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SUMMARY

Clear cell renal cell carcinoma (ccRCC) is character-
ized by near-universal loss of the short arm of chro-
mosome 3, deleting several tumor suppressor genes.
We analyzed whole genomes from 95 biopsies
across 33 patients with clear cell renal cell carci-
noma. We find hotspots of point mutations in the
50 UTR of TERT, targeting a MYC-MAX-MAD1
repressor associated with telomere lengthening.
The most common structural abnormality generates
simultaneous 3p loss and 5q gain (36% patients),
typically through chromothripsis. This event occurs
in childhood or adolescence, generally as the initi-
ating event that precedes emergence of the tumor’s
most recent common ancestor by years to decades.
Similar genomic changes drive inherited ccRCC.
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Modeling differences in age incidence between in-
herited and sporadic cancers suggests that the num-
ber of cells with 3p loss capable of initiating sporadic
tumors is nomore than a few hundred. Early develop-
ment of ccRCC follows well-defined evolutionary tra-
jectories, offering opportunity for early intervention.
INTRODUCTION

Cancers of the kidney develop in an estimated 300,000 people

worldwide every year, with approximately half dying from the dis-

ease (Fitzmaurice et al., 2015). The commonest histological sub-

type is clear cell renal cell carcinoma (ccRCC), a tumor believed

to arise from the epithelial cells of the proximal convoluted tubule

of the nephron (Frew and Moch, 2015).

The genome of clear cell renal cell carcinoma is distinctive.

Loss of the short arm of chromosome 3 is the critical genetic
il 19, 2018 Crown Copyright ª 2018 Published by Elsevier Inc. 611
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Figure 1. The Clonality of Driver Events and the Relative Timing of 3p

Loss in Clear Cell Renal Cell Carcinoma

(A) Mutation burden for 34 independent tumors derived from 33 patients. For

each tumor, the number of mutations present in the most recent common

ancestor and each of the terminal subclones are annotated. The estimated

mutational time at which chromosome 3p is lost with 95% CIs has been

annotated for those tumors harboring unbalanced translocations with 3p.

One patient (K097) developed two independent tumors denoted K097_1

and K097_2.

(B) Presence and clonality of driver mutations and copy number aberrations.

Driver mutations include those previously reported and that are present in at

least 3 independent tumors from this cohort. For cases where a clonal muta-

tion in the WGS data has been detected as subclonal in the more spatially

detailed panel data (Turajlic et al., 2018a, 2018b), the mutation has been

amended in this figure as subclonal.

See also Tables S1 and S2.
event, found in >90% patients (Beroukhim et al., 2010; Shen

et al., 2011; Cancer Genome Atlas Research Network, 2013;

Zbar et al., 1987). The deleted region always encompasses

four tumor suppressor genes that are frequent targets for inacti-

vating point mutations on the other chromosomal copy: VHL

(point mutations in 60%–70% patients; epigenetic silencing in

a further 5%–10%), PBRM1 (40%), BAP1 (10%), and SETD2

(10%) (Dalgliesh et al., 2010; Sato et al., 2013; Cancer Genome

Atlas Research Network, 2013; Varela et al., 2011). The second

most frequent genetic event in clear cell renal cell carcinoma is

gain of chromosome 5q, seen in 65%–70% of patients (Berou-

khim et al., 2010; Shen et al., 2011; Cancer Genome Atlas

Research Network, 2013), with SQSTM1 one of the likely target

genes (Li et al., 2013).

Recent exome sequencing studies have highlighted the

considerable intra-tumoral heterogeneity of clear cell renal cell
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carcinomas (Gerlinger et al., 2012, 2014). In growing to sizes of

several centimeters in diameter, these tumors often comprise

several geographically localized subclones. Interestingly, chro-

mosome 3p loss and, when present, VHL point mutations are

always on the trunk of the phylogenetic tree, suggesting that

they are key early events in cancer development.

Studies of somatic mutations in clear cell renal cell carcinoma

to date have primarily focused on protein-coding genes. As a

result, the mechanism of chromosome 3p loss has not been

well characterized, nor the role of non-coding driver mutations.

Here, using a multi-region sampling approach, we report whole

genome sequences from 95 clear cell renal cell carcinoma

biopsies across 33 patients.

RESULTS

Whole-Genome Sequencing of Clear Cell Renal Cell
Carcinomas
TRACERx Renal is a prospective cohort study of patients with

RCC, which aims to assess the evolutionary trajectories of clear

cell renal cell carcinoma (Turajlic and Swanton, 2017). In partic-

ular, multi-region sampling of the primary cancer and anymetas-

tases is used to generate high-resolution information on the

timing of driver mutations, level of intratumoral heterogeneity,

and presence of parallel evolution in each patient. To date, 100

patients in TRACERx Renal have been profiled with exome and

targeted gene sequencing and these data are presented in the

companion papers to this one (Turajlic et al., 2018a, 2018b).

We performed whole genome sequencing to an average

67x depth on 128 kidney biopsies, together with matched germ-

line DNA, from 36 patients. The tumor cell fraction was not

sufficient in 33 biopsies (including 17 biopsies from normal

adjacent kidney) to accurately call somatic aberrations—the

dataset analyzed here therefore represents whole genomes of

95 cancer biopsies from 33 patients (Table S1). Clinically, the

patients had the typical age range, stage, and size of tumors

for sporadic clear cell renal cell carcinoma (Table S2). We

used our validated bioinformatics pipelines to identify somatic

substitutions, indels, copy number alterations, and structural

variants (Campbell et al., 2008; Jones et al., 2016; Raine et al.,

2015, 2016).

We identified an average of 7,680 unique somatic substitu-

tions and 1,193 indels per patient, but with a 3-fold variation in

numbers across patients (Figure 1A; Table S2). The landscape

of coding driver mutations and recurrent copy number alter-

ations was typical for clear cell renal cell carcinoma (Figure 1B).

There was a high level of concordance between driver mutation

calls made in whole genome and targeted panel sequencing

(STAR Methods).

Non-coding Driver Mutations in the 50 UTR of TERT
Whether there are driver mutations in non-coding regions of the

genome has not been extensively explored in clear cell renal cell

carcinoma.We assessed these using amodel of the background

mutation rate across the genome that combines the observed

mutation spectrum with genome-wide covariates known to

affect mutation rate (Martincorena et al., 2017; Nik-Zainal

et al., 2016) (Table S3).



A

B

Figure 2. Recurrent Canonical and 50 UTR
TERT Mutations Increase Telomere Length

(A) The genomic location of the canonical pro-

moter and 50 UTR mutations in this discovery

cohort, a validation cohort (Table S5) and an in-

herited clear cell renal cell carcinoma cohort.

(B) Estimated telomere lengths for all samples

sequenced. The colored points correspond to

samples that contained TERT mutations in some

or all of the biopsies. The boxes indicate median

and interquartile range.

See also Tables S3 and S4.
Only one non-coding region had a statistically significant

excess of mutations: the 50 UTR and promoter of the telomerase

reverse transcriptase gene, TERT (q = 0.016). This region

harbored somatic mutations in 5 patients from our cohort of 33

(15%) (Figure 2A), of which two were subclonal. Interestingly,

the mutation sites observed in our clear cell renal cell carcinoma

data included three positions in the 50 UTR of TERT, located 15,

24, and 29 base pairs downstream of the transcription start site

(Figure 2A). These are different positions from the canonical pro-

moter hotspotsmutated in TERT across awide range of cancers,

especially melanomas (Horn et al., 2013; Huang et al., 2013),

although we did see mutations at these sites as well (Figure 2A).

In chromophobe renal cancer, structural variants activating

TERT are common (Davis et al., 2014), but we detected neither

genomic rearrangements nor copy number aberrations near

TERT in this cohort of clear cell renal cell carcinomas.

To assess whether the 50 UTR mutations were recurrent, we

screened the promoter and 50 UTR of TERT in an additional

377 samples from 94 patients with clear cell renal cell carcinoma

by capillary sequencing (Table S4). This identified 13 patients

with non-coding TERTmutations (13.5% of the cohort). The mu-

tations were present clonally in 10 patients and subclonally in the

other 3 and were distributed across the two canonical promoter

sites and the three hotspots in the 50 UTR identified in the discov-

ery screen (Figure 2A). In our combined dataset, we find no as-

sociation between TERT status and tumor grade or metastatic

spread (p = 0.6 and p = 0.4, respectively), nor was there an asso-

ciation with chromothripsis events.

The three mutated loci in the TERT 50 UTR fall in or very near to

an E-box sequence (CACGTG), a motif known to bind the MYC-

MAX-MAD1 family of proteins (Sabò and Amati, 2014). This

specific E-box element was first shown to bind MYC in B lym-

phocytes, leading to transcriptional activation (Wu et al., 1999).

However, the effects of this element on transcriptional activity

are variable across cell types (Kyo et al., 2000), explained in

part by competition for the binding site between MYC, which
upregulates expression, and MAD1,

which acts as a repressor (Oh et al.,

2000). In renal cancer cells, this element

acts mainly as a repressor, a function

that is abrogated by mutation of the bind-

ing site (Horikawa et al., 2002). The impli-

cation is that the mutations we observe

diminish binding of a repressor, probably
MAD1, to the E-box, leading to loss of the usual transcriptional

suppression of TERT in kidney cells.

