of interest in the application of gene therapy for the treatment
of hemophilia. Using an AAV5 containing the SQ linker codon-opti-
mized FVIII expression cassette described above, in a study sponsored
by Biomarin nine subjects with severe hemophilia A have been treated
at doses ranging from 6 � 1012 to 6 � 1013 vg/kg. FVIII levels in the
seven patients treated at a dose of 6 � 1013 vg/kg have consistently
been within the normal range of 40%–150%36,37 beyond 12 weeks
after gene transfer, a feat which was thought impossible to achieve
just a few years ago. These data were presented at the 35th Annual
J. P. Morgan HealthCare Conference and show a 91% drop in the
mean annualized bleeding rate and a 98% drop in prophylactic infu-
sions. Thus, BMN 270 opens up an exciting potentially curative
treatment opportunity severe hemophilia A patients. Several review
articles have also been published which outline in detail the antici-
pated future progress.30,33,38–50

The future of gene therapy for hemophilia looks bright. Several
ongoing studies are focused on evaluating various vectors for gene
delivery, strategies to enhance transduction efficiency in human hepa-
tocytes, definition of the immune and stress responses to vector
administration, and the potential application of genome editing for
the treatment of these disorders.51–66 The possibility of using hepatic
AAV gene transfer as an immunemodulatory therapy to induce toler-
ance to FVIII and FIX is being explored.67–69 A number of critical
questions remain to be answered, however. What is the best way to
avoid or overcome the CD8+ T-cell response to AAV capsid? Is it
routine transient immunosuppression? Or lower, but presumably still
therapeutic, doses of vector? Or manipulation of the capsid protein?
What is the best AAV serotype to use, both in terms of tropism for
and efficiency of infection of human hepatocytes and prevalence of
pre-existing neutralizing antibodies resulting from prior wild-type
AAV infection? At what point do the data suggest that this approach
is safe for testing in pediatric patients, the population that would
benefit most from early intervention before extensive joint damage
has occurred? And will transgene expression mediated by AAV,
a largely non-integrating virus, be maintained for the lifetime of a
child? Will repeat administration of AAV be required, which would
necessitate either the use of an alternative, non-cross-reactive sero-
type or immunosuppression either at initial vector administration
and/or subsequent dosing(s)? Or would it be better to use an inte-
grating virus such as lentivirus or genome editing approaches for
long-term expression of normal clotting factor? Finally, can the
chronic synthesis and delivery of clotting factors, as is achieved
with liver-targeted gene transfer approaches, be used to induce im-
mune tolerance in patients in whom neutralizing antibodies to FVIII
or FIX have developed, a particularly difficult clinical problem?
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