Unfortunately, we do not have expression data to compare

TERT expression in samples with and without 50 UTR mutations,

but we could directly estimate telomere lengths from the genome

sequencing data (Farmery et al., 2017) (STAR Methods). If

the mutations act to abolish the active repression of TERT

transcription, then samples carrying these mutations should

have longer telomeres. We used linear mixed models adjusted

for age to determine the difference between groups. As previ-

ously reported (Barthel et al., 2017), tumors have shorter

telomere lengths than normal tissue (p = 2.2 3 10�16), presum-

ably reflecting the greater replicative drive and consequent

telomere attrition in cancer cells. As predicted, samples with

the canonical TERT promoter mutations and indeed those with

50 UTR mutations did, on average, have longer telomeres

than wild-type samples (p = 0.031 and p = 0.0026, respectively)

(Figure 2B, Table S5). Thus, 50 UTR hotspot mutations presum-

ably act through lengthening telomeres to promote replicative

immortality.

Simultaneous Chromosome 3p Loss and 5q Gain
through Chromothripsis
Despite being the most frequent genetic abnormality in clear cell

renal cell carcinoma, the mechanisms underlying chromosome

3p loss have not been systematically characterized. Cytogenetic

analyses have shown that unbalanced translocations between

chromosomes 3 and 5 occur in 6%–60% of primary clear cell

renal cell carcinoma samples (Klatte et al., 2009; Kovacs et al.,

1987; Pavlovich et al., 2003) and renal cancer cell lines (Ali

et al., 2013; Yang et al., 2000). We used paired-end sequencing

data to reconstruct the genomic rearrangements causing 3p

loss. Of the 33 tumors, we could pinpoint the position on chro-

mosome 3p at which heterozygosity was lost in 30 cases—in

29 of these, we could identify the actual structural change driving

loss of heterozygosity.
Cell 173, 611–623, April 19, 2018 613
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Figure 3. Recurrent Complex Unbalanced Translocations between Chromosomes 3 and 5

(A) Intra and inter-chromosomal re-arrangements and their effect on the copy number profile from an indicative tumor sample. All tumor samples containing these

events are shown in Figure S1.

(B) The genomic location of all breakpoints from all tumors that harbored translocations between chromosomes 3 and 5. Regions that had undergone loss of

heterozygosity are shown in blue; those that have undergone gains are shown in red.

See also Figure S2 and Table S6.
The most frequent pattern of chromosome 3p loss in the

cohort, affecting 13 (43%) of the 30 tumors with known 3p

LOH breakpoints, was rearrangement between 3p and 5q. In

all but one of these tumors, the overall consequence was to

lose one copy of chromosome 3p and gain an extra copy of chro-

mosome 5q in the same event. In only two of these patients was

the event a straightforward unbalanced translocation. In the

remainder, there were groups of 5–30 rearrangements focally

clustered on chromosomes 3p and 5q (Figures 3 and S1). These

had the hallmarks of chromothripsis, a catastrophic mutational

process in which one or a few chromosomes suffer multiple

breaks simultaneously, with the resulting fragments being joined

in random order (Stephens et al., 2011). In particular, the oscil-

lating copy number profiles, clustered rearrangements, random

orientation of breakpoint ends and phasing of rearrangements

to one haplotype (Figure 4A) are all distinguishing genomic fea-

tures of chromothripsis (Korbel and Campbell, 2013).

The explanation that best fits the copy number and rearrange-

ment data is that chromothripsis results in a single t(3;5) deriva-

tive chromosome, alongside one wild-type chromosome 3 and

two copies of wild-type chromosome 5 (Figure 4B). In our sam-

ples, the t(3;5) derivative chromosome consists of, in order: the

intact long arm of 3q; the chromosome 3 centromere; a small

portion of 3p from near the centromere; shuffled genomic frag-

ments of 3p and 5q arising from chromothripsis; and the telo-

meric portion of 5q. Other sequences of events are formally

possible, but implausible for several reasons (‘‘Inference of chro-

mothripsis’’ in the STAR Methods).
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To assess whether the t(3;5) chromothripsis events were

recurrent in other cohorts, we re-examined whole genome

sequencing data from the TCGA clear cell renal cell carcinoma

study (The Cancer Genome Atlas Research Network, 2013).

This revealed a similar overall frequency of events generating

simultaneous loss of chromosome 3p and gain of 5q, seen in

11 tumors out of 40 studied (28%) (Figure S2A). In particular,

clustered and interlocking rearrangements on chromosomes

3p and 5q confirm that chromothripsis is the predominant mech-

anism causing this critical driving event.

Although t(3;5) events were the commonest pattern causing

chromosome 3p loss in our cohort (13/30 patients), they were

by nomeans the onlymechanism.We observed a range of other,

less frequent structural abnormalities driving 3p loss. Two pa-

tients had chromothripsis events involving 3p and 6q, which

led to losses on both chromosomes (Figure S1), and a further

six patients had unbalanced translocations with various chromo-

somes other than 5q. Three patients had loss of the whole of

chromosome 3 and three had loss of the entire short arm. Only

two patients had simple interstitial deletions on chromosome

3p. In one patient, we were unable to map the event causing

3p loss.

Chromothripsis on 3p and 5qActs throughCopyNumber
Change
We were surprised that a complex event such as chromothripsis

was the major process causing the copy number changes on

chromosomes 3p and 5q, rather than say simple unbalanced
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reconstruction of the orientation and localization of regions retained after chromothripsis. The derivative chromosome contains chromosome 3q, a centromeric

region of 3p, the chromothripsis fragments, and the telomeric portion of chromosome 5q.

(B) Schematic showing one possible mechanism whereby chromothripsis may result in the unbalanced translocation between chromosomes 3 and 5.
translocation.We examined the location of breakpoints to ascer-

tain whether the clusters of rearrangements had generated a

particular genomic configuration that might be recurrent across

patients (Figures 3B and S2A). In fact, across patients, there was

no obvious common region of chromothripsis on either 3p or 5q

beyond the requirement to lose all four tumor suppressor genes

on 3p and duplicate the terminal portion of 5q.

This suggests that the reason chromothripsis is so frequent is

mechanistic. Our hypothesis is that any event that gains a chro-

mosome arm must occur after S-phase and the most efficient

way to couple this with simultaneous loss of another chromo-

some arm is through mitotic catastrophe. Indeed, in vitro studies

show that mitotic errors induced by either microtubule dysfunc-

tion, causing lagging chromosomes (Zhang et al., 2015), or telo-

mere crisis, causing anaphase bridges (Maciejowski et al., 2015),

can result in similar copy number alterations and clusters of re-

arrangements between two chromosomes.

The key genes for the copy number gain on chromosome 5q

remain mysterious, with several, including SQSTM1, proposed

as targets (Li et al., 2013; Cancer Genome Atlas Research

Network, 2013). From the TCGA cohort, we identified genes

with differential expression in patients with 5q gains versus those

with baseline copy number (Figure S2B; Data S1). Many genes in

the duplicated regions of 5q are indeed upregulated (Table S6),

consistent with the proposal that large-scale aneuploidy acts

through a net tilt in the balance between dosage of growth-pro-

moting and growth-suppressing genes (Davoli et al., 2013).

Burden of Somatic Substitutions Correlates Linearly
with Age
To assess whether point mutations in clear cell renal cell carci-

noma occur at constant rate, we correlated the age of diagnosis

with the burden of base substitutions in each subclone across

the cohort using mixed effects models (Figure 5A; Data S1;
STAR Methods). Three key observations emerge. First, there is

a statistically significant and linear correlation of mutation

burden with age in this cohort, estimated at 87 mutations/year

(95% confidence interval [CI]: 80–94; p < 0.001). Second, there

is variation among patients in the rate at which mutations accu-

mulate, with the between-patient standard deviation in mutation

rate estimated at 17 mutations/year. Third, within a given pa-

tient’s tumor, different subclones have broadly similar mutation

burdens (Figure 5A), suggesting that each subclone has been

accumulating mutations at the same steady rate since clonal

divergence.

Taken together, these data suggest that somatic mutations in

kidney cells accumulate at a constant rate throughout life.

Further evidence for this comes from the mutational spectrum

observed in clear cell kidney cancers both in this cohort (Fig-

ure S3) and in others (Alexandrov et al., 2013). The vast majority

of mutations appear to arise from two mutational processes (so-

called signatures 1 and 5) that are universal across cancer types

and show linear correlation with age in both cancer (Alexandrov

et al., 2015) and normal tissue (Blokzijl et al., 2016).

Timing the Landmark Events of Clear Cell Renal Cell
Carcinoma Development
We can estimate when large duplications occurred from the pro-

portion of point mutations in that region that were duplicated.

Essentially, any mutation that was on 5q before the t(3;5) event

occurred will be duplicated along with the whole chromosome

arm (and hence present on two of the three copies of 5q); any

mutation that occurs subsequently will be present on only one

of the three copies of 5q. From the fraction of mutations

present on two versus one copy of 5q, and measures of the mu-

tation rate, we can estimate the chronological age at which the

duplication occurred. This approach has been used in several

previous studies (Durinck et al., 2011; Nik-Zainal et al., 2012),
Cell 173, 611–623, April 19, 2018 615
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Figure 5. Mutational Burden and the Chronological Loss of Chromosome 3p

(A) Mutational burden of subclones compared to age at surgery (points), annotated with the patient-specific and cohort average mutational rate (black line).

(B) The estimated number of copies per cancer cell of each mutation in the duplicated region of 5q for an indicative sample. Mutations may be assigned as clonal

and pre-duplication (green) or post-duplication (blue), subclonal and present (orange) or absent (purple) in this sample, or uncertain (black).

(C) Estimated age of 3p loss (blue points), the most common recent ancestor (red) and surgical excision (black) with 95% CIs (shaded bars).

See also Figures S3, S4, and S5 and Data S1.
and the methodology has been formally developed (Greenman

et al., 2012).

We estimated the age at which the t(3;5) translocation events

occurred from mutations on the duplicated region of chromo-

some 5q (Figures 5B and S4; Data S1). Mutations can be divided

into four categories: those present on two copies of 5q (green

points, Figure 5B), clonal mutations present on one copy of 5q

(blue points), mutations that are subclonal in the cancer as a

whole and are found in the given sample (orange points), and

subclonal mutations absent from the given sample (purple

points). To estimate the ages of patients when t(3;5) events

occurred, we used the patient-specific estimates of mutation

rate generated by the linear mixed effects models (Figure 5A),

with correction for the clonal structure and type of copy number

gain (Greenman et al., 2012; Nik-Zainal et al., 2012) (STAR

Methods). We used bootstrapping to generate 95% CIs for this

estimate, incorporating the uncertainty in both the numbers of

pre-duplication mutations and estimates of the patient-specific

mutation rate.

In most patients, only a small fraction of mutations on the

duplicated region of 5q were present on two chromosomal

copies (Figures 5B and S4). This implies that the 5q duplication

occurs surprisingly early in life. Formal statistical analysis esti-

mated that t(3;5) events occurred during childhood or adoles-

cence for the majority of patients in our cohort, 30–50 years

before the kidney cancer was diagnosed (Figure 5C).

One patient (K135) had a t(3;9) unbalanced translocation with

loss of 3p and gain of 9q, which we also estimated to have

occurred early in childhood (Figure 5C). In contrast, several pa-

tients had gains of 5q that were not linked with 3p and these ap-

peared to have occurred at a much wider range of ages than the

t(3;5) events (Figure S5). These data suggest that the key driver

for the early timing of t(3;5) events is chromosome 3p loss.
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These estimates depend on the assumption of a constant mu-

tation rate throughout life. We explored other relationships be-

tween mutational burden and age, such as including a quadratic

term for age, effectively allowing for themutation rate to increase

with age. Not only did this model fail to significantly improve the

correlation between age and mutational burden, the estimated

age of 3p loss increased by less than a year. Similarly, if we

allowed for different periods of time for the clonal expansion be-

tween the occurrence of the last detectable mutation and tumor

diagnosis, the estimated age of t(3;5) events did not increase.

In addition to timing the t(3;5) events, we can also estimate the

age at which the most recent common ancestor of the tumor

emerged. This cell is defined as the ancestral cell from which

all current tumor cells derived, and its arrival demarcates the

clonal mutations, found in all tumor cells, from the subclonal mu-

tations, found in a fraction of tumor cells. In this cohort, we esti-

mate a wide range of ages at which the most recent common

ancestor emerged, from early adulthood through to late middle

age (Figure 5C). This is reminiscent of previous exome data in

which the relative length of the trunk of the phylogenetic tree

across kidney cancer patients was strikingly variable (Gerlinger

et al., 2014).

In one patient (K104), the estimated age of the t(3;5) chromo-

thripsis was virtually the same as the estimated age at which the

most recent common ancestor emerged (Figure 5C). This sug-

gests that in this patient, the t(3;5) event was what triggered

the last complete selective sweep in the tumor—the most recent

common ancestor was likely the cell that underwent the chromo-

thripsis catastrophe. If so, the clonal VHL and TERT driver

mutations also seen in this tumor must have preceded the chro-

mothripsis. For all the other patients in whom we could time the

3p loss and 5q gain, however, there was a delay of years to de-

cades between the 3p loss and the emergence of the most



recent common ancestor. This implies that the typical sequence

of events is for 3p loss to be the initiating driver event, often

occurring through t(3;5) chromothripsis. This is followed by one

or more other driver mutations—these trigger the clonal expan-

sion of the most recent common ancestor.

Similar Landscape of Clear Cell Renal Cell Carcinoma in
von Hippel-Lindau Disease
Germline mutations in VHL result in a syndrome known as von

Hippel-Lindau disease, characterized by a high penetrance of

clear cell renal cell carcinomas, together with hemangioblasto-

mas of the retina, brain, and spine, and a handful of other tumor

types (Nielsen et al., 2016). Renal cancers in von Hippel-Lindau

disease begin to emerge in young adulthood, with a cumulative

incidence of 70%–80% by the age of 60 years (Ong et al., 2007).

It is known that thewild-type allele of VHL is universally deleted in

these cancers, as expected for a classic two-hit tumor suppres-

sor gene (Maher et al., 1990).

Recently, whole genomes have been sequenced for 40 clear

cell renal cell carcinomas from 6 patients with von Hippel-Lindau

disease (Fei et al., 2016). To compare inherited with sporadic

cases, we reanalyzed these data using our pipelines to establish

how the wild-type VHL allele was lost in these cancers. As seen

in the sporadic cases, we find clustered rearrangements be-

tween chromosomes 3p and 5q, reminiscent of chromothripsis

and causing 3p loss and 5q gain (Figures 6A and S6). Such

events were seen in 15 of 38 (39%) samples, a very similar rate

to the 43% we observed in the sporadic cases.

Furthermore, the landscape of copy number aberrations (Fig-

ure S7), the trinucleotide context of base-pair substitutions (Fig-

ure S3) and distribution of somatic driver mutations in the

inherited clear cell renal cell carcinomas was very similar to

that seen in sporadic cases. Inactivating mutations were seen

in the other key tumor suppressor genes on chromosome 3p,

PBRM1, BAP1, and SETD2 (Figure 6B). We identified one of

the hotspot 50 UTR mutations in TERT in a VHL patient’s tumor

(Figure 2A). Furthermore, as reported in the original paper (Fei

et al., 2016), the overall burden of mutations increased linearly

with age at a similar rate to our estimate in sporadic renal can-

cers, with similar inter-individual variation (Figure 6C).

We used the same approach described above to estimate the

age of chromosome 3p loss in inherited clear cell renal cell car-

cinomas where the 3p loss was acquired in the same event as a

copy number gain (typically 5q) (Figure 6D). As for the sporadic

cases, we estimate that the majority of these complex chromo-

somal rearrangements occur during childhood and adoles-

cence, years to decades before disease diagnosis, with a couple

of cases occurring during early adulthood.

Overall, sporadic clear cell renal cell carcinomas and those

arising in the context of von Hippel-Lindau disease have remark-

ably similar evolutionary trajectories and patterns of somatic

driver mutations. The major difference is the need to acquire a

second somatic VHL inactivation event in the sporadic setting.

Modeling the Early Clonal Dynamics of Sporadic Kidney
Cancer
If the major genomic difference between inherited and sporadic

clear cell renal cell carcinoma is whether the VHL inactivation is
germline or somatic, then the difference in age-incidence curves

between the two scenarios derives from the time taken to ac-

quire the second VHL mutation in the sporadic case. Knowing

which mutations in VHL are driver mutations and the average

rate of these mutations per cell per year, we can estimate how

many cells with 3p loss must be present to generate the

observed difference in age-incidence curves.

This is a twist on Knudson’s pioneering work leading to the

two-hit hypothesis for the then-unknown tumor suppressor

gene in retinoblastoma (Knudson, 1971). In his original paper,

Knudson (1971) used the known number of retinal ganglion cells

to estimate the driver mutation rate in the then-unknown gene

from the age-incidence curve of inherited retinoblastoma. He

then showed that the age-incidence curve for sporadic retino-

blastoma can be reproduced assuming two such mutations

are needed at the estimated mutation rate. In our case, we

know the target gene, VHL, and can directly estimate its rate of

driver mutations: what we would like to know is the number

of cells at risk after loss of chromosome 3p, namely the size of

that initial clonal expansion after deletion of one copy of VHL,

PBRM1, SETD2, and BAP1.

We used a Bayesian framework to model the published age-

incidence curves for inherited (Ong et al., 2007) and sporadic

(Cancer Research UK, 2017) clear cell renal cell carcinoma.

Briefly, the incidence of inherited clear cell renal cell carcinoma

is modeled as the sum of two waiting times: time to 3p loss, esti-

mated from the ages of t(3;5) translocations, plus time from 3p

loss to tumor diagnosis (Figure 7A; Data S1; STAR Methods).

The incidence of sporadic clear cell renal cell carcinoma is

treated as the sum of the same two waiting times plus an addi-

tional waiting time for acquisition of a somatic VHL driver muta-

tion. This latter waiting time is dependent on the number of

susceptible cells, the variable of interest here, and the rate of

acquisition of VHL driver mutations per year per cell. We directly

estimate this from the catalog of mutations in the COSMIC data-

base (Forbes et al., 2015), where we have a reasonably com-

plete description of which point mutations in VHL can be drivers

of clear cell renal cell carcinoma. These include nonsense,

frameshift, splice site and hotspot missense mutations. Given

this set of potential drivers, the sequence composition of the

gene and the overall mutation rates and signatures observed

in our study, we can calculate the rate at which VHL driver

mutations occur per cell (STAR Methods). This generates an es-

timate of 2.1 3 10�6 driver mutations in VHL per year per sus-

ceptible cell.

The model generates stable estimates of the key variables

(Figures 7B–7D). As intended, the posterior distribution for the

waiting time to chromosome 3p loss matches the estimates

from the t(3;5) timings (Figure 7B). The waiting time from biallelic

VHL inactivation to cancer diagnosis ranged from 15 to 30 years

(Figure 7D), the wide range presumably reflecting differences in

rate of tumor growth, acquisition of subclonal drivers, screening

practices, and development of symptoms.

We predict that after chromosome 3p loss in non-carriers,

there would only be a few hundred cells with the potential to

initiate a future clear cell renal cell carcinoma if a somatic VHL

mutation were acquired (Figure 7C). It is this population size

that best explains the pronounced differences in penetrance
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Figure 6. Similar Genomic Landscape of Inherited Clear Cell Renal Cell Carcinoma
(A) Breakpoints and copy number aberrations for samples with von Hippel-Lindau disease that had translocations between 3p and 5q.

(B) Driver events and molecular timing of 3p loss with 95% CIs.

(C) Mutational burden versus age.

(D) Estimated age of 3p loss and surgical excision with 95% CIs.

See also Figures S6 and S7.
and age of incidence between somatic and inherited cancers,

given a VHL driver mutation rate of �2 per million cells per

year. This rather modest initial clonal expansion after the first

driver event is reminiscent of the limited clonal expansions

seen with driver mutations in, for example, normal skin tissue

(Martincorena et al., 2015).
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Opportunities for Prevention of Sporadic Clear Cell
Renal Cell Carcinoma
The relatively small numbers of cells with chromosome 3p loss

that have the future potential to initiate a clear cell renal cell car-

cinoma, together with the long latency between 3p loss and

further progression, suggest a useful therapeutic window in
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Figure 7. Mathematical Modeling of Clear Cell Renal Cell Carcinoma Evolution

(A) Schematic depicting how the age of incidence of renal cell carcinoma may be modeled as the sum of waiting times; Z1 representing the time to 3p loss, Z2

representing the time to VHL inactivation, and Z3 representing the time from bi-allelic loss of VHL to clinically detected tumor. Z1 and Z3 are modeled by gamma

distributions and Z2 by an exponential distribution of the product of n, the number of cells with 3p loss and m, the calculated VHL mutational rate.

(B–D) The posterior distribution of the waiting times for Z1 (B), the number of cells with 3p loss (C), and the waiting time for Z3 (D) with 95% posterior intervals.

(E–G) The effect on age-incidence curves for sporadic kidney cancer with reduction of the 3p loss clone size by 25 (E), 50 (F), and 75% (G), with 95% posterior

intervals shaded. (H) Location of genes with loss of function intolerance >90% (Lek et al., 2016) that lie within the region of ubiquitous loss in clear cell renal cell

carcinoma. The locations of the canonical clear cell tumor suppressor genes are annotated in blue below the x axis.
which early intervention could prevent renal cell carcinomas. We

used our Bayesian model to simulate the age-incidence curves

of sporadic clear cell renal cell carcinoma if the number of cells

carrying 3p loss were reduced (Figures 7E–7G). This suggests

that we could halve the incidence of sporadic clear cell renal

cell carcinoma within the normal human lifespan by reducing
the 3p-LOH clone size by 50% (Figure 7F) and have even more

profound benefits with more cell kill (Figure 7G).

One of the reasons that this could be such an interesting pre-

ventative opportunity is that the region of 3p loss invariably en-

compasses all four tumor suppressor genes of VHL, PBRM1,

BAP1, and SETD2, and hence spans at least 40 Mb. There are
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a large number of genes within this region that have been iden-

tified as ‘‘essential’’ to cellular survival in in vitro studies (Blomen

et al., 2015; Wang et al., 2015) or intolerant of protein-truncating

germline mutations in vivo (Lek et al., 2016) (Figure 7H). Many of

these genes could represent viable therapeutic targets.

DISCUSSION

Our data reveal that the early development of clear cell renal cell

carcinoma follows strongly preferred evolutionary trajectories.

Chromosome 3p loss is often the initiating driver, seemingly

arising in childhood or adolescence, even though the cancer

may not be diagnosed for another 30–50 years. The clonal

expansion after 3p loss may not be that large—no more than

a few hundred cells with the eventual capability of initiating an

invasive cancer. Indeed, these few hundred cells may be distrib-

uted across several independent clones and probably exist in all

adults—in von Hippel-Lindau disease, where the other VHL

allele carries a germline mutation, clear cell renal cell carcinoma

is nearly completely penetrant and multiple cancers can

develop simultaneously (Nielsen et al., 2016). These are clonally

unrelated (Fei et al., 2016) and have independent t(3;5) chromo-

thripsis events (Figures 6A and S6). That the first somatic driver

mutation would trigger only small clonal expansions has also

been suggested by immunohistochemical studies in normal

kidney tubules from von Hippel-Lindau disease (Mandriota

et al., 2002).

The other critical event, always on the trunk of the phyloge-

netic tree, is inactivation of the second allele of VHL. In all but

one patient with informative data here, there was a time lag be-

tween the t(3;5) event and the emergence of the most recent

common ancestor of the tumor. This suggests that point muta-

tion of VHL typically occurs after 3p loss. Sometimes, there is

another driver mutation on the trunk of the phylogenetic tree

(Gerlinger et al., 2012, 2014), drawn from a range of cancer

genes, including PBRM1, SETD2, BAP1, TERT, the PI3K

signaling pathway and other cytogenetic abnormalities. With a

wider repertoire of co-operating genes available, this other trun-

cal driver mutation is considerably less rate-limiting than 3p loss

and VHL inactivation. Once acquired, these truncal driver muta-

tions trigger a substantial clonal expansion—at this stage, the

nascent tumor has a sufficient population size that mutation

rate is no longer rate-limiting, which may explain why parallel

evolution is so frequently observed in the later stages of renal

cancer development (Gerlinger et al., 2012, 2014). Nonetheless,

we find there can be a delay ofmany decades between the emer-

gence of the most recent common ancestor and tumor diag-

nosis, so although the clonal expansion is substantial, it is

not rapid.

There are four key factors recommending 3p loss as a thera-

peutic target in clear cell renal cell carcinoma: (1) 3p loss is virtu-

ally universal in clear cell renal cell carcinoma and is typically the

initiating event; (2) the region lost is always large (>40 Mb),

because it has to encompass all of VHL, PBRM1, SETD2, and

BAP1; (3) our data suggest a latency of many decades between

3p deletion and cancer emergence, offering a long therapeutic

window in which to deploy an effective therapy; and (4) clonal

expansion after 3p loss is not large, and moderate cell kill at
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this stage would have clinically meaningful impact on cancer

incidence.

What could constitute a therapy aimed at 3p loss? Such

an agent would not necessarily need to target the four

tumor suppressor genes on 3p, nor any of the genes on 5q

that are often concurrently gained. Rather, we believe that it

is the co-deleted, bystander genes on 3p that might confer

the greatest therapeutic vulnerability. Any of the essential

genes in Figure 7H might be sufficiently sensitive to gene

dosage that a therapeutic agent could have disproportionate

effects on cells with 3p deletion. In support of this, several

studies published recently have shown that bystander genes

can be relevant therapeutic targets in cancers with deletions

of specific tumor suppressor genes (Dey et al., 2017; Kryukov

et al., 2016; Nijhawan et al., 2012). Such an agent would poten-

tially have efficacy in patients with established clear cell renal

cell carcinoma and could have interesting early intervention ap-

plications in inherited vHL disease. We provide a thought

experiment showing the impact a therapy targeting cells with

3p loss agent could theoretically have as a prevention therapy.

At best, though, with a lifetime risk of clear cell renal cell carci-

noma of 1%–2% in the sporadic setting, the number-needed-

to-treat to prevent one clear cell renal cell carcinoma would

be 50–100.

By the timewe enter adulthood, all of uswill already carry a few

hundred seeds with the potential to beget future lethal clear cell

renal cell carcinomas. For those of us who have inherited a faulty

VHL allele, the eventual germination of one or more of these

seeds is virtually inevitable within the human lifespan. For the

unlucky among the rest of us, that second hit in VHL will occur

sufficiently quickly that a cancer will develop in middle age or

beyond. With an aging and fattening population, the unlucky

will nearly double in numbers in 20 years’ time (Smittenaar

et al., 2016)—unless, that is, we can harness the long latency,

the pre-determined early evolutionary trajectory and the small

number of seeds to develop new preventative strategies for renal

cancer.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Multi-regional biopsies and blood normal samples from

patients with renal cell cancer specimens

Turajlic et al., 2018a http://tracerx.co.uk/studies/renal/

Chemicals, Peptides, and Recombinant Proteins

PCR buffer Thermo-Fisher Cat#CM-251

dNTPs Thermo-Fisher Cat#SP-1050

Bitaine 5M Cat#77507

TAQ polymerase Thermo-Fisher Cat#AB-0908

Gel ladder LONZA Cat#50473

PCR product cleanup Thermo-Fisher Cat#78201.1.ML

Deposited Data

Raw and analyzed data This paper EGAD00001003445

Observed mutations in the VHL gene Catalogue Of Somatic

Mutations In Cancer

http://cancer.sanger.ac.uk/cosmic/

WGS data from ‘‘Patient-specific factors influence somatic

variation patterns in von Hippel–Lindau disease renal tumors’’

dbGAP phs001107.v1.p1

Oligonucleotides

Primer CACCCGTCCTGCCCCTTCACCTT This paper N/A

Primer CGCAGCCACTACCGCGAGGTGCT This paper N/A

Software and Algorithms

CaVEMan Jones et al., 2016 https://github.com/cancerit/CaVEMan

Pindel Raine et al., 2015 https://github.com/genome/pindel

BRASS Campbell et al., 2008 https://github.com/cancerit/BRASS

Battenberg Nik-Zainal et al., 2012 https://github.com/cancerit/cgpBattenberg

Telomerecat Farmery et al., 2017 https://pypi.python.org/pypi/telomerecat

N-dimensional clustering of mutations Nik-Zainal et al., 2012 Available on request

Non-coding driver discovery Nik-Zainal et al., 2016 https://github.com/im3sanger/dndscv

Estimation of mutation rate per year and ages at which landmark

events occur

This paper Data S1

Rate of VHL driver mutations This paper Data S1

Models of age-incidence curves for sporadic & inherited ccRCC This paper Data S1
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Peter J.

Campbell (pc8@sanger.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Multi-region tumor samples were collected from patients enrolled in TRACERx Renal study (Turajlic and Swanton, 2017) (National

Health Service Research Ethics Committee approval 11/LO/1996). The study sponsor is the Royal Marsden NHS Foundation Trust,

the chief investigator Dr Samra Turajlic is responsible for study oversight, and the study is coordinated by the Renal Unit at the Royal

Marsden Hospital. The TRACERx Renal consortium contributed collectively to this study. Samples were collected at the various

study sites and processed by the laboratory at the Francis Crick Institute. Eligible patients were > 18 years with a suspected

diagnosis of renal cell cancer of any stage, undergoing resection of the primary tumor. Only cases with clear cell histology at initial
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histopathological examination were included in the analyses, although one tumor (K169) could not be subsequently classified

(Table S2). Detailed study criteria, procedures and sample classification are available in the companion paper (Turajlic et al., 2018a).

METHOD DETAILS

DNA sequencing and alignment
150 base paired-end sequencing was performed with the HiSeq X Ten system according to Illumina protocols. Average coverage

was 67x for tumor samples and 36x for normal samples (Table S1). Alignment of paired-end reads to the reference human genome

(GRCh37) used the Burrows-Wheeler Aligner, BWA-MEM.

Variant detection
Single-nucleotide substitutions were called using the CaVEMan (cancer variants through expectation maximization) algorithm

(https://github.com/cancerit/CaVEMan; Jones et al., 2016). Small insertions and deletions were called using split-read mapping im-

plemented by the Pindel algorithm (https://github.com/genome/pindel; Raine et al., 2015). To call rearrangements we applied the

BRASS (breakpoint via assembly) algorithm, which identifies rearrangements by grouping discordant read pairs that point to the

same breakpoint event (https://github.com/cancerit/BRASS; Campbell et al., 2008). All mutations were annotated to Ensembl

version 58. Copy-number data were derived from whole-genome reads using the Battenberg algorithm (https://github.com/

cancerit/cgpBattenberg; Nik-Zainal et al., 2012).

Variant validation
Weassessed the precision and recall of the whole genome sequencing analysis using the deep, targeted panel sequencing data from

multi-region samples reported in the companion paper. Of the 127 somatic driver point mutations reported in Figure 1B, there were

17 discrepancies between the WGS and the panel dataset. These discrepancies break down as follows:

d 9mutations were not detected in the whole genome sequencing data, but were in the panel data. In all cases, they were present

subclonally in the panel data, typically in only a single biopsy. There were no reads reporting these variants in thewhole genome

sequencing data.

d 5 mutations were called as ‘clonal’ in the whole genome sequencing data but ‘subclonal’ in the panel data. This occurred

because mutations had a high variant allele fraction in the WGS data, but were absent from one or more biopsies studied in

the panel sequencing data.

d 3 mutations were called in the WGS but not in the panel sequencing. Again, there were no reads reporting these variants in the

panel sequencing data, suggesting they are subclonal variants in the tumor as a whole. Manual review of these variants sug-

gested they were genuine somatic mutations, not sequencing artifacts.

None of the regions with coverage < 60x had missed any mutations called in the driver panel. We also found correlation between

coverage depth and number of mutations called (r2 = 0.20), suggesting that although the obtained sequencing depth was somewhat

variable, this had little impact on our variant calling.

Thus, all the discrepancies between the WGS and panel sequencing were due to the spatial heterogeneity of kidney cancers, and

the variant calling algorithms appeared to be performingwell. A discussion regarding the optimumnumber of biopsies required for full

driver detection takes place in the companion paper; even 10 biopsies will miss the occasional drivers.

Capillary sequencing validation of TERT mutations
An additional 286 samples from 94 patients with ccRCC underwent a focal screen of the TERT promoter to validate mutations de-

tected in this dataset (Figure 2A). Briefly, the DNA dilutions were prepared at a concentration of approx. 8ng/ml. Primers (CACCCG

TCCTGCCCCTTCACCTT and CGCAGCCACTACCGCGAGGTGCT, Sigma-Aldrich) were diluted to a 400 mmol concentration.

The PCR premix was made using for each well using 0.94 mL of 10x PCR buffer (Thermo-Fisher dNTP mix cat no CM-251), 0.94 mL

of dNTPs (Thermo-Fisher PCR Buffer 1 cat no SP-1050), 1.13 mL of Bitaine (5M Ultrapure Bitaine, Affymetrix p/n 77507), and 0.09 mL

of TAQ polymerase (Thermo-Start TAQ, Thermo-Fisher cat no AB-0908). PCRs were setup using 7.5 mL primer mix, 4.5 mL diluted

DNA and 3 mL PCR premix. Plates were sealed, briefly centrifuged and run on the thermocycler (MJ Research Tetrad 2) using the

following conditions: 95�C for 8 minutes followed by 40 cycles of 62�C for 2 minutes, 72�C for 2 minutes 30 s, 95�C for 15 s and

72�C for 7 minutes.

4ul of PCR product plus 4ul loading dye were run on 2% agarose gel to confirm PCR success. The remaining PCR product was

treated with Exosap to clean up unused nucleotides from the initial PCR. 5ul of this product was added to separate plates containing

5ul either forward or reverse primer dilution (for each primer 405ul of 1 in 10 primer dilution was added to 2295ul DDW). The resulting

plates were sealed and submitted for capillary sequencing (Table S4).
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Inference of chromothripsis
The inference that chromothripsis occurs in a single catastrophic event is extensively discussed in the original paper describing this

mutational process (Stephens et al., 2011), and the hallmark features have been developed into formal criteria for its recognition (Kor-

bel and Campbell, 2013). Essentially, the inference depends on demonstrating oscillating copy number states; clustered but

randomly oriented rearrangement joins; and the potential to reconstruct a single derivative haplotype that explains all observed

copy number changes and rearrangements. These inferences have been critiqued (Kinsella et al., 2014), but the predictions have

now been validated by in vitro studies that have generated all the diagnostic hallmarks of chromothripsis in a single cell cycle (Zhang

et al., 2015).

In our data, the oscillating copy number states can readily be observed in Figures S1 (our data), S2 (TCGA cohort) and S6 (the in-

herited vHL cohort). The clustered but randomly oriented rearrangement joins is evident from the approximately equal distribution of

the four colors of rearrangements in these supplementary figures (purple representing tail-to-head orientation; brown head-to-tail;

blue head-to-head and green tail-to-tail). We also provide a complete reconstruction of the derivative chromosome for the simplest

event in the cohort in Figure 4A, together with a schematic of how the event occurred (Figure 4B).

Other sequences of events that could theoretically generate the same configuration are implausible. We cannot formally exclude

the possibility of a simple t(3;5) unbalanced translocation first, followed by a chromothripsis event, but believe it very unlikely for two

reasons. First, it would seem that themain selective advantage to the clone derives from the large-scale copy number changes on 3p

and 5q, and not the clustered rearrangements themselves. Thus, if a simple unbalanced t(3;5) occurred first, the necessary copy

number changes would already have been achieved, and there would be no additional selective advantage to the chromothripsis

event. Second, if the translocation and chromothripsis were decoupled in time, there would be no reason why the location of the

chromothripsis cluster would overlap the location of the translocation. However, the chromothripsis is never located in a different

portion of the derivative chromosome from the translocation – they always overlap.

The hypothesis that the chromothripsis occurred first on 3p and/or 5q, and was followed by a simple translocation, can be formally

excluded. If such a sequence of events occurred, the rearrangements would be all intrachromosomal (isolated to 3p and isolated to

5q) bar the one translocation rearrangement. As can clearly be seen in Figures S1 and S6, there are typically many rearrangements

between 3p and 5q within the cluster.

Assumption of constant mutation rate
The conclusion that chromosome 3p loss occurs in childhood or adolescence rests on the key inference that the mutation rate in our

cohort is constant over time. There are several lines of evidence for this. First, the mutational signatures that are present in our kidney

cancers are universal across cancer types (Alexandrov et al., 2013), show a linear correlation with age in most tumor types (Alexan-

drov et al., 2015) and accumulate steadily with age in normal cells at the same rate as the equivalent cancers (Blokzijl et al., 2016;

Welch et al., 2012). This suggests that they are intrinsic mutational processes, acting in all somatic cells steadily throughout life. Sec-

ond, there is a linear relationship between age and point mutation burden across this cohort, with strikingly similar slopes for the in-

herited and sporadic cases. Even if we allow for the relationship of age to mutation rate to be concave upward, we still estimate very

early timing of the t(3;5) events. Third, signatures indicative of tumor-specific mutational processes are absent from the cohort – there

are no signatures, for example, of mismatch repair deficiency, homologous recombination deficiency (Alexandrov et al., 2013) or the

aristolochic acid exposure seen in Balkan kidney cancers (Scelo et al., 2014). Such processes often accelerate mutation rates late in

tumor evolution (de Bruin et al., 2014; Nik-Zainal et al., 2012), and their absence in these renal cancers is consistent with a more con-

stant mutation rate during disease evolution.

We tested the sensitivity of our age estimates to this assumption using two alternative models. In the first, we included a quadratic

term for age, effectively allowing for the mutation rate to parabolically increase with age. This extra parameter did not significantly

improve the fit of the relationship between age and mutational burden, and furthermore, the estimated age of 3p loss increased

by less than a year. Second, we tested the effects of having an unobserved period of time between the occurrence of the last detect-

able mutation and tumor diagnosis. The reason for this is that for us to be able to detect a mutation, there has to be a clonal expan-

sion, which will take an undefined amount of time that would not be captured in our initial models. Under a range of values for this

unobserved time, the estimated age of t(3;5) events did not increase.

QUANTIFICATION AND STATISTICAL ANALYSIS

Non-coding driver analysis
Detection of non-coding drivers relies upon previously published techniques (Nik-Zainal et al., 2016). The method segments the

genome into eight classes of functional regions, which are analyzed separately: exons, core promoters, 50UTR, 30UTR, introns,
non-coding RNA genes, enhancers, and ultra-conserved regions. The expected number of somatic mutations in a given element

is estimated using a model accounting for 192 trinucleotide mutation rates and the sequence composition and length of each

element. This estimate is refined using a negative binomial regression with covariates, to improve the estimated rate of the element

and infer the extent of neutral variation of the mutation rate across elements. The use of a negative binomial regression treats the

number of observed mutations in an element as a Poisson observation with rates being gamma distributed across regions. We
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used three epigenomic vectors (Lawrence et al., 2013) and the local density of mutations in neighboring non-coding regions as co-

variates. Known driver genes were excluded from the model to avoid inflating the background model.

A separate analysis was performed for substitutions and small insertions/ deletions. The observed counts for each region were

compared to the background rates using a negative binomial test, yielding P-values for each region. These P-values were combined

using Fisher’s method and corrected for multiple testing using FDR (Table S3).

Telomere length estimation
To estimate telomere length, we used Telomerecat, a ploidy-agnostic method for estimating telomere length from whole genome

sequencing data (https://pypi.python.org/pypi/telomerecat; Farmery et al., 2017). The methodology accurately accounts for both

aneuploidy and interstitial telomeric reads, and therefore renders estimations more appropriate in the analysis of cancer genomes.

The comparison of telomere lengths between samples relied on linear mixed effect (LME) models to account for subclonal mutations

and the non-independence of multiple samples from individual patients.

Clustering of mutations
Mutations were clustered using a Bayesian Dirichlet based algorithm as described previously (Bolli et al., 2014; Nik-Zainal et al.,

2012). Briefly, the expected number of reads for a given mutation if present in one allelic copy of 100% of tumor cells may be esti-

mated based upon the Battenberg derived tumor cell fraction, the copy number at that locus and the total read-depth. The fraction of

cells carrying a given mutation is modeled by a Dirichlet process with an adjustment for the decreased sensitivity in identifying mu-

tations in lower tumor fractions. Mutations were thus assigned to clusters according to calculated fraction of clonality. The hierarchi-

cal ordering of these clusters was determined by applying the pigeonhole principle.

Gene expression analysis
We investigated the relationship between gene expression and the presence/ mechanism of 5q gain using TCGA RNA sequencing

data. Results from the Battenberg (copy number) and Brass (structural variant) analyses of the matched TCGA whole genomes (Fig-

ure S2) are used as genomic features for the differential expression analysis. Through this analysis, we aim to determine whether:

1. We can detect increased transcription of genes that are present on the duplicated arm of chromosome 5q;

2. There are any significantly differentially expressed genes in the region of the unbalanced t(3;5) translocation.

Data was downloaded in R via the TCGABiolinks package from Bioconductor. Subsequent analysis was carried out using the

R package edgeR.

We initially removed all samples with fewer than a total of 20 million reads, and all genes that do not have greater than 0.5 counts

per million values inmore than two samples. The common dispersion was then calculated, accounting for the presence or absence of

chromosome 5 gains or unbalanced translocations with chromosome 3. Finally, a negative binomial generalized log-linear model us-

ing Benjamini-Hochberg correction and FDR < 0.05 was used to detect genes that were significantly differentially expressed.

Estimation of mutation rate per year and ages at which landmark events occur
The multiregional aspect to this dataset allows us to analyze mutational burden by phylogenetic branch lengths, providing a more

accurate estimate of the mutation rate per year. As an illustration, imagine a tumor with two major subclones that diverged at

50% of molecular time, with the two subclonal lineages accumulating mutations equally and at the same rate as before the most

recent common ancestor (MRCA). Then, two thirds of the mutations will be subclonal (one third for each lineage) and one third

will arise on the trunk of the phylogenetic tree. Knowing the correct phylogenetic structure allows the MRCA to be accurately placed

at 50%molecular time, whereas a naive analysis of clonal versus subclonal mutations may place it at 33% time. For this analysis, we

therefore use the phylogenetic trees determined by Bayesian Dirichlet based clustering and the pigeonhole principle in order to

explore the relationship between age and mutational clone.

We fit LMEmodels in estimating the mutation rate per year (and to check whether the fit is statistically significant) (Data S1). This is

required because the different subclones (branches of the phylogenetic tree) within each patient are not independent (they share at

least part of their ancestry). The LME models allow us to manage this within-patient correlation in a statistically appropriate frame-

work. We can also generate estimates of the mutation rate per year for each patient specifically, estimates that represent a compro-

mise between the observed rate for each patient and the population average. These models also show that including intercepts do

not improve the statistical fit. To explore the possibility of the mutational rate increasing with age, we included a quadratic term for

age in the LME model and ran this modified model through the algorithms described below.

To time the onset of landmark events, we fit LMEmodels to estimate age from the number of mutations.We can therefore estimate

events such as emergence of the most recent common ancestor (MRCA) and copy number gains (especially the t(3;5) events).

The approach used is to fit the LME, and then use the patient-specific estimates of the slope to time the events from the observed

number of mutations that have accumulated by the time that event occurs in that patient. For timing the MRCA, this is simply the

number of mutations that are fully clonal, as estimated by the Hierarchical Dirichlet process. For timing the t(3;5) event and

other copy number gains that are fully clonal, this can be approached in two ways. First, it can be expressed as a fraction of time
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between 0 and emergence of MRCA through the fraction of mutations that are duplicated versus clonal but present on only a single

copy of the duplicated chromosome (Nik-Zainal et al., 2012). Second, we can estimate directly from the number of mutations present

pre-duplication, assuming we know what fraction of the genome has sufficient coverage for calling events. Parametric boot-strap-

ping is used to generate 95% confidence intervals for the timing estimates.

To explore the data, we extract the somatically acquired base substitutions in the duplicated region of chromosome 5q. The variant

allele fraction for each mutation called in any sample is extracted and then converted to a cancer cell fraction (CCF; the fraction of

cancer cells in the sample that carry themutation) using the level of normal cell contamination and copy number at that position. From

this, we calculate whether themutation was acquired prior to the duplication of chromosome 5q (if it was, the CCFwill be close to 2; if

not, CCF � = 1). For clonal mutations (seen in all samples), we take the consensus across all samples to vote whether it more likely

occurred before or after chromosome 5q duplication. Results are then plotted for each sample to allow assessment of consistency of

the calls/ data (Figures 5B and S4).

We apply two similar methods to estimate the age of occurrence of the t(3;5) gain:

(1) The first is to use the number of chromosome 5qmutations that are clonal and acquired before the 5q duplication relative to the

number that are clonal but acquired after duplication (correcting for the fact that post-duplication there is an extra copy of 5q

and hence the mutation burden accumulates more quickly). The fraction of clonal time at which the duplication occurred is

then estimated from the estimate of when the MRCA emerged. Bootstrapping provides 95% confidence intervals, incorpo-

rating the uncertainty in the numbers of pre- and post-duplication mutations and the age the MRCA emerges (Figures 5C,

6D, and S5).

(2) The second method is to derive the age of occurrence directly from the mutation rate estimated per patient from the LME and

the number of mutations that have accumulated before the 5q was duplicated. This requires correction for the size of the re-

gion gained and what the total size of the genome that could have had mutations called (from the BAM files, we estimate that

this is 5.32Gb for a typical sample in this series). Again, bootstrapping provides 95% confidence intervals, incorporating the

uncertainty in the numbers of pre-duplication mutations and the patient-specific mutation rate.

Rate of VHL driver mutations
To estimate the average rate of driver mutations in VHL, we estimate separately the rate of substitutions and indels. To estimate the

rate of driver substitutions, we calculate the estimated rate of each of the 6 mutation types in each of the trinucleotide contexts from

the overall substitution rate and the observed sequence context of kidney cancer point mutations (Data S1). We then take the length

and sequence composition of the coding DNA sequence (CDS) of VHL and generate all possible substitutions, and from this extract

the set of all possible amino acid consequences arising from substitutions along the length of VHL. From this, we define the set of all

possible driver substitutions as any substitutions that are: start-lost, stop-lost, stop-gained or a member of the set of previously

observed amino acid substitutions in VHL recorded in clear cell renal cell carcinomas in the COSMIC database. The rates of these

individual mutations are then summed to generate the overall driver substitution rate of 8.5e-07 /cell/year per cell per year.

Estimating the rate of driver indels in VHL follows broadly the same approach. We show that there is a strongly linear association

between the number of substitutions and the number of indels across patients in the cohort. Using the slope of this relationship, we

estimate the indel rate per year per clone from the average substitution rate. We then assume that all indels within the CDS of VHL are

driver mutations. This then allows us to calculate the VHL driver indel mutation rate of 1.2e-06 /cell/year.

Models of age-incidence curves for sporadic & inherited ccRCC
We have shown that in this study and companion papers (Turajlic et al., 2018a, 2018b), the evolution of sporadic clear cell kidney

cancer appears to follow well-defined and recurrent trajectories. Frequently, it seems the first event is chromosome 3p loss, often

with concomitant gains on other chromosomes – this appears to occur predominantly in childhood or adolescence. The other key

event that occurs early in the evolution of sporadic ccRCC is inactivation of the other allele of VHL, typically through point mutation

(notwithstanding the role of epigenetic silencing) – this is an obligatory early event, because it is both highly recurrent across patients

(> 75%) and always present on the trunk of the phylogenetic tree.

Furthermore, exploring the genomic features of ccRCC that have occurred in the setting of inherited VHLmutations reveals many

similarities with sporadic ccRCC, (Fei et al., 2016) and analyzed further here. Large-scale chromosomal loss of the other allele of chro-

mosome 3p is universal. The other driver mutations occur in the same genes and at broadly the same frequencies. The mutation rate

is similar to that seen in sporadic cancers, with an almost identical spectrum and linear association with age.

We therefore built Bayesian models of the age-incidence curves for sporadic and inherited ccRCC. The first step is to interpret the

published age-incidence figures (Data S1). The age-incidence curves for sporadic clear cell RCC come from Cancer Research UK

and represent age-specific annual incidence figures per 100,000 population, banded in 5-year groups. The figures for inherited vHL

disease are Kaplan-Meier curves derived from (Ong et al., 2007). The second step is to take draws of cohorts of individual patients (or

censored non-patients) from the published curves. These then represent the data that is fitted by the Bayesian model.
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The primary question of interest is how large is the clone(s) carrying 3p loss during the development of sporadic kidney cancer.

From the difference in age-incidence curves between VHL carriers and sporadic kidney cancers, and the known VHL driver mutation

rate per cell per year, we can estimate how many cells that are susceptible to initiating ccRCC carry chromosome 3p loss during

adulthood.

The major assumption in this approach is that the evolution of sporadic kidney cancers and inherited ccRCC in vHL patients is

identical except for the need to inactivate VHL as a somatic event in the sporadic cases. The broad concept for modeling the

age-incidence curves is to treat sporadic ccRCC as the sum of three independent waiting times (time to 3p loss; time from 3p

loss to VHL inactivation; time from biallelic VHL loss to diagnosed kidney cancer, Figure 7A). We treat ccRCC in carriers of VHL

as the sum of two independent waiting times, with the same distribution as in sporadic cases (time to 3p loss; time from 3p loss

to diagnosed kidney cancer).

Formally, we let Yi;spor denote the age of incidence (in years) of patient i with sporadic ccRCC, and Yi;vHL the age of incidence of

ccRCC in patients with von Hippel-Lindau disease. We then let:

Yi;spor =Z1 +Z2 +Z3
Yi;vHL =Z1 +Z3;
whereZ is thewaiting time to 3p loss;Z is thewaiting time betwe
1 2 en 3p loss and somatic inactivation of the otherVHL allele; andZ3 is

thewaiting time frombiallelicVHL loss to diagnosis of clear cell renal cancer. Clearly, we do not observe all waiting times, since�20%

of vHL cases do not develop ccRCC and the vast majority of non-carriers do not. Thus, there will be censoring of the sum of waiting

times for many individuals, which we handle by data augmentation.

We model these waiting times with the gamma distribution for Z1 and Z3and the exponential distribution for Z2. That is:

Z1 � Gða1;b1Þ
Z2 � ExpðlÞ
Z3 � Gða3;b3Þ;
where l= nm;with n as as the number of cells in the clone after chro
mosome 3p loss and m as the VHL driver mutation rate per cell per

year. We use the conjugate prior: l � Gð0:01;0:01Þ: The parameters, a1;b1;a3 and b3; wemodel as coming from the conjugate prior

to the gamma distribution:

ða;bÞf pa�1e�bq

GðaÞrb�as ;
where p;q; r and s are hyperparameters. For a and b ; we u
3 3 se uninformative hyperparameters ðp3 =q3 = r3 = s3 = 1Þ; but for

a1 and b1; we instead choose an informative prior distilled from the estimated ages of chromosome 3p loss. That is,

p1 =
Y
i

x3p;i; q1 =
X
i

x3p;i ; r1 = s1 = n3p;
where x3p;i; i = 1;.;n3p; are the estimated ages at which ch
romosome 3p loss occurred in patients with informative t(3;-)

translocations.

We take draws from the posterior distribution using aGibbs sampler. We use 50,000 iterations with the first 10,000 being treated as

burn-in. The steps involved are as follows:

1. Update zi;1 and zi;3 for vHL patients who were not censored

Since patients whowere not censored have an exact observed age of incidence, yi; wemust take draws such that zi;1 + zi;3 = yi:Wedo

this by using a Metropolis-Hastings approach where the proposal distribution is a Dirichlet distribution, scaled to the age of inci-

dence. That is, the proposed new values are:

�
z
ð�Þ
i;1 ; z

ð�Þ
i;3

�
� yi : Dir

 
kz

ðj�1Þ
i;1

z
ðj�1Þ
i;1 + z

ðj�1Þ
i;3

;
kz

ðj�1Þ
i;3

z
ðj�1Þ
i;1 + z

ðj�1Þ
i;3

!
;

where k is a user-defined scaling factor chosen to optimize the ac
ceptance ratio of the Metropolis-Hastings algorithm and the ðj � 1Þ
superscript denotes the current value of the two waiting times.
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The importance ratio for the Metropolis-Hastings algorithm is therefore:

Qi =
f
�
z
ðj�1Þ
i

���zð�Þi

�
f
�
z
ð�Þ
i

���zðj�1Þ
i

� :
P
�
z
ð�Þ
i

���zðj�1Þ
i ;a

ðj�1Þ
1 ; b

ðj�1Þ
1 ;a

ðj�1Þ
3 ; b

ðj�1Þ
3

�
P
�
z
ðj�1Þ
i

���zð�Þi ;a
ðj�1Þ
1 ; b

ðj�1Þ
1 ;a

ðj�1Þ
3 ; b

ðj�1Þ
3

�

=
f
�
z
ðj�1Þ
i

���zð�Þi

�
f
�
z
ð�Þ
i

���zðj�1Þ
i

� :

 
z
ð�Þ
i;1

z
ðj�1Þ
i;1

!a
ðj�1Þ
1

�1

:

 
z
ð�Þ
i;3

z
ðj�1Þ
i;3

!a
ðj�1Þ
3

�1

:e�b
ðj�1Þ
1

�
z
ð�Þ
i;1

�z
ðj�1Þ
i;1

�
�b

ðj�1Þ
3

�
z
ð�Þ
i;3

�z
ðj�1Þ
i;3

�
:

This is accepted or rejected in the usual way.
2. Update of zi;1and zi;3 for vHL patients who were censored

Here, we know only the lower bound on the yi, so we sample these using rejection sampling. That is, we take draws of

z
ð�Þ
i;1 � Gðaðj�1Þ

1 ;b
ðj�1Þ
1 Þ and z

ð�Þ
i;3 � Gðaðj�1Þ

3 ;b
ðj�1Þ
3 Þ until zð�Þi;1 + z

ð�Þ
i;3 is greater than the age of censoring.

3. Update of zi;1;zi;2and zi;3 for sporadic ccRCC patients who were not censored

We apply the same approach as in step 1, using an analogous three parameter Dirichlet proposal distribution.

4. Update of zi;1;zi;2and zi;3 for sporadic ccRCC patients who were censored

We apply the analogous rejection sampling approach as used in step 2.

5. Update of a1;b1;a3;b3 from conjugate prior

Given the (informative) hyperparameters p1;q1; r1; s1for the conjugate prior for ða1;b1Þ; we have:

fða1; b1 jp1;q1; r1; s1Þf
�
p1

Q
iz

ðjÞ
i;1

�a1
: e�b1

�
q1 +
P

i
z
ðjÞ
i;1

�
Gða1Þr1 +n

: b
�a1ðs1 + nÞ
1

:

We sample from this using a Metropolis-Hastings algorithm w
ith the proposal distribution as independent gamma variables:

a
ð�Þ
1 � Gðaðj�1Þ

1 gÞ and b
ð�Þ
1 � Gðbðj�1Þ

1 gÞ, where g is a scaling factor defined by the user to optimize the acceptance / rejection ratio.

The importance ratio is calculated, and the proposed values, a
ð�Þ
1 and b

ð�Þ
1 ; accepted or rejected in the usual way. The same approach

is applied to updating a3 and b3.

6. Update of l

We take draws directly from the posterior:

lðjÞ � G

 
0:01+ nspor ; 0:01+

X
i

z
ðjÞ
i;2

!
:

7. Draws from posterior distribution of ages of incidence under different clone sizes

We can also take draws of alternative zi;2 values if the clone size were different, by a fraction r. That is, we draw z
ðjÞ
i;2 � ExpðrlðjÞÞ and

add to z
ðjÞ
i;1 + z

ðjÞ
i;3 to generate an alternative age of incidence.

There are a few points of note in this implementation of the model. First, we assume independence of the waiting times. If, for

example, there is clone-to-clone variation in the mutation rate, this assumption may not be entirely valid, since the time from chro-

mosome 3p loss to VHL inactivation would potentially be correlated with the time from VHL inactivation to kidney cancer resection.

However, it is unclear how much clone-to-clone variation there is in mutation rate among kidney cells and how much inter-individual

variation. Second, we assume that the clone size is broadly constant after chromosome 3p loss. That is, the clone expands rapidly to

a steady-state number, at which stage it plateaus. In fact, given the relatively small number of cells estimated in the clones, this is

probably a reasonable assumption. Third, we do make the assumption that the order of events is chromosome 3p loss, followed

by VHL point mutation, followed by other driver mutations, clonal expansion and diagnosis. Given that we are estimating a clone

size of several hundred cells after chromosome 3p loss, it is statistically much more likely that the VHL mutation will occur after

this clonal expansion than in the one cell before chromosome 3p loss (inherent in this is the assumption that the rate of chromosome

3p loss through, for example, chromothripsis involving chromosomes 3p and 5q is much lower than that of VHL driver point

mutations).

We check some convergence and mixing plots for the a and b estimates. They show rather slow mixing for a1 and b1. This is

perhaps not surprising since the information for the Z1 waiting time is somewhat confounded with the Z3 waiting time, except through

the prior information provided from the timings of t(3;-) translocations. Nonetheless, we have experimented with many different start-

ing points for these values, and the posterior always converges well to the distribution (Figures 7B and 7D).

The key question of interest in this model is to establish the potential number of cells that carry chromosome 3p loss without having

the other VHL allele mutated. TheMCMCdraws from the posterior distribution converge andmix well. From the posterior distribution

it is suggested that the number of cells in the kidney that carry chromosome 3p loss before the other VHL allele is mutated is only in

the hundreds (Figure 7C).
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The other question of interest is to model what would happen to the age-incidence curves for sporadic kidney cancer if we had a

treatment that could kill a fraction of cells at the chromosome 3p loss stage. To answer this question, we use the posterior distribution

for the sum of waiting times using a depleted number of cells with chromosome 3p loss (Figures 7E–7G).

DATA AND SOFTWARE AVAILABILITY

The accession number for the genome sequence data reported in this paper is European Genome-Phenome Archive:

EGAD00001003445. Mathematical detail, code, and worked examples for the estimation of mutation rate per year and ages at which

landmark events occur, the rate of VHL driver mutations, and the models of age-incidence curves for sporadic & inherited ccRCC are

available in Data S1.
Cell 173, 611–623.e1–e8, April 19, 2018 e8



Supplemental Figures

116 118 120 122 124 126 128
chr3 position (Mb)

110 112 114 116 118 120
chr6 position (Mb)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

C
op

y 
nu

m
be

r

K124

50 52 54 56 58
chr3 position (Mb)

94 96 98 100
chr5 position (Mb)

0
1
2
3
4
5

C
op

y 
nu

m
be

r

K104

96 98 100 102 104 106
chr3 position (Mb)

96 98 100 102 104
chr5 position (Mb)

0
1
2
3
4
5

C
op

y 
nu

m
be

r

K163

70 75 80 85
chr3 position (Mb)

94 96 98 100 102 104
chr5 position (Mb)

0
1
2
3
4

C
op

y 
nu

m
be

r

K108

66 68 70 72 74 76 78 80
chr3 position (Mb)

75 80 85
chr5 position (Mb)

0
1
2
3
4

C
op

y 
nu

m
be

r

K165

72 74 76 78 80 82 84
chr3 position (Mb)

92 94 96 98 100 102 104
chr5 position (Mb)

0
1
2
3
4

C
op

y 
nu

m
be

r

14
9 K139

50 55 60 65
chr3 position (Mb)

70 75 80
chr5 position (Mb)

0
2
4
6
8

C
op

y 
nu

m
be

r

K176

76 78 80 82 84
chr3 position (Mb)

142 144 146 148
chr5 position (Mb)

0
1
2
3
4
5

C
op

y 
nu

m
be

r

K167

68 72 76
chr3 position (Mb)

110 120 130 140 150 160 170
chr5 position (Mb)

0
1
2
3
4
5

C
op

y 
nu

m
be

r

K180

60 62 64 66 68
chr3 position (Mb)

106 108 110 112
chr5 position (Mb)

0
1
2
3
4

C
op

y 
nu

m
be

r

K113

64 66 68 70 72 74 76
chr3 position (Mb)

100 105 110
chr5 position (Mb)

0
1
2
3
4

C
op

y 
nu

m
be

r

K096

56 58 60 62
chr3 position (Mb)

90 92 94 96
chr9 position (Mb)

0
1
2
3
4
5

C
op

y 
nu

m
be

r

K135

86 88 90 92
chr3 position (Mb)

32 34 36 38
chr8 position (Mb)

0
1
2
3
4
5
6
7

C
op

y 
nu

m
be

r

K097

92 94 96 98 100
chr3 position (Mb)

108 110 112 114 116
chr6 position (Mb)

0
1
2
3
4

C
op

y 
nu

m
be

r

K162

86 88 90 92 94
chr3 position (Mb)

124 126 128 130
chr5 position (Mb)

0
1
2
3
4
5

C
op

y 
nu

m
be

r

K023

62 64 66 68
chr3 position (Mb)

104 106 108 110
chr5 position (Mb)

0
1
2
3
4
5

C
op

y 
nu

m
be

r

K156

chr3 position (Mb) chr5 position (Mb)
84 86 88 90 58 60 62 64

0
1
2
3
4
5

C
op

y 
nu

m
be

r

K065

(legend on next page)



Figure S1. Intra and Inter-chromosomal Rearrangements Affecting Chromosome 3, Related to Figure 3

Copy number is plotted as number of reads in a given genomic window, corrected for ploidy of the tumor and aberrant cell fraction. Somatic structural variants are

shown as arcs joining the two sides of the breakpoint, colored by orientation of the two segments. Blue lines, deletion orientation; brown lines, tandem duplication

orientation; blue-green lines, head-to-head inverted orientation; bright green lines, tail-to-tail inverted orientation.



B

A

Figure S2. Analysis of TCGA Data, Related to Figure 3

(A) The genomic location of all breakpoints from all tumors that harbored translocations between chromosomes 3 and 5. Regions with loss of heterozygosity are

shown in blue; those with copy number gain in red. Positions of breakpoints are marked with black triangles.

(B) Fold-change in expression of all genes on chromosome 5 for those tumors that had a gain of 5q compared to thosewith wild-type chromosome 5. Significantly

differentially expressed genes (FDR < 0.05) are highlighted.
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Figure S3. The Average Number of Mutations by Mutational Context, Related to Figure 5

(A) Truncal mutations in sporadic tumors.

(B) Non-truncal mutations in sporadic tumors.

(C) Mutations in inherited ccRCCs in von Hippel-Lindau disease. Bars represent average number of mutations per tumor of the six different types (C > A, C > G,

C > T, T > A, T > C, T > G) with each of the 16 different combinations of base before and after the mutated base.
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Figure S4. Number of Copies of Each Mutation per Cancer Cell for Regions of Chromosome 5q Gain, Related to Figure 5

All patients with 5q gain in the setting of t(3;5) unbalanced translocations are shown. The estimated number of copies per cancer cell of each mutation in the

duplicated region of 5q is plotted. Mutations may be assigned as clonal and pre-duplication (green) or post-duplication (blue); subclonal and present (orange) or

absent (purple) in this sample; or uncertain (black).



Figure S5. Age at which Isolated Chromosome 5 Gains Occurred, Related to Figure 5

Shown are the estimated ages at which patients acquired a clonal 5q gain (blue), not occurring with 3p loss, relative to the age of diagnosis (black) and estimated

age at which the most recent common ancestor (MRCA) emerged (red). Shading indicates 95% confidence intervals for the estimated age.
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Figure S6. Intra- and Inter-chromosomal Rearrangements Affecting Chromosome 3 in the Inherited von Hippel-Lindau Disease Dataset,

Related to Figure 6

Copy number is plotted as number of reads in a given genomic window, corrected for ploidy of the tumor and aberrant cell fraction. Somatic structural variants are

shown as arcs joining the two sides of the breakpoint, colored by orientation of the two segments. Blue lines, deletion orientation; brown lines, tandem duplication

orientation; blue-green lines, head-to-head inverted orientation; bright green lines, tail-to-tail inverted orientation.
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Figure S7. Comparison of the Copy Number Landscape in Sporadic and Inherited (vHL) Datasets, Related to Figure 6
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